Omnis Studio
External Components

Creating your own External Components

TigerLogic Corporation

May 2010
000000000000

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of TigerLogic.

© TigerLogic Corporation, and its licensors 2010. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2009 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

OMNIS® and Omnis Studio® are registered trademarks of TigerLogic Corporation.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.
ICU is Copyright © 1995-2003 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

J2SE is Copyright (c) 2003 Sun Microsystems Inc under a licence agreement to be found at:
http://java.sun.com/j2se/1.4.2/docs/relnotes/license.html

MySQL is a registered trademark of MySQL AB in the United States, the European Union and other
countries (www.mysgl.com).

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

Acrobat is a trademark of Adobe Systems, Inc.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

HP-UX is a trademark of Hewlett Packard.
OSF/Motif is a trademark of the Open Software Foundation.
CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering
(www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

Table of Contents

Table of Contents

ABOUT THIS MANUAL ...t 6

CHAPTER 16 OMNIS EXTERNAL COMPO NENTS....8

INTRODUCTION....uuuuieiiiiiiieeeeeii e e seeeeeeetiseeeeetnnaeeeeesenmnanss 8
CREATING YOUR OWNEXTERNAL COMPONENTS........ccvvnnnn..]
CREATING NON-VISUAL COMPONENTS.....ccvvuierinneeenneennnn 33
BACKGROUND COMPONENTS......uuiiiiiieiiieerineerimmneeeenneendd 44
WEB CLIENT COMPONENTS ...cutiiiiieeiieeei e steeee e et e eeennas 45

CHAPTER 28 STRUCTURES, MESSAGES& FUNCTIONS47

STRUCTURES.....cttniiitiieitiee et eeeemteeeeae e et e e eaa e s aaeeneneenns a7
FLAGS. .. e 59
GENERAL IMESSAGES. ... cccvuieiiteeiiieeeteeee et e et eea e eaan 63
WM_CONTROLMESSAGES.......uutttrimrrireieeiresieenrrrennnee 115
GENERAL FUNCTIONS......uuiiiiiiiiiieeeeieeeeeee et e et eeeaaas 124
MEMORY FUNCTIONS.uiiuiiiiiiieei e eeteeeeee e e e eae e eanas 166
QHANDLEPTR CLASS....civtiiei et e e 173
RESOURCEFUNCTIONS.ccvtiiiiieiieeeei e eeemeee e et eeeaaeees 176
BIT FUNCTIONS ...t eeeee et e 179
OBJIINSTFUNCTIONScuuiiiieeieieeeeeee e e e e e e e 181
CHAPTER 38 STRXXX CLASS REFERENCE 184
MEMBER FUNCTIONS STRXXXCLASS.....cccvuieiiieeeeiieeeainns 184
MEMBER FUNCTIONS STRL5 CLASS.......cceevvieeeeieeeie e 190
MEMBER FUNCTIONS STRBOCLASS.......cceevvieeeiieeeiieeeeeee 191
MEMBER FUNCTIONS STR255CLASS......c.oeiiieeiieeeeieee 192
OTHERFUNCTIONS.cittiiiiieecie e eeeeee et e e eaaaas 193

INTRODUCTION. .. euituietieteeteene e e e smeeeesnseneaneansensensenssnnns 196
UNICODE DATA TYPES...ceuiiiiiiiiieieeeee e teee e ea e e nans 197
UTILITY CLASSES...uiitiiitiiiiieiieeeee e iem e seeeaesaseaseaeeans 197
OTHER FUNCTIONS.euiieieiteeee et et eem e e et e e e eaneean e 216
CHAPTER 56 EXTBMPREF & EXTCURRE F.......... 218
INTRODCUTION. .. ttuiitniiteiieitieei e s e eaeesbee e senseeneesnsenns 218
ENUMERATIONS. .. cvuiiitiiiiii et tem e e e et e st e et e eb s eee 218

EXTBMPREF CLASSREFERENCE........ccvuiivniiiniiiniernnnes 219

Table of Contents

EXTCURREFCLASS REFERENCE(V2.2).....cvvvveieereeeeaeennn. 223
CHAPTER 668 QKEY REFERENCE...............ccoeenn. 225
INTRODUGCTION. ...ctuiittiiteiteits e et s seme et esbee et senseenssnssenn 225
ENUMERATIONS. .. ctniiitiii it eei e tem e ea et e s e eaeebeee 225
QKEY CLASSREFERENCE........uciituieiiieeiiieeeeemeieeevieeeeanns 226
OTHER FUNCTIONS. .. .ottt it eem et ea e e e eaae e 229
CHAPTER 70 EXTFILE REFERENCEcccooe...... 231
INTRODUCTION. .ceuueitieeetn e eei e e eteeeeeeae e s eaeeseaeeeean e s annns 231
APLFUNCTIONS. .. oot eem et e 231
EXTFILE CLASSREFERENCEcuuiiviiiiiiiiieiieeriinensnesanenns 237
CHAPTER 88 CRB REFERENCE...........cevevvivee. 243
INTRODUCTION. ...tuittitiiitietien et et rmeessesetetesnesnssnesnssnnen 243
APTFUNCTIONS. ...ttt eeme e ettt e e ee 243
EXTCRBCLASSREFERENCEuiiviiiiieiieineeinineneneseneens 251
CHAPTER 90 EXTQLIST REFERENCE 259
INTRODUCTION. 11 ttuiittiiteeieetieeiesemeessestiesnesssieeneesnssenns 259
STRUCTURES ANDENUMERATIONSouviviiiiiiieiieeievvmnens 262
EXTQLIST CLASSREFERENCE........ceviiviiiiiieeieiiineeneneenns 263
CHAPTER 100 EXTFLDVAL REFERENCE 276
INTRODUCTION. ...euittittieteetee e et semeee s eeaee et eaneansensensennan 276
ENUMERATIONS AND STRUCTURES......uciviiienierneiineeeneeenens 282
EXTFLDVAL CLASSREFERENCE.......ccucivuiienieeneiineevmeneen. 287
CHAPTER 116 HWND REFERENCE............cccee..... 306
THEHWND ..o e 306
STRUCTURES DATA TYPES, AND DEFINES........cocvvevvniennns 309
Y 2 =TT 322
MESSAGES. .. citiitiiiieiit et treer s e e e e et seee e 326
FUNCTIONS. ..ce it 358
CHAPTER 128 GDI REFERENCE.......c.covvvvivvivnnn. 423
STRUCTURES DATA TYPES, AND DEFINES........................423
FUNCTIONS. ... reme e 436
CHAPTER 138 PRI REFERENCEc.covvvvieeeeee. 525
THE INPUTMANAGER .. .cutiviiiiiiiei et evmee e s e 526
THE OUTPUTMANAGERiitiiitiiiieieeiseemaesseeaesanees K34
INTERNAL OUTPUTDEVICESccviiitiiiiiiiieicerceemraes e 547
STRUCTURES DATA TYPES ANDDEFINES.......ocovnvivniinnnee. 551

Table of Contents

MESSAGES(PRINTING) «1veveeieeeeeeeiiesiescieeee e e e e e e e e e K574
MESSAGESCUSTOM DEVICES ...cceeeeeeeeeeieiiiecinnieenneeens 579
FUNCTIONS. ..o ee e 598
APPENDIX A3 PORTING EXTERNAL COMPONE NTS TO MACH -O 642
HARDWARE REQUIREMENTS......uciiiiiiiiieeiiieeerimeeeeeennand 642
SOFTWARE REQUIREMENTS ... couniiiiiieiiieeiiieeeeemmieeennnnd] 642
SETTINGUP ..ceii et reen s 643
COMPONENTARCHITECTURE.....cuuiitiiiniitieiieineeemnneennens 643
CREATING AN XCODEPROJECT....cctuiiiiiiiiieiieetceemieeann 646

RESOURCES.....itiitiiiiiieeee et et e et ermeaas 648

About This Manual

About This Manual

This manual describes how yoan create your own external components to integrate into
Omnis Studio. You can download sample source code from the Omnis website to help you

do this.

For more information about Omnis external components, and to download the latest source
files, pleaseyo to:

¢ www.omnis.net/download/components

This manual introduces key development topics and expands to form a reference guide for
each of the main APIs provided by the Omnis component library:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Omnis External Components

Introduces the different types of Omnis external components. There is a
brief tutorial to get you wandrunning with the Generic visual

component plus general notes on building and testing.

Structures, Messages ah Functions

Discusses key structures used by external components and how they are
used in conjunction with messages sent to your component. There are also
descriptions of general purpose functions you can use as well as memory
and resource management fuons

Simple String Management
Introduces the strxxx() class family which facilitates simple management
of text strings of up to 255 characters.

Unicode Character Conversion

Discusses the issues involved in writing Unicode compatiblgpooants

and also lists data types, utility classes and helper functions you can use to
convert character data between various Unicode encodings.

Managing Icons and Cursors

Introduces the EXTBMPref() class which can be used to manage icons in
the Omnis icon datafiles. The EXTCURref() class can be used to assign
custom mouse cursors for use with your component.

Handling Keyboard Input
Discusses the gkey class and other functions, which allows your
component to process keyboard input.

http://www.omnis.net/download/components

About This Manual

Chapter 7

Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13

Appendix A

Managing File Data

Discusses the FILE APl commands and their wrapper class; EXTfile()
which provides your component with crggisitform access to files and
folders.

Omnis Data Collections

This chapter discusses the CRB API and its assatistapper class;
EXTcrb() which is used to manage Omnis data collections. An Omnis
data collection is a block of data with a variable number of data items,
providing your components with simple, seitending, random access
blocks of memory.

Omnis List Data

Introduces the EXTqlist() class which gives your component access to
Omnis list data. Using EXTqlist(), you can also create, interrogate and
modify lists to pass back to Omnis.

Omnis Field Values

The EXTfldval() class is a generstorage object which gives your
component access to Omnis field values. You can get and set EXTfldvals
using a variety of data types and also convert between different types.

Window Management

This chapter discusses the HWND module and itscéastsal window
messages, which visual components may be required to process. The
HWND module provides many drawing, resizing and status functions.

Graphics Management

The Graphics Drawing Interface module (GDI) provides many drawing,
positionirg and formatting functions for use by visual components. This
chapter also introduces associated structures, data types and constants.

Printer Management

The Crossplatform printer interface module (PRI) provides your
component with printing ahreporting functions which are hardware
independent. This chapter also discusses the associated messages your
component may need to process as well as associated structures and
constants.

Porting External Components to MachO

This chapter dis@ses the issues involved in writing components using
Mac OSX 10.5 and Xcode and porting old¢yle MacOS 9 projects from
Code Warrior.

Chapter 18 Omnis External Components

Chapter 10 Omnis
External Components

Introduction

Omnis external components are pingnodules that extend the rangevisual and non

visual objects available in the design and runtime environments in Omnis, as well extending
the Omnis programming language. There are many different external components supplied
with Omnis, but you can create your own using your own softwdarelopment tools and

the information in this manual.

Once built and installed into Omnis, external components behave in exactly the same way as
standard buiin Omnis components. You can change the properties of an external
component in design modeing the Property Manager. Likewise, at runtime you can
manipulate an external component using methods and the notation, and examine its runtime
properties in the Notation Inspector. External components can also contain functions or
methods and events, whigou can call or intercept using Omnis methods. You can build

all of these features into your own external components.

The type and range of external components include:

C Window objects (including background objects) and Report objects
Both window and ngort external components appear in the Omnis Component Store
and can be used in your libraries in exactly the same way asrbGilll objects.

C Static Functions
Static functions are components that contain functions, that appear in the Omnis
Catalogundet he 6 Functions®6 group. These func
in your Omnis code.

C Omnis objects
Omnis objectsorso al | edi mainé components are obj e
methods and properties, which can be used in the Omnis languegjeedrto perform
some specific function. External objects can bedabsed, just like normal Omnis
objects, to form new objects. The SQL DAMs are examples of/isual components.

Creating your own External Components

Creating your own External
Components

Using the libraries supplied, you can create Omnis external components that run under all
platforms supported in Omnis. All of the samples supplied, except QuickTime, have
independent source code. The Omnis resource comfatetiux and Mac OSXXcode

are supplied. These compile simple Windows style .RC files, and support image types
.BMP, allowing the entire component to be portable.

Components in Omnis

When you start Omnis, you have to teliatioad your new component. You can load an
external component via the #EXTCOMP system table. You can access this via the Browser,
or open a window class in design mode and fadjick on the Component Store, and select

the External Components option.

If the components you create are OK, they should appear in the #EXTCOMP system table.
If you cannot find your component in the external component list, check the Omnis Trace
Log window. Omnis will always write any errors to the trace log during startup. tésefo

the radio button options to load the component. Close the dialog. When you return to the
design window, you should see your component in the Component Store, under the External
Components button in the Component Store toolbar. You should be ab#gtthe control

on to a window class and your component is created.

Windows and Child Windows

Omnis supports two window types. Top level windows and child windows. In the Omnis

IDE, you can create topvel windows as window classes, and design the contents of the
window by adding controls such as buttons and lists. All window controls such as button
and list controls are child windows. A child window is a window that sits inside another
parent window. Cild windows can also contain other window controls, thus the parent

child relationship can be nested at several levels. For example, a scrollbox window field is a
child control within the window class, but it can have other child controls placed within it,
thus making it a parent.

An external component operates inside a child window and performs some kind of

operation within the child window. The component can do virtually anything from draw a
graph, scroll a message, or pick up a click within it and seméssage back to Omnis. To

do this, the window receives and processes messages. A message informs the child window
of all events that affect it, such as the user clicking on it with the mouse. Later, when you
create a component, you need to tell Omnisdmae of a procedure that Omnis can call

with your message. This procedure is often referred to as the WNDPROC (short for
Window Procedure) or message handler. There are many messages defined by the

Chapter 18 Omnis External Components

10

component library that your procedure is sent, some yibwant to deal with, others you
can ignore; you will see how to deal with these messages.

Data types Defined by the Component Library

To help you write platforrindependent components, you should usealtia types declared
by the component library. All APIs in the library use the following data types.

C-type Omnis type Description

unsigned char or | gchar standard unsigned char value

unsigned long* *qchar is defined as 4 bytes for Unicode targets.

char or goschar platform APFdependent Unicode character. 2 by

unsigned short for Win32 & Mac OSX Unicode targets. 1 byte fd
Linux targets & norJnicode targets.

unsigned char gbyte assumed to hold-255

unsigned char gbool assumed to hold gtrue ofadse

short gshort standard short value

unsigned short qushort standard unsigned short value

long glong standard long value

unsigned long qulong standard unsigned long value

platform dependeni greal used for real arithmetic

short gret return type fron some API calls

enum gnil can be used to assign to some objects to clear t

unsigned char gintl 1 byte unsigned integer (as stored on disk)

short gint2 2 byte integer (as stored on disk)

unsigned short gword2 2 byte unsigned integer (as stored oskji

long gint4 4 byte integer (as stored on disk)

unsigned long qword4 4 byte unsigned integer (as stored on disk)

long rstrno uses when calling RESxxx functions

short attnum property numbers

gbool gfalse =0 false boolean value

gbool qtrue =1 trueboolean value

gret e ok=0 no error occurred

gret e_negative = 1| error occurred

Creating your own External Components

As well as using the data types, you should try to use the component APl as much as
possible to ensure platform independent code. In the long run, it may mean yaa have
recompile for another platform, rather than having to port lots of code.

Types of visual components

Omnis supports different types of external component which you can add to window and
report classes. Whennihis starts up, the component specifies what kind of component it is,
and what class type it should appear in.

C cObjType_Basic
a generic window class component.

C cObjType_Picture
a derived Omnis picture component for window classes.

C cObjType_List
a derivedOmnis list component for window classes.

C cObjType_DroplList
a derived Omnis droplist component for window classes.

C cObjType_IconArray
a derived Omnis icon array component for window classes.

C cObjType_PriOutput
a custom report output device

C cRepObjType_ Basic
a generic report class component.

C cRepObjType_Picture
a derived Omnis picture component for report classes.

Components can be both window and report objects. For example, you may want to create a
picturehandling component, that works in both window agplart mode, therefore its
returns type should be:

cObjType_Picture | cRepObjType_Picture

Basic Components

Basic components are generic controls that receive all messages via the WNDPROC. You
must code all actions that you want to happen inside your ¢ontro

See the examples provided.

11

Chapter 18 Omnis External Components

12

Picture Components

Picture components are objects derived from the internal Omnis picture field. Omnis calls
your WNDPROC with standard messages, but you also receive some specific messages only
for derived picture controls.df example, Omnis calls you to inquire how big your image is,

so it can handle the scrolling and call you to paint.

See the PCX example.

List Components

List components are objects derived from the internal Omnis list field. Omnis calls your
WNDPROC with sandard messages, but you also receive some specific messages only for
derived list controls. For example, when Omnis paints your list, you are called to draw
individual lines, possibly in a selected state.

See the PICLIST example.

Droplist Components

Droplist components are objects derived from the internal Omnis droplist field. Omnis calls
your WNDPROC with standard messages, but you also receive some specific messages only
for derived droplist controls. For example, when Omnis paints your droplist ¢®nyen

will be called to draw individual lines.

Icon Array Components

Icon array components are objects derived from the internal Omnis icon array field. Omnis
calls your WNDPROC with standard messages, but you also receive some specific
messages only faterived icon array controls. For example, when Omnis paints your icon
array, you will be called to draw individual icons and icon labels.

See the ICNARRAY example.

Report Components

Report components should be treated as if they were window componepts pvifiting is
required, you are called with specific report printing messages.

See the PCX example.

Background Components

Background components are objects that behave like internal Omnis background objects.
For example, background objects never havdabes or receive events. They are always
drawn as part of the background of the window they belong to. One of the sample
background components supplied is an object that allows a bitmap to be tiled over an area.

Background components do not have theina®bjType XXX type, and need to be
defined as @&0ObjType_Basictype component. A flag needs to be set on ECM_CONNECT
to indicate the component should be treated as a background component.

Creating your own External Components

However, it is important to note that you cannot have both bagkdrand other visible
components in the same library.

See the TILE or WASH example.

Types of non-visual components

Omnis supports various typesofrern sual component sv.i sluraltéhime
a conponent that does not have a visual interface but one that provides some functionality,
such as functions or methods, that can be used in the Omnis programming language. Most
nonvisual components do not need to be placed on a window or report for theiofisn

or methods to be called. Natisual and visual components mayexist in the same library.
Picture Format Conversion (New for Studio 2.1)

Picture format conversion are libraries which provide functionality to convert from the
specified format to aative O/S picture and visaersa.

See PCX example.

Static Functions

Static functions behave just like Omnis functions and appear in the catalog justdikiét in
Omnis functions.

See the FILEOPS example.

Object Components

Object components appear in Ogas objects and can therefore be utilized by adding an
00bjectd variabl e-typeyith the appropriate s

Just like Omnis object classes, external object components may-bssiéd to form new
objects.

See the FILEOPS example.

DAMs

Writing custom Datahccess Modules for Omnis Studio is the subject of a supplementary
manual; "Omnis Studio DAM API". This manual discusses the additional damlib library
needed to build these specialized +wiBual components as well as datatypes, structures,
classes and gemal techniques involved.

13

Chapter 18 Omnis External Components

14

Writing Thread-Safe Components

Where several instances of your component may be in use at the same time, you will need to
design your code with thread isolation in mind. Use of oljpeieinted techniques provides
the basis for tleadsafety as this gives each object instance its own memory and variables.

Where shared memory or commonality exists between multiple instances, the C/C++
programming language facilitates thread management, semaphores andextltisive

execution (MUTEX) which can be used to control access to the shared resources. Any such
commonality should be identified at the design stage.

You can also enhance the thresadety of your component by passing the
EXT_FLAG_SESSION flag to Omnis when processing the ECMNRBCT message.
(See Structures, Messages and Functions for more details).

Source Files on the Omnis web site

To build an Omnis external component, you must use the latest versions of the following
applications:

C Microsoft Windows
Microsoft Visual Studio 208.

C MacOSX
Mac OS X 10.5.5 or later, Xcode 3.0
See Appendix A about creating and porting external components for-®lach

C Linux
GNU g++ compiler version 4.2.1
All examples ship with makefiles, which can be used with the make utility.

You can downloadhe SOURCE trees for external components from the Omnis website at
the following location:

C www.omnis.net/download/components

There is one source tree for every supported platform. Each sowairains example

external components, ranging from the very simple, GENERIC (lets you create a basic shell
component, and previously supplied as a tutorial), to the more complicated controls such as
CALENDAR or QuickTime (QuickTime is Windows and Mac gnIThe source code for

the components is generally 100% cross platform and has been duplicated in the various
source trees. A few components have some code which is not shared by all platforms. Such
platform dependant source will usually be found in setites with names that start with an
06x6. The source trees have makefiles or pi

When creating external components, try to keep to the tree structure, that is, if you want to
create a new crprnpe®.endr eatld eal diSiectory ca
tree. Keeping to the structure will help when porting to other platforms.

http://www.omnis.net/download/components

Creating your own External Components

For the purpose of this tutorial, rename the source tree to XCOMP.

Getting Started with Generic

One of the many samples supplied to help you create Omnis external components is
generic There are four versions of this control in the source tree that explain how to write
Omnis components and give you a useful starting framework for buildirrgoyou
components. Before you begin to write some code, you need to setup your development
environment.

Setting up your development tree
Inside the source tree you will find the following folders which are of special importance.

COMPLIB 1 Header files antlibraries for building XCOMP and WEBCOMP components.
EXTLIB T Header files for building OLD TYPE externals.

HEADERS- Header files for building web client components

LIBS - Libraries for building web client components (win32 and linux only)

JPEGLIB- Libraries for building HTML device

ORFCSTAT- Library for building web client components

On Mac OS, there are some additional folders which are of special importance (we will
bring the other platforms in line in future releases). The Mac OS projects we ateptipd
components they build into the following folders:

_OSXUnicode release versions of XCOMP components

_OSXUnicodeDbg debugging versions of XCOMP components
_OSXUnicodeWeb release versions of WEB CLIENT components
_OSXUnicodeWebDbgdebugging ersions of WEB CLIENT components
_OSXUnicodeWebDesignrelease versions of WEBCOMP components
_OSXUnicodeWebDesignDbgdebugging versions of WEBCOMP components

Mac OS:

For the Mac Xcode environment we also supply various stationery and a resourcercompile
that you will need to install.

1 Install the Mac OSX10.4.u SDK (This can be found on the xcode tools disk and must
be installed manually).

1 Copy the MackO resource compiler (Omnisrc.app) to your /Developer/Tools folder

This is the new Omnis Resource Comapihnd is included in the tools folder supplied with
this document.

1 Copy the lower_files utility to your /usr/bin folder (Note that you will need
administrator privileges to do this)

15

Chapter 18 Omnis External Components

This utility is useful for changing the case of filenames and is indlirdéhe tools folder of
the same package as this document. For further information on building components for
Mac OSX 10.5 and later, please refer to Appendix A.

Linux OS:
For the Linux environment you will need to set a few environment variables arigurenf
the resource compiler.

Pl ease note that these instructions assume
a source tree called 6omnisextd. I f you i
change O6omni sextiopatwi t h your installa

1 Set the environment variabl® LIBRARY_PATH by typing :

LD_LIBRARY_PATH=/omnisext/omnisxi:$LD_LIBRARY PATH
export LD_LIBRARY_PATH

1 Set the environment variabl&DIR by typing :

V4DIR=/omnisext/omnisxi
export V4DIR

1 Configure the resource compgilBy setting the environment varialldMNIS RC by
typing :
OMNISRC=/omnisext/omnisrc
export OMNISRC
T I'f you installed to a fol demisacintbgr t han
typing:
emacs /omnisext/omnisrc/omnisrc.ini

The two suksectionsTemplate andIncludeDirs contained within the
section[Setup] needs to be modified to point to the installation folder.

The defaults values are :
Template=/omnisext/omnisrc/omnisrc.tpl
IncludeDirs=/omnisext/omnisxi;/omnisext/complib;/omnisext/extlib

1 Whenyouae satisfied with your changes, cho

1 Copy theomnisrc executable to a folder, which is on your search path

For examplecp /omnisext/omnisrc/omnisrc /usr/binfomnisrc

All platforms

When you have built your component, you should add Yémdows DLL or Mac OS

Code Fragment to the XCOMP or WEBCOMP folder located inside the main Omnis folder,
or to your web client installation, depending on what you are building. Run Omnis and use
the #EXTCOMP system table to load the component. If all I e control appears in

16

Creating your own External Components

the Component Store and can be dragged on to a window or report class. Any load errors
are reported in the Omnis trace log.

Now you have setup your build environment and tree we can get to work creating our new
component.

If you are using Windows:

f
f
f
f

Startup Visual Studio 2008

Go to the File menu and select New / Project

From the Visual C++ project types select ATL, enter a name and click OK
Click Finish

If you are using Mac OSX:

f
f
f
f

Startup Xcode 3.0
Go to the File menu and chemthe New Project... option
Select 'Empty Project’ and click Next

Enter a project name and click Finish

If you are using Linux:

f
f

Create a new folder in tHemnisextfolder

Copy the fileextcomp.makfrom /omnisext/genericinto your new folder. This fd is a
generic makefile which is the same for all of the examples (except HTML)

Copy the filemakefile from /omnisext/genericinto your new folder. This file contains
the name of the component and the source files needed to build it

17

Chapter 18 Omnis External Components

Generic.cpp

You are now ready to create the generic external component. Create a new file called
generic.cppand enter the following:

#include <extcomp.he>
#include <hwnd.he>
#include <gdi.he>
#include "generic.he"

extern "C" glong OmnisWNDPROC GenericWndPr oc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd, eci);

switch (Msg)

{
case ECM_GETCOMPLIBINFO:
{
return ECOreturnComplnfo(gInstLib, eci, LIB_RES_NAME,
OBJECT_CONT);
}
case ECM_GETCOMPID:
{
if (wParam==1)
return ECOreturnComplD(gInstLib, eci, OBJECT_ID1,
cObjType_Basic);
return OL;
}
case ECM_GETCOMPICON:
{
if (eci - >mCompld==OBJECT_ID1)
return ECOreturnicon (glnstLib, eci, GENERIC_ICON);
return gfalse;
}
case ECM_OBJCONSTRUCT:
{
tgfGenericObject* object = new tqfGenericObject(hwnd);
ECOinsertObiject(eci, hwnd, (void*)object);
return gtrue;
}

18

Creating your own External Components

case ECM_OBJDESTRUCT:

{
tgqfGenericObject* object =
(tgfGenericObject*)ECOremoveObject(

eci, hwnd);
if (NULL!=object)
{
delete object;
}
return gtrue;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
Let 6s | oo kedetail Firshthednclides: mo

#include <extcomp.he>
#include <hwnd.he>
#include <gdi.he>
#include "generic.he"

extcomp.hehwnd.heandgdi.heare external component library header fiksdcomp.he
declares various external component specific ARM)d he declares the child window API
calls;gdi.hedeclares the graphical API calls; ageheric.hewhich you will create below.

The message procedure is as follows.

extern "C" glong OmnisWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

OmnisWNDPROC is a #define that the Omnis component library has setup. This defines
some calling conventions that vary from platform to platform. For now this is all you really
need to know. Next is the name, GenericWndPrbés 1§ the message procedure Omnis
calls with your child window messages. This procedure has the following parameters:

HWND hwnd This is a handle to the child window the message is for
LPARAM Msg This is the message

WPARAM wParam | This is extra infomation for the message

LPARAM IParam | This is extra information for the message
EXTcomplinfo* | eci This is a pointer to some information about your compor

When Omnis calls the message procedure, it sends along the HWNUDhimrttle
parameter. This ithe child window the message was for. Complex components may have

19

Chapter 18 Omnis External Components

20

many child windows all using the same message procedure. Using the HWND helps the
component do the right thing for the right child window.

Msg is the message. There are many messagesahdte sent to your procedure, such as
WM_PAINT or WM_LBUTTONDOWN.

wParam is some extra information for the message. Sometimes messages need to pass other
information, such as the cursor position when the WM_LBUTTONDOWN was generated.

IParam, like wParamjs used for extra message information.

eciis a pointer to a structure holding information about your component. It is used with
various API calls. See later.

Next is the first ananost importantine of the message procedure.
ECOsetupCallbacks(hwnd, eci);

Most of the API calls call Omnis for some information, or to do some processing. This line
enables the call to Omnis to work. If this line is missing, your component will crash.

Next there is a switch statement testing the message parameter:

ECM_GETCOMPLIBINFO. This is the first message the message procedure handles.
Omnis is calling your message procedure trying to find out how many controls your
component supports, and the name of your library.

return ECOreturnComplnfo(ginstLib, eci, LIB_RES_NAME , OBJECT_COUNT
);
Here you return the result of a function da@OreturnComplnfa This function is

described later, but usually takes a string resource number which holds the name of your
component library, and takes the number of controls your compoostains.

ECM_GETCOMPID. Omnis now knows how many controls you are intending to support
in your component library due to the result of the last message. It now wants to know what
ID each control within the component library should have. The id can beuartyen you
decide to associate with the control. In the future when Omnis wants something to happen to
a control, it uses the id you return here. Omnis calls you with this mefesagt ntimes,
where n is the number of controls your library supporte ddlling count is passed in
wParam

if (wParam==1)

return ECOreturnComplD(glnstLib, eci, OBJECT_ID1,
cObjType_Basic);
return OL;

Since generic supports one conttOBJECT_COUNT=1, this is defined in your header

file), you wait for a call where wdtam is 1. On this message, you return the result of
ECOreturnComplD This API specifies the controls id, and the type of control you want it
to be. Sed@ypes Of Componerater in this document. Here you indicate the control has an
id of OBJECT _ID1 and isacObjType_Basicbasic component.

Creating your own External Components

ECM_GETCOMPICON Now Omnis knows how many controls your library has and the id
for each control, it asks for the icon to use in the Omnis Component Store.

if (eci - >mCompld==0OBJECT_ID1)
return ECOreturnicon(glnstL ib, eci, GENERIC_ICON);
return gfalse;

Here, you are checking a member of ¢egparametermCompld. This is set to an id you
returned from the last messa@BJECT_ID1). TheECOreturnicon API is described

later, but generally it extracts.lamp (bitmap) from the resource file so you can return it to
Omnis.

With regards to setting up your component so that Omnis knows it is there, these messages
are generally all you need. The next set of messages are used when you place your
component on a window oeport class. When that happens, Omnis calls your message
procedure with many more messages. Here are the important ones.

ECM_OBJCONSTRUCT Omnis is calling the message procedure as it is just about to
create an instance of your object. This can happen we drag a component out of the
Component Store on to a design window or report class, or a window class is being opened
in runtime mode, or a report is being printed. This is the code you need to execute:

tgfGenericObject* object = new tqfGenericObjec t(hwnd);
ECOinsertObject(eci, hwnd, (void*)object);
return gtrue;

The first line creates a new object caltgtiGenericObjectwhich is defined below. This

class performs all of the operations for your control. Next it is calii@@insertObject

This API adds a pointer to thefGenericObjecfjust created into a chain of objects. The

pointer and théwnd being passed are stored in the chain. The external component library
maintains this chain, so later when a message arrives in your message procedcae

ask for the object fgfGenericObjec) based on the child window the message was for, and

get the correct object to process the message. This is necessary as multiple instances of your
component can be created.

Finally you return gtrue. This infms Omnis you have processed the message. Not all
messages expect gtrue to indicate the message was handled. The return value from all
messages can be found in this manual.

ECM_OBJDESTRUCTis the next message. Omnis is calling the message proceduig as it
just about to delete an instance of your object. This can happen when you close a window
class containing your component, or a report has finished printing your component:

21

Chapter 18 Omnis External Components

22

tgfGenericObject* object =
(tgfGenericObject*)ECOremoveObject(eci,hwnd);
if (N ULL!=object)

{

delete object;

}

return gtrue,

The first line here is callingCOremoveObjedb find an object in the chain of objects
based on the passhdnd. If an object is found, it is removed from the list and a pointer to
the object is returrek If the pointer is valid, you delete it, freeing all memory previously
allocated. Again, you return gtrue to inform Omnis you have processed the message.

Finally:
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

This is anotheveryimportant line Remember that many messages are sent to the message
procedure, some important, others not so important. This is where the not so important
messages should ga/NDdefWindowProds an API to which all messages not handled
should be passed. This allows Omto do the default operation for messages you do not
want to handle.

To complete this file, enter the following:
tqfGenericObject::tqfGenericObject(HWND pFieldHWnd)

{

mHWNnd = pFieldHWnd;
}
tqfGenericObject::~tqfGenericObject()
{
}

gbool tqfGenericO bject::paint()

{
WNDpaintStruct paintStruct;
WNDbeginPaint(mHWnd, &paintStruct);
WNDendPaint(mHWnd, &paintStruct);
return qtrue;

}

On previous messagdsCM_OBJCONSTRUCTandECM_OBJDESTRUCTreferred to
thetqfGenericObjectlass. This class conta the code which makes the component
actually do something. You can add to this later.

Creating your own External Components

Generic.he

New file, generic.he enter the following code. This defines the class referred to above.
/* Number of controls within library */

#define O BJECT_COUNT 1

/* Resource id of library name */
#define LIB_RES_NAME 1000

/* Resource id of control within library */

#define OBJECT_ID1 2000
/* Resource bitmap id */
#define GENERIC_ICON 1

class tgfGenericObject
{
private:
HWND mHWNnNd;

public:
tgfGenericObject(HWND pFieldHWnd);
~tgfGenericObject();
gbool paint();

h

Generic.rc

New file, generic.rg this is the resource file. It is laid out like a Windows (Window OS)
resource file. Under Mac OS and Linux, you canaisesource compiler supplied on the
Omnis CD which supports a very basic set of resource keywords. If you keep the resource
files simple, they will be crosglatform.

1 BITMAP DISCARDABLE "GENERIC.BMP"
STRINGTABLE DISCARDABLE

BEGIN

1000 "Generi c Library"

2000 "Generic Control"

31000 "GenericWndProc"

END

The resource file first includes a bitmap (generic.bmp). You can either create a small
Window .BMP file (16x16 preferably), or take a copy of the generic.bmp file from the
Omnis CD.

String 31000 isvery important, as this is the name of the message procedure that Omnis
tries to call. If you do not have this string, the name of you message procedure should be

23

Chapter 18 Omnis External Components

24

60mni sEXTCOMPONENT®. I f the message proce

have a string defining the name to call, Omnis will not call you.

Omnis Web Client

If you intend to release your component as a web component that can be used with the
Omnis Web Client, do not use string number 31020. This is reserved for version number
checking.

.DEF and .EXP files

Under Windows, an export file is needed for the compiler. This file describes what
functions can be called from outside the component. As described above, Omnis needs to
call your message procedurehlvimessages for your child windows. For it to do that, the
message procedures mustex@orted

Under Windows, Generic.def:

Create a Generic.def file and enter the following:

LIBRARY GENERIC
EXPORTS
GenericWndProc @1

This allows Omnis to getnd call the message procedure.

Note for all platforms: The name entered in string 31000, the name of the message
procedure irgeneric.cppand the name igeneric.defmust all be identical. If you do not
supply a 31000 string, the message procedure mageneric.cppand defined in the
genericdefmust be 60mni sEXTCOMPONENT®.

Building the Generic Component

If you are using Windows:
1 Add the generic.cpp, generic.def and generic.rc files to the project using the Project
menu ancthoose the Add New Item... option.

1 Open the project Properties and select the C/C++, preprocessor category from the
treelist. Add iswin32, isXCOMPLIB to the preprocessor definitions.

1 Select the Linker, Input category from the treelist and add omniso fiietAdditional
Dependencies.

1 Close the Property Pages.

1 Go to the Build menu and select Build Solution.

If all is successful, you should have created a generic.dll file. This can be moved to the
XCOMP folder of your Omnis installation.

Creating your own External Components

If you are using Mac OSX:
1 Add the generic.cpp by rigllicking onSourceand sel ecting AddYEKX
Add generic.rc by rightlicking onResourcea nd sel ecting AddVYExi

1 Select the target and configuration you wish to build and select Build from the Build
menu.

If you selected the target UnicodeCore, the component, once built, will be placed in the
folder _OSXUnicode inside the source tree. Please note: The ReleaseBuild targets contain
no debugging information.

If you are using Linux:

1 From the componeriblder type
- dnake Releaséto build the XCOMP component. The resulting component will be in
the releaseuni folder
- Gmake ReleaseWebto build the Web Client component. The resulting component
will be in the releaseuniweb folder
- dnake ReleaseWebDégnoto build the WEBCOMP component. The resulting
component will be in the releaseuniwebdesign folder
You can substitute Release for Debug if you wish to build debug versions

For all platforms:

If all is successful, you should have created a gendgicfou can move it to the XCOMP
folder in the main Omnis folder. Remember if Omnis is currently running, you will need to
quit and restart.

Moving On From Generic

The Generic example component you have created is only alshah be dragged from

the Component Store and created in runtime mode. Next, you can add a property to the
component that will appear in the Property Manager. You can modify component properties
in design mode and runtime using the Property Manager.

First you need to add some functionality to the tqfGenericObject clagsngric.heenter
the following:

25

Chapter 18 Omnis External Components

26

gcol mMyCaolor;
/I and

glong attributeSupport(LPARAM pMessage, WPARAM wParam, LPARAM
IParam, EXTComplnfo* eci);

/I Your class header should nowdok like this:

class tqfGenericObject

{

private:
HWND mHWnd;
gcol mMyColor;

public:
tgfGenericObject(HWND pFieldHWnd);
~tgfGenericObject();
gbool paint();

glong attributeSupport(LPARAM pMessage, WPARAM wParam, LPARAM
IParam, EXTComplInf o* eci);

k

Here a new member is added to the cilabt/Color. Its type isgcol. This is a type defined
in gdi.heand represents a color value (RGB).

A new member functioattributeSupport is also added. This function is used when Omnis
is doing somethingvith your properties.

Now opengeneric.cpp.

Go to the tqfGenericObject:: tqfGenericObject method (constructor). Add the following
line:

mMyColor = GDI_COLOR_WINDOW;

Go to the tqfGenericObject::paint() method. This was added previously, but untilagw w
unused. Alter the method so it looks like this:

Creating your own External Components

gbool tqfGenericObject::paint()

{
WNDpaintStruct paintStruct;
WNDbeginPaint(mHWnd, &paintStruct);

grect cRect;

WNDgetClientRect(mHWnd, &cRect);

HBRUSH brush = GDIgetStockBrush(BLACK_BRUSH);
GDlsetTextColor(paintStruct.hdc, mMyColor);
GDlfillRect(paintStruct.hdc, &cRect, brush);

WNDendPaint(mHWnd, &paintStruct);
return gtrue;

}

The paint method uses some API calls from bothd.heandgdi.he.When this method is
called as a resuttf a message, it fills your component with the color that is stored in the
new color membemMyColor. You should read the HWND and GDI document for an
explanation of the APIs used, but generally, the code gets the size of your child window
(left, top, widh, height), and gets a solid brush. It sets the color of the solid brush to the
color in the new color member and then fills the child window with that color.

Back to the message procedure now, and add cases for the following messages:
case WM_PAINT:

{

tqfGenericObject* object = (tqfGenericObject*)ECOfindObject(

eci, hwnd);
if (NULL!=object && object - >paint())
return gtrue;

break;
}
case ECM_GETPROPNAME:
{

return ECOreturnProperties(glnstLib, eci, &MyProperties[0], 1
)i
}

case ECM_PROPERTYCANASSIGN:
case ECM_SETPROPERTY:
case ECM_GETPROPERTY:

{
tqfGenericObject* object = (tqfGenericObject*)ECOfindObject(

27

Chapter 18 Omnis External Components

28

eci, hwnd);
if (object)
return object - >attributeSupport(Msg, wParam, IParam, eci);
return OL;

}
Consider the following messages:

WM_PAINT message informs use thesnd needs painting.
ECM_GETPROPNAME i s sent by Omnis to ask for t he

ECM_PROPERTYCANASSIGN is sent by Omnis to see if a property canehaalues
assigned.

ECM_SETPROPERTY is sent by Omnis to get the value of a property.
ECM_GETPROPERTY is sent by Omnis to set the value of a property.

When you get &M_PAINT message, you find the object in the chain of object instances
from the hwnd comingnto the message procedure. If you find the object, you call the
::paint() member function of the object.

When you get ECM_GETPROPNAME message, you call another ECO API to build a
property table and return it to Omnis. This API is described lateCgsgonent
Properties

Now to add some more code. At the top of the file add the following:
const cMyColorProp = 1,

ECOproperty MyProperties[] =
{

cMyColorProp, 4000, fftinteger, EXTD_FLAG_PWINDCOL, 0,0, 0
h
This table defines your properties. Tlagout of the table is defined in ti@®omponent
Propertiessection, but generally it describes the property id, the resource name of the
property, its data type, and the type of data as shown in the Property Manager. The property
table, when returned to Ons using the code shown below, controls how your properties
are handled.

return ECOreturnProperties(glnstLib, eci, &MyProperties[0], 1);

The only thing left to do in this file is to add the ::attributeSupport() method you declared in
the header file. @newhere near the tqfGenericObject class add the following:

Creating your own External Components

glong tgfGenericObject::attributeSupport(LPARAM pMessage, WPARAM

wParam,
LPARAM IParam, EXTComplnfo* eci)

switch(pMessage)
{
case ECM_PROPERTYCANASSIGN:
{
return 1L;
}
case ECM_SETPROPERTY:
{
EXTParaminfo* param = ECOfindParamNum(eci, 1);
if (param)
{
EXTfldval fval((gfldval)param - >mData);
switch(ECOgetld(eci))
{
case cMyColorProp:
{
mMyColor = (qcol)fval.getLong();
WNDinvalidateRect(mHWnd, NULL);
break;

}

return 1L;

}
case ECM_GETPROPERTY:

{
EXTfldval fval,
switch(ECOgetld(eci))
{
case cMyColorProp:
{
fval. setLong((glong)mMyColor);
break;

}
ECOaddParam(eci,&fval);

return 1L;

29

Chapter 18 Omnis External Components

30

}

/I no property found or message was wrong
return OL;

}

This method is called when Omnis needs to do something with your properties. This is
covered in more detail within tt@omponent Propertiesection later, but generally it lets

you handle your color property or any future properties you decide to add. For this example,
when a color property is assigned, you alter the member mfi@enericObject class with

the new color value being sent from Omnis, force your child window to be repainted,
resulting in the new color being drawn on screen. When the Property Manager needs to
know what the color is, you send it the value back, and youelldbé Property Manager if

it is allowed to assign color to your object.

Finally opengeneric.rc and add the following:
4000 "$mycolor:This is a color property"

I/ your RC file should look like this:

1 BITMAP DISCARDABLE "GENERIC.BMP"
STRINGTABLE DISCARDABLE

BEGIN
1000 "Generic Library"
2000 "Generic Control"
4000 "$mycolor:This is a color property"
31000 "GenericWndProc"
END

Now recompile the component. Close Omnis if it is still running, and move the component
into your XCOMP folder. Restart Omnis. In the Omnis IDE, when you open a window class
and click on your component control, a Custom tab is displayed in the Property Manager.
Select it and you should see your color property. Now try assigning some values and it
should change the color of your component.

You have covered the very basics of building your own external component. The source
contains further generic samples that build on from the basic one adding more properties,
events, and component methods.

If you are ready for more of a challenge, the source has many other controls that
demonstrate much more of the external components interface. All of the samples supplied
(except QuickTime) are completely crgdatform.

Bear in mind Omnis is a crogdatform development tool, and the external component
interface has been designed with this in mind. If you want your controls to run on all
platforms supported in Omnis, try to use the Omnis API as much as possible. There is very

Creating your own External Components

little it cannot do, and if yoonly use the API, your code should remain completely
portable, all you need to do is recompile.

General Hints

Here are some general points you should remember when writing Omnis components:

1 Keep to the External Component API; thedgs you port your controls to other
platforms

1 Initialize all members used to handle properties. When the control is first created, the
initial values, as displayed in the Property Manager, are the values you initialize your
members to.

Read t hel SMeennd yf or t he EXTfIl dval and E

1 Do NOT nest painting. Se&NDstartDrawandWNDendDrawin the HWND
documentation.

1 For large amounts of data, such as picture components, you can use the
MEMincAddr andMEMdecAddrfunction to hante large images.

1 If you have any problems with your component when you are within the Omnis IDE,
such as the DLL not appearing in the #EXTCOMP dialog, check the Omnis trace log.
Any problems encountered in Omnis with respect to your components are deporte
the trace log.

9 String resource 31020 should not be used as it is reserved for Web Client version
number checking.

1 If you declare a date property (fftDate), depending on the date subtype used with the
EXTfldval::setDate() API, the Property Manageesi®ither #FT or #FDT to format
the property value.

EXTfldval fval;
fval.setDate(myDateValue, dpFtime);

This example stores a date value in an EXTfldval object. The Property Manager would use
#FT to format value because the date subtype usedpfsne.

Omnis and Microsoft Foundation Classes (Windows Only)

This section describes how to use the Omnis component classes within a Microsoft
Foundation Class (MFC) dynarvioked library.

To use MFC and Omnidasses in a DLL you must inclu@mnisMFC.LIB in the project
instead ofOmnis.LIB. The differences between these two libraries are:

1 The functionDIIMain (Win32) orLibMain (Win16) does not exist in the
OmnisMFC.LIB library.

31

Chapter 18 Omnis External Components

32

1 The global variablglnstLib (previously initialized during DIIMain or LibMain) does

not exist in the OmnisMFC.LIB library.

Mac OSX and XCode Resource Files

Please note that Xcode and its underlying build scripts may encounter problems where file
or folder names contain spaces. Fos tigiason it is best to use underscores in place of
spaces. Alternatively, it may be possible to work around the issue by adding double quotes
around various build attributes, for example:

il

f
f

The two arguments to theg command that follows themnisrccommandn the rule
for compiling rc files.

The header search path for the project headers.

The framework search path.

Linux Compilation Issues

Please ensure that your Linux system has the necessary link libraries and development
packages installed in additionttee gcc compiler (version 4.1 or higher).

f

You can obtain the version number of your compiler by typing:
gcc 1 dumpversion

You can install the missing standard C librargder Ubuntu for instangeausing the

command:
sudo apt - get install libstdc++2.10 -glibc 2.2

Creating Non-Visual Components

Creating Non-Visual Components

Nonvisual components are component libraries which contain either Omnis static functions
and/or Omnis external class objects.

Just like in higHevel languages such as C++ static functions are useful when processing
sinde nonrelated tasks. However when functions are related, it is sometimes useful to build
a collection of related functions into a class object.

Static Functions

Static functions are functions which can be used in the Omnis script laniguag
calcul ations. Component | ibrary static fur
Catalog window.

Adding static functions to your component library requires the following steps:

C Add the flag EXT_FLAG_NVOBJECTS to the set of flags returned by
ECM_CONNECT message. Without adding this flag, Omnis will not request the list of
static functions from your library.

C Return a list via ECOreturnMethods in response to a ECM_GETSTATICOBJECT
message. This message is sent to the component library whes @uuires a list of
static functions.

C Respondto ECM_METHODCALL. However, as these are static functions, the HWND
parameter will be NULL. As will wParam and IParam.

An example of static functions in use would be (excerpts from FILEOPS):

33

Chapter 18 Omnis External Components

ECOmethodEvent fileStaticFuncs[cSMethod_Count] =

{ /I'Unique external ID Resource Number Flags
cSMethodld_CreateDir , 8000, 0, 0,0,0,0,
é.
cSMethodld_Rename , 8014, 0, 0,0,0,0
h

extern "C" glong OmnisWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd, eci);

switch (Msg)

{
case ECM_CONNECT:

{ /I Component library contains NV objects & should always be loaded

return
EXT_FLAG_LOADED|EXT_FLAG_ALWAYS_USABLE|EXT_FGANVOBJECTS;

}
case ECM_GETSTATICOBJECT:
{ // Omnis is requesting a list of our static functions
return ECOreturnMethods(ginstLib, eci,
&fileStaticFuncs[0], cSMethod_Count);
}case ECM_METHODCALL:
{ // Omnis requires a static mehod to be called
switch (ECOgetld(pEci))

{

case cSMethodld_CreateDir:... Processing
é
case cSMethodld_Rename: é Processing

}

return 1L;

}

return DefWindowProc(hwnd,Msg,wParam,|Param,eci);

}

See also ECM_CONNECT, ECM_GES$TATICOBJECT,
ECM_METHODCALL, ECOreturnMethods

34

Creating Non-Visual Components

Class Objects

Class objects are, as in the Omnis language, objects which group together data and
functions into a single entity.

Adding class objects requires the following steps :

C Add the fag EXT_FLAG_NVOBJECTS to the set of flags returned by
ECM_CONNECT message. Without adding this flag, Omnis will not request of list of
objects from your library.

C Respond to the ECM_GETOBJECT message and return a list of objects via
ECOreturnObjects. It important to note that your ECOobject structure should
contain unique ids. During subsequent calls the EXTComplnfo mCompld member will
contain this id to inform you of the type of object.

C Respond to ECM_OBJCONSTRUCT, ECM_OBJDESTRUCT and
ECM_OBJECT_COPYo ensure that your objects are created, destructed and copied.

¢ Respond to ECM_GETMETHODNAME and ECM_GETPROPNAME to return any
methods and properties that your object may have.

C Respondto ECM_PROPERTYCANASSIGN, ECM_SETPROPERTY,
ECM_GETPROPERTY in normal mau a | to manage your obj e

¢ Finally, respond to ECM_METHODCALL to ir

It is important to note that during all of the above messages (except
ECM_GETMETHODNAME, ECM_GETPROPNAME and ECM_OBJECT_COPY)
IParam willcontain a unique reference to your object. You should use ECOfindNVObject
to retrieve your objectsd dat a.

It is also important to note how you require your objects to be managed. For example the
FILEOPS example uses a container to hold the actual objeetofject is only

released/freed when a reference count gets to zero. This allows several Omnis object
variables to point to the same FILEOPS object (similar to COM).

35

Chapter 18 Omnis External Components

An example of use may be (excerpts from FILEOPS):

ECOobject fileObjects[cObject_Count 1=

{ /'Unique external ID Resource Number Flags
cObject_FileOps, 2000, 0,0

h

extern "C" glong OmnisWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd, eci);
swit ch (Msg)
{
case ECM_CONNECT:

{ /I Component library contains NV objects & should always be loaded

return
EXT_FLAG_LOADED|EXT_FLAG_ALWAYS_USABLE|EXT_FLAG_NVOBJECTS;

}
case ECM_GETOBJECT:
{ // Omnis is requesting a list of our object class narse
return ECOreturnObjects(glnstLib,eci,
&fileObjects[0],cObject_Count);
}
case ECM_OBJCONSTRUCT:
{ /I Omnis is requesting the construct of a new object.
if (eci - >mCompld==cObject_FileOps)
{
tgfFileOpsContainer* object = (tqfFileOpsContainer*)
ECOfindNVObject(eci - >mOmnisinstance, IParam);
if (lobject)
{
tgfFileOpsContainer* obj = new
tgfFileOpsContainer((qobjinst)IParam);

ECOinsertNVObiject(eci -
>mOmnisinstance,IParam,(void*)obj);

}

return gtrue;

}

return gfalse;

}
case ECM_OBJDESTRUCT:

{ I/ Omnis is requesting the destruction of your object

36

Creating Non-Visual Components

if (eci - >mCompld==cObject_FileOps &&
wParam==ECM_WPARAM_OBJINFO)

{

void* object=ECOremoveNVObject(eci - >mOmnisin stance,IParam

if (object)
{
tgfFileOpsContainer* fileOps =
(tgfFileOpsContainer*)object;
delete fileOps;

}

return gtrue;

}

case ECM_OBJECT_COPY:

{ /I Omnis requires a new object to be created from an existingne
objCopylnfo* copyInfo = (objCopyinfo*)IParam;
tgfFileOpsContainer* srcobj = (tgfFileOpsContainer*)

ECOfindNVObject(eci - >mOmnisinstance,copylnfo -
>mSourceObject);

if (srcobj)
{
tgfFileOpsContainer* destObj = (tqfFileOpsContainer*)
ECOfindNVObject(eci - >mOmnisinstance,
copylnfo - >mDestinationObject

)i
if (!destObj)
{
destObj = new tgfFileOpsContainer(
(qobjinst)copyinfo - >mDestinationObject,srcobj);
ECOinsertNVObject(eci - >mOmnisinstance,
copylnfo - >mDestinationObject, (void*)destObj);
}
else
destObj - >setObject(
(qobjinst)copyinfo - >mDestinationObject,srcobj);
}
break;
}
case ECM_GETMETHODNAME:
{ /' / Omnis is requestimdgs a |ist of our obje
if (eci - >mCompld==cObject_FileOps)

37

Chapter 18 Omnis External Components

38

return ECOreturnMethods(ginstLib, eci,
&fileObjFuncs[0], cIMethod_Count);

break;

}

case ECM_GETPROPNAME:

{ /'/ Omnis is requesting a |ist of ou
/'l but weanydso sindply retura v e
break;

}

case ECM_PROPERTYCANASSIGN:

case ECM_SETPROPERTY:

case ECM_GETPROPERTY:

{ // Omnis requires property management
/'l but we donét have any so simply
break;

}

case ECM_METHODCALL:

{ 1/ Omnis requires a method to be invoked
if (eci - >mCompld==cObject_FileOps)
{

void* object = (void*)ECOfindNVObject(eci -
>mOmnisinstance,

IParam
);
tgfFileOpsContainer* fileOps =
(tgfFileOpsContainer*)object;
if (fileOps - >mObject)
return fileOps - >mObject - >methodCall(Msg, wParam,
IParam, eci);
}
break;

}

return DefWindowProc(hwnd,Msg,wParam,IParam,eci);

r obj e

return

Creating Non-Visual Components

Control Handlers

This section describes how to develop a control handler componetitolGwandlers are
essentially components which handle other components, such as an ActiveX.

To create a control handler, you should follow these steps. Note that the CONTROLLIB
and CONTROL classes are used for illustration purposes and do not exisOimitie
component environment.

1 Add EXT_FLAG_CTRLHANDLER to the component flags.

1 Process ECM_GETHANDLERICON to inform Omnis of the HBITMAP to use for the
components' group in the Component Store.

1 Support for ECM_GETCOMPLIBINFO must be restructured. The carapbmust
provide the information for all the control libraries that it supports. The control library
names that the component supports must include a file path as a prefix. An example of
this would be:
if (!pEci - >mCompLibld)
{
/I Omnis is inquiring on the handler.
ECOreturnComplnfo(glnstLib,pEci,CTRL_RES_NAME,0);

/I Id of first library
pEci - >mCompLibld = 1;
return gtrue;

}
else
{
/I Omnis is inquiring on a control libraries
CONTROLLIB* prevLib = getLib(pEci ->mCompLibld);

/I Find library from id

CONTROLLIB* nextLib=0;

if (prevLib)
nextLib=prevLib - >mNextLibrary;

if (nextLib)

{
/I you have another library for Omnis
EXTfldval exfldval;
/I Format of returned name <FilePath>+\0'+<Library Name>
str255 ctr lInfo = nextLib - >mLibraryPath;
/I Space for NULL

39

Chapter 18 Omnis External Components

40

ctrlinfo[0]++;

/I Terminate Cstring
ctrlinfo[ctrlinfo.Length()] =" \ 0

/I Add control library name

ctrlinfo.concat(nextLib - >mLibraryName);
exfldval.setChar(ctrlinfo);
ECQddParam(pEci,&exfldval);

/I Set Unique id of this library. The id may change between sessions.
pEci - >mCompLibld = nextLib - >mLibraryld;

/I Return number of controls within library
return nextLib - >mControlCount;

}

/I No more libraries
return gfalse;

Support for ECM_GETCOMPID message must return the unique identifier for the
control. It should be noted that like the controls' library (mCompLibld), it is not
necessary to maintain the same unique identifier between Omriegnse&xample of
ECM_GETCOMPID:

CONTROLLIB* curLib = getLib(pEci - >mCompLibld);
if (curLib)
{
EXTfldval exfldval;
exfldval.setChar(curLib - >getControlIName(wParam));
ECOaddParam(eci,&exfldval);
pEci - >mCompld = curLib - >getControlld(wParam);

}
return cObjType_Basic;

Creating Non-Visual Components

1 Support for ECM_GETCOMPICON must be restructured to return the HBITMAP for
the control. The code for this, may be:
Il wParam is true if the library is to be loaded. This enables fastest
/' load time as it avoiddoading the bitmap for every library that
/I the handler supports.

if (wParam)
{
CONTROL* control = getControl(pEci - >mCompLibld, pEci - >mCompld
)i
if (control)
{
EXTfldval exfldval;
exfldval.setLong((glong) control - >get HBIitMap());

ECOaddParam(eci,&exfldval);

/I Bitmap returned
return gtrue;

}

/I No bitmap returned
return gfalse;

1 Support for ECM_GETCONSTNAME must be restructured. Obviously control
constants are not in the handlers' resouste#e constant list returned to Omnis must
be manually built. An example of this would be:

CONTROLLIB* curLib = getLib(pEci - >mCompLibld);
if (curLib)
{

EXTfldval extfldval;

EXTqlist list; list.clear(listVien);

for (gshort constCount=1,; constCount<=curLib - >mConstantCount;
constCount++)
{
EXTfldval cva |; glong line = list.insline();

/I Constant ID
list.getColValRef(line , 1, cval, gtrue);
cval.setLong(curLib - >getConstld(constCount));

/I Constant String
| ist.getColValRef(line , 2, cval, gtrue);
cval.setChar(curLib - >getConstantName(constCount));

41

Chapter 18 Omnis External Components

}

}

extfldval.setList(list, gtrue);
ECOaddParam(pEci,&extfldval);
return gtrue;

/I No constants
return gfalse;

1 Support for ECM_GETPROPNAK, ECM_GETEVENTNAME,
ECM_GETMETHODNAME must be restructured to return the properties for a
control. An example of this would be:

CONTROL* cntrl = getControl(pEci

if (cntrl)

{

42

EXTfldval extfldval;

EXTqlist list; lis t.clear(listVlen);
for (gshort num=1; num <= cntrl
{
EXTfldval cval;
glong line = list.insertLine();
/I External id
list.getColValRef(line , 1, cval, gtrue);
cval.setLong(cntrl - >getld(num));
/I Name
list.getColValRef(line, 2, cval, qtrue);
cval.setChar(cntrl - >getName(num));

/I fft type of property/return type
list.getColValRef(line , 3, cval, gtrue);
cval.setLong(cntrl - >getType(num));

/I EXTD_ flags
list.getColValRef(line, 4, cval, qtrue);
cval.setLong(cntrl - >getFlags(num));

if (ECM_GETPROPNAME==message)
{

// For properties you need to set the constant range

/I Const Start (zero if none)
list.getColValRef(line , 6, cval, gtrue);

- >mCompLibld, pEci - >mCompld);

- >getCount(); num ++)

Creating Non-Visual Components

cval.setLong(cntrl - >getConstStart(num));

/I Const End (zero if none)
list.getColValRef(line , 7, cval, gtrue);

cval.setLong(cntrl - >getConstEnd(num));
}
else
{
/I For functions & events you need to add a
/I list containing parameters
EXTqlist paramlist;
paramlist.clear(listVlen);
for (gshort m=1; m<=cntrl - >getParamCount(); m++)
{
glong pa ramline = paramlist.insertLine();
/I Parameter name
paramlist.getColValRef(paramline, 1, cval, gtrue);
cval.setChar(cntrl - >getParamName(m));
/I fft Data type
paramlist.getColValRef(paramline, 2, cval, gtr ue);
cval.setLong(cntrl - >getParamType(m));
/I EXTD_ flags
paramlist.getColValRef(paramline, 3, cval, gtrue);
cval.setLong(cntrl - >getParamFlags(m));
list.getColValRef(line , 6, cval, qtrue);
cval.se tlist(paramlist, gtrue);
}

}

extfldval.setList(list, gtrue);
ECOaddParam(pEci,&extfldval);
return qtrue;
}
/I No properties
return gfalse;

1 Finally, on receipt of the ECM_OBJCONSTRUCT, the control handler needs to
constriet the appropriate control. To enable this, the members mCompld and

43

Chapter 18 Omnis External Components

mCompLibld in the EXTComplnfo structure will contain the unique identifiers as
declared during ECM_GETCOMPLIBINFO and ECM_GETCOMPID messages.

See als&ECM_CONNECT, ECM_GETHANDLERICON, ECMGETCOMPLIBINFO,
ECM_GETCOMPID, ECM_GETCOMPICON, ECM_GETCONSTNAME,
ECM_GETPROPNAME, ECM_GETEVENTNAME, ECM_GETMETHODNAME.

Background Components

44

When creating a background external component, you need to be aware of the differences
between real componentgichof the extra messages you may need to respond to.

A background component is created in a different way within Omnis during runtime and
design mode. When you are designing a background component in design mode, the
component will be given a child windofHWND) to draw within. During design mode,
Omnis maintains this child window. During runtime, no child window is created. Omnis will
call your object to paint, in an existing window at a certain location. Given this
runtime/design mode difference, yowostd not use any HWND API that requires a

window, such as WNDsetCapture() as you may not have a valid child window.

The following messages describe the differences or meaning when received by a
background component.

ECM_OBJCONSTRUCT

ECM_OBJCONSTRUCT isent to all component types. For background components you
can test the wParam parameter and the ECM_WFLAG_NOHWND flag to tell if you are
being created during design or runtime. For example :

case ECM_OBJCONSTRUCT:

{
tqfTile* object = new tqfTile(hwnd);
object - >miIsRealHWND = !(wParam & ECM_WFLAG_NOHWND);
ECOinsertObject(eci, hwnd, (void*)object, wParam);
return gtrue;
}

The above example creates a new background component object, and stores a flag in the
class so the control knows if it has alrehild window or not.

Web Client Components

ECM_CONNECT

The ECM_CONNECT needs to be handled for background external components. When
Omnis calls your component with this message, the following code should be used. If the
code is omitted, Omnis will create the control agst filass foreground object.

case ECM_CONNECT:

{

return EXT_FLAG_LOADED | EXT_FLAG_BCOMPONENTS;
}
ECM_PRINT

ECM_PRINT is a very important message. Normally with standard components you pick up
the WM_PAINT message so you can paint your control. Duringmen as you do not have

a child window, you will never receive a WM_PAINT message. During design mode you

do have a child window, so in theory you could get a WM_PAINT message, but you will
not. To help background components keep a simple interface, Gamis only

ECM_PRINTto your component during runtime and design mode to indicate that it needs
to be painted. A WNDpaintStruig passed in thEaram parameter which holds the area

that needs painting and a HDC to paint within.

case ECM_PRINT:

{

}

tqfTil e* object = (tgfTile*)ECOfindObject(eci - >mOmnisinstance,
hwnd, wParam);

WNDpaintStruct* ps = (WNDpaintStruct*)|Param;

if (object) object ->paint(ps - >hdc, &ps - >rcPaint);

return gtrue;

The above example shows how to paint you backgroundtabjeuntime or design mode.

Web Client Components

Writing Web Client components is almost identical to writing standard window
components. In fact, you can build both from the same source. There are however some
small differences.

¢

¢

You will need to linkagainst a different set of libraries. Use the example project files as
a guide.

The final DLL/shared library name must match the component library name as
specified by your resources. The library name resource ID is returned by
ECOreturnComplinfo as a rempse to the ECM_GETCOMPLIBINFO. As a rule of

45

Chapter 18 Omnis External Components

46

¢

thumb, all our web client component name
FORMTIME, etc.

Web client components must respond to the ECM_GETCOMPSTOREGROUP

message and return the group name with ECOreturnCSuxaGe

ECM_GETVERSION (see Chapted Z2omponents Reference). The group name must

be AWEB Componentso for web controls and
background objects.

Web client components must be data bound in order to manipulate Omnis data. There
is no other way of telling the client that data has changed and needs to be sent to the
server for the next event. There is a message ECM_HASPRIMARYDATACHANGED
(see Chapter@ Components Reference) which the component needs to implement.
You use it to telthe web client if the primary data has been changed by the user. If the
component only displays data, it can have-data bound properties which take

instance variable names, but the component will not know when the data has changed.

Web client componentseed to implement the following additional messages which
deal with focusing and mouse clicks.

ECM_CANFOCUS

ECM_ CANCLICK

(see Chapter@ Components Reference)

In addition, web client components must implement a proper versioning system. There
is a new EEOreturnVersion function which must be used as a response to
ECM_GETVERSION (see Chapted ZZomponents Reference).

ECOsendEvent function will always return true when called from web client
components. In order to receive a result, the component must inmtlérae
ECM_EVENTRESULT message (see Chapi&@rQomponents Reference).

Some functions or classes require additional parameters when used from web client
components. These are

EXTBMPref::EXTBMPref

EXTCURref::EXTCURref

(see Chapter® EXTBMPref/EXTCURref Clasfkeference)

The EXTfile class and related functions are currently not supported.

The new generic stationary in the MACIDE folder (Mac only) includes basic code needed
for writing web client components.

Structures

Chapter 20 Structures,
Messages & Functions

This sectbn describes control, resource allocation and general functions provided by the
component library. Where object classes provide additional functions related to their
operation, these are documented at the end of the relevant section.

Structures
ECOmethodEvent (for methods)

This is the structure defining information about a component method. The address to a table
of method items should be used with E@OreturnMethodsEvents API.

See some of the samples for an example.
struct ECOmetho dEvent

{
glong mid;
glong mNameResID;
glong mReturnDataType;
glong mParameterCount;
ECOparam* mParameters;
glong mFlags;
glong mExFlags;

h

1 mid - The unique identifier, within the method table, for the method. All external
methods mudbave a positive number and must not be zero. All negative numbers are
assumed to be Omnis internal methods, presently only Omnis internal methods
ECF_CUSTOM & ECF_ABOUT are supported (neither have any parameters).

1 mNameResID- Resource id which containsgimethod name. Method names should,

ideally, be unique to avoid ambiguity in Omnis notation. If there is a clash between Omnis
and the component method names, you may Us
method. For example, Calculate #1 as $&ljlashMethod.

1 mReturnDataType - Returned data type of type fftxxx. Specify 0 for no returned data
(e.g. void) and fftNone for an unspecified data type.

47

Chapter 26 Structures, Messages & Functions

48

1 mParameterCount- Number of parameters for the method. Specify zero for no
parameters.

1 mParameters- Pointer to an array of parameters. Specify NULL if there are no
parameters.

1 mFlags- Method flags of type EXTD_FLAG_XxxX.
1 mExFlags- Use zero. Extended flags for future enhancement.

Once a table of methods has been returned, you should be ready totrexeive
ECM_METHODCALL message.

If the method is to support parameters, you need to supply information describing the

parametersd properties. This is the par ame
struct ECOparam
{
glong mNameResID;
glong mbDataType;
glong mFlags;
glong mExFlags;
h
1 mNameResID-Resource id which contains the

1 mbDataType - fftxxx data type of the parameter. Use fftNone for an unspecified data
type.

1 mFlags- Parameter flags of type EXTD_FLAG_xxxx. Examples are
EXTD_FLAG_PARAMOPT and EXTD_FLAG_PARMALTER.

1 mExFlags- Must be zero. Extended flags for future enhancement.

pa

Structures

Example of a method table

/I The parameters

ECOparam CALENDARparams[2] =

{

/I string 7000 for param name, fftinteger type
7000, fftinteger, 0, 0,

/I string 7001 for param name, ftinteger type
7001, fftinteger, 0, 0

h

/I The method table

ECOmethodEvent CALENDARmethods[3] =

{
cCalendarMethodSetDaylcon, 6000, 0, 2, &CALENDARparams]0], O,
0,
cCalendarMethodClearDaylcons,
6001, fftinteger,1,& CALENDARparams[0],0,0,
cCalend arMethodGetDaylcon, 6002,0,0,0,0,0
I3

/I method cCalendarFuncSetDaylcon uses string 6000 for its name,
/I no return type, 2 parameters, the address to a parameter.
/I The last two items are method flags, see member description above.

extern "C" glo ng OMNISWNDPROC GenericwWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_GETMETHODNAME:
{
// you want to support method, so send OMNIS the method téd.
3) return ECOreturnMethods(gInstLib, eci, &CALENDARmethods[0],
}
case ECM_METHODCALL:
{

/I OMNIS code is calling your component method

49

Chapter 26 Structures, Messages & Functions

50

glong methodID = ECOgetld(eci);
switch(methodID)
{

case cCalendar Me
case cCalendar Me
case cCalendarMethodGetDaylcon:

{
/I this method supports parameters
I/ so get information for parameter 1
EXTParaminfo* param = ECOfindParamNum(eci, 1);
/I create an EXTfldval from the information data
EXTfldval passedParam((glong)param - >mData);
glong valuePassed = passedParam.getLong();
€ é.
break;

— -
>
[o}ye]
oo

}

return 1L;
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}

See also ECOreturnMethodskents, ECM_METHODCALL,
EXTD_FLAG_PARAMOPT, EXTD_FLAG_PARAMALTER

ECOmethodEvent (for events)

This is the structure defining informatior
table of events information should be used withER®returnMethodsEvents API call.

struct ECOmethodEvent

{
glong mid;
glong mNameResID;
glong mReturnDataType;
glong mParameterCount;

ECOparam* mParameters;
glong mFlags;
glong mExFlags;
h
1 mid - The unique identifier, within the event tabler the event. All external events
must have a positive number and must not be zero. All negative numbers are assumed to be

Structures

Omnis internal events. For a list of supported internal events, look for ECE_ in
EXTDEFS.HE.

T mNameResID- Resource id which contaifise event name. Event names must be
uni que and must not clash with Omnis inter
as a prefix for any event.

1 mReturnDataType - Returned data type of type fftxxx. Specify 0 for no returned data
(e.g. void) andftNone for an unspecified data type.

1 mParameterCount- Number of parameters for the event. Specify zero for no
parameters.

1 mParameters- Pointer to an array of parameters. Specify NULL if there are no
parameters.

1 mFlags- Event flags of type EXTD_FLAG_%x.
1 mExFlags- Use zero. Extended flags for future enhancement.
Once a table of event information has been returned, you can UB€@s=ndEventAPI.

If your events support parameters, you need to supply information describing the
parameters. See ti@onponent Methodsection for a description of tHeECOparam
structure, or see some of the example components.

51

Chapter 28 Structures, Messages & Functions

Example of an events table

/I The event parameters

ECOparam SLIDERnewPos[1] =

{
/I resource 6000 for its name and type fftinteger
6000, fftintege r,0,0

h

/I The event table

ECOmethodEvent SLIDERevents[3] =

{
cSliderEvStartSlider, 5000, 0, 0, 0, O, O,
cSliderEvEndSlider, 5001, 0,0,0,0,0,
cSliderEvNewsSliderPos, 5002, 0, 1, &SLIDERnewPos|0], 0, O
k

/I function cSliderEvNewsSliderPosuses string 5002 for its name, no return
I type, 1 parameters, the address to a parameter table. The last two items

/I are event flags, see memeber description above.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wPaam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETEVENTNAME:

{

// you want to support events, so send OMNIS the event table.
return ECOreturnEvents(gInstLib,eci,&SLIDERevents[0],3);

}

re turn WNDdefWindowProc(hwnd,Msg,wParam,|IParam,eci);
}
/I Events can be sent using the ECOsendEvent API.
/I e.g. ECOsendEvent(mHWnd, cSliderEvStartSlider, 0, 0);
1 or with an event parameter
1! EXTfldval evParam;
1l evParam.setLong(10);
1! ECOsendEvent(mHWnd, cSliderEvNewSliderPos, &evParam, 1);

52

Structures

ECOproperty

This is the structure of a single property. The address to a table of properties should be used
with the ECOreturnProperties APl when Omnis calls your component with a
ECM_GETPROPNAME message.

See some of the samples for an example.
struct ECOproperty

{
glong mPropID;
glong mNameResID;
glong mDataType;
glong mFlags;
glong mExFlags;
glong mEnumStart;
glong mEnumEnd;
h
1 mProplD - Property Identifier. Exterdgroperties ids must be positive and unique
within the property table. These idbds I inlk

therefore must not change.

1 mNameResID- Resource id for the property name. Property names should, ideally, be
unique toavoid ambiguity in Omnis notation. If there is a clash between Omnis and the
component property, you may use a prefix ¢
Calculate #1 as $cobj.$::clashProperty.

1 mDataType - fftxxx data type.
1 mFlags- EXTD_FLAG_Xxxx.

1 mExFlags- Extended flags for future enhancements.

1 mEnumStart - Constant id enumeration start (O if not required).
1

mEnumEnNd - Constant id enumeration end (0 if not required).

53

Chapter 28 Structures, Messages & Functions

Example Property Table
ECOproperty OMNISICNproperties[4] =

{

b

cOmnisicnBa ckColor, 4000, fftinteger, EXTD_FLAG_PWINDCOL, 0,
0, 0,

cOmnislcnisTransparent, 4001, fftBoolean, 0, 0, 0, O,
cOmnislcnlconld, 4002, fftinteger, EXTD_FLAG_PWINDICON, 0, 0,
0, cOmnislcnScale, 4003, fftBoolean, 0, 0, 0, 0

extern "C" glon g OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

{

54

WPARAM wParam, LPARAM |Param, EXTComplnfo* eci)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{

case ECM_GETPROPNAME:

{
// you want to support properties, so send OMNIS

/I the property table.

return ECOreturnProperties(ginstLib, eci,
&OMNISICNproperties[0], 4);

}
case ECM_PROPERTYCANASSIGN:

{
/I OMNIS wants to know if you allows assignment to a property
glong propID = ECOgetld(eci);
//'you should retum 1L if the
// propID (e.g. cOmnislcnBackColor) can be assigned.
return OL;

}
case ECM_SETPROPERTY:

{

/I OMNIS is informing you to set a property value.
glong propID = ECOgetld(eci);

/I get the parameter information

EXTParaminfo * param = ECOfindParamNum(eci, 1);

/Il create a EXTfldval object containing the new value
EXTfldval newValue((gqlong)param - >mData);

/'l assign property o6propl DO the value

st

0

Structures

I/l always return 1L if you handled the assignment.

return 1L;
}
case ECM_GETPROPERTY:
{

/I OMNIS wants to know a property value

glong propID = ECOgetld(eci);

/I prepare a EXTfldval for return

EXTfldval returnVal;

/'l you must return the value for Opropl Db

/l'is returned for this example
returnVal.setLong(10);

/I send the return value back to OMNIS
ECOaddParam(eci,& returnVal);

/I always return 1L if you handled the call.
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}

Oncea table of properties has been returned, you should be ready to receive the
ECM_PROPERTYCANASSIGN, ECM_SETPROPERTY and
ECM_GETPROPERTY messages.

The property flags are used to describe information about a property in the property table
that must be retued to Omnis if you intend to support properties.

See also ECOreturnProperties, ECM_GETPROPNAME,
ECM_PROPERTYCANASSIGN, ECM_SETPROPERTY,
ECM_GETPROPERTY.

EXTclipType

The following enum values are used with the function ECOclipboardHasyrm

enum EXTclipType

{
eExtClipText =0,

eExtClipPicture = 1
3
1 eExtClipText i use this enum when testing the clipboard for text data.

1 eExtClipPicture - use this enum when testing the clipboard for picture data.

55

Chapter 26 Structures, Messages & Functions

56

See also ECOclipboardHasFormat
EXTComplnfo
This is the structure which is passed

EXTComplnfo contains all the information needed to process ECM_xxxx messages.

struct EXTComplnfo

{

k

1 mCompLibld - Contains the unique identifier for the component library. This value

glong mCompLibld;
glong mCompld;

void* mGdata;
EXTHANDLE mOmnisinstance;
EXTParaminfo* mParamFirst;
void* mPrivate;
EXTADDR mECOCallBack;
EXTADDR mGDICallBack;
EXTADDR mHWNDCallBack;
EXTADDR mFVALCallBack;
EXTADDR mQLISTCallBack;
EXTADDR mBMPCallBack;
EXTADDR mCmBCallBack;
EXTADDR mPRICallBack;
EXTADDR MQFILECallBack;
locptype* mLocLocp;
locptype* minstLocp;
EXTADDR mDAMCallBack;

should only be used by control handler

f
f
f
f
f

il

mCompld - Unique identifier for the control.
mGdata - Pointer which is maintained by the external component.
mOmnisinstance- Instance of Omnis.

mParamFirst - Pointer to the first parameter.

mPrivate - Private pointer used by Omnis. The component moisalter this member.

mECOCallBack, mGDICallBack, mHWNDCallBack, mFVALCallBack,

mQLISTCallBack, mBMPCallBack, mCRBCallBack, mPRICallBack,
mQFILECallBack, mDAMCallBack(v3.1) - Data for Omnis calback functions. The
component must not alter these members.

fror

Structures

1 mLocLocp - The context of the calling Omnis method. When the external component is
not called from an Omnis method, it is identical to minstLocp.

1 minstLocp - The context of the Omnis class instance, which contains the object
instance. When the external cooment is not called from a class instance, it points at the
library or root.

EXTParamInfo

This structure contains all the parameter information required for many ECM_ xxxx
messages and functions.

struct EXTParamInfo

{
long mid;
long minfo;
void* mData;
long mParent;
unsigned char ~ mNum;
char mFlags;
EXTParaminfo* mNext;
void* mitem;
void* mVpt;

I3

1 mid i Parameter id. Depends on the context in which the EXTParaminfo structure is
used. For example, during propemessages this will contain the unique property identifier
(mPropID).

1 minfo i Not currently used.
 mbDatai Pointer to data.
I mParenti Not currently used.

1 mNum i Specifies the parameter number. A value of zero indicates that it is a return
parameter.

1 mFlagsi Flags of type EXTC_FLAG_xxxx for the parameter.

1 EXTC_FLAG_EXTDEL i Indicates that the parameter should be deleted by
the component. The component must not manually set this flag.

1 EXTC_FLAG_PARAMCHANGED i Indicates that the parameter has been
changed. fie component must not manually set this flag.

1 EXTC_FLAG_HASITEM (v3.1) - Indicates that the EXTParaminfo contains
valid mitem and mVpt fields. These fields are required by some of the new

57

Chapter 26 Structures, Messages & Functions

58

f
f

callbacks in v3.1. If building components for 3.1 you should rehisnflag during
connect.

mNext1 Pointer to the next EXTParaminfo structure (may be NULL).

mitem (v3.1)1 Contains pointer to an Omnis item reference. Required by some new

callbacks in v3.1.

il

mVpt (v3.1) 1 Contains pointer to an Omnis parameter info stmectRequired by some

new callbacks in v3.1.

EXTParamTypelnfo (v3.1)

Returns information about the Omnis data field.

struct EXTParaminfo

{
gshort mType;
gshort mSubType;
glong mLength;
str255 mName
h
1 mTypei The Omnis datéype.
1 mSubTypei The Omnis data sub type.
1 mLengthi The maximum length in bytes or characters of the data field. Zero means
unlimited (10,000,000).
T mNamei The Omnis data field name.
See also ECOgetParaminfo

EXTSerialise (v3.1)

Structue used by the IS_SERIALISED control message.
struct EXTserialise

{

str255 mProductCode;
str255 mFunctionCode;
str255 mSerial;

str255 mNotes;

mProductCodei Product code supplied by component. Must be 4 alpha/numeric
characters.

Flags

Flags

1 mFunctionCodei Functionality code returned by Omnis. These consist of 4
alpha/numeric characters describing the enabled functionality.

1 mSeriali Complete serial number. Returned by Omnis.
1 mNotesi Notes as entered with the serial number by the user. Returned by Omnis.
Seealso ECOisSerialised, IS_SERIALISED

EXTD_EFLAG_ XXX

These defines are used in the mExFlags member of the ECOproperty structure.

EXTD_EFLAG_REPFONT
Indicates that Omnis should use report fonts for this property.

EXTD_FLAG_ Xxxx

These defines are used in the mFlags member of the ECOproperty structure.

EXTD_FLAG_BUTTON
Indicates that Omnis should provide a button on the Property Manager.

EXTD_FLAG_EDITRONLY
Indicates that Omnis gbs editing of the property on the Property Manager.

EXTD_FLAG_ENUM

Indicates that the property is an ENUM. For this type of property, Omnis sends the
component the ECM_GETPROPERTYENUMS message.

See also ECM_GETPROPERTYENUMS

EXTD_FLAG_EXTCONSTANT

Indicates the property is an external constant value. For example, the following property
entry (extract from QuickTime) indicates that the property is a external (i.e. Component)
constant between constant ids, 238023004.

eQTIME_Movie_scaling, 25017,
fftNumber,EXTD_FLAG_EXTCONSTANT,0,23000,23004

EXTD_FLAG_FAR_SRCH

Indicates that the property will be searched on during find and replace.

59

Chapter 26 Structures, Messages & Functions

60

EXTD_FLAG_FONTPROP
Indicates that the property is a font.

EXTD_FLAG_HIDDEN

Indicates that the property is hidden, that is, the property does not appear in the Property
Manager at all.

EXTD_FLAG_INTCONSTANT

Indicates the property &n internal constant value. For example the following property
entry (extract from Calendar) indicates that the property is a internal (i.e. Omnis) constant
between constant ids, pre3DStyleF & pre3DStyleL (BRECONST.HE for the entire

Omnis constant ramy.

cCalendar_HeadingMode,4002,fftinteger, EXTD_FLAG_INTCONSTANT,0,pre3DS
tyleF,pre3DStyleL

EXTD_FLAG_PARAMALTER
Indicates that the parameter can be altered during a function call.
See also ECOsetParameterChanged

EXTD_FLAG_PARAMOPT
Indicates that the function parameter (and every parameter after) is optional.

EXTD_FLAG_PRIMEDATA

Indicates the property is a data field. Each object may haveoaelyrimary data field and
appears athe $dataname property in Omnis.

See also ECM_SETPRIMARYDATA, ECM_GETPRIMARYDATA,
ECM_GETPRIMARYDATALEN, ECM_CMPPRIMARYDATA,
ECM_PRIMARYDATACHANGE

EXTD_FLAG_PROPACT
Indicates that the property appears on the action tab.

EXTD_FLAG_PROPAPP

Indicates that the property appears on the appearance tab.

EXTD_FLAG_PROPCUSTOM
Indicates that the property appears on the custom tab (default).

EXTD_FLAG_PROPDATA
Indicates that the property appears on the data tab.

EXTD_FLAG_PROPGENERAL
Indicates that the property appears on the general tab.

Flags

EXTD_FLAG_PROPPREFS
Indicates that the property appears on the preferences tab

EXTD_FLAG_PROPTEXT
Indicates that the property appears on the text tab.

EXTD_FLAG_PROPPANE
Indicates that the property appears on the pane tab.

EXTD_FLAG_PROPSECTIONS
Indicates that the property appears on the sections tab.

EXTD_FLAG_PROPGRP1
Mask for Property Manager tab.

EXTD_FLAG_PROPPANE
Indicates that the property appears on the pane tab.

EXTD_FLAG_PWINDCOL
Indicates that the popup color window should be provided.

EXTD_FLAG_PWINDCOL256

Indicates that the popup 256 color window should be provided. Useful for interfacing with
nonOmnis components such as Actideor Java Bans.

EXTD_FLAG_PWINDCURSOR (v3.1)
Indicates that the popup cursor window should be provided.

EXTD_FLAG_PWINDFSTYLE
Indicates that the popup font style window should be provided.

EXTD_FLAG_PWINDICON
Indicates that the popup icon window should be provided.

EXTD_FLAG_PWINDLSTYLE

Indicates that the popup line style window should be provided.

EXTD_FLAG_PWINDMLINE
Indicates thathe popup multi line edit window should be provided.

EXTD_FLAG_PWINDPAT

Indicates that the popup pattern window should be provided.

61

Chapter 26 Structures, Messages & Functions

62

EXTD_FLAG_PWINDSET
Indicates that the popup checkbox selection windowlshioe provided.

EXTD_FLAG_PWINDTYPE
Mask for the popup window types.

EXTD_FLAG_RUNTIMEONLY

Indicates that the property is runtime only, that is, the property appears in the Property
Manager during degn mode if the Show runtime properties option is switched on.

EXTD_FLAG_SECTIONS
Indicates that the property appears on the sections tab.

EXTD_FLAG_SINGLESEL

Indicates that the property appears in the BriggManager when only one object is
selected.

EXTD_FLAG_STATEONLY
Indicates that Omnis displays [Empty] or [Not Empty] in the Property Manager.

EXTD_FLAG_SUPPRESS

Indicates that the standard anum (seeremie) property should be suppressed in the
Property Manager.

General Messages

General Messages

This section describes some of the messages you receive via your WNDPROC. For
additional messages see the HWND and GDI message section.

ECM_ADDTOPRINTJOB

The ECM_ADDTOPRINTJOB message is send to a report object when the object is to add
itself to the print job. This message will only be sent if you returned 1L as a response to the
message ECM_CANADDTOPRINTJOB.

9 [IParam - points to the printinfo structure his structure contains a pointer to the print
job mJob of type PRIjob, and a pointer to the object information mObj of type
PRIobjectStruct. See print manager documentation for more information about
PRIobjectStruct and adding objects to a print job.

Returns:

If the component has added objects to the print job, return 1L. Otherwise return OL.
case ECM_ADDTOPRINTJOB:

{
tqfRepObj *obj = (tgfRepObj*)ECOfindObject(eci, hwnd);
if (obj)
{
printinfo *info = (printinfo*)IParam;
info - >mObj- >mType = PRI_O BJ_TEXT;
info - >mObj- >mAddEllipsis = qtrue;
gprierr err = PRIaddObiject(info ->mJob, info - >mObj);
return err == PRI_ERR_NONE ? 1L : OL;
}
return OL;
}

ECM_BOBJ_EXERASE

The ECM_BOBJ_EXERASE message is sent taodnekground conponents to inquire on

whet her the background objects6 frame regi
background region.

Returns:

The component should return true if the coc
false otherwise.

63

Chapter 26 Structures, Messages & Functions

64

ECM_CANADDTOPRINTJOB

External report objects can have full control over what is added to a print job when the
object is about to be printed. In order to take advantage of this feature, you must implement
this message and return 1L. You will then receiEeCM_ADDTOPRINTJOB message

which allows you to add one or more objects supported by the print manager. See print
manager documentation for more information about adding objects to a print job.

Returns:

Return 1L if you wish to control what is added tprant job, otherwise return OL.

ECM_CANCLICK (Web Client 1.0)

The ECM_ CANCLICK message is sent, when the web client needs to know if the
component can receive mouse messages.

Parameters:
1 wParami is 1 if the component is enabled, othise it is 0.
Returns:

Return 1L if the component can receive mouse messages, otherwise return 0.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_ CANCLICK:
{
I/l the component can receive mouse messages if it is enabled
return wParam;
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_CANFOCUS (Web Client 1.0)

The ECM_CANFOMIS message is sent, when the web client needs to know if the
component can receive the input focus.

Parameters:

1 wParami is 1 if the component is enabled, otherwise it is 0.

General Messages

Returns:

Return 1L if the component can receive the input focus, otherwise feturn

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_ CANFOCUS:

{

/I the component can receive the focus if isienabled
return wParam;

}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_CANSHOWSYSTEMFOCUS (V3.2)

This message is send to the component when Omnis needs to know if the systems focus
border is to be drawn around the component (Masibnly).

Returns:

Return 1L if a focus border is to be drawn, otherwise return 0.

65

Chapter 26 Structures, Messages & Functions

ECM_CMPPRIMARYDATA

The ECM_CMPPRI MARYDATA message is sent
data with the data provided in parameter one.

Returns:

The component should return DATA_CMPDATA_SAME if the data is the same, or
DATA _CMPDATA_DIFFER if the data is different, false otherwise.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTCo mplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_CMPPRIMARYDATA:
{
EXTParaminfo* param = ECOfindParamNum(eci,1);
if (param && param ->mData)
{
EXTfldval newValue((glong)param - >mData);
if (newValue.compare (myComponentData)==0)
return DATA_CMPDATA_DIFFER;
}
return DATA_CMPDATA_SAME;
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

See also EXTD_FLAG_PRIMEDATA

66

t

o

General Messages

ECM_COMPONENTCMD

The ECM_COMPONENTCMD mesga is sent to the component in response to the $cmd
notation method being executed.

The $cmd method provides functionality to Omnis scripting language which might
otherwise be inaccessible.

For example, the javabean component provides functionality toenae beans. However,
this functionality is normally only available via a dialog. $cmd also provides this
functionality without the use of the dialog.

Once invoked, all parameters are passed to the component.

An example of use may be :

OMNIS script code D -
Do $components.MyLibrary.$cmd(1)
External C++ Library code : -
case ECM_COMPONENTCMD:

{

EXTParamiInfo* param = ECOfindParamNum(pEci, 1);

if (!param) return rtnVal; /I Method called with too few
parameters EXTParaminfo* ecp = eci.findParam((q byte)n);

EXTfldval fval((gfldval)ecp - >mbData);

If (fval.getLong()==1)

/'l Do processing é

break;

}

ECM_CONNECT

The ECM_CONNECT message is sent to the component after an Omnis instance has
loaded the component.

Returns:
The @mponent should return one or more of the following flags:

1 EXT_FLAG_LOADED - Component has been loaded successfully. The component
must return this flag otherwise Omnis assumes the component failed to load.

1 EXT_FLAG_USABLE ¢ Note: FOR INTERNAL USE ONLY. A componentnust
not return this flag.

1 EXT_FLAG_ALWAYS USABLE - Componentis always available regardless of its
load status. This flag enables components to be usable in @itimdsit having to load

67

Chapter 26 Structures, Messages & Functions

it via the exteral component dialog. For example, Omnis OLE & Graph components
both set this flag.

1 EXT_FLAG_REMAINLOADED - Component remains loaded even after its usage
has returned to zero. This flag provides the best component performance and may be
used if the compom connection process is too slow.

1 EXT_FLAG_HIDDEN (v3.3)7 Component will not be visible in the object notation
tree displayed when creating variables o

1 EXT_FLAG_DAM (v5.0) - The external component is a DAM; must be set in addition
to EXT_H.AG_SESSION for DAMs only

1 EXT_FLAG_CTRLHANDLER - Component is a control handler . Please refer to the
s e ¢ tCordrol Halndlersé f or more i nformati on.

1 EXT_FLAG_EVENTHANDLER 1 Component in an event handler. Treatment of this
flag is the same as EXT_FLAG_&LHANDLER.

1 EXT_FLAG_SESSION (v3.1)i Component is a SQL session object. (Omnis Studio
version 3.0 onwards). This flag is also used to elicit thsedd behavior when writing
multi-threaded components.

1 EXT_FLAG_OWNROOTNODE (v4.1) i Specifies that the compent should be
assigned its own root node in the object notation tree displayed when creating variables

of type 060Objectod.

1 EXT_FLAG_BCOMPONENTS - Component library contains only background
components.

1 EXT_FLAG_NVOBJECTS i Component library contains nesisual objects (either
static functions or Omnis objects).

EXT_FLAG_PRI_OUTPUT - Component library contains output devices.

EXTC_FLAG_HASITEM (v3.1) - Indicates that the EXTParaminfo contains valid
mitem and mVpt fields. These fields are required by someeafi¢hv callbacks in v3.1.
If building components for 3.1 you should return this flag during connect.

Note: Most components do not need to catch this message. The default returned value in
WNDdefWindowProc is EXT_FLAG_LOADED.

ECM_CONSTPREFIX

The ECM_CONSTPREFIX message is sent when Omnis requires the prefix string for all
componentsd® constants.

If the component requires a constant prefix, it should add a parameter containing the string.

68

General Messages

Returns:

Return true if the constant prefix has beeturned.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_CONSTPREFIX:
{
EXTfldval prefixName;
strl5 pref ixStr;
prefixStr[0] = RESloadString(glnstLib, resourcelD,
&prefixStr[0], 15);
prefixName.setChar(prefixStr);
ECOaddParam(eci,&prefixName);
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_CONVFROMHPIXMAP (Studio 2.1)

The ECM_CONVFROMHPIXMAP message is sent to a picture format component when
Omnis requires an HPIXMAP to be converted into raw binary picture data (as stored on
disk).

Parameters:
1 IParami HPIXMAP required to onvert.
Returns:

Return gtrue if the component has successfully converted the HPIXMAP to binary data,
gfalse otherwise.

69

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci
)

case ECM_CONVFROMHPIXMAP:

{
gbool rtnVal = gfalse;

HPIXMAP thePixMap = (HPIXMAP)IParam;
gHandle binaryPCX;
if (PixmapToPCX(thePixMap ,binaryPCX))

{
EXTfldval fval;

fval.setHandle(fftBinary,binaryPCX,qfalse);
ECOaddParam(eci,&fval);
rtnVal = gtrue;

}
binaryPCX.setNull();
return rtnVal,
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_CONVHEADER (Studio 2.1)

The ECM_CONVHEADER message is sent to a picture format component when Omnis
requi res a picture formatsd header to be

Parameters:

1 wParami True if a header should be added, false if it should be removed.
1 Parameter 17 Picture data.

Returns:

Return gtrue if the picture data has had any headers added or removenthfisése.

70

ao

General Messages

extern "C" glong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

)

WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{

case ECM_CONVHEADER:

{

EXTParaminfo* param = ECOfindParamNum(e ci,1);
if (param)

{

}

EXTfldval fldval((gfldval)param - >mData);

gHandle srcHan = fldval.getHandle (gfalse);

gHandle destHan;

if (wParam)

{ /I Add tqgpict header (& any other component header)
addPCXheader(srcHan,destHan);

}

else

{ /I Remove tqgpict header (& any other component header)
removePCXheader(srcHan,destHan);

}

EXTfldval fval; fval.setHandle(fftBinary,destHan,gfalse);

ECOaddParam(eci,&fval);

return gtrue;

return gfalse;

}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}

ECM_CONVTOHPIXMAP (Studio 2.1)

The ECM_CONVTOHPIXMAP message is sent to a picture format component when
Omnis requires an raw picture data to a HPIXMAP. It is importanbte that the data
supplied may, or may not, include any headers.

Parameters:

1 Parameter 17 Picture data.

71

Chapter 26 Structures, Messages & Functions

72

Returns:

Return an HPIXMAP handle, NULL otherwise.

extern "C" glong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci
)

{
case ECM_CONVTOHPIXMAP:
{
EXTParaminfo* param = ECOfindParamNum(eci,1);
EXTfldval fldval((gfldval)param - >mData);
gHandle theData = fldval.getHandle (gtrue);
HPIXMAP thePixmap = PCXtoPixMap(theData);
return (glong) thePixmap;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,IParam,eci);
}

ECM_CUSTOMTABNAME

The ECM_CUSTOMTABNAME message is sent to the component when Omnis requires
the name of the custom tab in the Property Manager.

The mmponent should add a parameter containing the custom tab character name.
A component should call ECOsetCustomTabName to provide the necessary information.
Returns:

Return true if a custom tab name has been supplied.

General Messages

extern "C" glong OMNISWNDPROC GenericWn dProc(HWND hwnd, LPARAM Msg,

{

}

WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_CUSTOMTABNAME:
{
/I use resource 8000 for the name of the tab in the Property Manager
ECOsetCustom TabName(glnstLib, eci, 8000);
return 1L;
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

See also ECOsetCustomTabName

ECM_DEBUGGING

The ECM_DEBUGGING message is sent to the component:

1 just after a component library has been loaded (immediately after ECM_CONNECT).

1 when sys(4000) to enable debugging has been called.

1 when sys(4001) to disable debugging has been called.

Components may utilizehis message to provide debugging statements in the trace log, and
S0 on.

The debugging flag is maintained between Omnis sessions.

Parameters:

1 wParam - True if debugging is enabled, false otherwise.

Returns:

Any returned value is ignored.

73

Chapter 26 Structures, Messages & Functions

74

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_DEBUGGING:
{
gbool debuggingOn = (gbool)wParam;
if (debuggingOn)
{
/I'If debugging is on, the component may wish to provide
I/ verbose information to the developer via various
/I methods (e.g. trace log, and so on)
}
break;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_DISCONNECT

The ECM_DISCONNECT message is sent to the component before an Omnis instance
unloads the component. It should always be passed to the WNDdefWindowProc.

Returns:
Any returned value is ignored.

Note: Most components do not need to catch thessage.

ECM_EVENTRESULT (Web Client 1.0)

The ECM_EVENTRESULT message is sent to a Web Client external component, when the
result of a custom event is returned from the server. Because events are executed on the
server, the resuteturned from ECOsendEvent is meaningless and will always return gtrue

in the Web Client environment. The true result will be sent as the ECM_EVENTRESULT
message once the server returns control to the client.

Parameters:
1 wParam - the event code which wapecified when ECOsendEvent was called.

1 IParam - the result 0 or 1.

General Messages

Returns:
Return 1L.

See also ECOsendEvent

ECM_FMT_CANASSIGN

The ECM_FMT_CANASSIGN message is sent to the component when Omnis needs to
know if a property can be itten to. This message is used for format notation and even if
the component does not respond to the message, it is assumed that the property can be
written to.

Returns:

Return FMT_CANASSIGN if the property can be written to, return
FMT_NOCANASSIGN othervse.

See also ECM_PROPERTYCANASSIGN,Component Properties section.

ECM_FMT_GETPROPERTY

The ECM_FMT_GETPROPERTY message is sent to the component when Omnis needs to
know the value of a property.. This message is used for formadtamogéand even if the
component doesndét respond to the message t

Parameter one contains the current property value.

Returns:

Return FMT_VALID if the property was successfully retrieved, FMT_INVALID otherwise.
See also ECM_GETPROPERTY, Component Properties section.

ECM_FMT_SETPROPERTY

The ECM_FMT_SETPROPERTY message is sent to the component when Omnis needs to
set the value of a property.. This message is used for format notation arifitbee
component doesndt respond to the message t

Parameter one contains the new property value.

Returns:

Return FMT_VALID if the property was successfully modified, FMT_INVALID otherwise.
See also ECM_SETPROPRTY,Component Properties section.

75

Chapter 26 Structures, Messages & Functions

76

ECM_GETCOMPICON

The ECM_GETCOMPICON message is sent to the component when Omnis requires the
HBITMAP for the component icon. A component should add a long parameter containing
the HBITMAP or may calECOreturnicon to provide the information. Please note that the
HBITMAP returned belongs to Omnis and is deleted by Omnis when the component is of
no further use.

Parameters:
1 wParam - wParam is true if the library is available to the user.
Returns:

Returntrue if the bitmap has been returned, false otherwise.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{ case ECM_GETCOMPICON:
{
return ECOreturnlcon(ginstLib, eci, iconResID);
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_GETCOMPID

The ECM_GETCOMPID message is sent when Omnis requires the object name, type and
unique identifier.

The component should add a parameter which contains the character name of the object, it
should also set the EXTComplnfo member mCompld to a unique identifier for that object.
The mCompld is used by the component to determine to which type of object rsemsage
referring.

Parameters:

1 wParam - Contains a sequential number (starting from 1) which indicates the object
which is being inquired upon.

Returns:

The component should return the object type cRepODbjType_xxxx and/or cObjType_xxxx
or FALSE if there aremmore objects in the component.

General Messages

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_GETCOMPID:
{
/lreturnsasigl e component of id 6compl D6 and
/'l of type 6cObj Type_Basicb
return ECOreturnComplID(gInstLib, eci, compID,
cObjType_Basic);
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also ECOreturnCompID

ECM_GETCOMPLIBINFO

The ECM_GETCOMPLI BI NFO message is sent whe
library name and the number of objects it supports.

Returns:

The component should add a parameter containing the character name of the component
library and should alsceturn the number of objects supported. A component may use the
function ECOreturnComplnfo to provide the necessary information.

77

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_GETCOMPLIBINFO:

{
I returns the name of the component library (resource id)

// and the number of components this library supports.

return ECOreturnComplinfo(ginstLib, eci, LIB_RES NAME,
COMPONENT_COUNT);

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

See also ECOreturnComplnfo

ECM_GETCOMPSTOREGROUP (Studio 2.1)

The ECM_GETCOMPSTOREGROUP message is sent to the component library when
Omnis requires the name of the component store group.

The component should add a parameter containing the component store group hame
(maximum 31 characters), if required.

A component should call ECOreturnCStoreGrpName to provide the necessary information.
Returns:

Return true if a component store group name has been supplied.

78

General Messages

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_GETCOMPSTOREGROUP:

{

/I use resource 8000 for the name of component store group
ECOreturnCStoreGrpName(ginstLib, eci, 8000);
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also ECOreturnCStoreGrpName

ECM_GETCOMPSTOREICON (Studio 2.1)

The ECM_GETCOMPSTOREICON message is sent to the component when Omnis
requires the bitmap of the component store group. This message will only be sent if the
component library returned a component stoogmame (see
ECM_GETCOMPSTOREGROUP).

The component should add a parameter containing the bitmap.
A component should call ECOreturnicon to provide the necessary information.
Returns:

Return true if a bitmap has been supplied.

79

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_GETCOMPSTOREICON:
{
/'l use resource 8000 for the component st
ECOreturn Icon (glnstLib, eci, 8000);
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also ECM_GETCOMPSTOREGROUP, ECOreturnicon

ECM_GETCONSTNAME

The ECM_GETCONSTNAME message is sent to the component wingtis@equires a
list of the constants that the component library supports.

Constant resource strings are in the format of:

1 Name- The name of the constant as it appears in Omnis methods. Constant names may
contain a group name (name prefixed by groupenanf ol | owed by a til i
which informs Omnis that the component constants should bgrsuped.

9 Numeric value - The numeric value of the constant.

1 Character value- The character value of the constant.

9 Description - The description of the constan

A component should call ECOreturnConstants to provide the event information.
Returns:

Return true if the event list has been returned.

80

General Messages

example strings (extracts from QuickTime component):

/I Scaling constant group

23000 "Scaling~kQTScaleNone:0:kQTSc aleNone:No Scaling is applied to
the movie."

23001 "kQTScaleNoAspectRatio:1:kQTScaleNoAspectRatio: The movie is
expanded to fit the current field."

23002 "kQTScaleKeepAspectRatio:2:kQTScaleKeepAspectRatio:The movie
is expanded to fit the current fi eld."

23003 "kQTScaleProportional:3:kQTScaleProportional: The movie is
equally expanded vertically and horizontally to fit the
current field."

23004 "kQTScaleField:4:kQTScaleField: The movie's field is expanded
around the movie."
/I Resource slot2300523009 left for future scaling options

/I Controller constant group

23010 "Controller~kQTnoButtons:0:kQTnoButtons:The Controllers all
buttons list."

23011 "kQTstepButton:1:kQTstepButton: The Controllers step and
reverse
button are removed.”

2301 2 "kQTsoundButton:2:kQTsoundButton: The Controllers sound button
are removed."

23013 "kQTgrowButton:4:kQTgrowButton:The Controllers grow button
area
are removed.”

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParan, LPARAM IParam, EXTComplInfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETCONSTNAME:

{
return ECOreturnConstants(gInstLib, eci, 23000, 23013);

}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also ECOreturnConstants

81

Chapter 26 Structures, Messages & Functions

82

ECM_GETEVENTMETHOD

The ECM_GETEVENTMETHOD message is sent to the component when Omnis requires
the I'ist of method |ines for the objectsbo
when a new object has beereated.

The component should add a single column list parameter or call function
ECOreturnEventMethod.

Returns:

Return true if a method list has been provided, false otherwise.

example strings:

8000, ffon evMyEvento

8000, i; This event is a@aeoamnofor xxx re
8001, #do

8002, #do

8003, fon evMyEvent 20

8004, #fA; This event is sent for yyy reasonbo

/I a break in the run is needed (8005 is missing)
8010, dAo

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IPara m, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETEVENTMETHOD:

{

/I this uses strings 8000 onward, until a gap in the run
return ECOreturnEventMethod(glnstLib, eci, 8000);

}

return WNDdefWindowProc(hwn d,Msg,wParam,|Param,eci);

}
See also ECOreturnEventMethod

General Messages

ECM_GETEVENTNAME

The ECM_GETEVENTNAME message is sent to the component when Omnis requires a
list of the events that the object supports.

A component should call ECOreturnfesitvents to provide the event information.
Returns:

Return true if the event list has been returned.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,ec i);

switch (Msg)

{
case ECM_GETEVENTNAME:

{
return ECOreturnFuncsEvents(ginstLib, eci, &eventTable[0],
evtTableCnt);

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also ECOreturnFuncsEvents

ECM_GETHANDLERICON

The ECM_GETHANDLERICON message is sent to the component when Omnis requires
the HBITMAP for the control handler icon. A component should return the HBITMAP for
the bitmap. Note that the HBITMAP returned belongs to Omnis and is deleted by Omnis
when the control handler is of no further use.

Returns:
Return the HBI TMAP of the handl ersé i con.

83

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci
)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETHANDLERICON:

{

/I Provide OMNIS with a bitmap for the Component Store group.
HBITMAP compStorelcon = RESloadBitMap(ginstLib,

COMP_STORE_GROUP_ID);
return (glong)compStorelcon;

}

retur n WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_GETMETHODNAME

The ECM_GETMETHODNAME message is sent to the component when Omnis requires a

list of the methods that the object supports.

A component should call ECOreturnMethogshts to provide the method information.

Returns:

Return true if the function list has been returned.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci
)

ECOsetupCallbacks(hwnd, eci);
switch (Msg)

{
case ECM_GETMETHODNAME:

{
return ECOreturnMethodsEvents(ginstLib, eci, &funcTable[0],
funcTableCnt);

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

See also ECOreturnMethodsEvents

84

General Messages

ECM_GETOBJECT

The ECM_GETOBJECT message is sent to a library which supporgisial objects.

A component should call ECOreturnObjects to provide the object information.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM ®aram, LPARAM IParam, EXTComplInfo* eci
)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETOBJECT:

{

return
ECOreturnObjects(gInstLib,eci,&objTable[0],0bjTableCnt);

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See #s0 ECOreturnObjects, EXT_FLAG_NVOBJECTS, Ndfisual Components

ECM_GETOBJECTRECT

The ECM_GETOBJECTRECT message is sent to the component to retrieve the initial
dimensions of the object during design mode when the object is créatibed Component
Store drag and drop or by doutdkcking.

Parameters:

9 [IParam - Pointer to grect structure which should be populated with the initial
dimensions of the object.

Returns:

Return gtrue if the object rectangle has been set, false otherwise.

85

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci
)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETOBJECTRECT:

{

grect* initialRect = (grect*)IParam

/I sets the controls initial size to 100, 100
GDlsetRect(initialRect, 0, 0, 100, 100);
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_GETPICTFILEDESC (Studio 2.1)

The ECM_GETPICTFILEDESC messads sent to a picture format component when
Omni s requires a string for the fAPaste

The string returned must be a valid file filter string.
Returns:

Return gtrue if the component has returned a string, gfalse otherwise.

86

f

r

(

General Messages

extern "C" q long OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci

)
{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_GETPICTFILEDESC:
{ /I Return a string containing the picture file filter
stt1 5 name(APCX Files (*.pcx)]|*.pcx]| ");
EXTfldval fval; fval.setChar(name);
ECOaddParam(eci,&fval);
return gtrue;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_GETPICTFORMAT (Studio 2.1)

The ECM_GETPICTFORIAT message is sent to the component during the initial loading
of the component. A component which supports picture conversion, for example PCX,
should return a string containing the name

Returns:

Return gtrue ifhte component supports a picture format conversion, gfalse otherwise.

extern "C" glong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci
)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_GETPICTFORMAT:
{/]7 Return a string (APCX0) containing the
strl5 name(APCXO0) ;
EXTfldval fval; fval.setChar(name);
ECOaddParam(eci,&fval);
return gtrue;

}

return WNDdefWindowProc(hwnd,Msg,wParam,IParam,eci);

87

Chapter 26 Structures, Messages & Functions

ECM_GETPICTUREDIM

The ECM_GETPICTUREDIM message is sent to the component to retrieve the dimensions
of the object which has been defined as cObjType_Picture.

Parameters:

9 IParam - Pointer to a grect structure. The component should modify théberem
accordingly.

Returns:

Return true if the component has populated the structure, false otherwise.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,e ci);
switch (Msg)

{
case ECM_GETPICTUREDIM:
{
grect* pictDim = (grect*)|IParam ;
Il returns the bounds of the picture you are currently displaying
GDlsetRect(pictDim, 0, 0, mWidth, mHeight);
return 1L;
}
}

return WNDdefWindowPr oc(hwnd,Msg,wParam,IParam,eci);

}
ECM_GETPRIMARYDATA

The ECM_GETPRIMARYDATA message is sent to the component to obtain the data for
an object.

If the component is handling the data for an object, it should return this in parameter
Returns:

Return true if the data has been supplied, false otherwise.

88

General Messages

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_GETPRIMARYDATA:

{
EXTfldval exfldval;
EXTParaminfo* newparam = ECOaddParam(eci,&exfldval);
exfldval.setBinary(fftPicture, NPCXData,mPCXDatalLen);
return 1L;

}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also EXTD_H.AG_PRIMEDATA

ECM_GETPRIMARYDATALEN

The ECM_GETPRIMARYDATALEN message is sent to the component when Omnis
requires the objectds data | engt h.

Returns:

The component should return the objects data length.

extern "C" glong OMNISWND PROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_GETPRIMARYDATALEN:

{

return myDatalength;

}

return WNDdefWindowProc(hwnd,Msg,wPa ram,IParam,eci);

}
See also EXTD_FLAG_PRIMEDATA

89

Chapter 26 Structures, Messages & Functions

90

ECM_GETPROPERTY

The ECM_GETPROPERTY message is sent to the component when Omnis requires the
data for a property.

The component should add a return parameter which contains the paggarty
Returns:

Return true if successful, false otherwise.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETPROERTY:
{
Il proplD is the id of the property defined in your proptable
glong propID = ECOgetld(eci);
Il Get the value of your property.
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also Component Propeds section.

ECM_GETPROPERTYENUMS

The ECM_GETPROPERTYENUMS message is sent to the component when Omnis
requires the enum list for a property (previously defined with EXTD_FLAG_ENUM).

The component should return a list containimg line data and, optionally, the marks which

identify each line. After an item has been selected from the list, Omnis sends the component

an ECM_SETPROPERTY message with the line data or the line mark (if a line mark was
provided).

Returns:

Return true ifenum list has been provided, false otherwise.

General Messages

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETPROPERTYENUMS:

{
EXTqlist enumList;
enumdList.clear(listScol);
for (gshort i = 1; i<=5; i++)
{
str255 enumName;

enumName[0] = RESloadString(ginstLib, i, &enumName[1],
255);

enumList.insline(0, &enumName, i);

}
EXTfldval returnVal;

r eturnVal.setList(&enumlList, gtrue);
ECOaddParam(eci, &returnVal);

}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also EXTD_FLAG_ENUM

ECM_GETPROPNAME

The ECM_GETPROPNAME message is sent to the componem @hwis requires a list
of the properties that the object handles.

A component should call ECOreturnProperties to provide the property list.
Returns:

Return true if the property list has been returned.

91

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwn d, LPARAM Msg,

{

}

WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETPROPNAME:

{
return ECOreturnProperties(glnstLib, eci, &propTable[0],

propTableCnt);

}

retu rn WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

See also ECOreturnProperties

ECM_GETSTATICOBJECT

The ECM_GETSTATICOBJECT message is sent to a library which supporgasai
objects.

A component should call ECOreturnMethddgrovide the static object information.
extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

}

WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci
)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_GETSTATICOBJECT:

{
return ECOreturnMethods(glinstLib,eci, &objStaticTable[0],
objStaticTableCnt);

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

See also ECOreturnMethods, EXT_FLAG_NVOBJECTS, Ndfisual

92

Components

General Messages

ECM_GETVERSION

The ECM _GETVERSION message is sent when Omnis requires the version number of the
component.

A component should call ECOreturnVersion to provide the version number. If the
component fails to respond to this message then Omnis will assume a version number of
1.0.

For web client components, the version number of the component must be implemented as a
string in the string resources of the component. The web clieniiphegds this string for

the purpose of the automated download mechanism. See ECOreturnVersiangor m

details.

Returns:

Return the return value from ECOreturnVersion

See also GDlreadVersion, ECOreturnVersion
ECM_HASPRIMARYDATACHANGED (Web Client
V1.0)

The ECM_HASPRIMARYDATACHANGED message is sent to web client compsrien
determine if the components primary data has changed since the last
ECM_SETPRIMARYDATA or ECM_GETPRIMARYDATA. When writing data bound

web client controls, the control is responsible for maintaining its own modified state. This is
so the web client dy returns data for fields to the server, which have been changed by the
user. Return one of the following:

1 ECMRET_NOTIMPLEMENTED - default return value.

1 ECMRET_NOTCHANGED - return this if the data has NOT been changed by the
user since the last ECM_GETRRARYDATA or ECM_SETPRIMARYDATA. This
should be the default return value for read only controls.

1 ECMRET_CHANGED - return this if the data has been changed by the user since the
last ECM_GETPRIMARYDATA or ECM_SETPRIMARYDATA.

1 ECMRET_CURROWCHANGED - return ths if the primary data is a single selection
list and the current row has changed since the last ECM_GETPRIMARYDATA or
ECM_SETPRIMARYDATA.

1 ECMRET_ROWSELECTCHANGED (v3.1) - return this if the primary data is a
multiple selection list and the current row distl selection state has changed since the
last ECM_GETPRIMARYDATA or ECM_SETPRIMARYDATA

1 ECMRET_CURROWSELECTCHANGED (v3.1) - return this if the primary data is a
multiple selection list and the current row and list selection state of the current row only

93

Chapter 26 Structures, Messages & Functions

has changed since the last ECM_GETPRIMARYDATA or
ECM_SETPRIMARYDATA

See also ECM_SETPRIMARYDATA, ECM_GETPRIMARYDATA

ECM_ICONDRAWENTRY

The ECM_ICONDRAWENTRY message is sent to inform the component to draw an icon
for an object whiclthas been defined as cObjType_lconArray.

Parameters:

9 IParam - Pointer to EXTlconArraylnfo structure (see Below).

Returns:
Return true if the icon was drawn, false otherwise (which results in Omnis drawing the
icon).
struct EXTlconArraylnfo
{
HDC mHdc;
glong mLine;
grect mEntryRect;
grect mDrawRect;
gbool mDrawFocus;
gbool mSelected;
gbool mDragging;
gbool mSmalllcons;
EXTqlist* mListPtr;
h
1 mHdc - Device context into which the icon should be drawn.
1 mLine - The line number.
1 mEntryRect - The rectangle of the icon array entry/cell.
1 mDrawRect - The rectangle of the text or icon (dependant on whether the message is
ECM_ICONDRAWENTRY or ECM_TEXTDRAWENTRY).
1 mDrawFocus- True if the icon array entry/cell currently has the input focus.
1 mSelected- True if the entry/cell is selected.
1 mbDragging - True if the entry is currently being dragged.
1 mSmalllcons- True if the small icons are to be drawn (as opposed to large icons).

94

General Messages

9 mListPtr - List data pointer. This member contains the list variablatpoias defined in
the property member data name.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_ICONDRAWENTRY:
{
EXTIconArrayInfo* arraylnfo = (EXTIconArrayInfo*)IParam ;
/I Draw icon using info supplied in arraylnfo
return 1L;
}
case ECM_TEXTDRAWENTRY:
{
EXTIconArrayInfo* arraylnfo = (EXTIconArrayInfo*)IParam ;
Il Draw text using info suppliedin arraylInfo
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also cObjType_lconArray, ECM_TEXTDRAWENTRY

ECM_INBUILT_OVERRIDE

The ECM_INBUILT_OVERRIDE message is sent from Omnis for cettaitt in

properties which are normally handled by Omnis. Built in properties consist of anumFont,
anumFontsize, anumTextColor, anumFontStyle, anumAlign, anumVScroll, anumHScroll,
anumHScrolltips, anumVScrolltips, anumHorzscroll, anumVertscroll, anumEffect,
arumHelpid, anumContextmenu, and anumFIdStyle.

A component return 1L if it wants to manually maintain the built in property.

ECM_INSTALLLIBRARY

The ECM_INSTALLLIBRARY message is sent to a control handler when a request has
been madéo install another library via the #EXTCOMPS dialog>>Install button.

Returns:

Return true if message is processed, false otherwise.

95

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_INSTALLLIBRARY:

{
/I Control handler may wish to create a modal window to enable

/'l controls to be installed/uninstalled
dolnstallComponent();
return 1L;

}
}

return WN DdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_ISCONVFORMAT (Studio 2.1)

The ECM_ISCONVFORMAT message is sent to a picture format component when Omnis
is attempting to establish, from binary data, the picture format. This wskbebecause the
Omnis script functiomictformat has been invoked.

It is important to note that the data supplied may, or may not, include any headers.
Parameters:

9 Parameter 17 Picture data.

Returns:

Return gtrue if the picture data is in a format that¢omponent supports, false otherwise.

96

e

General Messages

extern "C" glong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci

)
{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_ISCONVFORMAT:
{
EXTParaml nfo* param = ECOfindParamNum(eci,1);
if (param)
{
EXTfldval fldval((gfldval)param - >mData);
gHandle srcHan = fldval.getHandle(gfalse);
if (PCXObject::isPCXdata(srcHan))
return gtrue;
}
return gfalse;
}
}
return WN DdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_LISTDRAWLINE

The ECM_LISTDRAWLINE message is sent to inform the component to draw a list line
for a object which has been defined as cObjType_List or cObjType_DropList.

Parameters:
9 IParam - Pointer to EXTListLinelnfo structure (see Below).
Returns:

Return true if the list line was drawn, false otherwise (which results in Omnis drawing the
line).

97

Chapter 26 Structures, Messages & Functions

struct EXTListLinelnfo

{
HDC mHdc;
grect mLineRect;
glong mLine;
gbool mSelected ;
EXTqlist* mListPtr;
gbool mDrawFocusRect;

—

mHdc - Device context into which the line should be drawn.
mLineRect - The rectangle of the line.
mLine - The line number.

mSelected True if the line is selected.

= =4 4 A -

mListPtr - List data pointer. This membeontains the list variable pointer as defined in
the property member data name.
1 mDrawFocusRect- True if the focus rectangle should be drawn.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTCom plinfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_LISTDRAWLINE:
{
EXTListLinelnfo* linelnfo = (EXTListLinelnfo *)IParam ;
// paint line using info supplied in linelnfo
return 1L;
}
}
return WNDdefWindowProc(hwnd ,Msg,wParam,IParam,eci);
}
See also cObjType_List, cObjType_DropList

98

General Messages

ECM_MEMORYDELETION

The ECM_MEMORYDELETION message is sent to inform the component library it needs
to free previously allocated memory. This message should slbepassed on to
WNDdefWindowProc.

Note: Components do not need to catch this message, just pass it to the
WNDdefWindowProc.

See also ECOmemoryDeletion

ECM_METHODCALL

The ECM_METHODCALL message is sent to inform the componentthata b j ect s 6
method has been invoked. All parameters for the method have been added to the
EXTComplnfo structure. A component should add any return parameter.

Returns:

Return true if method has been invoked, false otherwise.

extern "C" glong OMNISWNDPROC Gen ericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplInfo* eci)
{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_METHODCALL:

{
/I OMNIS code is calling your component method
glong methodID = ECOgetld(eci) ;
switch(methodID)
{

case cMyMethodl: ¢éé

o0
D
" un
@ @

}

return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

See also Component Methods Section

99

Chapter 26 Structures, Messages & Functions

100

ECM_NEWMETHODFLAGS

The ECM_NEWMETHODFLAGS message is sent to the component in response to the
component sending a WM_CONTROL message (wParam = RESET_METHOD_FLAGS)
to the objects HWND.

It enables controls such as Graphs to update the Property Manager depertkdéing on
context.

Returns:

The component should return the new EXTD_FLAG_xxx flags for the method.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{

ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_NEWMETHODFLAGS:
{
glong newMethodFlags = 0;

Cobj* object = (Cobj*)ECOfindObject(eci - >mOmnisinstance,
hwnd);

if (object)
{

glong methodld = (glong)IParam;

newMethodFlags = object - >getMethodFlags(methodlid) ;
}

return newMethodFlags;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also RESET_METHOD_FLAGS

ECM_NEWPROPERTYFLAGS

The ECM_NEWPROPERTYFLAGS message is sent to the component in response to the
compaent sending a WM_CONTROL message (wParam =
RESET_PROPERTY_FLAGS) to the objects HWND.

Enables controls such as Graphs to update the Property Manager depending on the context.
Returns:

The component should return the new EXTD_FLAG_xxx flags for the propert

General Messages

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_NEWPROPERTYFLAGS:

{
glong newPropertyFlags = 0;
Cobj* ob ject = (Cobj*)ECOfindObject(eci - >mOmnisinstance,
hwnd);

if (object)
{
glong propld = (glong)IParam;

newPropertyFlags = object - >getPropertyFlags(propld);
}

return newPropertyFlags;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,| Param,eci);

}
See also RESET_PROPERTY_FLAGS

ECM_OBJCONSTRUCT

The ECM_OBJCONSTRUCT message is sent to instruct the component to construct an
instance of the object.

Parameters:
1 hwnd - The HWND of the object which is being constructed
 wParami

1 For visual components wParam is either ECM_WPARAM_WINDOWOBJ or
ECM_WPARAM_REPORTOBJ depending on the type of object to construct.

9 For nonvisual components wParam is either :
1 ECM_WPARAM_OBJMSG to indicate that the message is due to $construct.

1 Or ECM_WPARAM_OBJINFO to indicate that the message is due to a new
object being created.

I wParam may also contain the flag ECM_WFLAG_NOHWND for background
objects.

101

Chapter 26 Structures, Messages & Functions

102

Returns:
The component should return gtrue if it processes the message.

Note: It is good pratice to use the ECO Object chain. New objects can be added to the
chain with ECOinsertObject, and removed using ECOremoveObject. All supplied examples
use this chain.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParamLPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_OBJCONSTRUCT:

{
/Il create a new object Cobj is an example class name
Cobj* object = new Cobj(hwnd);
// and add it to the ECO object chain
ECOinsertObject(eci, hwnd, (void*)object);
/1'if your component library supports multiple controls,

// 'you can use eebmCompld to determine what sort of control to create.
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECM_OBJDESTRUCT

The ECM_OBJDESTRUCT message is sent to instruct the component to destruct an
instance of the object.

Parameters:
1 hwnd - The HWND of the object which is to be destructed.
1 wParami
9 For nonvisual components wParam either :
1 ECM_WPARAM_OBJMSG to indicate that the message is due to $destruct.

1 Or ECM_WPARAM_OBJINFO to indicate that the message is due to a new
object being destroyed.

General Messages

Returns:
Any returned value is ignored.

Note: It is good practice to use the ECO Qtijehain. New objects can be added to the
chain with ECOinsertObject, and removed using ECOremoveObject. All supplied examples
use this chain.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComp Info* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_OBJDESTRUCT:
{
/I retrieve and remove your object from the ECO object chain.
Cobj* object = (Cobj*)ECOremoveObject(eci, hwnd);
/I and delete it.
if (object) dele te object;
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_OBJECTDATABLOCK

The ECM_OBJECTDATABLOCK message is sent to the component when Omnis is

setting or getting the propertiés the object. Most components ignore this message as
property assignment/retrieval is provided automatically in Omnis, and in this case the
component must return false.

However, some control types (ActiveX for example) require objects to be initiaisied a

data block. In this case, if wParam = ECM_WPARAM_BLOCKLOAD, the first parameter
contains the property data for the object otherwise the component should add a parameter
which contains the property data for the object.

Parameters:

1 wParam - Containseither ECM_WPARAM_BLOCKSAVE or
ECM_WPARAM_BLOCKLOAD.

Returns:

Return true if successful (i.e. the object supports data block property assignment), false
otherwise.

103

Chapter 26 Structures, Messages & Functions

104

ECM_OBJECT_COPY

The ECM_OBJECT_COPY message is sent to the comporemt svnorvisual object
assignment is required.

Parameters:

9 IParami IParam contains a pointer to a objCopylnfo structure which contains the copy
information.

1 Returns: Any return value is ignored.
See also EXT_FLAG_NVOBJECTS, No#Visual Components

ECM_OBJECT_REBUILD

The ECM_OBJECT_REBUILD message is sent to the component to inquire whether a

rebuild ofanow i sual objects6 properties and/ or
Returns:

Return true if the object requires a rebuild.

See also EXT_FLAG_NVOBJECTS, NorVisual Components

ECM_OBJINITIALIZE

The ECM_OBJINITIALIZE message is sent twice during the construction of an object.
Once, just before any properties have been set, and once after.

Parameters:

1 wParam - wParam cotains false before the object is initialized (i.e. properties set), true
after the object has been initialized.

Returns:
Any returned value is ignored.

Note: Components do not need to catch this message, just pass it on the
WNDdefWindowProc.

General Messages

extern "C" glo ng OMNISWNDPROC GenericwWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_OBJINITIALIZE:
{
/'l You may need to | oad other DLL&s once
/I after, you always need to pass this message
I/ on to WNDdefWindowProc
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_PAINTCONTENTS

The ECM_PAINTCONTENTS mesga is sent to inform the component to draw the
droplist contents window for a object which has been defined as cObjType_DropList.

Parameters:
9 [IParam - Pointer to EXTListLinelnfo structure (see ECM_LISTDRAWLINE).
Returns:

Return true if the list line was awn, false otherwise (which results in Omnis drawing the
line).

See also ECM_LISTDRAWLINE, cObjType_DropList

ECM_PRIMARYDATACHANGE

The ECM_PRIMARYDATACHANGE message is sent to inform the component that its
objects data has chged. Most components ignore this message, but more specialized
components may need to complete additional data processing after the data has changed.

Returns:

Any return value is ignored.

105

Chapter 26 Structures, Messages & Functions

106

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg

{

}

WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_PRIMARYDATACHANGE:

{
Cobj* object = (Cobj*)ECOfindObject(eci - >mOmnisinstance,
hwnd);

if (object)

{
/'l é Adpgioconailng é
object - >inval();

}

break;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

See also EXTD_FLAG_PRIMEDATA

ECM_PRINT

The ECM_PRINT message is sent by Omnis to inform the component to print the object.
You will also receive ECM_PRINT messages for background components when they need
to be painted. Background objects do not receive WM_PAINT messages.

Parameters:

f

wParam - Picture object type wParam contains ECM_WPARAM_PICTNOSCALE
bit set if no scaling if rquired.

IParam - IParam contains a pointer to a WNDpaintStruct structure which contains the
printer HDC and the object print rectangle.

Parameter 1- contains any primary data (as during ECM_SETPRIMARYDATA
message).

Returns:

Any return value is ignored.

General Messages

extern "C" glong OMNISWNDPROC GenericwWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_PRINT:
{
PCXObject* object = (PCXObject*)ECOfindObject(eci -
>mOmisinstance,
hwnd);
if (object)
{
EXTParaminfo* param = ECOfindParamNum(eci,1);
if (param && param ->mData)
{
/'l Set objectsd data from param variab
object - >setPrimaryData(eci, param);
}
WNDpa@tStruct* paintinfo = (WNDpaintStruct*)|IParam;
// 'you can paint your object using
I
/I paintinfo->hdc
I
/I using the bounds
I
// paintinfo ->rcPaint;
object - >print(paintinfo);
}
return 1L;
}
}
return WNDdef WindowProc(hwnd,Msg,wParam,IParam,eci);
}
See also ECM_SETPRIMARYDATA

107

Chapter 26 Structures, Messages & Functions

ECM_PRINTMAPPING

The ECM_PRINTMAPPING message is sent to the component to inquire on any print
mapping required.

Print mapping enables Omnis to suitably scaleothject. See CALENDAR and PCX for
examples.

Returns:

The component should return true if print mapping is required, false otherwise.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_PRINTMAPPING:
{
return 1L;
I returns 1L for print mapping - scales object
/I dependent on print DPI
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

108

General Messages

ECM_PROPERTYCALCTYPE

The ECM_PROPERTYCALCTYPE message is sent to the component when Omnis needs
to know the calculation type for calculation properties. If a property is not a calculation, do
not implement this message.

Returns:

Return ctySquare if the property is of tygguare bracket calculation (the actual
calculations are embedded in text using square brackets. Return ctyCalculation if it is a
standard calculation, i.e. field name or functions.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_ PROPERTYCALCTYPE:
{
I/ return the property calculation type
EXTfldval calcType;
calcType.setLong(ctySquare);
ECOaddParam(ec i, &calcType);
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

ECM_PROPERTYCANASSIGN

The ECM_PROPERTYCANASSIGN message is sent to the component when Omnis needs
to know if a property can be width to or not.

Returns:

Return true if the property can be written to, false otherwise.

109

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_PROPERTYCANASSIGN:

{
I/l propID is the id of the property defined in your proptable
glong propID = ECOgetld(eci);
/'/ you should return 1L if the property 6

/I assignable, and OL if the property is reaebnly
re turn OL;

}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}

See also Component Properties section.

ECM_SETPRIMARYDATA

The ECM_SETPRIMARYDATA message is sent by Omnis to inform the component to set
the data for thelgect. The first parameter contains the new data for the object.

Returns:

Return true if the component handles the data, false otherwise.

110

General Messages

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)
{

ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case ECM_SETPRIMARYDATA:

{
EXTParaminfo* param = ECOfindParamNum(eci,1);
if (param && param - >mData)

{

EXTfldval newValue((glong)param - >mData);
Il new value stored inEXTfd val &édnewVal ueb

}

return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also EXTD_FLAG_PRIMEDATA

ECM_SETPROPERTY

The ECM_SETPROPERTY message is sent to the component when Omnis requires a
property to chnge.

Parameter one contains the new data for the property.
Parameters:

1 wParam - wParam is set to ECM_WPARAM_PROPBUTTON if the Property Manager
popup button was pressed to set the property. For exanfjiiename property may
wish to use a file open dig if the popup button was pressed. Please note that if
wParam is ECM_WPARAM_PROPBUTTON, parameter one ca¢gontain any
data.

Returns:

Return true if successful, false otherwise.

111

Chapter 26 Structures, Messages & Functions

112

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_SETPROPERTY:

{
I/l propID is the id of the property defined in your proptable
glong propID = ECOgetld(eci);
/I set the new valuef your property.
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also Component Properties section.

ECM_SQLOBJECT COPY (v3.1)

wParam is 0 (add to NV Chain), 1 (remove from NV Chain)

This message can be used to prevent Omnis from creating unnecessary copies of external
objects. Once implemented you can simply create a single object instance and increment or
decrement the usage count, depending on the value of wParam.

Parameters:
1 wParami if 0 increment usage count, if 1 decrement usage count.
Returns:

Return 1L if you wish to prevent Omnis from duplicating the object.

ECM_TEXTDRAWENTRY

The ECM_TEXTDRAWENTRY message is sent to inform the component to draw the text
for anobject which has been defined as cObjType_lconArray.

Parameters:
9 IParam - Pointer to EXTlconArraylnfo structure (see Below).
Returns:

Return true if the text was drawn, false otherwise (which results in Omnis drawing the text).

General Messages

struct EXTlconArraylnfo

{
HDC mHdc;
glong mLine;
grect mEntryRect;
grect mDrawRect;
gbool mDrawFocus;
gbool mSelected;
gbool mDragging;
gbool mSmalllcons;
EXTqlist* mListPtr;

h

mHdc - Device context into which the text entry should be drawn.
mLine - The ine number.
mEntryRect - The rectangle of the icon array entry/cell.

mDrawRect - The rectangle of the text or icon (dependant on whether the message is
CM_ICONDRAWENTRY or ECM_TEXTDRAWENTRY).

1
1
1
1
E
1 mDrawFocus- True if the icon array entry/cell currently hae thput focus.
1 mSelected True if the entry/cell is selected.

1 mDragging - True if the entry is currently being dragged.

1 mSmalllcons- True if the small icons are to be drawn (as opposed to large icons).
1

mListPtr - List data pointer. This member contaihs tist variable pointer as defined in
the property member data name.

113

Chapter 28 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)

{
case E CM_TEXTDRAWENTRY:
{
EXTIconArrayInfo* arraylnfo = (EXTIconArrayInfo*)IParam
/I Draw text using info supplied in arrayinfo
return 1L;
}
case ECM_ICONDRAWENTRY:
{
EXTIconArrayInfo* arraylnfo = (EXTIconArrayInfo*)IParam
/I Draw icon using info supplied in arraylnfo
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also cObjType_IconArray, ECM_ICONDRAWENTRY

114

WM_CONTROL Messages

WM_CONTROL Messages

WM_CONTROL is a group of messages which may be sent to the HWND to instruct
Omnis objects to perform specialized actions. Some of the messages described are
implemented as functions in Omnis, but are included here for completeness.

DESKTOP_MENU_ENABLED

Instructs Omnis to set the enabled state of thktdeswitch. This is useful if the
component supports functionality similar to OLEglace activation (as Omnis OLE does),
whereby, during ifplace activation the desktop switch menu should be disabled to avoid
the user changing the desktop mode.

Please ate that the menu enabled state can be changed on the development version of
Omni s only, the runtime version (which doece

9 [IParam - gtrue if menu should be enabled, gfalse otherwise.

/I Disable menu
WNDsendMessage(mHwnd, WM_CONTROL, DESKTOP_MENU_ENABLED, gfalse);
é Processing é

// Enable menu
WNDsendMessage(mHwnd, WM_CONTROL, DESKTOP_MENU_ENABLED, qgtrue);

DRAW_DESIGN_NAME

I nstructs Omnis to draw t he o bdrawBesighame . a me .

1 IParami The HDC to draw into.
WNDsendMessage(mHwnd, WM_CONTROL, DRAW_DESIGN_NAME, (LPARAM)hdc);
See also ECOdrawDesignName

DRAW_MULTIDESIGN_KNOBS

Instructs Omnis to draw the mulielected design knobs. Ftionally the same as
ECOdrawMultiKnobs.
1 IParami The HDC to draw into.

WNDsendMessage(mHwnd, WM_CONTROL, DRAW_MULTIDESIGN_KNOBS,
(LPARAM)hdC);

See also ECOdrawMultiKnobs

115

Chapter 26 Structures, Messages & Functions

116

DRAW_NUMBER

I nstructs Omnis to dr aallythelsame astEC@dcatvduhben u mb ¢

9 IParami The HDC to draw into.
WNDsendMessage(mHwnd, WM_CONTROL, DRAW_NUMBER, (LPARAM)hdc);
See also ECOdrawNumber

GET_MENUHANDLE (Windows only)

Returns the operating system menu handle for the Omeris!.

9 IParam - Menu handle required. Currently only MM_FILE is supported.
HMENU menuHandle = WNDsendMessage(mHwnd, WM_CONTROL,
GET_MENUHANDLE, MM_FILE);
if (menuHandle)
{
gshort itemCount = GetMenultemCount((HMENU)menuHandle);

}
GET_OMNIS_HPALETTE (Windows only)

Returns the Omnis palette handle.

HPALETTE omnisPalette = WNDsendMessage(mHwnd, WM_CONTROL,
GET_OMNIS_PALETTE, 0);

HPALETTE myObjectPalette = 0;

if (omnisPalette)

{
/I Create new palette using OMNIS palette
HLOCAL hl; LOGPALETTE* Logpal;

hl = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT,
Sizeof(LOGPALETTE)+(256*sizeof(PALETTEENTRY)));

if(hl)
{
Logpal = (LPLOGPALETTE) GlobalLock(hl);
GetPaletteEntries(omnisPalette,0,256, Logpal - >palPalEntry);
Logpal - >palVersion = 0x300;
Logpal - >palNumEntries = 256;
myObjectPalette = CreatePalette(Logpal);
GlobalUnlock(hl);
GlobalFree(hl);

WM_CONTROL Messages

HAS FOCUS

Returns true if the object has the focus. Functionally the same as ECOhasFocus.
glon g result = WNDsendMessage(mHwnd, WM_CONTROL, HAS_FOCUS, 0);

if (result)
{
/I object currently has the focus
}
See also ECOhasFocus

HIDE_TOOLTIP

Instructs Omnis to hide the etreen tool tip if it is shown. Functionally the same as
ECOhideTooltip.

/I hides tooltip
WNDsendMessage(mHwnd, WM_CONTROL, HIDE_TOOLTIP, 0);

See also ECOhideTooltip

IS FLD_EDITABLE

Returns true if the object is editable (i.e. in runtime and notoedd.

glong result = WNDsendMessag e(mHwnd, WM_CONTROL, IS_FLD_EDITABLE, 0

if (result)
{
// object is in edit mode
}
IS_IN_DESIGN
Returns true if in design mode. Functionally the same as ECOisDesign.
glong result = WNDsendMessage(mHwnd, WM_CONTROL, IS_IN_DESIGN, 0);
if (result)
{
// object is in design mode.
}
See also ECOisDesign

117

Chapter 26 Structures, Messages & Functions

118

IS MULTISELECTED
Returns true if the object is currently one of many objects selected. Functionally the same as
ECOisMultiSelected.

glong result = WNDsendMe ssage(mHwnd, WM_CONTROL, IS_MULTISELECTED,
0);

if (result)
{
/I object is multi-selected.
}
See also ECOisMultiSelected

IS_OMNIS_IN_BUILDMODE

Returns qtrue if Omnis is currently louild mode. Build mode is the state wén Omnis is
debugging an Omnis method. During this state, components should not execute events (
ECOsendEvent).

if (WNDsendMessage(mHwnd, WM_CONTROL, IS_OMNIS_IN_BUILDMODE, 0
==0)

{

/I send my event

}
See also ECOisOMNISinTrueRuntime

IS_SELECTED

Returns true if the object is currently selected. Functionally the same as ECOisSelected.

glong result = WNDsendMessage(mHwnd, WM_CONTROL, IS_SELECTED, 0);
if (result)

{
/Il object is selected.
}
See also ECOisSelected

WM_CONTROL Messages

IS_SERIALISED (v3.1)

Asks Omnis if the component has been serialised and returns information about the serial
number.
EXTserialise serInfo;
serlnfo. mProduct Code = strl5(AXXXX0) ;
/I mProductCode = first four alpha/numeric chars of serial number

gbool result = (gbool)WNDsendMessage(mHwnd, WM_CONTROL,
IS_SERIALISED, (LAPARAM)&serInfo);

if (result)
{
/I component has been serialised.
/I on return
1l serInfo.mFunctionCode contains codes for enabled functions
1 serinfo.mSerial contains the omplete serial number
1l serlnfo.mNotes contains the serial number notes
}
See also ECOisSerialised, EXTserialise

IS_SETUP

Allows the component to inquire on the-sigt state of the object. The sgi state of an
object is false before pperties have been initialized, true afterwards. Functionally the same
as ECOisSetup.

gbool result = (gbool)WNDsendMessage(mHwnd, WM_CONTROL, IS_SETUP,

1

if (result)
{
/Il object is setup and ready for action.
}
See also ECOQOisSetup

119

Chapter 26 Structures, Messages & Functions

120

IS_SHOWNUMBER

Returns true if the objectisindesigno de and &éShow number 6 i
same as ECOisShowNumber.

glong result = WNDsendMessage(mHwnd, WM_CONTROL, IS_ SHOWNUMBER, 0

if (result)

{
/I Show number is on.
}
See also ECQOisShowNumber

IS WINDOW_TOP
Returns true if the object is a member of theragst window. Functionally the same as
ECOisWndTop.

gbool result = (gbool)WNDsendMessage(mHwnd, WM_CONTROL,
IS_WINDOW_TOP, 0);

if (result)
{
/Il object is & top
}
See also ECOisWndTop

LIST_SETLINEHEIGHT

Informs Omnis of a new line height for cObjType_List objects. Functionally the same as
ECOlistSetLineHeight.

9 [IParam - glong which represents the new line height for the list.

/I Forces all lists lines in a derived picture component to be 50 pixels high.
WNDsendMessage(mHwnd, WM_CONTROL, LIST_SETLINEHEIGHT, 50);

See also ECOlistSetLineHeight

S

1

WM_CONTROL Messages

OMNIS_IN_BACKGROUND

Returns true if the Omnis is currently a kgound application.

glong result = WNDsendMessage(mHwnd, WM_CONTROL,
OMNIS_IN_BACKGROUND, 0);

if (result==0)
{

/I OMNIS is the foremost application
}

PICTURE_ERASEBKGROUND

Instructs the cObjType_Picture object to erdmebackground.
WNDsendMessage(mHwnd, WM_CONTROL, PICTURE_ERASEBKGROUND, 0);
See also cObjType_Picture

PICTURE_UPDSCROLLRANGE

Instructs the cObjType_Picture object to recalculate the scroll range for the object. On
receipt d this message, Omnis sends the component the ECM_GETPICTUREDIM
message.

WNDsendMessage(mHwnd, WM_CONTROL, PICTURE_UPDSCROLLRANGE, 0);
See also ECM_GETPICTUREDIM

RESET_METHOD_FLAGS

Instructs Omnis to reset all method flags. Gsrsends the component repeated
ECM_NEWMETHODFLAGS for each method in the object.
WNDsendMessage(mHwnd, WM_CONTROL, RESET_METHOD_FLAGS, 0);
See also ECM_NEWMETHODFLAGS

RESET_PROPERTY_FLAGS

Instructs Omnis to reset all propeflggs. Omnis sends the component repeated
ECM_NEWPROPERTYFLAGS for each property in the object.
WNDsendMessage(mHwnd, WM_CONTROL, RESET_PROPERTY_FLAGS, 0);
See also ECM_NEWPROPERTYFLAGS

121

Chapter 26 Structures, Messages & Functions

SET_EDITMENU

Instructs Omnis to rebuild the editenu.
WNDsendMessage(mHwnd, WM_CONTROL, SET_EDITMENU, 0);

SET_PALETTE

I nstructs Omnis that the objectsd palette

1 IParam - HPALETTE handle of the new palette.
WNDsendMessage(mHwnd, WM_CONTROL, SET_PALETTE, (LPARAM)myPalette);
See also GDlsetPalette

SET_STATUSBAR_TEXT

Updates the Omnis status bar with the specified text.

9 IParam - Pointer to null terminated string.

str255 newStatusBar Msg = st rmthdb (t hiel esxtta ttws ghoa ri

WNDsendMessage(mHwnd, WM_CONTROL,SET_STATUSBAR_TEXT,(LPARAM)newStatus
BarMsg.cString());

SET_TOOLGRPS_VISIBLE

Instructs Omnis to set the visibility state of all desktop toolbars. This is useful if the
compone@t supports functionality similar to OLE-jplace activation (as Omnis OLE does),
whereby, during irplace activation, all Omnis toolbars should be removed to avoid
confusion between Omnis and the activated application.

1 [IParam - gtrue if toolbars are visib, gfalse otherwise.

// Hide Toolbars

WNDsendMessage(mHwnd, WM_CONTROL, SET_TOOLGRPS_VISIBLE, gfalse);
é Processing ¢é

/I Show Toolbars

WNDsendMessage(mHwnd, WM_CONTROL, SET_TOOLGRPS_VISIBLE, gtrue);

122

WM_CONTROL Messages

SET_WINDOWS_VISIBLE

Instructs Omnis to set the visibility state of all windows, except the window which contains
the external component. This is useful if the component supports functionality similar to
OLE in-place activation (as Omnis OLE does), whereby, durifgane activatn, all

Omnis windows should be removed to avoid confusion between Omnis and the activated
application.

1 IParam - gtrue if windows are visible, gfalse otherwise.

/I Hide Windows
WNDsendMessage(mHwnd, WM_CONTROL, SET_WINDOWS_VISIBLE, gfalse);
€é Procegsédn

/I Show Windows
WNDsendMessage(mHwnd, WM_CONTROL, SET_WINDOWS_VISIBLE, gtrue);

SETNOERASEFORPICTURES

This can only be used when deriving from an Omnis picture field (cObjType_Picture). This
message instructs Omnisnott er ase t he picture fieldds cl
gives you more control if, for example, you want to fade an image over the previous image.
IParam is used to indicate if the erase should happen or not.

/I disables erasing
WNDsendMessage(mHwnd, WM_CONTROL, SETNOERASEFORPICTURES, gtrue);

/I enables erasing
WNDsendMessage(mHwnd, WM_CONTROL, SETNOERASEFORPICTURES, gfalse);

See also cObjType_Picture

UPDATE_PROPINSPECTOR

Instructs Omnis to update the Propertyridger. Functionally the same as
ECOupdateProplnsp.

1 IParam - glong which represents the property to update. Zero updates all properties.

/I Update all properties
WNDsendMessage(mHwnd, WM_CONTROL, UPDATE_PROPINSPECTOR, 0);

/I Update myPropld
WNDsendMessaye(mHwnd, WM_CONTROL, UPDATE_PROPINSPECTOR, myPropld);

See also ECOupdateProplnsp

123

Chapter 26 Structures, Messages & Functions

General Functions

124

ECOaddParam()

EXTParaminfo* ECOaddParam(EXTComplinfo* pEci, EXTfldval* pFval,
glong pParamld = 0,
gshort pParamType = 0, glgpParamFlags = 0,
gchar pparamNum=0, glong pParamParent =0)

The ECOaddParam function adds a new parameter to EXTComplnfo structure allowing you
to pass information to/from Omnis.

Normally a component calls this function passing only the pEci Badlpointers. It

should be noted that after ECOaddParam has been called the data contents (memory) of
pFval belong to another object inside Omnis, so the deletion of the pFval causes ho memory
to be deleted.

pFval data belongs to Omnis and may be delétethe component.
1 pEci - Specifies the pointer to the EXTComplnfo structure.
1 pFval - Specifies the pointer to the parameter data.

1 pParamld - Specifies the id of this parameter. The default value of 0 indicates a
returned parameter.

pParamType - Specifies the parameter data type.
pParamFlags- Specifies the parameter flags.
pParamNum - Specifies the parameter number.

pParamParent-Speci fi es the parametersd6 parent

= =4 A -2 -2

returns - Returns a pointer to the EXTParaminfo structure which contains the
parameter.

General Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_CONSTPREFIX:
{
EXTfldval prefixName;
strl5 prefixStr;
pr efixStr[0] = RESloadString(ginstLib, resourcelD,
&prefixStr[0], 15);
prefixName.setChar(prefixStr);
ECOaddParam(eci,&prefixName);
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECOaddTraceLine()

void ECOaddTracelLine(str255* pString)

The ECOaddTraceLine function enables the component to add strings to the Omnis trace
log.

9 pString - The pointer to the str255 class which contains the string.

str255 myTracelLine(fiSome itomadde inform
ECOaddTraceLine(&myTraceLine);

ECOcanSendEvent() (web client only)
gbool ECOcanSendEvent(HWND pHwnd, glong pEventID)

Use ECOcanSendEvent to test if an event can be send now.

1 pHwnd - The HWND of the object.

1 pEventID - The id of the event.

1 returns - Returns true if the event can be send now. If this function returns false and the
event must be send, the component should delay the sending by using a timer and
checking again later.

See also ECOsendEvent

125

Chapter 26 Structures, Messages & Functions

126

ECOclipboardGetPicture() (v2.4)

gbool ECOclipboardGetPicture(gHandle& pPicture)

This function retrieves picture data from the clipboard.

1 pHandlei (output) the handle containing the clipboard data
1 returns i true if the clipboard contained pictudata.

See also ECOclipboardHasFormat, ECOclipboardSetPicture,
ECOclipboardSetText, ECOclipboardGetText.

ECOclipboardGetPictureEx() (v5.1)

gbool ECOclipboardGetPictureEx(gHandle& pPicture)

This function retrieves a picture from the clipboard; with alginaport.
1 pHandlei (output) the handle containing the clipboard data

1 returns i true if the clipboard contained picture data.

/I Paste from clipboard excerpt from icon edit component
gHandle han;

if (ECOclipboardGetPictureEx(han) && han)

{

{
gHandle Ptr hp(han,0);
glong wl = hp.dataLen();
if (w1>0)
{
mPastePixMap = GDIHPIXMAPfromSharedPicture(*hp, wl);
if (mPastePixMap)
{
HPIXMAPInfo pixInfo; GDIgetHPIXMAPinfo(mPastePixMap,
&pixinfo);
mPastePixMap = convTo24(pixInfo, mPastePixMap);
#ifdef ismacosx

gbool isAlpha = gbool((**mPastePixMap).pixelFormat ==
k32RGBAPixelFormat);

#endif
}

General Functions

ECOclipboardGetText() (v2.4)
gbool ECOclipboardGetText(gHandle& pText)

This function rérieves text data from the clipboard.

1 pTexti reference to a gHandle.

1 returns i true if the clipboard contained text data.

See also ECOclipboardHasFormat, ECOclipboardSetText,
ECOclipboardGetPicture, ECOclipboardSetPicture

ECOclipboardHasFormat() (v3.1)

gbool ECOclipboardHasFormat(EXTclipType pType)
Use this function to check if the clipboard contains data of the specified type.
1 pTypei enum, one of the following
eExtClipText i test the clipboard for text data
eExtClipPicture 1 test the clipboard for picture data
1 returns i true if the clipboard contains data of the specified type
See also EXTclipType, ECOclipboardGetPicture, ECOclipboardGetText

ECOclipboardSetPicture() (v3.1)

gbool ECOclipboardSPicture(qHandle pPicture)

This function places the given data as a picture on the clipboard.

I pTexti the picture data.

1 returns i true if the call was successful.

See also ECOclipboardGetPicture , ECOclipboardGetText, ECOclipboardSetText

ECOclipboardSetText() (v2.4)

gbool ECOclipboardSetText(qHandle pText)

This function places the given data as text on the clipboard.
1 pTexti the text data.

1 returns i true if the call was successful.

See also ECOclipboardGetText, ECOclipboardGetfare,
ECOclipboardSetPicture

127

Chapter 26 Structures, Messages & Functions

ECOconvertHFSToPosix() (v3.3)

glong ECOconvertHFSToPosix(strxxx& pSrcPath, strxxx& pDstPath)

Converts the supplied Mactintosh file/folder path from Hierarchical File System format
(colon separators) to Posix format (forwatdsh separators).

1 pSrcPathi a strxxx object containing the HFS formatted path string.

1 pDestPathi a strxxx object which receives the Posix formatted path string.

ECOconvertPosixToHFS() (v3.3)

glong ECOconvertPosixToHFS(gbyte *pSrcPath, CFStringEncquingEncoding,
strxxx& pDstPath)

Converts the supplied Mactintosh file/folder path from Posix format (forward slash
separators) to Hierarchical File System format (colon separators).

1 pSrcPathi a buffer containing the nuterminated Posix formatted padtring.
1 pSrcEncodingi A constant describing the Unicode encoding of the source string.
1 pDestPathi a strxxx object which receives the HFS formatted path string.

OpsErr err; EXTfldval srcpath; str255 sdstPath;

err = ECOconvertPosixToHFS(srcpath.getChar().cString(),
kCFStringEncodingMacRoman, sdstPath);

ECOconvKnownJavaObijs() (v4.2)

gbool ECOconvKnownJavaObjs(tgappfile* pLib, glong &pFlag)

Returns the objectés behavior with regard
objects component). Thealue if pFlag after the call indicates the behavior:

1 pFlagi (output) gfalse => traditional behaviour object references are returned,
gtrue => known objects are converted to Omnis types.

tgappfile *app = ECOgetApp(pEci - >mLocLocp);

gbool mConvKnownObijects ;

ifapp) ECOconvKnownJavaObjs(app, mConvKnownObjects);

128

General Functions

ECOdoMethod()

gret ECOdoMethod(gobijinst pObijlnst, strxxx* pMethod, EXTfldval* pParams = 0, gshort
pParamCnt = 0, gbool pExecNow=qgtrue)

The ECOdoMethod function enablesanigud component to i nvoke
For example, if an email object has a met/
to use ECOdoMethod to inform Omnis of new mail.

This function is basically a wrapper for ECOdoMethodECI.

1 pObjinst - Pointer vhich was originally generated by Omnis and passed to the external
during ECM_OBJCONSTRUCT.

pMethod i A strxxx object containing the name of the method to execute.

1 pParams- Pointer to an array of EXTfldval which contain the parameters for the
method.

pParamCnt - Number of parameters for the method.

pExecNow- True if the method should be processed by Omnis immediately, false
otherwise.

9 returns - Returns a gret data type containing the result.

/I Inform sub-classed email object of new email

EXTfldval numOfEm ai |l ; str 255 methodName(fi$newemail 0)
numOfEmail.setLong(number_of new_emails);

ECOdoMethod(mObjlnst, &methodName, &numOfEmail, 1);

See also ECOdoMethodECI

ECOdoMethodECI()

gbool ECOdoMethodECI(qobjinst pObjlnst, strxxx* pMeth&XTComplinfo* pEci,
gbool pExecNow=qtrue)

The ECOdoMethodECI function enablesa+wnh sual component to i n
met hod. For example, if an email object he
may wish to use ECOdoMethodECI to inform Qsaf new mail.

Most components use ECOdoMethod in preference to this function.

1 pOhbjinst - Pointer which was originally generated by Omnis and passed to the external
during ECM_OBJCONSTRUCT.

1 pMethod i A strxxx object containing the name of the method tecexe.

1 pEci - The EXTComplnfo structure which contains the method parameters.

129

Chapter 26 Structures, Messages & Functions

1 pExecNow- True if the method should be processed by Omnis immediately, false
otherwise.

1 returns - Returns a gret data type containing the result.

/l Email event occurred. Invoke OMNI S obj ectsd met hod
EXTComplnfo* eci = new EXTComplnfo();

eci - >mParamFirst = 0;

/I Add parameters to EXTComplnfo structure

EXTfldval myParam1,;

myParam1.setlong(someData);

/I Add parameter 1

ECOaddParam(eci,&myParam1,0,0,0,1,0);

/I Invoke method

str255 methodName(fi$newemail 0)
gbool eventOk = ECOdoMethodECI(mObjinst, &methodName,eci, gtrue
)i

/I Delete parameters from EXTComplnfo structure
ECOmemoryDeletion(eci);

/I Delete eci structure
delete eci;

See also ECOdoMethod

ECOdrawDesignName()

gbool ECOdrawDesignName(HWND pHWnd, HDC pHDC)

Allows the component to draw the name in the specified device context. Will have no effect
if the object is not in design mode.

1 pHWnNd - The HWND of the object.

1 pHDC i The devce context to draw into.
ECOdrawDesignName(mHwnd, hdc);
See also DRAW_DESIGN_NAME

ECOdrawMultiKnobs()
void ECOdrawMultiknobs(HWND pHWnd, HDC pHDC)

Allows the component to draw the medgelect knobs in the specified deviantext. Will
have no effect if only one object is selected or if the object is not selected.

1 pHWnNd - The HWND of the object.

1 pHDC i The device context to draw into.

130

General Functions

ECOdrawMultiknobs(mHwnd, hdc);
See also DRAW_MULTIDESIGN_KNOBS

ECOdrawNumber()
gbool ECOdrawNumber(HWND pHWnd, HDC pHDC)

Allows the component to draw the number in the specified device context. Will have no
effect if 6Show numberd is not active.

1 pHWnNd - The HWND of the object.

1 pHDC i The device context to draw into.
ECOdrawNumber(mHwnd, hdc);
See also DRAW_NUMBER

ECOexcludeToolTipRect()
void ECOexcludeToolTipRect(HWND pHWnd, HDC pHDC)

Allows the component to exclude thetdaoi p r ect angl e from the
drawing are.

1 pHWnNd - The HWND of the object.
1 pHDC i The device context to exclude the ttipl rectangle from.
See also ECOgetToolTipRect

ECOfindObject()

void* ECOfindObject(HINSTANCE pinstance, HWND pHWnd, WPARAM pWParam =0
)

Locates a poimtr which has previously been stored via the ECOinsertObject function.

1 plnstance- The Omnis instance. This may be NULL which results in the function
searching all Omnis instances for the HWND.

pHWnd - The HWND being searched for.

1 pWParam - Background compaments only. The WPARAM which was passed in from
Omnis, this should be passed for background components only.

1 returns - Returns the pointer previously stored via the call to ECOinsertObject.

131

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg ,
WPARAM wParam, LPARAM IParam, EXTComplInfo*
eci)

ECOsetupCallbacks(hwnd, eci);
switch (Msg)

{
case WM_PAINT:

{
cObj* object = (cObj *)ECOfindObject(eci - >mOmnisinstance,
hwnd);

if (NULL!=0bject && object - >paint()) return qtrue;
break;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also ECOinsertObject

ECOfindNVObject()
void* ECOfindNVObject(HINSTANCE plinstance, LPARAM pinstPtr)
Locates a pointer which has previously been stoi@the ECOinsertNVObject function.

1 plinstance- The Omnis instance. This may be NULL which results in the function
searching all Omnis instances for the HWND.

1 plnstPtr i The unique object instance reference (as allocated by Omnis)
9 returns - Returns the poter previously stored via the call to ECOinsertNVObject.

See also ECOinsertNVObject, Nowisual components

ECOfindParamNum()

EXTParaminfo* ECOfindParamNum(EXTComplnfo* pEci, glong pParamID)

Locates a parameter in the EXTComplsfaucture. This function should be used to locate
method and property parameters.

1 pEci - The pointer to the EXTComplnfo structure.
1 pParamiD - The id of the parameter to be located.

9 returns - Returns the pointer to the EXTParaminfo structure if succedsfill]
otherwise.

132

General Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_METHODCALL:
{
/I OMNIS code is calling your canponent method
glong methodID = ECOgetld(eci);
switch(methodID)
{
case cMyMethod1:
{
EXTParaminfo* paraml1 = ECOfindParamNum(eci, 1);
EXTParaminfo* param2 = ECOfindParamNum(eci, 2);
if (paraml && param2)
{
n .. Do method processing ¢
}
return 1L;
}
}
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
ECOfindString() (v5.0)

void ECindString(str255 &pFindString, str255 &pStringToSearch, Isttype *pResultList)

Acceses the Omnis string table editor and searches for pFindString inside pStringToSearch
at the current find location. If found, a row is added to pResultList containing the current
find location and pStringToSearch.

1 pFindString T The string to search for.
1 pStringToSearchi The string to be searched.

1 pResultListi The out list which is appended with the search result.

133

Chapter 26 Structures, Messages & Functions

134

ECOgetApp()

gapp ECOgetApp(locptype* pLocp)

Returns a reference to an Omnis application. The EXTComplnfo structure whiassisd

to external components contains two context pointers. The context pointer minstLocp points
to the context of the class instance which contains the component. The context pointer
mLocLocp points to the context of the calling method.

1 pLocp - The conte&t pointer.

9 return - The Omnis library reference.

/I fetch the library reference which contains the instance of the component
gapp app = ECOgetApp(pEci - >minstLocp);

ECOgetBundleRef() (v3.1) Mac osxonly

void *ECOgetBundleRef(glong pBundlelD)
Returns a CBundleRef dependant on the pBundlelD.
1 pBundlelD - Should be either kXsocket or kCoreGraphics.

ECOgetCrbFieldInfo() (V2.2)

gbool ECOgetCrbFieldInfo(strxxx& pFieldName, locptype* pLocp,
crbFieldinfo& pFinfo)

ECOgetCrbFieldInf@ets the specified fields full format information. See structure
crbFieldiInfo for full description of the information returned.

1 pFieldName- The Omnis variable
1 pLocp - The context pointer.
1 pFInfo - Pointer the info structure

9 return - Returns true if the Omis variable was found.

crbFieldInfo info;
str255 fieldName(fAivTheVariabl ed);

if (ECOgetCrbFieldInfo(fieldName, eci - >mlinstLocp, &info))
{
glong maxLen = info.fln;
}
See also struct crbFieldinfo in EXTfldval class reference

General Functions

ECOgetDeviceParms()

PRIdestParmStruct* ECOgetDeviceParms(locptype* pLocp)

Returns a reference to the global device parameters structure. It is not a copy, and altering
any values in the structure will effect the Omnis devices.

1 pLocp - The context pointerCurrently not used.
9 return - Points to Omnis device parameters.

/I fetch a pointer to the global device parameters
PRIdestParmStruct *deviceParms = ECOgetDeviceParms(pEci - >minstLocp

)i
ECOgetDirectoryDialog()

gbool ECOgetDiectoryDialog(HINSTANCE pinstance, HWND pOwner,
glong pTitle, str255& pDirName, strxxx* plnitDir = 0)

gbool ECOgetDirectoryDialog(HINSTANCE plnstance, HWND pOwner,
strxxx& pTitle, str255& pDirName, strxxx* pInitDir =0)

The ECOgetDirectoryDialog funatin enables the component to invoke a dialog to request a
directory.

1 plnstance- The instance which contains the string resources required. This would
normally be ginstLib.

1 pOwner - The HWND of the owner.
pTitle - The resource id for the title OR a str23%ext containing the title.

pDirName - The str255 object which contains the directory name upon return, if
successful.

1 pInitDir - The pointer to the str255 object which specifies the initial directory. May be
NULL.

1 returns - Returns true if a directory hégen selected, false otherwise.

Note: On MacOS make sure the component project contains the OMNISLIB.RSRC file.
str255 newDirectory;

if (ECOgetDirectoryDialog(gInstLib,hwnd,5000,5001,newDirectory))

{

é processing é

}

135

Chapter 26 Structures, Messages & Functions

136

ECOgetFont()

void ECOgetFont(HWND pHwnd , gfnt* pFnt, gshort pFntindex, gshort pFntSize)

The ECOgetFont function enables the component to obtain font details for the given index
and font size.

1 pHwnd - The HWND of the object.

1 pFnt - Pointer to the gfnt structure whighpopulated, if successful, by Omnis.
1 pFntindex - The index of the font required.

1 pFntSize- The size of the font required.

/I Create font from index & size (extract from CALENDAR example)
gfnt fnt = fntSmallFnt;

ECOgetFont(mHWnd, &fnt, mHeadingFont, mHe adingFontSize);
HFONT font = GDIcreateFont(&fnt, mHeadingBold ? styBold : styPlain
)i

€ processing
GDldeleteObject(font);

ECOgetFont()

void ECOgetFont(gapp pApp, gbool pReportFont, gfnt* pFnt, gshort pFntindex, gshort
pFntSize)

The ECOgetFont function enables the component to obtain font details for the given index
and font size from the specified Omnis library. It also allows you to specify if you require a
report font or windows font.

1 pApp - Reference to the Omnis library. SE€EOgetApp().
1 pReportFont - Specify gtrue if you require a font from the libraries report font table.
9 pFnt - Pointer to the gfnt structure which is populated, if successful, by Omnis.

1 pFntindex - The index of the font required.

1

pFntSize- The size of the fot required.

General Functions

/I sample function retrieves a report font from the library containing the

/l instance of the external component.
HFONT myCreateFont(EXTComplnfo* pEci)

{
gfnt fnt; gapp app = ECOgetApp(pEci - >minstLocp);
ECOgetFont(app, gtrue, &fnt, 1, 1 2);
return GDlcreateFont(&fnt, styPlain);

}

ECOgetFontindex()

gshort ECOgetFontindex(HWND pHwnd, EXTfldval& pFVal)

The ECOgetFontindex function returns a font index from the specified font name.

1 pHwnd i The HWND of the compomé control.

1 pFVali Specifies the EXTfldval which contains the font name in character format.

 Returnsi Returns a font index from 1 to 31 if succeeded, 0 otherwise.

str80 s(ATi mes Romano) ;
EXTfldval fval; fval.setChar(s);
gshort fntindex = ECOgetFontind ex(hwnd, fval);

ECOgetld()

glong ECOgetld(EXTComplnfo* pEci)
The ECOgetld function should be used to retrieve the id of the method or property.
1 pEci - The pointer to the EXTComplnfo structure.

9 returns - Returns the id of the method aoperty if successful, zero otherwise.

137

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);

switch (Msg)

{
case ECM_METHODCALL:

{

/I OMNIS code is calling your component method
glong methodID = ECOgetld(eci);
switch(methodID)
{

/'l é& Method 1

case cMyMethod1:

/'l é& Method 2
case cMyMethod2:

}

return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param ,eci);

}
ECOgetLocallpAddress() (v4.3)

qulongECOgetLocallpAddress(void)

Returns the client machi neds ethernet

ECOgetNVObject() (v3.3)

void *ECOgetNVObject(objectinst *plnst)

Searches for an external componentanse in the chain of super instances of this object,
returning the first instance found. If no external component instance is found, pinst is
returned.

1 plnsti The initial object instance.

138

General Functions

EXTfldval fval; fftttype ftypel;
/ | écode excerpt from JavaObjs com ponent
fval.getType(ftypel);
if (ftypel == fftObjref)
{
gobjinst objinst = fval.getObjRef();

if (objlnst) objinst = (qobjinst)ECOgetNVODbject(objinst); //
check for superinst..

if (objinst)
{
tqfJObjectContainer* object =
(tgfJObjectContainer*)ECOF INDNVOBJECT(0, (LPARAM)objInst);
if (object && object - >mObject)
{
EXTfldval fvall,fval2;
I jline = ljlist - >insertRow();
ljlist - >getColValRef(i,1,fvall,qtrue);
fvall.setLong(object - >mObject - >mJIObjID);
ljlist - >getColValRef(i,2,fval2,qtr ue);
fval2.setChar(lelemsig);
}
}
}
ECOgetParamCount()

gshort ECOgetParamCount(EXTComplinfo* pEci)

The ECOgetParamCount function enables the component to inquire on how many
parameters, which have ids sequentially fromré imthe EXTComplnfo structure. This is
especially useful during the ECM_METHODCALL message to ensure that the correct
number of parameters have been supplied.

1 pEci- The pointer to the EXTComplnfo structure.

1 returns - Returns the number of parameters.

139

Chapter 26 Structures, Messages & Functions

extern "C" glong OMNISWNDPROC GenericwWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case ECM_METHODCALL:
{
/I OMNIS code is calling your component method
glong methodID = ECOgetld(eci);
switch(methodID)
{
case cMyMethod1:
{
if (ECOgetParamCount(eci) !=2)
{
/l Error - Method needs two parameters
return Ol;
}
}
}
return 1L;
}
}
return WNDdefWindow Proc(hwnd,Msg,wParam,|IParam,eci);
}

ECOgetParaminfo() (v3.1)

gbool ECOgetParaminfo(EXTparaminfo* pParam, EXTparamTypelnfo&
plnfo);

Returns additional type information about the parameter specified by pParam.

I pParami Pointer to tle parameter structure.

1 pInfo i Reference to the structure which will receive the additional info.

See also EXTparaminfo, EXTparamTypelnfo

140

General Functions

ECOgetProperty()
gbool ECOgetProperty(HWND pHwnd, gshort pAnum, EXTfldval& pFval)

The ECOgetPoperty function enables the component to obtain information concerning
Omnis standard object properties.

1 pHwnd - The HWND of the object.

1 pAnum - The anum of the property which is requested (See ANUMS.HE for the list of
possible anums).

pFval - The EXTfldval object which contains the property, if successful.

9 returns - Returns true if successful, false otherwise.

/I Get $dataname property
EXTfldval fldname;
if (ECOgetProperty(mHwnd, anumFieldname, fldname))

{

/I Get the name from the fldval
str255st T
fldname.getChar (str);

}
ECOgetStyle()

gbool ECOgetStyle(tqappfile* pApp, qchar* pStyleName, gshort pLen, GDItextSpecStruct*
pTextSpec)

The ECOgetStyle function enables the component to obtain the field style information.
1 pApp i The tgappfile pointer for the instance of the component.

1 pStyleNamei A pointer to the field style name.

1 pLeni The length of the field style name.

1 pTextSpeci A pointer to a GDItextSpecStruct which will be populated upon return.
1 returns - Returns true isuccessful, false otherwise.

/I Get the fieldstyle name

EXTfldval fval; ECOgetProperty(hwnd,anumFIdStyle,fval);
str255 s; fval.getChar(s);

GDltextSpecStruct textSpec;

ECOgetStyle(app, &s[1], s[0], &textSpec);

141

Chapter 26 Structures, Messages & Functions

ECOgetToolTipRect()
gbool ECOgetToolTipRect(HWND pHwnd, grect* pRect)

The ECOgetToolTipRect function enables the component to obtain the position of the tool
tip (if visible).

1 pHwnd - The HWND of the object.

1 pRecti The pointer to a grect object which will contain theltty rectangle upon
return (only is a toetip is currently visible).

9 returns - Returns true if successful, false otherwise.

ECOhasFocus()

gbool ECOhasFocus(HWND pHWnd)

The ECOhasFocus function enables the component to inquire doctls state of the
object.

1 pHWnNd - The HWND of the object.

9 returns - Returns true if the object currently has the focus, false otherwise.

gbool result = ECOhasFocus(mHwnd);
if (result)
{

/I object currently has the focus

}
ECOhideTooltip()

void ECOhideTooltip(HWND pHwnd)

The ECOhideTooltip function can be used by the components to hide the on screen tool tip.
The Omnis tool tip is drawn directly to the screen. It saves the bitmap where is it about to be
displayed for laterastoring when the tool tip is not needed.

As a result, if a tool tip is displayed and partly covers the control, the control paints due to a
timer message for example, the bitmap saved by the tool tip that it uses for restoring could
now be invalid.

To avoid this problem, controls can call this API, passing their components HWND to hide
the tip.

1 pHwnd - The HWND of the object.

142

General Functions

ECOinsertObject()

void ECOinsertObject(EXTComplnfo* pEci, HWND pHWnd, void* pObjPointer,
WPARAM pWParam)

Stores a pointer for the specified HWND in a list of Omnis instances.

1 plnstance- Specifies the Omnis instance to which this pointer should belong to.
1 pHWnNd - Specifies the HWND which is linked to the pointer.

1 pObjPointer - Specifies the pointer to be stal.
1

pWParam - Background components onlyThe WPARAM which was passed in from
Omnis, this should be passed for background components only.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplInf o* eci)

{
ECOsetupCallbacks(hwnd, eci);

switch (Msg)
{
case ECM_OBJCONSTRUCT:

{
cObj* myNewObject = new cODbj();
if (myNewObiject)
{
ECOinsertObject(eci, hwnd, (void*) myNewObiject);
}
else
{
/1 é& +Hrurtorof memory ¢é
}
return 1L;
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}
See also ECM_OBJCONSTRUCT

143

Chapter 26 Structures, Messages & Functions

144

ECOinsertNVObject()

void ECOinsertNVObject(HINSTANCE plinstance, LPARAM plnstPtr, void*
pObjPointer)

Stores a pointer fahe specified HWND in a list of Omnis instances.
1 plnstance- Specifies the Omnis instance to which this pointer should belong to.

1 pInstPtr i Specifies the object instance pointer (as supplied by Omnis) to associate the
pObjPointer with.

1 pObjPointer - Spedfies the pointer to be stored.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd, eci);

switch (Msg)

{
case ECM_OBJCONSTRUCT:

{
cObj* obj = new cObj();
ECOinsertNVObject(eci - >mOmnisinstance,lParam,(void*)obj);
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also ECOfindNVObiject, Norvisual components

ECOinvalBackObj() (v3.1)

void ECOinvalBackODbij()

If the obgct is a background component, ECOinvalBackODbj() invalidates the drawing area,
causing it to be redrawn.

ECOQOisDesign()
gbool ECQisDesign(HWND pHWnd)

The ECOisDesign function enables the component to inquire on the design state of the
object.

1 pHWnNd - The HWND of the object.

1 returns - Returns true if the object is in design, false otherwise.

General Functions

gbool result = ECOisDesign(mHwnd);
if (result)
{

// object is in design mode.

}
ECOisMultiSelected()

gbool ECOisMuliSelected(HWND pHWnNd)

Allows the component to inquire on whether the object is currently one of many objects
selected.

1 pHWnNd - The HWND of the object.

9 returns - Returns true if the object is currently migelected, false otherwise.

gbool result = ECOi sMultiSelected(mHwnd);
if (result)
{
I/ object is selected as part of a group
}
See also IS_MULTISELECTED

ECOisOMNISiIinTrueRuntime()

gbool ECOisOMNISinTrueRuntime(HWND pHwnd)

Returns qtrue if Omnis is in a true runératate. In this state it is safe for components to
send events. In some other states it is not safe. For example, your component maybe a
runtime component, but Omnis may bebirild mode debugging another method. Omnis
always tries to switch to the cortenode when executing a method/event. If you send an
event during a debug session, Omnis brings your component to the front immediately,
executes your event and returns to the debug session. For some controls such as a clock
sending events every secondstis not what should happen.

1 pHwnd - The HWND of the object.

9 returns - gtrue if Omnis is in true runtime.
if (ECOiISOMNISinTrueRuntime(mHWnd))
{

/I can send events

145

Chapter 26 Structures, Messages & Functions

146

ECOisSelected|()

gbool ECOisSelected(HWND pHWnd)

Allows thecomponent to inquire on whether the object is currently selected.
1 pHWnNd - The HWND of the object.

1 returns - Returns true if the object is currently selected, false otherwise.

gbool result = ECOisSelected(mHwnd);
if (result)

{
/I object is selected
}
See also IS_SELECTED

ECOisSerialised()

gbool ECOQisSerialised(HWND pHOmnisCompHwnd, gchar* pProductCode, qchar*
pFunctionCode = NULL, gchar* pSerial = NULL, gqchar* pNotes = NULL)

gbool ECOQisSerialised(gchar* pProductCode, qch&dnetionCode = NULL, gchar*
pSerial = NULL, gchar* pNotes = NULL)

Asks Omnis if the component has been serialised and returns information about the serial
number.

1 pHOmMNisCompHwnd i Components hwnd

1 pProductCodei Product code supplied by component. Mustitspha/numeric
characters.

1 pFunctionCode’i Functionality code returned by Omnis. These consist of 4
alpha/numeric characters describing the enabled functionality.

9 pSeriali Complete serial number. Returned by Omnis.
1 pNotesi Notes as entered with the sénumber by the user. Returned by Omnis.
See also IS_SERIALISED

General Functions

ECOisSetup()
gbool ECOisSetup(HWND pHWnd)

Allows the component to inquire on the-sgt state of the object. The sgi state of an
object is false before propertieave been initialized, true afterwards.

1 pHWnd - The HWND of the object.

9 returns - Returns true if the object is sap, false otherwise.

gbool result = ECOisSetup(mHwnd);
if (result)
{
/I object is setup and ready for action.

}
See also ECM_OBJINITIALIZE, IS_SETUP

ECOisShowNumber()

gbool ECOisShowNumber(HWND pHWnd)
Allows the component to inquire on whether the designme opti on O0Show n
1 pHWnNd - The HWND of the object.

M retuns-Ret urns true i M faéedthewisenumber & i s o
gbool result = ECOisShowNumber(mHwnd);
if (result)
{
/I Show number is on
}
See also IS_SHOWNUMBER

ECOisWndTop()

gbool ECOisWndTop(HWND pHWnd)

Allows the component to inquire on whether the object is a meoflibe topmost
window.

1 pHWnNd - The HWND of the object.

9 returns - Returns true if the object is a member of theagst window, false
otherwise.

147

Chapter 26 Structures, Messages & Functions

148

gbool result = ECOisWndTop(mHwnd);

if (result)
{
// object is on top
}
See also IS_WINDOW_TOP

ECOlistFonts()

void ECOlistFonts(EXTqlist *pList, gbool pReportFonts)

Allows the component to obtain a list of window or report fonts installed on the machine.
9 pList - The list to populate.

1 pReportFontsi True if a list of report fonts is redgred.

ECOlistSetLineHeight()

void ECOlistSetLineHeight(HWND pHOmnisCompHwnd, glong pLineHeight)

The ECOlistSetLineHeight function should be used by the component to specify the line
height (in pixels) of objects which haveepiously been defined as cObjType_List.

1 pHOmMnisCompHwnd - The HWND of the object.
1 pLineHeight - The list line height.

/I Forces all lists lines in a derived picture component to be 50 pixels

/I high.
ECOlistSetLineHeight(mHwnd,50);
See also WM_CONTROL - LIST_SETLINEHEIGHT, cObjType_List

ECOloadFileDialog()

gbool ECOloadFileDialog(HINSTANCE plnstance, HWND pOwner,
glong pResTitle, glong pResFilter, str255& pFileName,
str255* pInitDir =0)
gbool ECOloadFileDialog(HINSTANCE pstance, HWND pOwner,
strxxx& pTitle, strxxx& pFilter, str255& pFileName,
str255* pInitDir =0)
The ECOloadFileDialog function enables the component to invoke the operating system
load file dialog.

1 plnstance- The instance which contains the string reses required. This would
normally be glnstLib.

General Functions

1 pOwner - The HWND of the owner.
pResTitle or pTitle - The resource id or string for the title of the load file dialog.

1 pResFilter or pFilter - The resource id or string for the filter string of the load file
dialog. Any platform dependent filters are removed if not required. e.g.

5001 "PCX Files (*.pcx)]|*.pcx]| All Mac T

Note: Under MacOS you can specify both or either the finder creator & type code, for
example, | Omni s LAGHrAdrli eOsmnd GOFH A , e @B@DOS $
the MacOS specific file filter is ignored.

1 pFileName- The str255 object which contains the file name upon return, if successful.

pInitDir - The pointer to the str255 object which specifies the initial folslery be
NULL.

9 returns - Returns true if a file has been selected, false otherwise.
Note: On MacOS make sure the component project contains the OMNISLIB.RSRC file.

/I Load file (extract from PCX example)
str255 newkFile;
if (ECOloadFileDialog(glnstLib,hwnd, 5000,5001,newFile))

{
object - >mFile = newkFile;
object - >readPCX();
WNDinvalidateRect(hwnd, NULL);
ECOupdateProplinsp(hwnd);

}
ECOmapString() (v5.0)

glong ECOnapString(gchar *pBuffer, glong pBufferLen, glong pLen)

Accesses the Omnis string table eddad searches for a string with ID matching the
contents of pBuffer. If found, pBuffer is assigned the contents of the string table element
and the character length is returned.

1 pBuffer i On input the ID of the string to match, on outpthe contents athe string
table element.

1 pBufferLen i the length in bytes of the buffer (prevents overrun).

1 pLeni the length in characters of the input ID string.

149

Chapter 26 Structures, Messages & Functions

ECOmemoryDeletion()

void ECOmemoryDeletion(EXTComplnfo* pEci)

Deletes memoryneviously allocated in the external component (returned parameters for
example). WNDdefWindowProc processes the ECM_MEMORYDELETION message. See
ECOpushCompEventfor an example of the use of ECOmemoryDeletion.

1 pEci - Pointer to EXTComplnfo structure whiclbmtains the parameters to delete.
See also ECM_MEMORYDELETION

ECOmessageBox() (v3.3)

gbool ECOmessageB(mulong pFlags,gbool pBell,str255& pMsg)
Provides external components with access to Omnis message box dialogs.

1 pFlags- Determines the type of messagox which can be: MSGBOX_OK,
MSGBOX_YESNO, MSGBOX_NOYES, MSGBOXICON_OK,
MSGBOXICON_YESNO, MSGBOXICON_NOYES, MSGBOXCANCEL_YESNO
or MSGBOXCANCEL_NOYES

pBell i If gtrue, indicates that the system bell should sound

1 pMsgi The text for the message

RESloadsS tring(gInstLib, needInitialConversion ? 9000 : 9001, msg);
msg.insertStr(strPathName);
if (ECOmessageBox(MSGBOXICON_NOYES, gfalse, msg))

{

/ladd conditional processing here

}

150

General Functions

ECOpaintGrayFrame() (v5.0)

void ECOpaintGrayFrame(HDC pHdc, grect &pRect)

Drawsagray frame arounthe control in design mode, gbat thecontrol is visible orthe
design window

//[Excerpt from the Accordion component paint() method
if (hwnd() == hwnd)

{

grect clientRect;
WNDgetClientRect(hwnd(), &clientRect);
grect entryRect(cl ientRect);

gdim clientWidth = clientRect.width();

WNDpaintStruct paintStruct;
WNDbeginPaint(mHWnd, &paintStruct);

HDC hdc = paintStruct.hdc;
grect rcPaint = paintStruct.rcPaint;

void *offscreenPaintinfo = GDloffscreenPaintBegin(NULL, hdc,
clientR ect, rcPaint);

if (offscreenPaintinfo)

{
WNDdefWindowProc(hwnd(), WM_ERASEBKGND, (WPARAM) hdc, 0, eci);

gbool isDesign = ECOisDesign(mHWnd);
if (isDesign)
{
/I Draw design stuff
ECOdrawDesignName(mHWnd, hdc);
ECOdrawNumber(mHWnd, hd c);
ECOdrawMultiKnobs(mHWnd, hdc);
#ifndef iSRCC
/I If there is no border, draw a gray frame so the object bounds are visible in
design mode
WNDborderStruct bs;
WNDgetBorderSpec(hwnd(), &bs);
if (WND_BORD_NONE == bs.mBorderStyle)
ECOpaintGrayFrame(hdc, clientRect);
#endif
}

else

151

Chapter 26 Structures, Messages & Functions

152

{
...

}

GDloffscreenPaintEnd(offscreenPaintinfo);

}
WNDendPaint(mHWnd, &paintStruct);

}

ECOreadLocalisationltem()

gbool ECOreadLocalisationltem(EXTConmbb *pEci, gshort pLocltemXn, str255
&pLocltemData)

Returns the localised text from the localisation database.
1 pEci - Pointer to EXTComplnfo structure.

1 pLocltemXn - identifies the localized item. This can be one of the cLOCxn constants.
See source file LOSLISE.HE for a listing.

1 pLocltemData - the localised text is returned in this parameter.

 returns - true if the item exists and text has been returned.

ECOreloadLibData() (v4.1)

gbool ECOreloadLibData(str80& pLibName)

Instructs the core to rebuild objedith, reloading icons, properties, events and constants for
the specified component. The componentés

1 pLibName i object name, usually read from resource string 1000

ECOremoveObject()

void* ECOremoveOJect(EXTComplnfo* pEci, HWND pHWnd, WPARAM pWParam)
Removes a pointer reference which had previously been stored via ECOinsertObject.

1 plnstance- Specifies the Omnis instance which the pointer was originally inserted into.
1 pHWnNd - Specifies the HWND whicls linked to the pointer.

1 pWParam - Background components onlyThe WPARAM which was passed in from
Omnis, this should be passed for background components only.

9 returns - Returns the pointer originally passed into the ECOinsertObject function.

General Functions

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd, eci);

switch (Msg)

{
case ECM_OBJDESTRUCT:

{
CObj* myObject = (CObj *)ECOremoveObject(eci, hwnd);
if (NULL!= myObject)
delete myObject;
return 1L;

}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

}
See also ECOinsertObject, ECM_OBJDESTRUCT

ECOremoveNVODbject()

void* ECOremoveNVODbject(HINSTANCE plinstance,LPAR! pinstPtr)
Removes a pointer reference which had previously been stored via ECOinsertNVObject.
1 plnstance- Specifies the Omnis instance which the pointer was originally inserted into.

1 piInstPtr 7 Specifies the object instance pointer (as supplied by ©miniPARAM)
which was originally used during ECOinsertNVObiject.

9 returns - Returns the pointer originally passed into the ECOinsertNVObject function.

153

Chapter 26 Structures, Messages & Functions

154

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

{

}

WPARAM wParam, LPARAM [Param, EXTComplnfo* eci)

ECOsetupCallbacks(hwnd, eci);
switch (Msg)

{
case ECM_OBJDESTRUCT:

{
CObj* myObject = (CObj *)ECOremoveNVObject(eci -
>mOmnisinstance,

IParam
)i
if (NULL!= myObject)
delete myObject;
return 1L;
}
}

return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);

See also ECOinsertNVObject, Nowisual components

ECOresetObjDetails()

gbool ECOresetObjDetails(qobjinst pObjinst, EXTfldval& pProps, EXTfldval& pMethods)

The ECOresé&bjDetails function provides a means for rosual components to
dynamically alter the properties and methods which an object provides.

1

f

pObjinst - Pointer which was originally generated by Omnis and passed to the external
during ECM_OBJCONSTRUCT.

pProps - A list containing the new properties for the object. This list should be in the
format as returned by ECOreturnProperties. See the section on Control Handlers for
more information on the exact structure of this list.

pMethods - A list containing the newnethods for the object. This list should be in the
same format as returned by ECOreturnMethods. See the section on Control Handlers for
more information on the exact structure of this list.

Returns - Returns true if successful, false otherwise.

See also Non-Visual components

General Functions

ECOreturnComplD()

glong ECOreturnCompID(HINSTANCE plinstance, EXTComplinfo* pEci,
gshort pCompResNamelD, gshort pCompType)

The ECOreturnComplID function provides support for the ECM_GETCOMPID message.

1 plnstance- The instance which contains the resources(component name) for the
component object. This would normally be ginstLib.

1 pEci - The pointer to EXTComplnfo structure.
pCompResNamelD- The resource id for the component name.

1 pCompType - The component obge base type. Of type cObjType_xxx and/or
cRepObjType_xxx.

9 returns - Returns the pCompType value which should returned to Omnis.
See also ECM_GETCOMPID

ECOreturnComplinfo()

glong ECOreturnComplinfo(HINSTANCE plinstance, EXTComptri&ci,
gshort pLibNameResID, gshort pCompCount)

The ECOreturnComplnfo function provides support for the ECM_GETCOMPLIBINFO
message.

1 plinstance- The instance which contains the resources(library name) for the component
library. This would normally bglnstLib.

9 pEci - The pointer to EXTComplnfo structure.

1 pLibNameResID - The resource id for the component library name.

1 pCompCount-The number of objects within the
9 returns - Returns true if successful, false otherwise.

See also ECM_GETCOMPLIBINFO

ECOreturnConstants()

gbool ECOreturnConstants(HINSTANCE plinstance, EXTComplnfo* pEci,
glong pResStart, glong pResEnd)

Provides support for the ECM_GETCONSTNAME message.

1 plnstance- The instance which contaitise resources for the constants. This would
normally be ginstLib.

155

Chapter 26 Structures, Messages & Functions

1 pEci - The pointer to EXTComplnfo structure.

1 pResStart- Resource identifier for the first constant.
1 pResEnd- Resource identifier of the last constant.
1 returns - Returns true if successfdblse otherwise.

It should be noted that this function is successful even if not all the resource slots between
pResStart and pResEnd are populated. This would enable the component to easily modify
groups of constants.

See also ECM_GETCONSTNAME

ECOreturnCStoreGrpName()

gbool ECOreturnCStoreGrpName(HINSTANCE pinstance, EXTComplinfo* pEci,
glong pResID)

The ECOreturnCStoreGrpName function provides support for the
ECM_GETCOMPSTOREGROUP message.

1 plinstance- The instance hich contains the resources(custom component store group
name). This would normally be ginstLib.

9 pEci - The pointer to EXTComplnfo structure.

1 pResID- The resource id for the custom component store group name.
1 returns - Returns true if successful, falsdetwise.

See also ECM_GETCOMPSTOREGROUP

ECOreturnEventMethod()

gbool ECOreturnEventMethod(HINSTANCE plinstance, EXTComplnfo* pEci,
glong pResStart)

The ECOreturnEventMethod function provides support for the
ECM_GETEVENTMETHOD message.

1 plnstance- The instance which contains the resources(method lines). This would
normally be ginstLib.

pEci - The pointer to EXTComplnfo structure.

1 pResStart- The resource id for the start of the event method instructions. You should
note tha this function continues to add method lines until an empty string is located in
the resources.

9 returns - Returns true if successful, false otherwise.

156

General Functions

See also ECM_GETEVENTMETHOD

ECOreturnEventMethod()

gbool ECOreturnEventMebd(HINSTANCE pinstance, EXTComplinfo* pEci,
ECOmethodEvent* pTable, gshort pTableElements, gbool pincDesc = gtrue)

The ECOreturnEventMethod function provides support for the
ECM_GETEVENTMETHOD message. This function generates an event method from the
evert table rather than from sequence of event lines in resources [see
ECOreturnEventMethod(plnstance, pEci, pResStart) above]

1 plinstance- The instance which contains the resources(method lines). This would
normally be ginstLib.

1 pEci - The pointer to EXTCompifo structure.

1 pTable - The pointer to the ECOmethodEvent structure.

1 pTableElements- Number of events in the ECOmethodEvent structure.

1 pincDesc- True if description should be included as a comment in the event method.
1 returns - Returns true if successfdialse otherwise.

See also ECM_GETEVENTMETHOD

ECOreturnEvents()

gbool ECOreturnEvents(HINSTANCE plinstance, EXTComplnfo* pEci,
ECOmethodEvent* pTable, gshort pTableElements)

The ECOreturnEvents function provides supportiierECM_GETEVENTNAME
message.

1 plInstance- The instance which contains the resources for the events. This would
normally be ginstLib.

1 pEci - The pointer to EXTComplnfo structure.

1 pTable - The pointer to the ECOmethodEvent structure.

1 pTableElements- Numberof events in the ECOmethodEvent structure.
1 returns - Returns true if successful, false otherwise.

See also ECM_GETEVENTNAME, Component Events

157

Chapter 20 Structures, Messages & Functions

ECOreturnicon()
gbool ECOreturnlcon(HINSTANCE plinstance, EXTComplnfo* pEci, gshort pBitD3gpl
The ECOreturnicon function provides support for the ECM_GETCOMPICON message.

1 plnstance- The instance which contains the resources(object icon) for the component
object. This would normally be ginstLib.

1 pEci - The pointer to EXTComplnfo structure.

i pBitmapID-The resource id for the component s
1 returns - Returns true if successful, false otherwise.

See also ECM_GETCOMPICON

ECOreturnMethodEvents

ECOreturnMethodEvents simply calls ECOreturnMethods.

ECOreturnMethods()

gbool ECOreturnMethods(HINSTANCE pinstance, EXTComplnfo* pEci,
ECOmethodEvent* pTable, gshort pTableElements)

The ECOreturnMethods function provides support for the ECM_GETMETHODNAME
message.

1 plnstance- The instance hich contains the resources for the methods. This would
normally be ginstLib.

1 pEci - The pointer to EXTComplnfo structure.

1 pTable - The pointer to the ECOmethodEvent structure.

1 pTableElements- Number of functions or events in the ECOmethodEvent structure.
1 returns - Returns true if successful, false otherwise.

See also ECM_GETMETHODNAME, Component Events

158

General Functions

ECOreturnObjects()

gbool ECOreturnObjects(HINSTANCE pinstance, EXTComplinfo* pEci,
ECOobject* pTable, gshort pTableElements

The ECOreturnObjects function provides support for the ECM_GETOBJECT message.

1 plnstance- The instance which contains the resources for the objects. This would
normally be glnstLib.

1 pEci - The pointer to EXTComplnfo structure.

1 pTable - The pointer to th&COobject structure.

1 pTableElements- Number of objects in the ECOobject structure.
1 returns - Returns true if successful, false otherwise.

See also ECM_GETOBJECT, No#Visual components

ECOreturnProperties()

gbool ECOreturnPragrties(HINSTANCE pinstance, EXTComplnfo* pEci,
ECOproperty* pPropTable, gshort pTableElements)

The ECOreturnProperties function provides support for the ECM_GETPROPNAME
message.

1 pinstance- The instance which contains the resources for the prepefithis would
normally be ginstLib.

9 pEci - The pointer to EXTComplnfo structure.

1 pPropTable - The pointer to the ECOproperty structure.

1 pTableElements- Number of properties in the ECOproperty structure.
1 returns - Returns true if successful, false othessvi

See also ECM_GETPROPNAME, and theomponent Eventection.

ECOreturnVersion()

glong ECOreturnVersion(gshort pMajorNumber, gshort pMinorNumber)
The ECOreturnVersion function provides support for the ECM_GETVERSION message.

1 pMajorNumber -The maj or part of the component s
1 pMinorNumber -The mi nor part of the component s
See also ECM_GETVERSION, GDlreadVersion

159

Chapter 26 Structures, Messages & Functions

ECOreturnVersion() (Web Client 1.2)
glong ECOreturnVersiof(HINSTANCE plnst)

Web client components must use this mechanism to return the components version number
from its resources. The component must have the following string resource

31020 AVER 1 5 %%ORFC_VER%%0

Please note the spaces. These are imporTdi@.1 specifies the major version, and the 5
specifies the minor version. Naveb client components can also use this new mechanism to
return the version number.

1 pinstance- The instance which contains the string resources required. This would
normally beglnstLib.

See also ECM_GETVERSION, GDIreadVersion

ECOsaveFileDialog()

gbool ECOsaveFileDialog(HINSTANCE pinstance, HWND pOwner,
glong pResTitle, glong pResFilter, str255& pFileName,
str255* plInitDir = 0)

gbool ECOsaveFileDlag(HINSTANCE plnstance, HWND pOwner,
strxxx& pTitle, strxxx pFilter, str255& pFileName,
str255* pInitDir = 0)

The ECOsaveFileDialog function enables the component to invoke the operating system
save file dialog.

1 plinstance- The instance which contaitise string resources required. This would
normally be ginstLib.

1 pOwner - The HWND of the owner.
pResTitle or pTitle - The resource id or string for the title of the save file dialog.

1 pReskFilter or pFilter - The resource id or string for the filter strinfitbe save file
dialog. Any platform dependent filters are removed if not required.

¢ Note: ONLY used on WINDOWS.
1 pFileName- The str255 object which contains the file name upon return, if successful.

plnitDir - The minter to the str255 object which specifies the initial folder. May be
NULL.

1 returns - Returns true if a file has been selected, false otherwise.

160

General Functions

Il Save file
str255 saveFile;
if (ECOsaveFileDialog(gInstLib,hwnd,myResTitle, myReskFilter,

saveFile))
{

saveDataToFile(saveFile);
}
ECOsendCompEvent()

gbool ECOsendCompEvent(HWND pHwnd, EXTComplnfo* pEci, glong pEventID,
gbool pExecNow)

The ECOsendCompEvent function enables the component to send Omnis object events.
This function is useful for components which need to add the parameters manually to the
EXTComplnfo structure. Most components use ECOsendEvent in preference to this
function.

1 pHwnd - The HWND of the object.

1 pEci- The EXTComplnfo structure which contains the mvearameters.
1 pEventID - The id of the event.
1

pExecNow- True if the event should be processed by Omnis immediately, false
otherwise.

1 returns - Returns true if the event has been processed by Omnis, false if it has been
discarded. If pExecNow is false ghiunction always returns true.

/I Event myEventl occurred. Send event to OMNIS
EXTComplnfo* eci = new EXTComplnfo();

eci - >mParamFirst = 0;

/I Add parameters to EXTComplnfo structure
EXTfldval myParam1;

myParam1.setlong(someData);

/I Add parameter 1
EQOaddParam(eci,&myParam1,0,0,0,1,0);

/I Send event to OMNIS

gbool eventOk = ECOsendCompEvent(hwnd, eci, myEventld, gtrue);
/I Delete parameters from EXTComplnfo structure
ECOmemoryDeletion(eci);

/I Delete eci structure

delete eci;

See also ECOsendEven

161

Chapter 26 Structures, Messages & Functions

162

ECOsendEvent()

gbool ECOsendEvent(HWND pHwnd, glong pEventID, EXTfldval* pParams = 0,

gshort pParamCnt = 0, gbool pExecNow =
EEN_EXEC_IMMEDIATE)

The ECOsendEvent function enables the component to send Omnis object events. This
function is basically a wrapper for ECOsendCompEvent.

f

f
f
f
f

pHwnd - The HWND of the object.

pEventID - The id of the event.

pParams- Pointer to an array of EXTfldval which contain the parameters for the event.
pParamCnt - Number of parameters for the event.

pExecNow - can be one of the following

EEN_EXEC_LATER - the event should be processed by OMNIS
later. The event is added to the end of the Omnis event queue

EEN_EXEC_IMMEDIATE - the event should be processed by
Omnis immediately

EEN_EXEC_PUSH (v3.1)- the evenshould be pushed on the
Omnis event queue in front off all existing events on the queue.

returns - Returns true if the event has been processed by Omnis, false if it has been
discarded. If pExecNow is false this function always returns true. When calling
ECOsendEvent from Web Client components, ECOsendEvent will always return gtrue.
The correct result is send to the component once the server returns control to the client.
See ECM_EVENTRESULT.

/I Send second event code to OMNIS (extract from CLOCK example)
EXTfldval newSeconds;

newSeconds.setLong(datetime - >tm_sec);

ECOsendEvent(mHWnd, cClockEvSecs, &newSeconds, 1);

See also ECOsendCompEvent

General Functions

ECOsetCustomTabName()

gbool ECOsetCustomTabName(HINSTANCE plinstance, EXTComplnfo* pEci,
glong pResID)

The ECOsetCustomTabName function provides support for the
ECM_CUSTOMTABNAME message.

1 plnstance- The instance which contains the resources(custom tab name). This would
normally be glnstLib.

1 pEci - The pointer to EXTComplnfo structure.

1 pResID- The resource id for the custom tab name.
1 returns - Returns true if successful, false otherwise.
See also ECM_CUSTOMTABNAME

ECOsetDTformat()

void ECOsetDTformat(str80& pFormat, gshort pFormatType)

The ECOsetDTformat functivenables the component to set the Omnis internal variables
#FD, #FT, #FDT. This function is most useful in the Omnis Web -THient so that
controls can localize their date/time routines.

1 pFormat i The new string format for the required format type. deaote that this
variable will contain the old string on return.

1 pFormatType 1 The required data type. This can be dpFdate1900, dpFdate1980,
dpFdate2000 for #FD (date formatting); or dpFtime for #FT (time formatting); others
types will be for #FDT (dateral time formatting).

An example of use may be :

/I Set the date formatting (#FD for European or American formatting)
str80 s;
if (EuropeanDateSystem)

s=str80(AD m Yo) ;
else

s=str80(fim D Yo) ;
ECOsetDTformat(s, dpFdate2000);
/I Get the date string(which will be formatted appropriately)
str255 displayString; myDate.getChar(displayString);
/I Set #FD back to the old value
ECOsetDTformat(s, dpFdate2000);

163

Chapter 26 Structures, Messages & Functions

164

ECOsetError()

void ECOsetError(glong pErrNum, str255* pErrText)

The ECGetError function enables the component to set the Omnis variables #ERRCODE
and #ERRTEXT.

1 pErrNum - The error number stored in #ERRCODE.
1 pErText - The pointer to the str255 object stored in #ERRTEXT.

/I Set OMNIS #ERRCODE & #ERRTEXT variables

/| #ERRCODE
glong errCode = 1;

/I #ERRTEXT
str255 errText (fAiSomething bad has happenedod) ;
ECOsetError(errCode, &errText);

ECOsetParameterChanged()

void ECOsetParameterChanged(EXTComplnfo* pEci, gshort pParamNum)

The ECOstParameterChanged function should be called by the component when a method
parameter has been modified. Failure to call this function results in any modifications made
to a method parameter being lost on return to Omnis. The method parameter must
previousy been defined with the EXTD_FLAG_PARAMALTER flag.

1 pEci - The pointer to the EXTComplnfo structure containing the function parameters.
1 pParamNum - The number of the parameter which has been modified.
See also ECM_METHODCALL, EXTD_FLAG_PARAMALTER

ECOsetProperty()

gbool ECOsetProperty(HWND pHwnd, gshort pAnum, EXTfldval &pFval)

The ECOsetProperty enables the component to set the Omnis standard object properties.
1 pHwnd - The HWND of the object.

1 pAnum - The anum of the property which go to be set (See ANUMS.HE for the list
of possible anums).

pFval - The EXTfldval object which contains the property, if successful.

9 returns - Returns true if successful, false otherwise.

General Functions

/I Set the name from the fldval
str255 str (A#S10) ;
fldname.setChar (str);

/I Set $dataname property
EXTfldval fldname;
if (ECOsetProperty(mHwnd, anumFieldname, fldname))

{
/I Successfully set the attribute

}
ECOsetupCallbacks|()

void ECOsetupCallbacks(HWND pHwnd, EXTComplnfo* pEci)

The ECOsetupCallbacks function initializes the global array of pointers which contain the
callback function pointers. Thisustbe called upon entry to all window procedures that
Omnis invokes.

1 pHwnd - The HWND that received the message.

1 pEci - The pointer td&EXTComplinfo structure which contains the callback pointers.

extern "C" glong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM IParam, EXTComplnfo* eci)

{

ECOsetupCallbacks(hwnd, eci);

switch (Msg)

{

}

return WNDdefWindo wProc(hwnd,Msg,wParam,|Param,eci);
}

ECOupdateProplinsp()

void ECOupdateProplnsp(HWND pHOmnisCompHwnd, glong pPropld = 0)

The ECOupdateProplnsp function can be called by the component to update the Property
Manager. This functiomay be called during either design or runtime.

1 pHOmMnisCompHwnd - The HWND of the object.

1 pPropld - The property id which is updated. If the property id is not supplied all
properties are updated.

165

Chapter 26 Structures, Messages & Functions

/I Update all properties
ECOupdatePropinsp(mHwnd);

/I Update myPropld
ECOupdateProplinsp(mHwnd, myPropld);

See also WM_CONTROL- UPDATE_PROPINSPECTOR

WNDdefWindowProc()

gbool WNDdefWindowProc(HWND pHwnd, LPARAM pMsg, WPARAM wParam,
LPARAM IParam, EXTComplnfo* pEci)

The WNDdéwindowProc function calls the default window processing. All messages nhot
handled must be passed to this function.

1 pHwnd - The HWND that received the message.
pMsg - The window message.
wParam - wParam of the message.

1

1

9 IParam - IParam of the message.

1 pEci - EXTComplnfo pointer that was passed into the window procedure.
1

returns - The result of Omnis processing the message.

Memory Functions

166

When creating crosglatform external components, you may need to manipulate memory
manually. As some objects may needise greater than 64K of memory, for example
imaging components, a set of memory functions are available to cope with the 16bit
problems encountered under 16 bit Windows.

The MEM functions are crogslatform allowing your code to remain independent ef th
operating system in which you develop.

MEMcalloc()

gchar* MEMcalloc(qulong pSize)

Allocates a block of memory, and locks it in memory. The allocation can be greater than
64K. The memory allocated is initialized to 0.

1 pSize- The amout of memory to allocate.

9 returns - The locked memory address.

Memory Functions

MEMdataLen()

gulong MEMdatalLen(void* pBuffer)
Returns the size of a buffer.

1 pBuffer - The buffer to return a size for. This buffer must have previous been allocated
with MEMmalloc or MEMcalloc.

1 returns - The length of the buffer.

MEMdecAddr()

gchar* MEMdecAddr(qchar* pAddress, glong pOffset)
Decrements a memory address by an offset.

1 pAddress- The address to decrement.

1 pOffset- The amount to decremeny.b

1 returns - A new address.

Note: This function is very important under Windows 16bit due to 64K segments. When
handling large memory blocks, this function must be used to adjust pointers.

You can use MEMdecAddr() and MEMincAddr() with the result of MEMugith.ock.

MEMfree()

void MEMfree(void* pBuffer)
Reclaims the memory previous allocated from a MEMmalloc or MEMcalloc call.

1 pBuffer - The buffer to destroy. This buffer must have previous been allocated with
MEMmalloc or MEMcalloc.

MEMglobalAlloc()

HGLOBAL MEMglobalAlloc (glong pLength, gbool pZerolnited = gfalse)
Allocates a block of memory.

1 pLength - The amount of memory to allocate.

1 pZerolnited - gtrue if the memory should be cleared to 0.

9 returns - A new HGLOBAL handle.

167

Chapter 26 Structures, Messages & Functions

168

MEMglobalFree()
void MEMglobalFree (HGLOBAL pMemory)

Reclaims the memory previously allocated by a MEMglobalAlloc. The data must be in an
unlocked state.

1 pMemory - The memory to be destroyed.

MEMglobalHandle()

HGLOBAL MEMglobalHandle (void* pAddress)

Returns a memory handle given an address.

1 pAddress- An address to return the memory handle for.

9 returns - A memory handle.

MEMglobalLock()

void* MEMglobalLock (HGLOBAL pMemory)

Locks a memory handle, increments the lock count and returns the address of the handles
first byte.

1 pMemory - The memory handle to lock

9 returns - The address of the first byte of memory associated with the memory handle.

MEMglobalReAlloc()

HGLOBAL MEMglobalReAlloc (HGLOBAL pMemory, glong pNewLength)
Reallocates a block of memory.

1 pMemory - The old memory handle.

1 pNewLength- The new size of the memory block.

M returns - A new HGLOBAL handle.

MEMglobalSize()

glong MEMglobalSize (HGLOBAL pMemory)
Returns the size of a memory handle.

1 pMemory - The memory handle.

9 returns - The length of the handles data.

Memory Functions

MEMglobalUnlock()
void MEMglobalUnlock (HGLOBAL pMemory)
Unlocks a memory handend decrement the lock count.

1 pMemory - The memory handle to unlock.

MEMincAddr()

gchar* MEMincAddr(gchar* pAddress, glong pOffset)
Increments a memory address by an offset.

1 pAddress- The address to be incremented.

1 pOffset - The amounto increment by.

1 returns - A new address.

Note: This function is very important under Windows 16bit due to 64K segments. When
handling large memory blocks, this function must be used to adjust pointers.

MEMmalloc()

gchar* MEMmalloc(qubng pSize)

Allocates a block of memory, and locks it in memory. The allocation can be greater than
64K.

1 pSize- The amount of memory to allocate.

9 returns - The locked memory address.

MEMmemcmp()

gint2 MEMmemcmp(void* pAddress1, void* mlress2, glong pTestLen)
Compares two blocks of memory

1 pAddressl - Points to the starting address of the first block of memory.

1 pAddress2 - Points to the starting address of the second block of memory.
1 pLen - The size of the memory blocks, in bytesctonpare.

1 returns -0,-1or 1.

Returns 0 if both memory blocks match.

Returns-1 if memory block 1 is less than memory block 2.

Returns 1 if memory block 1 is greater than memory block 2.

169

Chapter 26 Structures, Messages & Functions

170

MEMmemFill()

void MEMmemPFill(void* pFillAddressqint4 pFillLen, gchar pFillChar)
Fills memory with a specified character

1 pFillAddress - The address in memory to fill.

1 pFillLen - The number of bytes to fill.

1 pLen - The character to be used to fill memory.

Example:

gchar stringOne[] = A?2?27?27?20;
MEMmeniFl | (&stringOne[0], 4, 06*0) ;
/I Would result in stringOne = ****

MEMmovel()

void MEMmovel(void* pSrc, void* pDst, glong pLen)

Move memory from source to destination copying data from left to right (start to end)
1 pSrc- The source address.

1 pDst- The destination address.

1 pLen - The number of bytes to copy.

Example:

gchar stringOne[] = fA* OMNI S*0o;
MEMmovel(&stringOne[1],&stringOne[0],6);

/' Would result in stringOne = OMNIS**

MEMmover()

void MEMmover(void* pSrc, void* pDstglong pLen)

Move memory from source to destination copying data from right to left (end to start)
1 pSrc- The source address.

9 pDst- The destination address.

1 pLen - The number of bytes to copy.

Example:

gchar stringOne[] = fA* OMNI S*o;
MEMmoveR(&stringO ne[0],&stringOne[1],6);

/I Would result in stringOne = *OMNIS

Memory Functions

MEMrealloc()

gchar* MEMrealloc(void* pBuffer, qulong pNewLen)
Alters the size of the buffer to a different size.

1 pBuffer - The buffer to be rallocated. This buffer mustkie previously been allocated
with MEMmalloc or MEMcalloc.

pNewLen - The new size for the buffer.

1 returns - A pointer to the reallocated buffer. The original pointer and new pointer may
be different.

MEMscanf()

glong MEMscanf(gshort pDiréion, glong pLen, gchar pScanChar, const void *
pScanAddress)

Scans a memory location for a character

1 pDirection - If positive, the scan is performed from the beginning to the end of memory
block, otherwise the scan is performed from the end to the beginn

1 pLen - The number of characters to scan. If this is positive the search is forward, if this
is negative the search is from the end of the buffer (the length is added to the buffer
before scan starts).

pScanChar- The character to scan for.
1 pScanAddress- The address to scan.

returns - The index position from the start of the scan or pLen if failed to locate
character.

Example:

/l Find character N in string

gchar stringOne[] = AOMNI So;

gl ong posOf N = MEMscanf (qtrue, 5, 6NO6, &stri ngOne

/I Would result in posOfN = 2

gl ong posOfA = MEMscanf (qtrue, 5, 6A8, &stringOne
/I Result in posOfA =5 as MEMscanf failed to find A in memory

171

Chapter 26 Structures, Messages & Functions

172

The following set of memory functions all support greater than 64K allocation blocks. The
memory is automatically lockemhd pointers to the memory are returned. For more control
when the memory is locked, use the memory handling functions.

HANglobalAlloc()

gHandle HANglobalAlloc (glong pLength, gbool pZerolnited = gfalse);
Allocates a block of memygy from Omnis the internal memory cache.

1 pLength - The amount of memory to allocate.

1 pZerolnited - gtrue if the memory should be cleared to 0.

1 returns - A new gHandle.

HANglobalReAlloc()

gHandle HANglobalReAlloc(qHandle pHandlepglh pNewLen);
Reallocates a block of Omnis memory,.

I pMemory - The old memory handle.

1 pNewLength- The new size of the memory block.

9 returns - A new gHandle.

HANglobalSize()

glong HANglobalSize (gHandle pGlobal, glong pNewLen);
Retrns the size of a memory handle.

Note: This could be bigger than the data length.

1 pMemory - The memory handle.

9 returns - The length of the handles data.

HANglobalFree()
void HANglobalFree (gHandle pHandle);
Reclaims the memory primusly allocated by a HANglobalAlloc.

1 pMemory - The memory to be handed back into the Omnis memory cache.

gHandlePtr Class

gHandlePtr Class

The gHandlePtr class gives your external components convenient ways to manipulate
Omnis cache memory easily.

gHandlePtr::qHandlePtr
gHandlePtr:: gHandlePtr()

Creates an empty gHandlePtr class.

gHandlePtr::qHandlePtr()

gHandlePtr(gHandle pHandle, glong pOffset)

Constructs a gqHandlePtr class.

1 pHandle- The memoryad be handed back into the Omnis memory cache.

1 pOffset- The offset into the memory.

gHandlePtr::qHandlePtr()
gHandlePtr (const gHandlePtr& pHptr)
Constructs a gHandlePtr class from an existing gHandlePtr.

1 pHptr- an Existing gHandlePtr class.

gHandlePtr::operator =()
void operator =(gniltype gnill)

Assigns the handle of the gHandlePtr to zero.

gHandlePtr::operator =()
void gHandlePtr:: operator =(nst gHandlePtr& pHptr)
Duplicates an existing qHandlePtr.

1 pHptr - an Existing qHandlePtr class.

173

Chapter 26 Structures, Messages & Functions

174

gHandlePtr::operator +=()

void operator +=(glong pInc)
Increments the offset in to memory block.

1 plnc- The amount to incrementetoffset.

gHandlePtr::operator -=()

void operator=(glong pDec)
Decrements the offset in to memory block.

1 pDec The amount to decrement the offset.

qHandlePtr::operator +()

gHandlePtr operator(glong pDel)
Makes a copy of itself and increments the copy specified by pDel.

1 pInc- The amount to increment the offset in the copy.

gHandlePtr::operator -()

gHandlePtr operator +(glong pDel)
Makes a copy of itself and deenents the copy specified by pDel.

1 pDec The amount to decrement the offset in the copy.

gHandlePtr::operator ()

gbool operator ()

Tests whether the handle is rRpero.

gHandlePtr::operator *()
gchar* operator *()
Return a gchar pointer which is calculated-as :

1 returns - Memory block base + Offset.

gHandlePtr Class

gHandlePtr::operator *()
gchar* operator *(glong pDel)
Return a gchar pointer which is calculated-as :

1 returns - Memory block base + Offset + pDel.

gHandlePtr::operator []()
gchar& operator [](glong pDel)
Return a gchar reference which is calculated as

1 returns - Memory block base + Offset + pDel.

gHandlePtr::dataLen()
qulong datalLen()
Return the actual length of the data contained in the handle.

N.B. This might not be the same as the result of HANglobalSize, this is because the data
contained in this memory block might not occupy all of it.

9 returns - Data Length of the Handle.

gHandlePtr::dataLen()

void datalLen(qulong pSize)
Sets the actual length of the data contain in the handle.

1 pSize- Sets the Data Length of the handle.

gHandlePtr::getOffset()

qulong getOffset()
Returns the current offset into the memory block

1 returns - offset into the memory block.

gHandlePtr::getHandle()

void getHandle(qHandle& pHandle)
Returns the handle of the ghandleptr
1 pHan - a qHandle menmy block.

175

Chapter 26 Structures, Messages & Functions

gHandlePtr::set()

void set(qHandle pHandle, glong pOffset)
Sets the ghandleptr from the provided parameters
1 pHandle - a gHandle memory block.

1 pOffset - Offset into the memory block.

gHandlePtr::setOffset()

void setOffset(qlong pOffset)
Set the Offset of the ghandleptr.
1 pOffset- Offset into the memory block.

gHandlePtr::setNull()

void setNull()

Set the handle to zero.

Resource Functions

176

The following set of RES or Rearce functions allow crogdatform access to your
external components resources.

REScloseLibrary()

void REScloseLibrary (HINSTANCE pinstance)
Closes an instance of a DLL previously opened with RESopenLibrary.
1 plnstance- An instance of a library already opened with RESopenLibrary.

See also RESopenLibrary

REScloseResourceFork() (MacOS only)

void REScloseResourceFork(gshort pResFileNum)
Closes a Macintosh resource file.
1 pResFileNum- The number retmed from theRESopenResourceForkAPI.

See also RESopenResourceFork

Resource Functions

RESgetOmnisDAT()

HINSTANCE RESgetOmnisDAT(EXTComplnfo* pEci)

Returns an instance to the Omnis resources library (OMNISDAT.DLL on Windows).
1 pEci - The pointer tahe EXTComplnfo structure.

1 returns - An instance to the Omnis resources.

Note: The instance returnedmust not be closed (i.e. via REScloseLibrary).

RESloadBitmap()

HBITMAP RESloadBitmap(HINSTANCE pLibrary, glong pBmpID)
Retrieves &HdBITMAP object from the resources.

9 pLibrary - The library to extract a bitmap from.

1 pBmpID - The resource id of the bitmap.

9 returns - A bitmap object.

Note: The bitmap object must be deleted with GDIdeleteBitmap.

RESIoadDialog()

gHandle RESloadDialog(HINSTANCE pinstance, glong pResID)

Retrieves a dialog resource for use with custom output devices. RESloadDialog should be
called in response to a PM_OUT_GETPARMDLG message (see print manager reference).

1 plnstance - The library to ekract a bitmap from.
1 pResID - The resource id of the dialog.
9 returns - An Omnis handle.

Note: The bitmap object must be deleted with GDIdeleteBitmap.

RESIoadString()

glong RESIloadString(HINSTANCE plnstance, glong pResID, qchar*feBujlong
pBufferLen)

Retrieves a string from an open library resources.
1 plnstance- The library to extract a string from.
1 pResID - The resource id of the string.

1 pBuffer - The address to receive the string

177

Chapter 26 Structures, Messages & Functions

178

1 pBufferLen - The maximum number of bytes alled to copy intgBuffer

9 returns - The actual number of bytes copied ipBuffer

RESIoadString()

glong RESIoadString(HINSTANCE plnstance, glong pResID, strxxx& pString)
Retrieves a string from an open library resources.

1 plinstance- The library to extract a string from.

1 pResID - The resource id of the string.

9 pString - The string variable to receive the string.

9 returns - The actual number of bytes copied ipttring

RESopenLibrary()
HINSTANCE RESopenLibrary $trxxx& pLibraryPath)

Opens another library file. This can be used if, for example, you keep resources in another
file.

The component must call REScloseLibrary when it is finished with the library file.
1 plnstance- The name of the library file to open
9 returns - An instance to the opened library if successful, zero otherwise.

See also REScloseLibrary

RESopenResourceFork() (MacOS only)

gshort RESopenResourceFork(HINSTANCE pinstance)

This function should be used on the Macihtdsa Macintosh Resource Manager API needs
to be called, for example, GetResource. The HINSTANCE can be that normal global
component instance glnstLib, or another HINSTANCE that was returned from
RESopenLibrary.

Bit Functions

Example:

str255 path = str255(FidAkD Anot her
HINSTANCE anotherinst = RESopenLibrary(path);
if (anotherinst)

{
gshort resRefNum = RESopenResourceFork(anotherinst);
Handl e macHandl e = Get Resource(6TYPEG, i d
REScloseResourceFork(resRefNum);
REScloseLibrary(anotherinst);
}
else
{
/I Open library failed
}

1 plnstance- The instance of the library.
9 returns - Returns the number of the resource fork.

See also RESopenLibrary, REScloseResourceFork

Bit Functions

You can use the following functions for bit operations. The bit index riongsl of the
functions is 631.

bitClear()

void bitClear(qint4& pValue, gshort pBit)
Clears a bit in a value.
1 pValue - The value to clear a bit in

1 pBit - The bit index to clear

bitSet()

void bitSet(qint4& pValue, qshbpBit)
Sets a bit in a value.
1 pValue - The value to set a bit in

1 pBit - The bit index to set

179

Chapter 26 Structures, Messages & Functions

180

bitSet()

void bitset(qint4& pValue, gshort pBit, gbool pState)
Alters the state of a bit in a value.

1 pValue - The value to set a bit in

1 pBit - The bit index to set

1 pState- The new state for the bit index

bitTest()

gbool bitTest(gint4 pValue, gshort pBit)

Tests a bit in a value.

1 pValue - The value to use for bit testing.

I pBit - The bit index to test

1 returns - gtrue if the bit$ set and gfalse if the bit is clear

Example:

glong newValue = 28, oldValue = 28;
if (bitTest(newValue,4))
{
bitClear(newValue,4);
if (newValue==12)
{
bitSet(newValue, 1);
}
}
if (newValue==14)
{
bitSet(newValue,1, gfalse);
bitSet(new Value,4, gtrue);
}
if (newValue==oldValue)
{
/ all is OK.
}

Objlnst Functions

Objlnst Functions

You can use the following functions in order to construct new instances of Omnis objects.

EXTobjinst()
gobjinst EXTobjinst(EXTComplnfo* pEci)

EXTobjinstconstructs a new gobjinst (for use with EXTfldval::setObjlnst) from the
supplied EXTComplnfo structure. The new gobjinst is an empty external object which is
associated with the external library which created it but it has no subtype.

1 pEcii Pointer to arEXTComplnfo structure which Omnis uses to associate the object
with the appropriate external library. EXTComplnfo member mCompld will be used as
an identifier for that object.

1 returns i Returns a new qobjinst pointer if successful, zero otherwise.
ECOres#ObjDetails can then be used to add properties and/or methods to this dynamic
object.

/I Example of returning a dynamic object to OMNIS

/I First setup mCompld so when we are required to do processing later,

/I during WndProc, we know what the object is!

pEci - >mCompld = myObjectRef;

gobjinst myNewObj = EXTobjinst(pEci);

if (myNewObj)

{ /I Succeeded, now pass the new object to OMNIS (transferring ownership)
EXTfldval RtnVal;
RtnVal.setObjlnst(myNewObj, gtrue);
ECOaddParam(pEci, &RtnVal);

}

else

{ /I Failed (usually because of lack of memory)

}

See also ECOresetObjDetails,EXTfldval::setObjlnst

181

Chapter 28 Structures, Messages & Functions

182

EXTobjinst()

gobjinst EXTobjinst(gobjinst pObjinst)

This EXTobijinst function duplicates the supplied qobjinst to return a new qbpfirger.
1 pObjinst i gobijinst pointer to duplicate.

1 Returnsi returns a new qobijinst if successful, zero otherwise.

/I Example of new operator for the supplied objinst

gobjinst myNewObj = EXTobjinst(sourceObjinst);

if (myNewObj)

{ /I Succeeded, now a@ss the new object to OMNIS (transferring ownership)
EXTfldval RtnVal;
RtnVal.setObjlnst(myNewObj, gtrue);
ECOaddParam(pEci, &RtnVal);

}

else

{ /I Failed (usually because of lack of memory)
}

See also EXTfldval::setObjlnst

Objlnst Functions

EXTobjinst()

gobjinst EXTobjinst(gapp pApp,str255* pClassName)

This EXTobijinst function creates a new instance of an object from the specified class name.
1 pApp i gapp pointer which is a unique pointer to the library in Omnis.

1 pClassNamei' str255 pointer while contains the class to create.

1 Returnsi returns a new qobjinst if successful, zero otherwise.

/'l Example of constructing a new 6o0oMy_OMNI S_Ob
/I Get gapp from locpinst held in EXTComplnfo structure
gapp myLibraryApp = ECOgetApp(pEci - >minstLocp);
/I Set up the classname from which to construct the new object
str255 myClassName(fioMy_ OMNI S_Object o) ;
/I Create the new object
gobjinst myNewObj = EXTobjinst(myLibraryApp, &myClassName);
if (myNewObj)
{ /I Succeeded, now pass the new object to OMNISdhsferring ownership)
EXTfldval RtnVal;
RtnVal.setObjlnst(myNewObj, gtrue);
ECOaddParam(pEci, &RtnVal);
}

else
{ /I Failed. Maybe due to lack of memory or that
/'l oMy _OMNI S_Object doesndt exist in the spe
}
See also EXTfldval::set(jinst, ECOgetApp

183

Chapter 38 strxxx Class Reference

Chapter 30 strxxx Class
Reference

The strxxx class gives your external components convenient ways to manipulate strings.
Once your string is encapsulated inside the string class, it can be passed back and forth to
OMNIS or have various strg operations performed on it.

The string class is split into three real classes, each derived from a base class strxxx. You
should not need to access the strxxx base class directly. Three classes are derived from
strxxx: strl5, str80, and str255. Eacim ¢eld the maximum number of characters as
specified by the class name.

Characters in the string class are indexed using a range 1 to n. Index O is used to store the
real length of the string.

Member Functions strxxx Class

184

strxxx::strxxx()

The strxxx class has various constructors called from the three derived classes.

strxxx::assign()

void strxxx::assign(const strxxx& pAssignFrom)
Assigns one strxxx class to another.

1 pAssignFrom- The string to be copied into thidbject.

strxxx::compare()

void strxxx::compare(const strxxx& pCompare)
Compares two strings, this string and the string passed.
1 pCompare - This string to compare against.

return - This function returns:
0 if the strings match.
1 if this string is greater than pCompare.
-1 if this string is less than pCompare.

Member Functions strxxx Class

strxxx::concat()
void strxxx::concat(const strxxx& pNewString)
Concatenates two strings together.

1 pNewsString - String to be concatenated tmnthis string.

strxxx::concat()
void strxxx::concat(gchar pChar)
Concatenates a single character on to this string.

1 pChar - The character to be concatenated on to this string.

strxxx::concat()

void strxxx::@ncat(const strxxx& pString1l, const strxxx& pString2)
Concatenates a group of strings together on to this string.

1 pStringl- String 1 to be concatenated.

9 pString2- String 2 to be concatenated.

Other concatenation functions are:

void strxxx::concat(congtrxxx& pStringl, const strxxx& pString2,
const strxxx& pString2)

void strxxx::concat(const strxxx& pStringl, const strxxx& pString2,
const strxxx& pString3, const strxxx& pString4)
strxxx::copy()

void strxxx::copy(const stkx& pExtractFrom, gshort pStart, qshort pLen)

Copies a ranges of characters from the passed string, and uses them to set the contents of
this.

1 pExtractFrom - The string to extract characters from.
i pStart - The starting index ipExtractFrom.

1 pExtractFrom - The number of characters to copy frpExtractFrom.

185

Chapter 38 strxxx Class Reference

186

strxxx::cString()

gchar* strxxx::cString()

Returns the address of @tyle string. This function converts this string into-style string
first. A c-style string uses a nukrminator, character 0x0 to represent the end of the strings
data.

9 return - The address to astyle string.

strxxx::deleet()

void strxxx::deleet(gshort pPos, gshort pLen)

Deletes a range of characters from a starting poineirstiing.
1 pPos- The starting index to delete from.

1 pLen - The number of characters to be deleted.

strxxx::insert()

void strxxx::insert(const strxxx& plnsertString ,qshort pPos)
Inserts a string at an index position.

1 plnsertString - The string to be inserted.

1 pPos- The index at which to insert the string.

strxxx::insert()

void strxxx::insert(qchar plnsertChar ,qshort pPos)
Inserts a single character at an index position.
1 plnsertChar - The character to baserted.

1 pPos- The index at which to insert the character.

strxxx::insertStr()

void strxxx::insertStr(const strxxx& plnsertString)

Searches the stringegtrimgpnsertdtring®éplaadi ngsehe s

1 plnsertString - The string to be inserted.

Member Functions strxxx Class

strxxx::insertStr0O()

void strxxx::insertStrO(const strxxx& plnsertString)
Similar to strxxx::insertStr (), except the

plnsertString - The strng to be inserted.

strxxx::length()
gshort strxxx::length()

Returns the length of the string stored in the object.

1 returns - The length of the string.

strxxx::maxLength()
gshort strxxx::maxLength()
Returns he maximum length that can be stored in the string.

9 returns - The maximum length of the string.

strxxx::operator ()
gbool strxxx::operator ! ()
Test is this string is not empty.

1 return - Returns gtrue if the string contains sodata.

strxxx::operator !'= ()
gbool strxxx::operator !=(const strxxx& pCompare)
Compares two strings.

1 return - gtrue if the strings do not match and gtrue if the strings are the same.

strxxx::operator []()

gcharé& strxxx::operator [] (gshort pindex)

Returns the character from the string at the passed index.
1 plIndex - The index to return a character from.

9 return - The character from indgpindex].

187

Chapter 38 strxxx Class Reference

188

strxxx::operator <()
gbool strxxx::operator < (const strxxx& pCompare)
Compares two strings.

9 return - gtrue if this string is less thgaCompare.

strxxx::operator <=()
gbool strxxx::operator <=(const strxxx& pCompare)
Compares two strings.

1 return - gtrue if this string is less than or equaptdompare.

strxxx::operator =()
void strxxx::operator = (const strxxx& pNewString)
Assigns a string.

1 pNewsString - AssignedpNewString to this string.

strxxx::operator =(gniltype gnil)
void strxxx::operator =(gniltype gnill)

Sets the length of the string to 0.

strxxx::operator ==()
gbool strxxx::operator ==(const strxxx& pCompare)
Compares two strings.

1 return - gtrue if the strings match and gfalse if the strings are different.

strxxx::operator >()
gbool strxxx::operator >(const strxxx& pCompare)
Compares two strings.

1 return - gtrue if this string is greater th@Compare.

Member Functions strxxx Class

strxxx::operator >=()
gbool strxxx::operator >=(const strxxx& pCompare)
Compares two strings.

1 return - gtrue if this string is greater than or equap@ompare.

strxxx::pos()

gshort strxxx::pos(const strxxx& pFind)
Looks for the string pFind inside this.

1 pFind - The string to search for.

9 returns - The index if the string is found. O is returned if the string is not found.

strxxx::pos()

gshort strxxx::pos(qchar pFindChar)

Looks for the first occuance of pFindChar inside this.
1 pFindChar - The character to search for.

9 returns - The index if the string is found. O is returned if the string is not found.

strxxx::pString()

gchar* strxxx::pString()

Returns the address of a Passtgle string. This function converts this string into a Pascal
string first. A Pascastyle string uses the first byte of the string, index 0 as a length byte.
The following characters, index 1 to n, are string data.

i return - The address to a Pascal girin

strxxx::repWith0()

void strxxx::repWith0()

Replaces all 6$6 characters with a 0x0

strxxx::upps()

void strxxx::upps()

Converts this to uppercase.

189

Chapter 38 strxxx Class Reference

strxxx::uprCmp()

void strxx::uprCmp(const strxxx& pCompare)
Performs a casmsensitive comparison.
1 pCompare - This string to compare against.

9 return - This function returns:
0 if the strings match.
1 if this string is greater than pCompare.
-1 if this string is less thmpCompare.

Member Functions str15 Class

190

str15::str15()
stri15::str15()

Constructor for an empty strl5 string class.

strl15::str15()

strl15::str15(const str15& pCopyFrom)
Constructor for a new strl5 olofeduplicating the contents of another strl5 object.

pCopyFrom - The string to copy the initial value from.

str15::str15()

str15::str15(const strxxx& pCopyFrom)
Constructor for a new strl5 object duplicating the conteindsiother strxxx object.

1 pCopyFrom - The string to copy the initial value from to a maximum of 15 characters.

stri5::str15()

str15::str15(const void* pData)
Constructor for a new strl5 object setting an initial value.

9 pData - This must be a nulierminated, €style string. The new string has stores a
maximum of 15 characters.

Member Functions str80 Class

strl15::str15()

str15::str15(gshort pLen, const void* pData)
Constructor for a new strl5 object setting atidhivalue.
1 pLen - The number of characters to copy from pData.

1 pData - The source of the initial data for the new string.

stri5::str15()
str15::str15(qchar pChar)
Constructor for a new strl5 object setting an initial value.

1 pChar - The initial value for the new string.

Member Functions str80 Class
str80::str80()

str80::str80()

Constructor for an empty str80 string class.

str80::str80()

str80::str80(const str80& pCopyFrom)
Constructor for a new str80 object duplicating the contents of another str80 object.

pCopyFrom - The string to copy the initial value from.

str80::str80()

str80::str80(const strxxx& pCopyFrom)
Constructor for a new str8tbject duplicating the contents of another strxxx object.

1 pCopyFrom - The string to copy the initial value from to a maximum of 80 characters.

191

Chapter 38 strxxx Class Reference

str80::str80()

str80::str80(const void* pData)
Constructor for a new str80 objesetting an initial value.

9 pData- This must be a nulierminated, estyle string. The new string has a maximum of
80 characters.

str80::str80()

str80::str80(gshort pLen, const void* pData)
Constructor for a new €0 object setting an initial value.
1 pLen - The number of character to copy from pData.

1 pData- The source of the initial data for the new string.

str80::str80()

str80::str80(qchar pChar)
Constructor for a new str80 object segtemn initial value.

pChar - The initial value for the new string.

Member Functions str255 Class

192

str255::str255()

str255::str255()

Constructor for an empty str255 string class.

Str255::str255()

str55::str255(const str255& pCopyFrom)
Constructor for a new str255 object duplicating the contents of another str255 object.

pCopyFrom - The string to copy the initial value from.

Other Functions

str255::str255()

str255::str255(constrsxx& pCopyFrom)
Constructor for a new str255 object duplicating the contents of another strxxx object.

1 pCopyFrom - The string to copy the initial value from to a maximum of 255 characters.

str255::str255()

str255::str25(const void* pData)
Constructor for a new str255 object setting an initial value.

i pData- This must be a nulierminated, €style string. The new string has a maximum of
255 characters.

str255::str255()

str255::st255(gshort pLen, const void* pData)
Constructor for a new str255 object setting an initial value.
1 pLen - The number of character to copy from pData.

9 pData- The source of the initial data for the new string.

str255::str255()

str255::str255(qchar pChar)
Constructor for a new str255 object setting an initial value.

1 pChar - The initial value for the new string.

Other Functions
glongToString()

void glongToString(glong pVal, strxxx& pString)
Converts a numar value into a string value.
1 pVal - The number to convert.

9 pString - The string to receive the converted result.

193

Chapter 38 strxxx Class Reference

194

grealToString()

void grealToString(greal pVal, gshort pDecimalPlace, strxxx& pString,

gshort pSigDecimalPlace)

Conwerts a numeric value into a string value.

f

f
f
f

pVal - The number to convert.
pDecimalPlace- The number of decimal places to convert to.
pString - The string to contain the converted result.

pSigDecimalPlace This is the number of significant digits the striagonverted to if
the decimal places passed is larger than or equal to 24.

stringToQlong()

gbool stringToQlong(const strxxx& pString, glong& pVal)

Converts a string into a numeric value.

f
f
f

pString - The string to convert.
pVal - Thenumeric result.

returns - gtrue if the string could be converted, and gfalse if the string could not be
converted.

stringToQreal()

gbool stringToQreal(const strxxx& pString, greal& pVal, gshort& pDecimalPlace)

Converts a string inta numeric value.

f

f
f
f

pString - The string to convert.
pVal - The numeric result.
pDecimalPlace - Returns the number of decimal the converted value has.

returns - gtrue if the string could be converted, and gfalse if the string could not be
converted.

Other Functions

lowC()

gchar lowC(qchar pChar)
Converts a single character to lowercase.
1 pChar - The character to be converted.

9 returns - The new lowercase character.

uppC()
gchar uppC(qchar pChar)

Converts a single character to uppercase.

9 pString - The character to be converted.

1 returns - The new uppercase character.

uppC()

void uppC(gchar* pAddress, glong pLen)

Converts a range of characters to uppercase.

1 pAddress- The address of a buffer of characters to be uppercased.

1 pLen - Thenumber of characters to uppercase.

uprCmp()

gshort uprCmp(gchar* pAddress, qchar* pAddress2, glong pLen)

Performs a case insensitive comparison on two buffers for a specified length.

1 pAddressl- The address to a buffer of characters.

pAddr ess2- The address to a buffer of characters.

return - This function returns:

1
1 pLen - The number of characters to uppercase in both strings.
1

0 if the strings match.

1 if this string is greater than pCompare.
-1 if this string is less than pCompare

195

Chapter 46 Unicode Character Conversion

Chapter 40 Unicode
Character Conversion

Introduction

This section provides the reference information you need to convert your Omnis External
Components to Unicode so they will run in Omnis Studio 5.0, which is a Unadgle
release. The information heiealso useful for developers using Studio 4.x versions who
wish to create External Components for the Unicode version of Studio 4.x.

When building Unicode components for Omnis Studio, the followingppoeessor
definitions should be added to the projsettingsisunicode UNICODE and_UNICODE.
These enable wide character versions of certain system functions and Omnis API calls.

To maintain backwards compatibility with the Rbmicode version of Omnis Studio, you
should create separate targets for ticbideDebug and Unicod&elease versions of your
components.

In this way, you can maintain a single set of source files for both Unicode afdnimde
targets by making use of conditiormmpilation statements where necessary, i.e.
#ifdef isunicode

/I Unicode specific code here
#else

/I Non - Unicode specific code here
#endif

In the Unicode version of Omnis Studio, all character data exchanged with external
components should use the UBE encoding (4 bytes per character).

There are a number of utiliclasses and helper functions provided by the component
library and these can be found in chrbasic.he, omstring.h & omstring.c.

196

Unicode Data Types

Unicode Data Types

The following data types are used by the component library for handling character data.

gchar

Whenisunicock is defined, the qchar data type is defined as unsigned long (4 bytes) and is
used to contain UTB2 data. For notnicode targets, qchar defaults to unsigned char.
goschar

Whenisunicodeis defined, the qoschar data type is set to match the opergstegnsAPI
encoding. For Windows and Mac OS X, this is UT&: For Linux this is UTFB. Thus for
Windows and Mac OS X, goschar is defined as unsigned short and for Linux, qoschar is
defined as char. Whédsunicodes not defined, qoschar is defined as char.

gbyte

The gbyte data type is always defined as unsigned char and is used for binary data and to
distinguish ASCII character data from Unicode data.

Utility Classes
CHRconvToOs

This class converts a string of gchar data to the operating system APl encoding

CHRconvToOs::CHRconvToOs()
CHRconvToOs::CHRconvToOs(strxxx &pString)

Creates a CHRconvToOs object from the supplied strxxx object.

CHRconvToOs::CHRconvToOs()
CHRconvT0oOs::CHRconvToOs(gchar *pAdd, glong pLen)

Creates a CHRconvToOs object from the suppiligltar character buffer.
1 pAdd point to the buffer containing UT32 data

1 pLenis the length of the source data in characters

197

Chapter 46 Unicode Character Conversion

198

CHRconvToOs::CHRconvToOs()
CHRconvT0Os::CHRconvToOs(gchar *pAdd)

Creates a CHRconvToOs object from the supplied qchar buffer. ffee must be null
terminated.

CHRconvToOs::convToOs()
glong CHRconvToOs::convToOs(gchar *pAdd, glong pLen, goschar *pDestBuffer)

Converts the supplied gchar buffer to qoschars, returning the result in pDestBuffer.
1 pAdd is the source buffer containing UBR data

1 pLenis the length of the source data in characters

1 pDestBuffer is a useallocated destination buffer, which must be large enough to
accommodate the converted data.

CHRconvToOs::dataPtr()
goschar* CHRconvToOs::dataPtr()

Returns a pointer to th@overted data. The memory associated with this pointer is
managed by the object.

CHRconvToOs::len()
glong CHRconvToOs::len()

Returns the length in bytes of the converted data contained inside the object.

CHRconvFromOs

This class converts a string dfaracters from the operating system encoding to the Omnis
internal encoding (gchars).

CHRconvFromOs::CHRconvFromOs()
CHRconvFromOs::CHRconvFromOs(goschar *pAdd, glong pLen)

Creates a CHRconvFromOs object from a buffer of goschars.
1 pLenis the length in @racters of the source data

CHRconvFromOs::CHRconvFromOs()
CHRconvFromOs::CHRconvFromOs(goschar *pAdd)

Creates a CHRconvFromOs object from a-tediminated string of goschars, i.e. terminated
by two consecutive null bytes when qoschar is defined as wisirort.

CHRconvFromOs::CHRconvFromOs()Mac OS X only

Utility Classes

CHRconvFromOs::CHRconvFromOs(CFStringRef pCFStringRef)
Creates a CHRconvFromOs object from the supplied CFStringRef parameter.

CHRconvFromOs::convFromOs()

glong CHRconvFromOs::convFromOs(qoschar *@&iet, glong pSrcLen, qchar
*pDestAdd, glong pDestMaxLen)

Converts the supplied source data, writing the converted data into pDestAdd. Returns the
number of characters converted.

1 pSrcAdd points to the buffer containing the source data
1 pSrcLen is the lengthfthe source data in characters

1 pDestAdd points to the usatlocated destination buffer which must be large enough to
contain the converted data

1 pDestMaxLen is the maximum length of the destination buffer in characters

CHRconvFromOs::pascalStringFromOs()

void CHRconvFromOs::pascalStringFromOs(qoschar *pSrcAdd, glong pSrcLen, gchar
*pDestStr, glong pDestMaxLen)

Converts the supplied source data, writing the converted data into pDestStr. Character
position zero of the converted data contains the lengtharacters (255).

I pSrcAdd points to a buffer containing the source data

1 pSrcLen is the length of the source data in characters

1 pDestStris a user allocated buffer which must be large enough to contain the converted

data
1 pDestStr is the maximum size of tlestination buffer in character units.
CHRconvFromOs::dataPtr()
gchar* CHRconvFromOs::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromOs::len()
glong CHRconvFromOs::len()

Returns the length dhe converted data in character units.

199

Chapter 46 Unicode Character Conversion

CHRconvToAscii

This class converts a string of gchar data to ASCII bytes and assumes that the source data
contains bit ASCII compatible characters.

CHRconvToAscii::CHRconvToAscii()
CHRconvToAscii::CHRconvToAscii(stxx &pString)

Creates a CHRconvToAscii object from the supplied strxxx object.
CHRconvToAscii::dataPtr()

char* CHRconvToAscii::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.
CHRconvToAscii::len()

glong HRconvToAscii::len()

Returns the length of the converted data.

CHRunicode

This class provides conversion functions between different Unicode encodings.
CHRunicode::utf8EncodeChar()
glong CHRunicode::utf8EncodeChar(qulong pChar, gbyte *pOutUtf8, gboaiketal)

Encodes a single character as Ug,Fand returns the encoded length in bytes.
1 pChar is a single UTB2 character value

1 pOutUtf8 is a useallocated destination buffer which must be at least 4 bytes in size

1 pCanFatal allows the object to generafatal error on conversion failure

CHRunicode::getUtf8EncodedChar()

qulong CHRunicode::getUtf8BEncodedChar(gbyte *pBuffer, glong plnLen, glong &plndex,
gbool pAlwaysUTF8 = gfalse)

Gets a UTF8 encoded character from the source buffReturns the converdecharacter
value as UTF32.

1 pBuffer points to the address of a UBFharacter string
1 plnLenis the length in bytes of the entire UBtring
1 pIndex is the byte offset from pBuffer to the start of the tBléharacter

200

Utility Classes

1 pAlwaysUTF8 has no effect when isoaile is defined. Passing the value gfalse when
isunicode is not defined maps the UBE character to the Omnis 8 bit character set (or
0xcO (inverted question mark) if the U3 is not in the Omnis 8 bit character set)

CHRunicode::charToUtf8()
glong CHRunicode::charToUtf8(qchar *pInChar, glong pinLen, gbyte *pOutUtf8)

Converts a string of Unicode characters to LBIH he output buffer length must be >=
UTF8 _MAX BYTES_ PER_CHAR*pInLen bytes. Returns the encoded length.

1 pInChar points to a buffer of UT82 characters
1 pinLen is the size of the source buffer in character units

1 pOutUtf8 points to a useallocated destination buffer

CHRunicode::utf8ToChar()

glong CHRunicode::utf8ToChar(gbyte *pInUtf8, glong pinLen, gchar *pOutChar,
glong pOutBufLen = 0)

Convers UTF8 encoded data to Unicode (UBR). Returns the length of the converted
data in character units.

1 pInUtf8 points to the source buffer

1 pinLen is the length of the source data in bytes

1 pOutChar points to a usatlocated destination buffer

1 pOutBufLen isthe maximum size of the destination buffer in characters

CHRunicode::convertOmnisToUnicode()

void CHRunicode::convertOmnisToUnicode(gbyte *pOmnisDataChars, glong pLen, strxxx
&pDestStr)

Converts Omnis nellnicode data, and stores the result in pDestStr.
1 pOmnisDataChars points to a string of 8 bit data in the Omnis character set

1 pLen is the length of the source data
1 pDestStr is a strxxx object passed by reference

CHRunicode::convertOmnisToUnicode()

void CHRunicode::convertOmnisToUnicode(gbyte *pOmnisData€jglong pLen, handle
&pDest)

Converts Omnis nel/nicode data, and stores result in handle memory.
1 pOmnisDataChars points to a string of 8 bit data in the Omnis character set

201

Chapter 46 Unicode Character Conversion

202

1 pLenis the length of the source data

1 pDestStris a handle passed by reference

CHRunicode::convertOmnisToUnicode()

void CHRunicode::convertOmnisToUnicode(gbyte *pOmnisDataChars, glong pLen, qchar
*pDest, glong pDestBufLen = 0)

Converts Omnis nelynicode data, and stores the result in pDest
1 pOmnisDataChars points to a string of 8data in the Omnis character set

1 pLenis the length of the source data

1 pDestStr points to a usatlocated buffer; large enough to contain the converted data

1 If supplied, pDestBufLen specifies the maximum length of the destination buffer in
bytes

CHRunicode::encodedCharactersToChar()

glong CHRunicode::encodedCharactersToChar(gbool pAlwaysUtf8, gbyte *pInEncChar,
glong plnLen, gchar *pOutChar, glong pOutBufLen = 0)

Converts UTF8/Omnis norUnicode characters to UT82/qchar. Returns the length of the
convered data in character units.

1 pAlwaysULtf8 specifies that the source data is L8Téncoded data. If gfalse, it is
assumed to be in the Omnis 8 bit character set

pInEncChar points to a buffer containing the source data
pinLen is the length in bytes of the soaidata

pOutChar is a usallocated destination buffer

= =4 4 -2

If supplied, pOutBufLen specifies the maximum length of the destination buffer in
bytes

CHRunicode::charToEncodedCharacters()

glong CHRunicode::charToEncodedCharacters(gbool pAlwaysUtf8, qchar *pingtbag
plnLen, gbyte *pOutEncChar)

Converts gchar characters to UBFOmnis characters. Returns the length in bytes of the
converted data.

1 pAlwaysULtf8 specifies that UTB should be generated as the output; otherwise, the
data is converted to the Omni®B character set

1 pInChar points to a buffer containing the source data

1 plnLen is the length of the source data in character units

Utility Classes

1 pOutEncChar is a usatlocated buffer large enough to contain the converted data

CHRunicode::setEncodingMode()
void CHRuniode::setEncodingMode(gbool pUtf8)

Sets the encoding mode for encodedCharactersToChar and charToEncodedCharacters
(UTF-8 or Omnis).

If gtrue, this setting overridgsAlwaysUtf8and specifies that conversion to/from UBHks
required.

CHRunicode::isBigEndian()
gbool CHRunicode::isBigEndian()

Returns qtrue if therdermshbpreprocessor definition was used (i.e. if mbiie characters
are stored with the most significant byte first), gfalse otherwise.

CHRunicode::is7Bit()
gbool CHRunicode::is7Bit(gchar *pAddjong pLen)

Returns qgtrue if the source data contains entirddit data (such that UFB and Omnis
encodings are identical), gfalse otherwise.

1 pAdd points to a buffer containing UT32 data

1 pLenis the length of the source data in character units

CHRunicode::isUtf8Data()
gbool CHRunicode::isUtf8Data(qbyte *pAdd, glong pLen)

Returns qgtrue if the data satisfies the LB'Encoding rules. Note that this does not preclude
the possibility that a neb TF-8 string may pass this check where the source strintgiosn
extended ASCII characters and these coincide with-BERcoding bytes.

1 pAdd points to a buffer containing 8 bit/U3g-data

1 pLenis the length of the source data in bytes

CHRconvToUtf16

This class converts a string of UBrdata to the UTH6 encodig.

CHRconvToULtf16:: CHRconvToUtf16()

CHRconvToUtf16::CHRconvToUtf16(gbyte *pAdd, glong pLen, gbool pSwap = gfalse,
gbool pAddBom = gfalse)

Creates a CHRconvToUtf16 object from the supplied source data.
1 pAdd points to a buffer containing UT8-data

203

Chapter 46 Unicode Character Conversion

204

1 pLenisthe length of the source data in bytes

pSwap specifies that the output byte ordering should be reversed (See
CHRunicode::isBigEndian())

1 pAddBom specifies that an additional By@ederMarker should be placed at element
zero of the converted data

CHRconvToUtf16::dataPtr()
UChar * CHRconvToUtf16::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.
CHRconvToUtf16::1en()
glong CHRconvToUtf16::len()

Returns the length of the converted data in bytes.

CHRconvFromUtf16

This class converts a string of U6 encoded data to UT#H

CHRconvFromUtf16:: CHRconvFromUtf16()

CHRconvFromUtf16::CHRconvFromUtf16(UChar *pAdd, glong pLen, gbool pSwap =
gfalse)

Creates a CHRconvFromUtf16 object from the supplied source data.
1 pAdd ponts to a buffer containing UFE6 encoded data

1 pLenis the length of the source data in bytes

1 pSwap specifies that the byte ordering of the source data is opposite to the platform
default

CHRconvFromUtf16::dataPtr()
gbyte* CHRconvFromUtf16::dataPtr()

Retuins a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromUtf16::len()
glong CHRconvFromUtf16::len()

Returns the length of the converted data in bytes.

Utility Classes

CHRconvToBytes

This class converts a character buffer to a strefdmgtes. For Unicode targets, the
characters are encoded using Ug;HEn the norUnicode version, the characters are
unchanged.

CHRconvToBytes::CHRconvToBytes()
CHRconvToBytes::CHRconvToBytes (qchar *pAdd, glong pLen)

Creates a CHRconvToBytes object frtme supplied source data.
1 pLenis the length of the data pointed to by pAdd in character units

CHRconvToBytes::CHRconvToBytes()
CHRconvToBytes::CHRconvToBytes (qchar *pAdd)

Creates a CHRconvToBYytes object from the supplied source data.
1 pAdd points to a nirterminated string of qchars

CHRconvToBytes::dataPtr()
gbyte * CHRconvToBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.
CHRconvToBytes::len()
glong CHRconvToBytes::len()

Returns the length of theoverted data in bytes.

CHRconvToBytes::makeCanonical() Mac OS X only
void CHRconvToBytes::makeCanonical();

Makes the UTFB representation canonical, which is the required representation for Mac OS
X file system calls. The canonical representation deceagall composed characters (e.g.
e+acute accent) into their components (e.g. the letter e, followed by acute accent symbol).

CHRconvToBytes::makeUtf8PascalString()

void CHRconvToBytes::makeUtf8PascalString(gchar *pAdd, glong pLen, gbyte
*pPascalStringglong pPascalStringBufferLength);

Converts the supplied source data to LB'Wwith a length byte at element zero , hence the
length of the source data is limited to 255 characters.

1 pAdd points to a buffer containing the source data
1 pLenis the length of theource data in characters. 255 maximum

1 pPascalString points to a usalocated destination buffer

205

Chapter 46 Unicode Character Conversion

206

1 pPascalStringBufferLength is the maximum size of the destination buffer in bytes

CHRconvFromBytes

This class converts a buffer of 8 bit/UBFencoded charsers to qchars . For Unicode
targets, the source data can be LBIFFor norUnicode targets, the characters are
unchanged.

CHRconvFromBytes::CHRconvFromBytes()
CHRconvFromBytes::CHRconvFromBytes (gbyte *pAdd, glong pLen)

Creates a CHRconvFromBytes objecinfi the supplied source data.
1 pAdd points to a buffer containing the 8 bit/UBFlata

1 pLen s the length of the source data in bytes
CHRconvFromBytes::CHRconvFromBytes()
CHRconvFromBytes::CHRconvFromBytes (gbyte *pAdd)
Creates a CHRconvFromBytes objecinfrthe supplied source data.
1 pAdd points to a nulterminated string of 8 bit/UT8 data
CHRconvFromBytes::dataPtr()

gchar * CHRconvFromBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromBytes::len()
glong CHRconvFromBytes::len()

Returns the length of the converted data in character units.

CHRconvFromLatin1ApiBytes
This class converts a string of Windows Latin 1 bytes to qchars.

CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes()
CHRconvFomLatin1ApiBytes::CHRconvFromLatin1ApiBytes(gbyte *pAdd, glong pLen)

Creates a CHRconvFromLatin1ApiBytes object from the supplied source data.
1 pAdd points to a buffer containing the Windows Latin 1 encoded data

1 pLenis the length of the source data itelsy

Utility Classes

CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes()
CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes(gbyte *pAdd)

Creates a CHRconvFromLatin1ApiBytes object from the supplied source data.
1 pAdd points to a null terminated string of Windows Ldtiencoded data

CHRconvFromLatin1ApiBytes::dataPtr()
gchar * CHRconvFromLatin1ApiBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.
CHRconvFromLatin1ApiBytes::len()
glong CHRconvFromLatin1ApiBytes::Ién

Returns the length of the converted data in character units.

CHRconvToLatin1lApiBytes

This class converts a string of gchar data to the Windows/Latinl code page.
CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes()
CHRconvToLatin1ApiBytes::CHRconvToLatin#Bytes(qchar *pAdd, glong pLen)

Creates a CHRconvToLatin1ApiBytes object from the supplied source data.
1 pAdd points to the source buffer containing gchar data

1 pLenis the length of the source data in character units
CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes()
CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes(qchar *pAdd)

Creates a CHRconvToLatin1ApiBytes object from the supplied source data.
1 pAdd points to a null terminated string of qchar data

CHRconvToLatin1ApiBytes::dataPtr()
gbyte * CHRconvTohtin1ApiBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToLatin1ApiBytes::len()
glong CHRconvToLatin1ApiBytes::len()

Returns the length of the converted data in bytes.

207

Chapter 46 Unicode Character Conversion

208

CHRconvToEncodedCharacters

This class converts a string of gchar data to 48Td¢f Omnis 8 bit data.

CHRconvToEncodedCharacters::CHRconvToEncodedCharacters()

CHRconvToEncodedCharacters::CHRconvToEncodedCharacters(gbool pAlwaysUtf8,
gchar *pAdd, glong pLen, csettype pSrcCset =@data)

Creates a CHRconvToEncodedCharacters object from the supplied source data.
1 pAlwaysUtf8 specifies that the source data always contains Unicode characters

1 pAdd points to a buffer containing rthe source data
1 pLenis the length of the source data iaretcter units
1

For norUnicode data, pSrcCset specifies the Omnis character set used for the source
data. Character set constants are defined in basics.h

CHRconvToEncodedCharacters::dataPtr()
gbyte * CHRconvToEncodedCharacters::dataPtr()

Returns a pointeotthe converted data, the memory for which is managed by the object.

CHRconvToEncodedCharacters::len()
glong CHRconvToEncodedCharacters::len()

Returns the length of the converted data in bytes.
CHRconvToEncodedCharacters::makeCanonical() Mac OS X only
void CHRconvToEncodedCharacters ::makeCanonical();

Makes the UTF8 representation canonical, for MacOSX file system calls. Assumes that the
buffer contains UTH data.

CHRconvFromEncodedCharacters

This class converts a string of Omnis 8 bit or LB Encodedlata to gchars.

CHRconvFromEncodedCharacters::CHRconvFromEncodedCharacters()

CHRconvFromEncodedCharacters ::CHRconvFromEncodedCharacters(gbool
pAlwaysUtf8, gbyte *pAdd, glong pLen, csettype pDestCset = csetOdata)

Creates a CHRconvFromEncodedCharacters fhe supplied source data.
1 pAlwaysUtf8 specifies that conversion from UBFwill definitely be required

1 pAdd points to a buffer containing the source data

1 pLen contains the length of the source data in bytes

Utility Classes

1 pDestCset specifies the Omnis character seétassumed when handling ASCII data.
Omnis character set constants are defined in basics.h

CHRconvFromEncodedCharacters::CHRconvFromEncodedCharacters()

CHRconvFromEncodedCharacters ::CHRconvFromEncodedCharacters(gbool
pAlwaysUtf8, gbyte *pAdd)

Creates £HRconvFromEncodedCharacters from the supplied source data.
1 pAdd points to a null terminated string of UBFcharacters

CHRconvFromEncodedCharacters::dataPtr()
gchar * CHRconvFromEncodedCharacters ::dataPtr()

Returns a pointer to the converted data,nteenory for which is managed by the object.
CHRconvFromEncodedCharacters::len()
glong CHRconvFromEncodedCharacters::len()

Returns the length of the converted data in character units.

CHRconvToOmnis

This class converts a string of qchar data to the 8 biti©aharacter set (csetOdata). No
conversion is performed for nddgnicode targets.

CHRconvToOmnis:: CHRconvToOmnis()
CHRconvToOmnis::CHRconvToOmnis(gchar *pAdd, glong pLen)

Creates a CHRconvToOmnis object from the supplied source data.
1 pAdd points to a bifer containing the source data

1 pLen contains the length of the source data in character units
CHRconvToOmnis::dataPtr()
gbyte * CHRconvToOmnis::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToOmnis::len()
glong CHRconvToOmnis::len()

Returns the length of the converted data in bytes.

209

Chapter 46 Unicode Character Conversion

210

CHRconvFromOmnis

This class converts a string of 8 bit Omnis character set data to gchars. The source data is
assumed to be from the Omnis character set (csetONata@pnversion is performed for
nonUnicode targets.

CHRconvFromOmnis::CHRconvFromOmnis()
CHRconvFromOmnis::CHRconvFromOmnis(gbyte *pAdd, glong pLen)

Creates a CHRconvFromOmnis object from the supplied source data.
1 pAdd points to a buffer containing theusoe data

1 pLen contains the length of the source data in bytes
CHRconvFromOmnis::dataPtr()
gchar * CHRconvFromOmnis ::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromOmnis::len()
glong CHRconvFemOmnis::len()

Returns the length of the converted data in character units.

CHRconvToUniChar

This class converts from gchar to UniChar (16 bit Unicode).
CHRconvToUniChar::CHRconvToUniChar() Mac OS X only
Creates an empty CHRconvToUniChar object for sghent initialisation.
CHRconvToUniChar::set() Mac OS X only

void CHRconvToUniChar::set(qchar *pAdd, glong pLen)

Initialises the CHRconvToUniChar object from the supplied source data.
1 pAdd points to a buffer containing the source data (qchars)

1 pLen cantains the length of the source data in character units

Utility Classes

CHRconvToUniChar::CHRconvToUniChar()
CHRconvToUniChar::CHRconvToUniChar(qgchar *pAdd, glong pLen)

Creates £HRconvToUniChar using the supplied source dBf& source data must
contain characters imeé csetApi character set.

1 pAdd points to a buffer containing the source data

1 pLen contains the length of the source data in character units

CHRconvToUniChar::dataPtr()
UniChar * CHRconvToUniChar ::dataPtr()

Returns a pointer to the converted data, the omgrior which is managed by the object.
CHRconvToUniChar::len()
glong CHRconvToUniChar::len()

Returns the length of the converted data in UniChar units.

CHRconvFromCodePage

This class converts a string of 8 bit encoded character data in the specifiqubgedto
gchars. Code page constamisr(e U n i Tcgnpbe foulad in dmconst.he

CHRconvFromCodePage::CHRconvFromCodePage()

CHRconvFromCodePage::CHRconvFromCodePage(preconst pCodePage, gbyte *pAdd,
glong pLen)

Creates a CHRconvFromCodePage object fromuppl®d source data.
1 pCodePage specifies the code page used by the source data

1 pAdd points to a buffer containing rthe source data
1 pLen contains the length of the source data in bytes
CHRconvFromCodePage::dataPtr()

gchar * CHRconvFromCodePage::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromCodePage::len()
glong CHRconvFromCodePage::len()

Returns the length of the converted data in character units.

CHRconvFromCodePage::codePageOk()
gbool CHRconvFomCodePage::codePageOk()

211

Chapter 46 Unicode Character Conversion

212

Returns qtrue if the object successfully retrieved the specified code page information, gfalse
if the specified code page is not supported.

CHRconvFromCodePage::getCodePage()
qushort * CHRconvFromCodePage::getCodePage(preconsief@age)

Returns a code page array of 256 unsigned shorts that are used to provide the mapping from
the code page to UTB2. Each code page has its own mapping indexed by the 8 bit data
values for the code page.

CHRconvToCodePage

This class converts a stg of qchars the specified 8 bit code page. Source characters are
assumed to be from the specified code page and are mapped accordingly. Any characters
not present in the specified code page ar ¢

CHRconvToCodePage::CHRconvToCodePage()

CHRcornvToCodePage::CHRconvToCodePage(preconst pCodePage, qchar *pAdd, glong
pLen)

Creates a CHRconvToCodePage object from the supplied source data.

1 pCodePage specifies the destination code page to be assumed. See dmconst.he for a lis
ofpr e Un i dopspaets

1 pAdd points to a buffer containing the source data

1 pLen contains the length of the source data in character units

CHRconvToCodePage::dataPtr()
gbyte * CHRconvToCodePage::dataPtr()

Returns a pointer to the converted data, the memory for which is manatiexdbject.
CHRconvToCodePage::len()

glong CHRconvToCodePage::len()

Returns the length of the converted ASCII data in bytes.
CHRconvToCodePage::codePageOk()

gbool CHRconvToCodePage::codePageOk()

Returns qgtrue if the object successfully retrieved theiipgcode page information, gfalse
if the specified code page is not supported.

Utility Classes

CHRconvToCodePage::getCodePage()
gbyte * CHRconvToCodePage::getCodePage(preconst pCodePage)

Returns the reverse code page mapping table; an array which is indexed by Unicode
character values. The first 4 bytes of the array (cast to a long) indicate the number of
significant bytes in the array. Unicode characters past the end of the array do not exist in the
code page, and are mapped as a dot.

CHRconvFromUnicodeEncoding

This cless converts a string of data from the specified encoding to the Omnis internal
encoding. The encoding is specified using one optlmee U n i dopstamtstdefined in
dmconst.he

CHRconvFromUnicodeEncoding::CHRconvFromUnicodeEncoding()

CHRconvFromUnicodeEncaay:: CHRconvFromUnicodeEncoding(preconst
pReadEncoding, gbyte *pData, glong pByteLen)

Creates a CHRconvFromUnicodeEncoding object from the supplied source data.

1 pReadEncoding specifies the encoding of the source data, for example;
preUniTypeNativeCharacte

1 pData points to a buffer containing the source data (cast as gbyte *)

1 pLen specifies the length of the source data in bytes

CHRconvFromUnicodeEncoding::isChar()
gbool CHRconvFromUnicodeEncoding::isChar()

Returns qgtrue if the data after conversionharacter data as opposed to binary data.
CHRconvFromUnicodeEncoding::charDataPtr()

gchar * CHRconvFromUnicodeEncoding::charDataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.
CHRconvFromUnicodeEncoding::charLen()

glong CHRconvFromUnicodeEncoding::charLen()

Returns the length of the converted data in character units.
CHRconvFromUnicodeEncoding::dataPtr()

gbyte * CHRconvFromUnicodeEncoding::dataPtr()

Returns a pointer to the raw converted data (casbges), the memory for which is
managed by the object.

213

Chapter 46 Unicode Character Conversion

214

CHRconvFromUnicodeEncoding::len()
glong CHRconvFromUnicodeEncoding::len()

Returns the length of the converted data in bytes.
CHRconvFromUnicodeEncoding::getCset()
csettypeCHRconvFromUnicodeEncling::getCset()

Returns @ r e U n i dopsmmet Bepresenting the character set used to perform the
conversion.

CHRconvToUnicodeEncoding

This class converts a string of gchars to the specified Unicode encoding. The encoding is
specified using one of th@eUniTypeconstants defined by dmconst.@haracter data for

the nonUnicode version must be in the Omnis character set (except when writing native
characters or binary data).

CHRconvToUnicodeEncoding::CHRconvToUnicodeEncoding()

CHRconvToUnicodeEncodingZHRconvToUnicodeEncoding(preconst pWriteEncoding,
gbyte *pData, glong pByteLen, gbool pAddBom = gtrue)

Creates a CHRconvToUnicodeEncoding object from the supplied source data.
1 pWriteEncoding specifies the target encoding

1 pData is a pointer to the sourcdalécast as ghyte *)
1 pByteLen specifies the length of the source data in bytes.
1

pAddBom specifies that element zero of the output should contain eCBgtx
Marker, used for example when writing Unicode data to external files.

CHRconvToUnicodeEncoding::dataPtr()
gbyte * CHRconvToUnicodeEncoding::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToUnicodeEncoding::len()
glong CHRconvToUnicodeEncoding::len()

Returns the length of the converted dathytes.

CHRconvToUtf32FromChar

Intended for use with nebinicode targets, this class operates on a string of qchar data,
converting it to the UTE2 encoding.

Utility Classes

CHRconvToUtf32FromChar::CHRconvToUtf32FromChar()

CHRconvToUtf32FromChar::CHRconvToUtf32FromClranifar *pData, glong pLen,
gbool pOppositeEndian, gbool pAddBom = gfalse)

Creates a CHRconvToUtf32FromChar object from the supplied source data.
1 pData is a pointer to the source data

1 pLen specifies the length of the source data in character units

1 pOpposit&ndian specifies that the bydmdian order of the output characters should be
the opposite of the platform default

1 pAddBom specifies that a ByterderMarker should be placed at element zero of the
converted data, used for example when writing Unicoda teéxternal files

CHRconvToUtf32FromChar::dataPtr()
U32Char * CHRconvToUtf32FromChar::dataPtr()

Returns a pointer to the converted UTE data, the memory for which is managed by the
object.

CHRconvToUtf32FromChar::len()
glong CHRconvToUtf32FromCharet()

Returns the length of the converted data in charcter units.

CHRconvFromUtf32ToChar

This class operates on a string of encoded-B3ZEata, stripping out any Byterder
Marker and optionally reversing the bygadian order. Intended for use with Adnicode
targets.

CHRconvFromUtf32ToChar::CHRconvFromUtf32ToChar()

CHRconvFromUtf32ToChar ::CHRconvFromUtf32ToChar(U32Char *pData, glong pLen,
gbool pOppositeEndian)

Creates a CHRconvFromUtf32ToChar object for the supplied source data.
1 pData specifies a paier to the source data

1 pLen specifies the length of the source data in charcter units

1 pOppositeEndian specifies that the bytder of the source data should be read in the
opposite order to the platform default

215

Chapter 46 Unicode Character Conversion

CHRconvFromUtf32ToChar::dataPtr()
gchar * GHRconvFromUtf32ToChar::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromUtf32ToChar::len()
glong CHRconvFromUtf32ToChar::len()

Returns the length of the converted data in character units.

Other Functions

216

The following functions are found in omstring.h and provide additional support for Unicode
(UTF-32) character strings.

OMstré Functions

There are a number of Omnis string functions to mirror the standard C string functions.
These operate on ritierminated strings of gqchars and are prefixed to distinguish them from
their ASCII counterparts. Functions include:

gulong OMstrlen(const gchar *pString)

gchar* OMstrcpy(qchar *pDest, const qchar *pSource)

gchar* OMstrncpy(gchar *pDest, const qchar *p&ay glong pCount)
gchar* OMstrcat(gchar *pDest, const qchar *pSource)

gchar* OMstrncat(gchar *pDest, const gqchar *pSource, glong pCount)
gbool OMstrequal(const gchar *pStringl, const qchar *pString2)
gchar* OMstrstr(const gchar *pString, const qchar *E&arSet)

gchar* OMstrchr(const qchar *pString, gchar pChar)

gchar* OMstrrchr(const gchar *pString, qchar pChar)

glong OMstrcspn(const qchar *pString, const qchar *pStrCharSet)
glong OMstrcmp(const qchar *pStringl, const qchar *pString2)

glong OMstrncmp(cost gchar *pStringl, const qchar *pString2, glong pCount)
glong OMstrspn(const gchar *pString, const gqchar *pStrCharSet)
gchar* OMstrpbrk(const gchar *pString, const gchar *pStrCharSet)
gchar* OMstrtok(gchar *pStrToken, const gchar *pStrDelimit)

There aralso functions to convert between character strings and integers:

Other Functions

gchar* OMlongToStringfchar*pDest, glong pLong)
qulong OMstrtoulchar*pText, gchar**pTextEnd, glong pBase)

QTEXT() Macro

This is useful for creating and supplying literal string valinside components. When
_UNICODE is defined, QTEXT() appends the L ## escape sequence onto the supplied text.
This instructs the compiler to treat the resulting text as a string of qoschars. QTEXT() can
be used anywhere where a qoschar* argument isregfjdor example:

str255 myString(QTEXT("Default Value™)); //call the qoschar*
constructor

QCHARLEN() and QOSCHARLEN() Macros

These provide a simple conversion from a supplied byte length to the corresponding gchar
or goschar character length respectivétl should be noted that they do not operate on
strings or arrays of characters directly. They simply divide the supplied parameter by 4 in
the case of QCHARLEN() or 2 (or 1) in the case of QOSCHARLEN().

QBYTELEN() and QOSBYTELEN() Macros

These provide aimple conversion from a supplietiaracter lengtto the corresponding
UTF-32 or UTF16/UTF8 byte lengthrespectively. It should be noted that they do not
operate on strings or arrays of characters directly. They simply multiply the supplied
parameter ¥4 in the case of QCHARLENY() or 2 (or 1) in the case of QOSCHARLENY().

217

Chapter 56 EXTBMPref & EXTCURref

Chapter 50 EXTBMPref &
EXTCURref

Introdcution

The EXTBMPref class gives your external components access to the OMNISPIC.DF1 and
USERPIC.DF1 data files handled by Omnis. These datanidesally reside in the ICONS
subdirectory of your Omnis installation. All icons in Omnis are referenced by an icon
identifier, or $iconid, which can be modified in the Omnis icon editor.

With the exception of custom cursors and full page bitmaps, eacimi€mnis can have

three drawing sizes, 16x16, 32x32 and 48x48. Each icon hassetmtefault size that it

uses unless another size is specified. This default size can also be modified using the Omnis
icon editor. Some icons also have drawing modesekample, checkbox icons have

various modes, normal, checked, highlighted etc.

Enumerations
ePicModes (EXTBMPref only)

An enum defining the drawing modes supported by the-dtawing function in this class.

picNormal
The icon is drawn in ¢ normal state.

picChecked
The icon is drawn in its checked state.

picHilited
The icon is drawn in its hilited state.

picCheckedHilited
The icon is drawn in its checked and hilited state.

218

EXTBMPref Class Reference

ePicSize (EXTBMPref only)

An enum defining the drawinsize supported by the icon drawing function in this class.

ePicDef
The size of the icon depends on the default size set in the Omnis icon editor.

ePicl6
The 16x16 version of the icon is drawn.

ePic32
The 32x32 version of the icon is drawn.

ePic48
The 4848 version of the icon is drawn.

EXTBMPref Class Reference
EXTBMPref::EXTBMPref()

EXTBMPref.:EXTBMPref(glong plconID, glong pDefault = 0, gapp pApp =0)

The constructor for the external bitmap class. After constructiortjake can be used to
interrogate the icon or draw the icon. When you have finished manipulating the icon, the
class should be destructed.

1 plconID - the icon associated with this class.
1 pDefault - the default icon id is used when plconlID is zero.

1 pApp - this parameter must be specified for web client components. See ECOgetApp.

EXTBMPref::~EXTBMPref()

EXTBMPref::~EXTBMPref()

The destructor for the external bitmap class. The destruction of the class informs Omnis that
you have finished with the icon.

EXTBMPref::addBmpSize()

glong EXTBMPref::addBmpSize(glong plconID, ePicSize pSize)
Returns a new icon id with the specified pSize added.
1 plconld - The icon id to add a size to.

1 pSize- The size to bedded to the icon id.

219

Chapter 56 EXTBMPref & EXTCURref

9 return - A new icon id with the icon size pSize embedded.

Note: This is a static member function.

EXTBMPref::copylmage()

HBITMAP EXTBMPref::copylmage(ePicSize pSize = ePicDef)

HBITMAP EXTBMPref::copylmagé qcol pFillColor, ePicSize pSize = ePicDef)
Returns a bitmap for the icon this class refers.

1 pFillColor - When calling copylmage specifying a fill color, the transparent pixels of
the image are replaced with the given color.

1 pSize- The icon size to retn.
1 return - Returns a new HBITMAP object if successful.
Note: The returned HBITMAP must be destroyed with GDIdeleteBitmap.

EXTBMPref::copylmage()

HBITMAP EXTBMPref::copylmage(gcol pFillColor, ePicSize pSize = ePicDef)

Retuns a bitmap for the icon this class references. The transparent color of the bitmap is
replaced with the given color.

1 pFillColor - The replacement color for the transparent color of the bitmap.
I pSize- The icon size to return.

9 return - Returns a new HBITMR object if successful.

Note: The returned HBITMAP must be destroyed with GDIdeleteBitmap.

EXTBMPref::copyMask()

HBITMAPMASK EXTBMPref::copyMask(ePicSize pSize = ePicDef)

Returns a bitmap mask for the icon this class refers.

9 pSize- The icon size to return a mask for.

1 return - Returns a new HBITMAPMASK object if successful.

Note: The returned HBITMAPMASK must be destroyed with GDIdeleteBitmap.

EXTBMPref::.draw()

void EXTBMPref::draw(HDC pHdc, grect* pRe ePicSize pSize = ePicDef,
ePicModes pWhich = picNormal, gbool pDisabled = gfalse,

220

EXTBMPref Class Reference

gcol pHilited = colNone, gbool pScale = gfalse,
gjst pJstHoriz = jstLeft, qgjst pJstVert = jstLeft)

Draws the iconds image into a device cont e
1 pHdc - The dawing device to draw into.

1 pRect- The destination drawing rectangle.

1 pSize- The icon size to draw.

1 pWhich - The icon drawing mode to use.

1 pDisabled- If gtrue the image is drawn in a disabled state.

1 pHilited - Controls how the icon is highlighted.

1 pScale- If gtrue the icon is scaled to the full size of pRect.

9 pJstHoriz - The horizontal drawing justification. This is ignored if pScale is gtrue.

1 pJstVert - The horizontal drawing justification. This is ignored if pScale is gtrue.

EXTBMPref:.drawMask()

void EXTBMPref::drawMask(HDC pHdc, grect* pRect, ePicSize pSize = ePicDef,
ePicModes pWhich = picNormal, gbool pScale = gfalse,
gjst pJstHoriz = jstLeft, gjst pJstVert = jstLeft)

Draws the icons mask image into a device cdnte

pHdc - The drawing device to draw into.

pRect- The destination drawing rectangle.

pSize- The icon size to draw.

pWhich - The icon drawing mode to use.

pScale- If gtrue the icon is scaled to the full size of pRect.

pJstHoriz - The horizontal drawingustification. This is ignored if pScale is gtrue.

= =4 a4 -—a -—a _-a -2

pJstVert - The horizontal drawing justification. This is ignored if pScale is qtrue.

EXTBMPref::getBmpSize()

ePicSize EXTBMPref::getBmpSize(glong plconID)
Returns the icosize extracted from the icon id passed.
1 plconld - The icon id to extract an icon size from.

M return-The i conds si ze.

221

Chapter 56 EXTBMPref & EXTCURref

Note: This is a static member function.

EXTBMPref::getlconid()

glong EXTBMPref::geticonld()
Returns the icoid that was associated with this class at construction.

1 return - Returns the icon id.

EXTBMPref::getRect()

void EXTBMPref:.getRect(grect* pRect, ePicSize pSize = ePicl6)

Returns a bounding rectangle for the icon. The resuiizgydepends on the passed size
parameter.

1 pRect- set to the correct bounding rectangle size.

9 pSize- Controls the returned size. This parameter defaults to the 16x16 size.

EXTBMPref::hasMode()

gbool EXTBMPref::hasMode(ePicMogde@Mode = picNormal)
Used to determine if the icon this class refers to supports a particular drawing mode.

1 pMode - The icon drawing mode to test against. This parameter defaults to the normal
drawing mode.

9 return - Returns gtrue if the icon does suppm¥ode, and return gfalse if it does not.

EXTBMPref::hasSize()

gbool EXTBMPref::hasSize(ePicSize pSize = ePicl16)

Used to determine if the icon this class refers to has a particular icon size.

9 pSize- The icon size to test agatn3 his parameter defaults to the 16x16 size.

return - Returns gtrue if the icon does suppo®ize and return gfalse it does not.

222

EXTCURref Class Reference (v2.2)

Example:

/I This example gets a bitmap from Omnis using icon reference number 1000.
/I The icon reference is asked how bii should draw by default. The draw

/I method is called to draw the icon in a rectangle. The icon is centered

// both vertically and horizontally in the rect. NOTE: it is not clipped to

/I the rectangle. It is very important to delete the bitmap reference

/l when you are finished.
WNDpaintStruct paintStruct;
WNDbeginPaint(mHWnd, &paintStruct);

EXTBMPref bmpRef(1000);
ePicSize defaultSize = EXTBMPref::getBmpSize(1000);

bmpRef.draw(paintStruct.hdc, &drawRect , defaultSize, picNormal,
gfalse, colNone, gfalse, jstCenter, jstCenter);

WNDendPaint(mHWnd, &paintStruct);

EXTBMPref::transparentColor()

gcol EXTBMPref::transparentColor()

Used to get the transparent color of the bitmap image.

EXTCURref Class Reference (v2.2)

The EXTCURref class gives your external components access to custom cursors in the
OMNISPIC.DF1 and USERPIC.DF1. It allows you to create and set custom mouse cursors
by specifying the custom cursor ID.

EXTCURref::EXTCURref()

EXTCURref::EXTCURref(glong pCursorID, glong pDefault = 0, qapp pApp =0)

The constructor for the external cursor class. After construction, the class can be used to
create a HCURSOR. When you have finished with the cursor referenceasheslebuld be
destructed. Destructing the class will not destroy the HCURSOR which was created from it.

9 pCursorlID - the cursor associated with this class.
1 pDefault - the default cursor id is used when pCursorID is zero.

1 pApp - this parameter must be spéeif for web client components. See ECOgetApp.

223

Chapter 56 EXTBMPref & EXTCURref

EXTCURref::~EXTCURref()

EXTBMPref::~EXTBMPref()

The destructor for the external cursor class. The destruction of the class informs Omnis that
you have finished with the cursor.

EXTCURTref::getCursor()

HCURSOR EXTCURref::getCursor()

The getCursor function creates and returns a HCURSOR. You can effect the screen cursor
by calling WNDsetCursor or WNDsetWindowCursor.

EXTCURref:.:getCursorld()

glong EXTCURref::getCursorld()

Returns the cursor ID.

224

Introduction

Chapter 60 gkey
Reference

Introduction

The QKEY class gives your external component access to keyboard messages and some
keyboard checking functions. It refers to two kinds of key, a VCHARa PCHAR. A

VCHAR is a virtual key code for special keys such as the PageUp key. PCHAR refers to
printable characters.

Keyboard messages WM_KEYDOWN and WM_KEYUP pass a pointer to a gkey object.

Enumerations

vChar
An enum defining some viral keyboard values.

vcF1
The F1 key on the keyboard

vcUp
The up arrow key on the keyboard

vcDown
The down arrow key on the keyboard

vclLeft
The left arrow key on the keyboard

vcRight
The right arrow key on the keyboard

vcPup
The page up key on the keyboard

vcPdown
The page down key on the keyboard

vcPleft
The page left key on the keyboard

225

Chapter 60 gkey Reference

vcPright
The page right key on the keyboard

vcHome
The home key on the keyboard

vcEnd
The end key on the keyboard

vcTab
The tab key on the keyboard

vcReturn
The return keyn the keyboard

vcEnter
The enter key on the keyboard

vcBack
The backspace key on the keyboard

vcClear
The clear key on the keyboard

vcCancel
The escape key on the keyboard

vcDel
The forward delete key on the keyboard

vcins
The insert key on the keybahr

gkey Class Reference

226

gkey::gkey()
gkey::gkey(LPARAM pKeyValue)

The constructor for the external keyboard class. After construction, the class can be used to
interrogate the keyboard message.

1 pKeyValue - This is the keyboard snavalue passed in LPARAM on a
WM_KEYDOWN, WM_KEYUP message.

gkey Class Reference

gkey::gkey()

gkey::gkey(pchar pPchar, gbool pShift, gbool pOption, gbool pControl)
Creates a gkey object from the printable character and key stasesl pas

1 pPchar - The printable character to be added into the new gkey.

1 pShift - The state of the shift key for the new gkey object.

1 pOption - The state of the option key for the new gkey object.

1 pControl - The state of the control key for the new gkey object

9 return - Returns a new gkey object.

See also gkey::getPChar()

gkey::gkey()

gkey::gkey(vchar pVchar, gbool pShift, gbool pOption, gbool pControl)

Creates a gkey object from the virtual key code and key stasseg.

I pVchar - The virtual keyboard value to be added into the new gkey.
pShift - The state of the shift key for the new gkey object.

1

1 pOption - The state of the option key for the new gkey object.
1 pControl - The state of the control key for the new gkéyeat.

1

return - Returns a new gkey object.

gkey::gkey()
gkey::gkey()
Creates a gkey object with only the modifier states (SHIFT, CONTROL and OPTION) set.

9 return - Returns a new gkey object.

gkey::getPChar()
pcha gkey::getPChar()
Returns the printable character from the key message.

9 returns - Returns the character.

227

Chapter 60 gkey Reference

228

gkey::getVChar()
vchar gkey::getVChar()
Returns the virtual key code from the key message.

1 returns - Returns the key code.

gkey::isAlt()
gbool gkey::isAlt()
Returns the state of the ALT key for this keyboard message.

1 returns - Returns gtrue if the ALT key is down.

gkey::isControl()

gbool gkey::isControl()

Returns the state of the CONTR®ey for this keyboard message.
returns - Returns gtrue if the CONTROL key is down.

gkey::isShift()

gbool gkey::isShift()

Returns the state of the SHIFT key for this keyboard message.
1 returns - Returns gtrue if the SHIFT key is down.

gkey::operator !()
gbool gkey::operator ! ()
Tests if the gkey object is invalid.

1 return - gtrue if the gkey object is invalid and gfalse if the object is valid.

gkey::operator !=()

gbool gkey::operatoe= (const gkey& pTestKey)

Compares the key message stored in this gkey object with the key message passed in.
1 pTestKey- The gkey object to compare against.

1 return - gtrue if the gkey key messages are not the same.

Other Functions

gkey::operator ==()

gbool gkey::operator == (const gkey& pTestKey)

Compares the key message stored in this gkey object with the key message passed in.
1 pTestKey- The gkey object to compare against.

1 return - gtrue if the gkey key messages match and gfalse if thetslgee different.

gkey::uppc()
void gkey::uppc()

Uppercases the printable character stored in the gkey object.

See also gkey::getPChar()
Other Functions
isShift()

gbool isShift()
Returns the current state of the SHIF ke

9 returns - Returns qtrue if the SHIFT key is down and gfalse if up.

isAlt()
gbool isAlt()
Returns the current state of the ALT key.

1 returns - Returns gtrue if the ALT key is down and gfalse if up.

229

Chapter 68 gkey Reference

Example:

extern "C" glong OMNISWNDPROC Ge nericWndProc(HWND hwnd, LPARAM Msg,
WPARAM wParam, LPARAM |IParam, EXTComplnfo* eci)

{
ECOsetupCallbacks(hwnd,eci);
switch (Msg)
{
case WM_KEYDOWN:
case WM_KEYUP:
{
gkey* keyMessage = (gkey*)IParam;
if (keyMessage ->get PCharP®) 9=6
{
/'l The O6P6&6 key was pressed.
return OL; /I tell Omnis we have processed the key
}
else if (keyMessage - >isShift() && keyMessage -
>get PChar ()==06L06)
{
/'l The 6L6 key and O6SHI FT6 keys were pre
return OL; /Il tell Omnis we have processed the key
}
return 1L; /I let Omnis process the key
}
}
return WNDdefWindowProc(hwnd,Msg,wParam,|Param,eci);
}

230

Introduction

Chapter 70 EXTfile
Reference

Introduction

The FILE API functions give your external components general file handlimaidnality.

The EXTfile class is a wrapper for the FILExxx functions. It is generally safer to use the
class, but sometimes it can be more convenient to call the API functions directly.

API| Functions

These functions are defined in EXTFILE.HE

FILEclose()

void FILEclose(dfileptr pFilelnstance)
Closes the file.

1 pFilelnstancei The file instance which contains the file handle to close.

FILEcreate()

gret FILEcreate(dfileptr pFilelnstance, strxxx& pNepngbool pExclusive)

Creates a new file and then opens it.

1 pFilelnstancei The file instance used to create the file and hold the file handle.
1 pNamei strxxx reference which contains the name of the file to create.

1 pExclusivei True if the file should bepened in exclusive mode after it is created.
1

returns i gret error code.

231

Chapter 70 EXTfile Reference

232

FILEcreatelnst()

gfileptr FILEcreatelnst()
Constructs a new file instance.
1 returnsi A new file instance. This must be deleted by FILEdestroylInst.

See also FILEdestroylnst

FILEcreateTemp()

gret FILEcreateTemp(dfileptr pFilelnstance)
Constructs a new temporary file and then opens it (in exclusive mode).
1 pFilelnstancei The file instance used to create the file and hold the file handle.

9 returns i qgret error code.

FILEdelete()

gret FILEdelete(strxxx& pName)
Deletes the specified file.
1 pNamei A strxxx reference which contains the name of the file to delete.

9 returnsi qgret error code.

FILEdestroylinst()

void FILEdestroyInst(gfileptr pFilelnstance)
Destroys a file instance.
1 pFilelnstancei The file instance. This was previously created by FILEcreatelnst.

See also FILEcreatelnst

FILEexists()

gbool FILEexists(strxxx& pName, gboolgt-older = gfalse)

Tests whether the specified file (or folder) exists or not.

1 pNamei strxxx reference which contains the name of the file (or folder).
1 plsFolderi True if the pName is a folder, false if it is a file name.

returns i True if the file (orfolder) exists, false otherwise.

API Functions

FILEfullName()

void FILEfullName(strxxx& pName, filevref pMacVolRef = 0)
Obtains the full name of the file.
1 pNamei The filename to obtain the full name for.

1 pMacVolRefi The Macintosh volume referemcNot required for Windows..

FILEgetLength()

glong FILEgetLength(dfileptr pFilelnstance)

Obtains the length of the file.

1 pFilelnstancei The file instance which contains the file handle.

9 returns i The length of the file.

FILEgetName()

void FILEgetName(dfileptr pFilelnstance, strxxx& pName, gbool pincPath = gtrue)
Obtains the name of the file.

1 pFilelnstancei The file instance which contains the file handle.

1 pNamei strxxx reference which will contain the nanfettee file after the function call.

1 pincPathi True if the pName should also contain the path of the file.

FILEgetOmnisFolder() (v3.1)

void FILEgetOmnisFolder(gfileptr pFilePtr, str255& pFilename)

Returns the path to the Omnis folder; the folder whiakallg contains the main executable
and support folders. FILEgetOmnisFolder is passed a pointer to a dfile class object.

1 pFilePtr i Pointer to a dfile class object.

1 pFilenamei (output) The folder name containing the Omnis support files.

233

Chapter 70 EXTfile Reference

FILEgetOmnisProgramFolder() (v4.3)

void doQfile_getOmnisProgramFolder(dfile *pFile, str255 &pFilename)

Returns the path to the Omnis executable; the folder containing the main executable.
FILEgetOmnisProgramFolder is passed a pointer to a dfile class object.

1 pFilePtr i Poinkr to a dfile class object.

1 pFilenamei (output) The folder name containing the Omnis executable.

FILEgetPosition()

glong FILEgetPosition(dfileptr pFileInstance)
Constructs a new file instance.
1 pFilelnstancei The file instance Wich contains the file handle.

1 returns i The current position in the file.

FILEopen()

gret FILEopen(dfileptr pFilelnstance, strxxx& pName, gbool pReadOnly, gbool
pExclusive)

Opens the specified file.

1 pFilelnstancei The file instance whit will contain the opened file handle.
1 pNamei strxxx reference which contains the file to open.

1 pReadOnlyi True if the file should be opened in reanly mode.

1 pExclusivei True if the file should be opened in exclusive mode.
9 returns i gret error code.

FILEopenResources() (v3.1)

gret FILEopenResources(dfileptr pFilelnstance, strxxx& pName, gbool pReadOnly, gbool
pExclusive)

Opens the Macintosh resources fork of the specified file as a data file.

9 pFilelnstancei The file instancevhich will contain the opened file handle.
1 pNamei strxxx reference which contains the file to open.

1 pReadOnlyi True if the file should be opened in readly mode.

1

pExclusivei True if the file should be opened in exclusive mode.

234

API Functions

9 returns i gret error cde. If 1 is returned, the function is not implemented.

FILEread()

gret FILEread(gfileptr pFilelnstance, void* pData, glong pOffset, glong pLength)
Reads from the file.

1 pFilelnstancei The file instance which contains the file handle.

1 pDatai Pointer to read into.

1 pOffseti Offset into the file to use.
1 pLengthi Amount of bytes to read.
9 returns i gret error code.

FILEread()

gret FILEread(qfileptr pFilelnstance, void* pData, glong pOffset, glong pMaxLength,
glong& pActLength)

Reads from the file.

pFilelnstancei The file instance which contains the file handle.
pData’i Pointer to read into.

pOffseti Offset into the file to use.

pMaxLength i Number of bytes to read.

pActLength 7 Actual number of bytes read.

= =4 a4 A -2 -2

returns i gret @ror code.

FILEsetEmpty()

gret FILEsetEmpty(dfileptr pFilelnstance)
FILEsetEmpty sets the length of the file to zero bytes.
1 pFilelnstancei The file instance which contains the file handle.

9 returns i qgret error code.

235

Chapter 70 EXTfile Reference

FILEsetLength()

gret FILEsetLength(dfileptr pFilelnstance, glong pLength)
FILEsetLength sets the length of the file to the specified length.

1 pFilelnstancei The file instance which contains the file handle.
1 pLengthi The new length of the file.

9 returnsi qgret error code.

FILEsetMacTypeCreator()

void FILEsetMacTypeCreator(dfileptr pFilelnstance, gint4 pMacType, gint4 pMacCreator)
Sets the Macintoshfile y st ems 6 creator information.

1 pFilelnstancei The file instance with contains the file handle.

1 pMacTypei The new Mac type info.

1 pMacCreator i The new Mac creator info.

FILEsetMacTypeCreator()

void FILEsetMacTypeCreator(strxxx& pName,qint4 pMacType,qint4 pMacCreator)
Sets the Macintoshfile y st ems 6 creator informati on.
1 pNamei The file name.

1 pMacTypei The new Mac type info.

1 pMacCreator i The new Mac creator info.

FILEsetPosition()

gret FILEsetPosition(gfileptr pFilelnstance, glong pPosition)

Sets the current positi of the file.

1 pFilelnstance- The file instance which contains the file handle.
1 pPositionT The new position.

9 returnsi A qgret error code.

236

EXTfile Class Reference

FILEwrite()

gret FILEwrite(dfileptr pFileInstance, void* pData, glong pOffset, glong pLength)
Writes data to the file.
1 pFilelnstance- The file instance which contains the file handle.

pDatai The address of the data to write.

1
1 pOffseti The offset into the file of where to write from.
1 pLengthi The number of bytes to write.

1

returns i A gret error cod.

EXTfile Class Reference
EXTfile::EXTfile()

EXTfile::EXTfile()

The constructor for a file object.

EXTfile::~EXTfile()

EXTfile::~EXTfile()

The destructor for an EXTfile object.

EXTfile::close()
void EXTfile::close()

Closes the file.

EXTfile::create()

gret EXTfile::create(strxxx& pName, gbool pExclusive)

Creates and then opens the specified file.

1 pNamei The file to create.

1 pExclusivei True if the file slould be opened in exclusive mode.

1 Returnsi gret error code.

237

Chapter 70 EXTfile Reference

238

EXTfile::createTemp()

gret EXTfile::createTemp()
Creates and then opens, in exclusive mode, a temporary file.

9 returnsi qgret error code.

EXTfile::deleet()

static gret EXTfile::deleet(strxxx& pName)
Deletes the specified file.
1 pName- The file to delete

9 returns i gret error code.

EXTfile::exists()

static gbool EXTfile::exists(strxxx& pName, gbool plsFolder)

Tests whethethe specified file (or folder) exists or not.

1 pNamei strxxx reference which contains the name of the file (or folder).
9 plisFolderi True if the pName is a folder, false if it is a file name.

1 returns i True if the file (or folder) exists, false otherwise.

EXTfile::fullName()

static EXTfile::fullName(strxxx& pName, filevref pMacVolRef=0)
Obtains the full name of the file.
1 pNamei The filename to obtain the full name for.

1 pMacVolRefi The Macintosh volume reference. Not requirediindows.

EXTfile::getLength()

glong EXTfile::getLength()

Obtains the length (in bytes) of the file.

1 returns i The length, in bytes, of the file.

EXTfile Class Reference

EXTfile::getName()

void EXTfile::getName(strxxx& pFilenamebool pinclPath = gtrue)
Obtains the name of the file.
1 pNamei strxxx reference which will contain the name of the file after the function call.

1 pinclPath 7 True if the pName should also contain the path of the file.

EXTfile::getOmnisFolder()

void EXTfile::getOmnisFolder(str255& pFilename)

Returns the path to the Omnis folder; the folder which usually contains the main executable
and support folders.

1 pFilenamei (output) The folder name containing the Omnis support files.

EXTfile::getOmnisProgramFolder() (v4.3)

void EXTfile::getOmnisProgramFolder(str255& pFilename)
Returns the path to the Omnis executable; the folder containing the main executable.

1 pFilename’i (output) The folder name containing the Omnis executable.

EXTfile::getPosition()
glong EXTfile::getPosition()
Obtains the current position in the file.

9 returns T Returns the current position in the file.

EXTfile::open()

gret EXTfile::open(strxxx& pName, gbool pReadOnly, gbool pExclusive)
Opens tlk specified file.

1 pNamei The file to open.

1 pReadOnlyi True if the file should be opened in reanly mode.

1 pExclusivei True if the file should be opened in exclusive mode.
1

returns i gret error code.

239

Chapter 70 EXTfile Reference

240

EXTfile::openResources() (v3.1)

gret EXTfile::openResources(strxxx& pName, gbool pReadOnly, gbool pExclusive)
Opens the Macintosh resources fork of the specified file as a data file.

1 pNamei The file to open.

1 pReadOnlyi True if the file should be opened in reanly mode.

1 pExclusivei True if the file should be opened in exclusive mode.

9 returns i qgret error code.

EXTfile::read()

gret EXTfile::read(void* pData, glong pOffset, glong pLength)
Reads from the file.

1 pDatai Pointer to read into.

1 pOffseti Offset into the file to use.

1 pLengthi Amount of bytes to read.

EXTfile::read()

gret EXTfile::read(void* pData, glong pOffset, glong pMaxLength, glong& pActLength)
Reads from the file.

1 pDatai Poirter to read into.

1 pOffseti Offset into the file to use.

1 pMaxLength i Number of bytes to read.

1 pActLength i Actual number of bytes read.

EXTfile::readCharacterData() (v4.0)

gret EXTfile::readCharacterData(gHandle &pHan, FILEconversionType pConvType)
Readdile containing character data into a handle which becomes an array of.qchars
1 pHan - Handle to read file into.

1 pConvType- An EXTfile constant specifying the conversion required.

EXTfile Class Reference

EXTfile file; gret e = file.open(document, gtrue, gfalse);
if (e==e_ok)

{

mDocHan = 0;
e = file.readCharacterData(mDocHan, EXTfile::eFILEconvertFromLatin1Api);
if (e==e_ok)
{
mDocPtr = gHandleTextPtr(mDocHan, 0);

parse(pSrchWords);
}

else mDocPtr.setNull();
file.close();

}
EXTfile::readIntoHandle() (v4.0)

gret EXTfile::readintoHandle(qHandle &pHan)
Reada the raw contents of a file into a handle

1 pHani Handle to read file into.

EXTfile::setEmpty()

gret EXTfile::setEmpty()
setEmpty sets the length of the file to zero bytes.

9 returns i gret error code.

EXTfile::setLength()

gret EXTfile::setLength(glong pLength)
setLength sets the length of the file to the specified length.
1 pLengthi The new length of the file.

9 returnsi qgret error code.

EXTfile::setMacTypeCreator()

void EXTfile::setMacTypeCreator(qgint4 pMacType,qint4 pMacCreator)
Sets the Macintoshfile y st ems 6 cr eator information.
1 pMacTypei The new Mac type info.

1 pMacCreator i The new Mac creator info.

241

Chapter 70 EXTfile Reference

EXTfile::setMacTypeCreator()

static void EXTfile::setMacTypeCreator(strxxx& pName,qgint4 pMacType,qgint4
pMacCreator)

Sets the Macintoshfile y st ems 6 creator information.
1 pNamei The file name.
1 pMacTypei Thenew Mac type info.

1 pMacCreator i The new Mac creator info.

EXTfile::setPosition()

gret EXTfile::setPosition(glong pPosition)
Sets the current position of the file.
1 pPositioni The new position.

9 returns 1 A gret error code.

EXTfile::write()

gret EXTfile::write(void* pData, glong pOffset, glong pLength)
Writes data to the file.

1 pDatai The address of the data to write.

1 pOffseti The offset into the file of where to write from.

1 pLengthi The number of bytet® write.
1

returns i A gret error code.

242

Introduction

Chapter 80 CRB
Reference

Introduction

The CRB API functions are a set of functions which allow you to create and manage Omnis
data collections. An Omnis data collection is a block of data with a variable numbea of dat
items. A CRB can store number data, list data, text data, etc, in any order and combination.
A CRB is self extending. In other words you can simply set the data for a given index, and
the CRB is extended to store the given data at the specified indémmdEhe collection of

data in a CRB can be converted to and from-tis&ed format for storing on and retrieving
from disk. You can also assign CRB data to and retrieve from an EXTfldval, see
EXTfldval::getCrbRef and EXTfldval::setCrbRef. This is usefylou want to exchange

CRB data with the Omnis 4GL.

The EXTcrb class is a wrapper for the CRBxxx functions. It is generally safer to use the
class, but sometimes it can be more convenient to call the API functions directly.

APl Functions

These functionare defined in EXTCRB.HE

CRBcreate()
gcrb CRBcreate()

Creates a new empty CRB instance. When you have finished with the instance you must
destroy it, unless you have transferred ownership when calling EXTfldval::setCrbRef.

9 returns - The pointer to the CRBistance.

See also CRBdestroy

243

Chapter 80 CRB Reference

244

CRBdestroy()

void CRBdestroy(qcrb pCrb)

Destroys the given CRB instance. The instance must have been created with CRBcreate.
1 pCrb - pointer to the CRB instance to be destroyed.

See also CRBcreate

CRBduplicate()

gcrb CRBduficate(qcrb pCrb)

Makes a copy of the given CRB instance. When you have finished with the copy, you must
destroy it, unless you have transferred ownership when calling EXTfldval::setCrbRef.

1 pCrb - pointer to the CRB instance to be duplicated.
9 returns - new pointer to a CRB instance.

See also CRBcreate, CRBdestroy

CRBflatten()

glong CRBflatten(gcrb pCrb, qchar* pBuffer, glong pBufferLen)

Converts the data in a CRB instance into a epdagorm flat format which is suitable for
storing on disk. You mustllocate a sufficiently large buffer to receive the data. You can
call CRBgetFlatSize prior to calling CRBflatten, to tell you the size of the required buffer.

1 pCrb - pointer to the CRB instance to be flattened.

1 pBuffer - pointer to the buffer which i®treceive the flattened data.
9 pBufferLen - buffer size in bytes.

1 returns - length of the flattened data.

Example:

/| *** store some cross platform data on disk ***
/I create the crb instance
gcrb crb = CRBcreate();

/I store some text at index 1
EXTfldval f valp(CRBgetDataRef(crb, 1, gtrue));

fvalp.setChar(fAiSome text to be stored on disk?o

/I store some numbers at the next 3 index positions
CRBsetReal(crb, 2, 4.999);
CRBsetLong(crb, 3, 255);

API Functions

CRBsetLong(crb, 4, 1000);

/I allocate the buffer which wil receive the flattened data
glong bufferLen = CRBgetFlatSize(crb);

gchar* buffer = new gchar[bufferLen |;

/I flatten the data.

/I Note: in our case datalLen should be identical to bufferLen
glong dataLen = CRBflatten(crb, buffer, bufferLen);

/I now we can write the data to disk

EXTfile file; file.create(
file.write(buffer, 0, dataLen);

file.close();

/I destroy the buffer and the crb
delete [] buffer;

CRBdestroy(crb);

// *k% end *k%k

See also CRBgetFlatSize, CRBurdtten

CRBgetCrbRef()

str255(AFil eNameo

gcrb CRBgetCrbRef(gcrb pCrb, gerb pTmpCrb, gcrbindex pindex, gbool pWillAlter)

It is possible to store data collections within data collections. You can do this by calling this
function. If required, when calling this function, thata at the given index is converted to

an Omnis data collection. If you have several data collections stored in a CRB, you can
optimize performance by creating your own temp CRB for manipulating the nested data
collections, which you can specify for themqppCrb parameter. If you do not specify your

own temp CRB, Omnis will create a CRB instance for each data collection stored in the
parent CRB. Specifying your own temp CRB works, because Omnis only stores the data
collection as a handle inside another CRBgd not the CRB instance itself, which is only

used for manipulating the data. If you want to change the contents of the data collection,

specify gtrue for pWillAlter.
1 pCrb - pointer to the CRB instance.

pTmpCrb - temp CRB instance to be used for managdiregdata collection.

1
1 plindex - index into CRB starting from 1.
1

pWillAlter - if gtrue, you can change the data collection at the index by assigning new

data to index positions of the returned CRB.

245

Chapter 80 CRB Reference

246

1 returns - pointer to a CRB instance. The CRB instance beltmgjse parent CRB and
there is no need to destroy it. If you have passed a temp crb in the pTmpCrb parameter,
your temp CRB instance is returned instead.

Example:

/I ** store two data collections in our CRB **

/I create our parent CRB
gcrb crb = CRBcreate 0;

/I create out temp crb for manipulating our child data collections
gcrb tempCrb = CRBcreate();

/I fetch our first data collection and set some data in it

/I Note: in our case childCrb will be identical to tempCrb

gcrb childCrb = CRBgetCrbRef(crb, temp Crb, 1, gtrue);
CRBsetLong(childCrb, 1, 15);

CRBsetLong(childCrb, 2, 120);

CRBsetReal(childCrb, 3, 1.5234);

/[fetch our second data collection and set some data in it

/l'in our first column we will store some text

childCrb = CRBgetCrbRef(crb, temp Crb, 2, gtrue);
EXTfldval fvalp(CRBgetDataRef(childCrb, 1, gtrue));
fvalp.setChar (fAiHell o Worl do);
CRBsetLong(childCrb, 2, 1024);

/l We must remember to destroy our tempCrb
CRBdestroy(tempCrb);

Note: You can nest data collections many levels deep.
See also CRBgetDataRef

CRBgetData()

void CRBgetData(qcrb pCrb, qcrbindex pindex,
gshort pFft, gshort pFdp, gfldval pCrbVal)

Retrieves a copy of the data stored at the specified index position in the CRB. You must
specify the data type and sub type @& ttata to be returned as. If the data in the CRB is of a
different type, Omnis will convert the data to the specified type.

1 pCrb - pointer to the CRB instance.

1 plindex - index into CRB starting from 1.

1 pFft - the data type to return the data as.

1 pFdp - thesub data type to return the data as.

API Functions

1 pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an
EXTfldval by calling EXTfldval::getFldVal.

Example:

EXTfldval fval;
CRBgetData(crb, 2, fftCharacter, dpDefault, fval.getFIldVal());

See als EXTfldval::getFldVal, CRBsetData, CRBgetDataRef

CRBgetDataRef()

gfldval CRBgetDataRef(qcrb pCrb, gcrbindex pindex, gbool pWillAlter)

Returns a reference to the index in the CRB. This is more efficient than calling
CRBgetData, since the data is notieap You can construct a EXTfldval from the returned
Omnis data pointer. You can use CRBgetDataRef to change the data at the given index, if
you specify gtrue for pWillAlter.

1 pCrb - pointer to the CRB instance.
1 plindex - index into CRB starting from 1.

1 pWillAlter - if gtrue, you can change the data at the index by assigning new data to the
EXTfldval.

9 returns - pointer to an Omnis data item.

Example:

/I change the data at index 2 using CRBgetDataRef
gcrb crb = CRBcreate();

EXTfldval fvalp(CRBgetDataRef(crb, 2, qtrue));
fvalp.setChar (fAiHell o Worldo);
See also CRBgetData, CRBsetData, CRBgetCrbRef

CRBgetFlatSize()

glong CRBgetFlatSize(gcrb pCrb)

Calculates the flattened size of the data in the given CRB instance. You will need to allocate
a buffer of the rurned size before you can flatten the data.

1 pCrb - pointer to the CRB instance.
1 returns - required size of the buffer for flattening the CRB data.
See also CRBflatten, CRBunflatten

247

Chapter 80 CRB Reference

CRBgetindexCount()

gshort CRBgetindexCount(gcrb pCrb)

Returns the numbef data items in the CRB. The index count will usually be in multiples
of 10. CRBgetindexCount does not return a count of the entries which have been used, it
returns the count of allocated indexes.

Note: Indexing starts from 1.
1 pCrb - pointer to the CRBnstance.

 returns - the index count.

CRBgetLong()

glong CRBgetLong(gcrb pCrb, gcrbindex pindex)

Returns the data stored at specified index as a long integer value. If the data stored at the
index is of a different type, the data is converted to a Ioteger.

1 pCrb - pointer to the CRB instance.
1 pindex - index into CRB starting from 1.
1 returns - the data as a long value.

See also CRBsetLong

CRBgetReal()

greal CRBgetReal(qcrb pCrb, gcrbindex pindex)

Returns the data stored at specified index as adrftppbint number. If the data stored at the
index is of a different type, the data is converted to a floating point number.

1 pCrb - pointer to the CRB instance.

1 pIndex - index into CRB starting from 1.

1 returns - the data as a floating point number.
See also CRBsetReal

CRBsetData()

void CRBsetData(gcrb pCrb, gcrbindex pindex, gfldval pCrbVal)
Sets the data in the CRB at the specified index position.
1 pCrb - pointer to the CRB instance.

248

API Functions

1 plindex - index into CRB starting from 1.

1 pCrbVal - pointer to an Omnisata item. You can retrieve this pointer from an

EXTfldval by calling EXTfldval::getFldVal.
Example:

/I the following example stores text at index 1

/I and a list with two rows at index 2

EXTfldval fval,

gcrb crb = CRBcreate();

fval .setChar (fiHell o Worl do) ;

CRBsetData(crb, 1, fval.getFldVal());

EXTqlist Ist(listScol);

|l st.insertRow(0, str255(fARow oneo),
|l st.insertRow(0, str255(fARow twoo0),
fval.setList(&lIst, gtrue);

CRBsetData(crb, 2, fval.getFldVal());

See also CRBgetData, CRBgetDataRef

CRBsetLong()

void CRBsetLong(gcrb pCrb, gcrbindex pindex, glong pLongValue)
Sets the data at the specified index to the given long integer value.
1 pCrb - pointer to the CRB instance.

1 plindex - index into CRB starting from 1.

1 plLongValue - the long integer vakito store.

See also CRBgetLong

CRBsetReal()

void CRBsetReal(qcrb pCrb, gcrbindex pindex, greal pRealValue)
Sets the data at the specified index to the given floating point number.
1 pCrb - pointer to the CRB instance.

9 plIndex - index into CRB starting frm 1.

1 pRealValue- the floating point value to store.

See also CRBgetReal

249

Chapter 86 CRB Reference

250

CRBunflatten()

gbool CRBunflatten(gqcrb pCrb, gchar* pBuffer, glong pBufferLen)

Converts flattened block of data back into a form suitable for a CRB instance to manage.
The block ofdata must have been flattened previously by a call to CRBflatten.

1 pCrb - pointer to the CRB instance which is to receive the new data.
1 pBuffer - pointer to the flattened data.

1 pBufferLen - length of the flattened data.

1 returns - if the data was succesdfutonverted, qtrue is returned.

Example:

/I *** load some data we previously written to disk. ***
/I *** See CRBflatten example ***
I read the data from disk into our buffer
EXTfile file(); file.open(str255(fAafil eNamed),
glong dataLen = f ile.getLength();
gchar* buffer = new gchar[dataLen J;
file.read(buffer, 0, dataLen);
file.close();
/I create our CRB instance and unflatten the data
gcrb crb = CRBcreate();
if (CRBunflatten(crb, buffer, dataLen))
/I success
else
// failure
Il whenwe have finished with the crb and buffer, destroy them
delete [] buffer;
CRBdestroy(crb);
// *%% end *kk
See also CRBflatten

EXTcrb Class Reference

EXTcrb Class Reference
EXTcrb::EXTcrb()

EXTcrb::EXTcrb()

The constructor for an EXTcrb object. It constructs an empty Omnis@idRlata
collection.

EXTcrb::EXTcrb()

EXTcrb::EXTcrb(gcrb pCrb)

Constructs a EXTcrb object, from an existing CRB instance. You may already have a data
collection in a EXTfldval for example. You can use EXTfldval::getCrbRef to retrieve the
CRB instancerbm the EXTfldval and construct a EXTcrb object from it. The EXTcrb
object makes the assumption that it does not own the CRB instance, and will not destroy it
when the EXTcrb object is destructed. You can always call EXTcrb::makeMine later, if you
wish towork with a copy of the CRB instance.

1 pCrb - pointer to a CRB instance.

Example:

/I get existing CRB instance from EXTfldval. Do not make a copy
EXTcrb crb(fval.getCrbRef(gfalse));

/I if we want a copy call makeMine
crb.makeMine();

See also EXTfldval::getCrbRef, EXTcrb::makeMine

EXTcrb()::~EXTcrb()
EXTcrb()::~EXTcrb()
The destructor for an EXTcrb object.

EXTcrb::copy()

void EXTcrb::copy(EXTcrb& pCrb)

Copies the CRB instance and data from the given EXTcrb object to this EXTcrb object.
1 pCrb - the EXTcrbobject from which to copy the CRB instance and data.

251

Chapter 80 CRB Reference

252

EXTcrb::crb()
qcrb EXTcrb::crb()

Returns the pointer to the CRB instance. You will need this function when you want to store
a data collection in an EXTfldval.

1 returns - pointer to the CRB instance.

Example:

EXTcrb crb;
EXTfldval fval,
fval.setCrbRef(crb.crb(), gfalse);

EXTcrb::flatten()

glong EXTcrb::flatten(gqchar* pBuffer, glong pBufferLen)

Converts the data in a CRB instance into a eptagorm flat format which is suitable for
storing on diskYou must allocate a sufficiently large buffer to receive the data. You can
call EXTcrb::getFlatSize prior to calling EXTcrb::flatten, to tell you the size of the required
buffer.

1 pBuffer - pointer to the buffer which is to receive the flattened data.
1 pBufferLen - buffer size in bytes.
9 returns - length of the flattened data.

Example:

EXTcrb Class Reference

/| *** store some cross platform data on disk ***

/I create the crb instance

EXTcrb crb;

/] store some text at index 1

EXTfldval fvalp(crb.getDataRef(1, gtrue));

fvalp.setC har (str255(fASome text to be stored on di
/] store some numbers at the next 3 index positions
crb.setReal(2, 4.999);

crb.setLong(3, 255);

crb.setLong(4, 1000);

/I allocate the buffer which will receive the flattened data
glong bufferLen = crb.get FlatSize();

gchar* buffer = new gchar| bufferLen |;

// flatten the data.

/I Note: in our case datalLen should be identical to bufferLen
glong dataLen = crb.flatten(buffer, bufferLen);

/l now we can write the data to disk

EXTfile file; file.create(str2 55(AFi |l eNameod), qtrue) ;
file.write(buffer, 0, dataLen);

file.close();

/I delete the buffer
delete [] buffer;

// *kk end *kk

See also EXTcrb::unflatten, EXTcrb::getFlatSize

EXTcrb::getCrbRef()
gcrb EXTcrb::getCrbRef(EXTcrb& pTmpCrb, gcrbindex pindelzpol pWillAlter)

It is possible to store data collections within data collections. You can do this by calling this
function. If required, when calling this function, the data at the given index is converted to
an Omnis data collection. If you have salefata collections stored in a CRB, you can
optimize performance by creating your own temp EXTcrb object for manipulating the
nested data collections, which you can specify for the pTmpCrb parameter. If you do not
specify your own temp CRB, Omnis will @& a CRB instance for each data collection
stored in the parent CRB. Specifying your own temp CRB works, because Omnis only
stores the data collection as a handle inside another CRB, and not the CRB instance itself
which is only used for manipulating tdata. If you want to change the contents of the data
collection, specify gtrue for pWillAlter.

253

Chapter 80 CRB Reference

254

1 pTmpCrb -temp EXTcrb object to be used for managing the data collection.
pindex - index into CRB starting from 1.

1 pWillAlter - if gtrue, you can change the datllection at the index by assigning new
data to index positions of the returned CRB.

1 returns - pointer to a CRB instance. The CRB instance belongs to the parent CRB and
there is no need to destroy it. If you have passed a temp crb in the pTmpCrb paramete
your temp CRB instance is returned instead.

Example:

I/l ** store two data collections in our CRB **

/I create our parent CRB and

[/l temp CRB for manipulating our child data collections
EXTcrb crb; EXTcrb tempCrb;

/I fetch our first data collection and ®t some data in it

/I Note: we ignore the return value since it will point to the
/I CRB of our temp CRB object

crb.getCrbRef(tempCrb, 1, gtrue);

tempCrb.setLong(childCrb, 1, 15);

tempCrb.setLong(childCrb, 2, 120);

tempCrb.setReal(childCrb, 3, 1.523 4);

/I fetch our second data collection and set some data in it
[/ in our first column we will store some text
CRBgetCrbRef(tempCrb, 2, gtrue);

EXTfldval fvalp(tempCrb.getDataRef(1, qtrue));
fvalp.setChar(strl15(fAHell o Worldo));
tempCrb.setLong(2, 1 024),

Note: You can nest data collections many levels deep.
See also EXTcrb::getDataRef

EXTcrb::getData()

void EXTcrb::getData(gcrbindex pindex, gshort pFft, gshort pFdp, gfldval pCrbVal)

Retrieves a copy of the data stored at the specified indexgpmosithe EXTcrb object.
You must specify the data type and sub type of the data to be returned as. If the data in the
CRB is of a different type, Omnis will convert the data to the specified type.

1 plindex - index into CRB starting from 1.
1 pFft - the dataype to return the data as.
1 pFdp - the sub data type to return the data as.

EXTcrb Class Reference

1 pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an
EXTfldval by calling EXTfldval::getFldVal.

Example:

EXTfldval fval;

crb.getData(2, fftCharacter, dpD efault, fval.getFIldVal());

See also EXTfldval::getFldVval, EXTcrb::setData, EXTcrb::getDataRef

EXTcrb::getDataRef()

gfldval EXTcrb::getDataRef(gcrb pCrb, gcrbindex pindex, gbool pWillAlter)

Returns a reference to the index in the EXTcrb. This is méiceesit than calling
EXTcrb::getData, since the data is not copied. You can construct a EXTfldval from the
returned Omnis data pointer. You can use EXTcrb::getDataRef to change the data at the
given index, if you specify gtrue for pWillAlter.

1 plindex - index into CRB starting from 1.

1 pWillAlter - if gtrue, you can change the data at the index by assigning new data to the
EXTfldval.

9 returns - pointer to an Omnis data item.
Example:

/I change the data at index 2 using EXTcrb::getDataRef

EXTcrb crb;

EXTfldval f valp(crb.getDataRef(2, qtrue));
fvalp.setChar(strl15(fAHell o Worldo));

See also EXTcrb::getData, EXTcrb::setData, EXTcrb::getCrbRef

EXTcrb::getFlatSize()

glong EXTcrb::getFlatSize()

Calculates the flattened size of the data in the EXTcrb object. Ybueet to allocate a
buffer of the returned size before you can flatten the data.

1 returns - required size of the buffer for flattening the CRB data.
See also EXTcrb::flatten, EXTcrb::unflatten

255

Chapter 80 CRB Reference

256

EXTcrb::getindexCount()

gshort EXTcrb::getindexCount()

Returnsthe number of data items in the EXTcrb object. The index count will usually be in
multiples of 10. EXTcrb::getindexCount does not return a count of the entries which have
been used, it returns the count of allocated indexes.

Note: Indexing starts from 1.

 returns - the index count.

EXTcrb::getLong()

glong EXTcrb::getLong(gcrbindex pindex)

Returns the data stored at specified index as a long integer value. If the data stored at the
index is of a different type, the data is converted to a long integer.

1 pindex- index into CRB starting from 1.
1 returns - the data as a long value.

See also EXTcrb::setLong

EXTcrb::getReal()

greal EXTcrb::getReal(gcrbindex pindex)

Returns the data stored at specified index as a floating point number. If the data stored at the
index is of a different type, the data is converted to a floating point number.

1 plindex - index into CRB starting from 1.
1 returns - the data as a floating point number.

See also EXTcrb::setReal

EXTcrb::makeMine()
void EXTcrb::makeMine()

If the EXTcrb objetdoes not own the CRB instance, calling this function will make a copy
of the CRB instance and set the ownership flag to true. If the EXTcrb object already owns
the CRB instance, this function does nothing.

EXTcrb Class Reference

EXTcrb::setData()

void EXTcrb::setData(gcrbindepindex, gfldval pCrbVval)
Sets the data in the EXTcrb object at the specified index position.
1 plIndex - index into CRB starting from 1.

1 pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an
EXTfldval by calling EXTfldval::getFldVa

Example:

/I the following example stores text at index 1

// and a list with two rows at index 2

EXTfldval fval,

EXTcrb crb;

fval .set Char (str255(fAHell o Worldo)) ;
crb.setData(1, fval.getFldVal());

EXTqlist Ist(listScol);

Il st.insertRow(0, stm3d55@ARoew on

|l st.insertRow(0, str255(ARow twoo), 2);
fval.setList(&lIst, gtrue);

crb.setData(2, fval.getFldVal());

See also EXTcrb::getData, EXTcrb::getDataRef

EXTcrb::setLong()

void EXTcrb::setLong(gcrbindex pindex, glong pLongValue)
Sets the data #te specified index to the given long integer value.
1 plindex - index into CRB starting from 1.

1 pLongValue - the long integer value to store.

See also EXTcrb::getLong

EXTcrb::setReal()

void EXTcrb::setReal(gcrbindex pindex, qreal pRealValue)

Sets the datat the specified index to the given floating point number.
1 pIndex - index into CRB starting from 1.

1 pRealValue- the floating point value to store.

See also EXTcrb::getReal

257

Chapter 86 CRB Reference

EXTcrb::unflatten()

gbool EXTcrb::unflatten(gchar* pBuffer, glong pBufferLen)

Converts flattened block of data back into a form suitable for a CRB instance to manage.
The block of data must have been flattened previously by a call to EXTcrb::flatten.

1 pBuffer - pointer to the flattened data.

1 pBufferLen - length of the flattened data.

1 returns - if the data was successfully converted, gtrue is returned.
Example:

/l *** load some data we previously written to disk. ***
/I *** See EXTcrb::flatten example ***
I read the data from disk into our buffer
EXTfile file(); file.opeNdmsedy25¢4t(Mde,] qgtrue)
glong dataLen = file.getLength();
gchar* buffer = new qchar[dataLen J;
file.read(buffer, 0, dataLen);
file.close();
/I create our CRB instance and unflatten the data
EXTcrb crb;
if (crb.unflatten(crb, buffer, dataLen))
/I success
else
/[failure
/I delete the buffer
delete [] buffer;
// *%k% end *%k%

See also EXTcrb::flatten

258

Introduction

Chapter 90 EXTqlist
Reference

Introduction

The EXTqlist class gives your external components access to the Omnis list data object.
The list object handgeall of the memory management for columns and rows of data. You
can create lists in your components, or you can receive/send the list to/from Omnis. The list
object is a very powerful object in Omnis, but gives you even more power when included in
externdcomponents. General purpose lists do not need to be defined when writing a
component as they do within Omnis using befine listcommand. The list object adjusts
column information as you add it. Normal list objects have to store the same typeiof data
each column. Omnis lists support this, but can also support different data types in the same
column in every row added.

Each Omnis list has its own current row, maximum number of rows and a set of selected
rows, that can all be inspected or alteresgisiarious member functions.

EXTqglist Memory Issues

The EXTqlist class can be constructed in two ways, one as a reference to another EXTqlist,
the other as an individual list. You should think of the class as a containe, hesicome

data representing list rows and columns, or as a pointer to another EXTqlist object.
Depending on the type of list you create and what you do with it during its life, what you do
during destruction of the EXTlist objectusry important.

Creating a standalone list

If you want your component to store some private items in a list (such as the calendar
example), the component first needs to declare an EXTqlist* member. At some point in

your component, you need to create a new instance of a EXddligt ect . Use t he
operator and specify the lists data type during construction. For example:

259

Chapter 96 EXTqlist Reference

/I Example using a EXTqlist* as a class member
class sampleClass
{
private:
EXTqlist* mMyList;
public:
sampleClass();
~ sampleClass();
void doSomet hing();

sampleClass::sampleClass()
{
mMyList = new EXTqlist(listScol);
}
Now you have an EXTqlist object, you can use the various member function to add rows,
delete rows or manipulate column data.
void sampleClass::doSomething()
{
for (glongi=1 ;1<=10; i++)
{
str255 textForRow;
glongToString(i, textForRow);
text ForRow.insert(str80(AThis is row f),
mMyList - >insertRow(0, &textForRow, i);

}

When you have finished with the list, you must delete the contents of the list, ¢hest th
container. To delete the contents of the EXTqlist, you can assign the listqiijedt/hen
the contents of the list have been emptied, you can delete the EXTqlist object.
void sampleClass::~sampleClass()
{

/I first clear the contents of the listobject

*mMyList = gnil;

delete mMyList;
}

REMEMBER : When the EXTqlist object is destructed, the contents are not automatically
deleted. You must at some point clear the contents by assigning thegpliject

260

Introduction

Creating a reference to another list

Someimes you will need or be given a reference to another EXTqlist. Maybe Omnis is
calling you to paint a line in a derived list control, or a parameter is being passed to you
which is a list variable. In both cases, the EXTqlist object you have will berameéeto
another list object. This is very important, especially during destruction of the EXTlist
object.

Above you created a standalone list. Here you create a reference to a list object and add a
New row.

/'l Example if you used 6newd during constructi
void sampleClass::makeAReference()
{

EXTqlist* myRef = 0;
myRef = new EXTqlist(mMyList);

str255 textForRow(fiAdded by the referencebo
myRef- >insertRow(0, &textForRow, 999);

delete myRef;

or

void sampleClass::makeAReference()

{
EXTqlis t* myRef(mMyList);
str255 textForRow(fiAdded by the referencebo
myRef- >insertRow(0, &textForRow, 999);

}

I n the above examples, the EXTqlist refer:e
scope ending. As the EXTqlist was only used agexence, that is all you need to do.

261

Chapter 96 EXTqlist Reference

If you had done:

void sampleClass::makeAReference()

{
EXTqlist* myRef(mMyList);
str255 textForRow(fAAdded by the referenceo
myRef- >insertRow(0, &textForRow, 999);
*myRef = gnil;
}

t he or i gi naWwouldnodohgerdmandiany corgent®as you have deleted it.

Note: If you intend to use the EXTfldval class with your EXTqlist objects, see the
EXTfldval section on memory issues.

Structures and Enumerations
listtype

An enum defining the datstorage method used by the list object.

listVlen

Variable length data will be stored.

listScol

Simple text |ist storage with support

ONLY supports one column.

EXTsortltem
A structure that dfines sorting information for a single column. It has the following
members.

typedef struct
{

gshort mSortColumn;
gbool mUpperCase;
gbool mDescending;

} EXTsortltem;

1 mSortColumn - The column number to be sorted. Columns number start from 1.
1 mUpperCase- gtrue if the column values should be treated as uppercase during sort.

1 mbDescending qtrue if the column values should be sorted in descending order.

262

EXTqlist Class Reference

EXTsortStruct

A structure that defines a group of sort fields (a group of EXTisartbbjects)

typedef struct
{

gshort mSortCount;
EXTsortltem mSortLines[cMaxSortltems];
} EXTsortStruct;

T mSortCount - The number of sort items to use from this structure.
I mSortLines[cMaxSortltems] - An array of sort items.

cMaxSortltems is the maxinum number of columns that can be used on a sort.

EXTqlist Class Reference
EXTqlist::EXTqlist()

EXTqlist::EXTqlist()

The constructor for an empty EXTqlist object. The EXTqlist will not contain any valid data
and can not be useatil EXTqlist::clear has been called.

EXTqlist::EXTqlist()
EXTqlist::EXTqlist(listtype pListType)
The constructor for an empty EXTqlist object.

1 pListType - The type of list to initialize the new list object as.

EXTqlist::EXTqlist()
EXTqlist::EXTqlist(Isttype* pList)

The constructor for an Omnis list. This constructor does not make a copy of the list data, so
there is no need to destroy the list data by assigning gnil.

1 pList - Pointsto the internal Omnis list.

See also EXTqlist::getLstPtr

263

Chapter 96 EXTqlist Reference

264

EXTqlist::EXTqlist()
EXTqlist::EXTqlist(EXTqlist* pListData)

The constructor for a new EXTqlist object based on existing list data. EXTqlist *
information can b retrieved from EXTfldval objects.

1 pListData - The list data to build a list object from.

EXTqlist::EXTqlist() (v3.0)
EXTqlist::EXTqlist(gbyte* pAdd, glong pLen, gret* pErr = NULL)

The constructor for a new BXlist object based on existing list data in disk format. The
disk format list data must have been created previously by calling EXTqlist::getBinLen and
EXTqlist::getBinary.

1 pAddi Address of the list data in binary form.
1 pLeni Length in bytes of the listata.
1 pErr i Optional error return. Returns e_ok if the list was constructed successfully.

See also EXTqlist::getBinLen, EXTqlist::getBinary

EXTqlist::~EXTqlist()
EXTqlist::~EXTqlist()
The destructor for an EXTqlist object.

EXTqlist::addCol()

gshort EXTqlist::addCol(gshort pCol, ffttype pFft, gshort pFdp, glong pFldLen, strxxx*
pClassname = NULL, strxxx* pColumnname = NULL)

Adds a new column to the list.
1 pCol - The column number to insert at.

1 pFft - The data type for the new column.

1 pFdp - The subdata type for the new columrsee EXTfldval.
1 pFldLen - The data length for the new column.

1 pClassname- Specifies the optional class name.

1 pColumnname- Specifieshe optional column name.

Note: If you do not specify column types you may encounter problems sorting lists
columns.

EXTqlist Class Reference

EXTqlist::addCol()

gshort EXTqlist::addCol(ffttype pFft, gshort pFdp, glong pFldLersttxxx* pClassname)
Adds a new column to the list.

1 pFft - The data type for the new column.

1 pFdp - The subdata type for the new columrsee EXTfldval.

1 pFldLen - The data length for the new column.

1 pClassname- Specifies the optional class name.

1 returns i The new column in the list, zero if unsuccessful.

Note: If you do not specify column types you may encounter problems sorting lists
columns.

EXTqlist::addColEx() (v5.0)

gshort EXTqlist::addColEx(gshort col, ffttype fft, gsh@dp, glongfln, strxxx* classname,
strxxx* columnname, gbool noclear)

Adds a new column to the list with support for additional attributes.

coli 1-based column number the new column.

fft 1 Omnis data type of the new column.

fdp 1 Omnis suktype of the new column.

classnaméd Stores an optional classname with the column definition.

columnamei The name of the new column.

= =4 4 -4 A -

nocleari If gtrue, the contents of the list are left intact after the new column is added,
otherwise the list contents are cleared.

EXTqlist::clear()

void EXTqlist::clear(listtype pListType)
Clears the | istbds contents, definition,

pListType - The new type for a list.

265

Chapter 96 EXTqlist Reference

266

EXTqlist::clearRow()

gret EXTqlist::clearRow(glong pRow)
Clears the entents from a row in the list.
1 pRow - The row number to be cleared

1 returns - e_ok if the row was cleared successfully.

EXTqlist::colCnt()
gshort EXTqlist::colCnt()
Returns the number of columns used in this list.

 returns - Returnsthe column count.

EXTqlist::convertEncoding() (v4.2)

void EXTqlist::convertEncoding(gbool pSlUnicode, gbool pDestisUnicode)

Converts the encoding of character data stored in thedigy suitable for lists with a

definition that is allowed for a wedervice parameter or return value.
convertToEncoding(qgtrue,gfalse) causes all character data stored in the list to be converted
to nonrUnicode Omnis character set data. convertToEncoding(gfalse,gtrue) causes character
data stored in the list to be conwezttto Unicode data.

1 pSrclsUnicoderi If gtrue, indicates that text written to the list is Unicode data.

1 pDestlsUnicode- If gtrue, indicates that text read from the list should be returned as
Unicode data.

EXTqlist::copyDef()

gbool EXTglist::copyDef(EXTqlist pList, gbool pRedefine)

Copies the list definition from the passed list object to this list object.

9 pList - The list to take the definition from.

1 pRedefine- gtrue if this list is defined from empty, or columns are redefined.

9 returns - gtrue if the definition copy was successful.

EXTqlist Class Reference

EXTqlist::defineFromSQLClass() (v4.2)

gbool EXTqlist:defineFromSQLClass(strxxx &pSQLClassName, strxxx &pErrorText)

Defines the list object from the specified Omnis schema class returning gtruecesssuc
gfalse otherwise.

1 pSQLClassName- The name of an Omnis schema class to use.

1 pErrorText T An error message returned in the event that the list could not be defined.

EXTqlist::deleteRow()

gret EXTqlist::deleteRow(glong pRo)
Deletes a row from the list.
1 pRow - The row number to be deleted.

1 returns - e_ok if the row was deleted successful.

EXTqlist::dup()

gbool EXTqlist::dup(EXTqlist * pList)

Duplicates the contents of pList in to this list.

9 pList - The lists containing the data to be duplicated.

1 returns - Returns qtrue if the data was duplicated successfully.

Note: The contents of the list may have to be cleared using the gnil assignment.

See EXTglist Memory | ssuesdé above.

EXTqglist::empty()
gret EXTqlist::empty()

Clears the | istdéds contents, |l eaving the

EXTqlist::getBinary()
void EXTqlist::getBinary(qchar* pDiskAddress)

Copies the contents of the list ebj to the address supplied, storing it as a simple flat
buffer. The list can be reconstructed with the correct EXTqlist constructor.

1 pDiskAddress- The address to save the list contents to.
See also EXTqlist::getBinLen, EXTqlist::EXTqlist(qbyte*, glongjret*)

267

Chapter 96 EXTqlist Reference

268

EXTqlist::getBinLen()

glong EXTqlist::getBinLen()

Returns the size needed to store the contents of the list object as a simple flat buffer.
1 returns - The length needed to store to disk.

See also EXTqlist::getBinary

EXTqlist::getCol()

void EXTqlist::getCol(gshort pCol, gbool pinclfilename, strxxx& pName)
Retrieves the column name for the column specified.

1 pCol - The column number to retrieve the name.

1 pinclfilename - gtrue if the filename should be included.

1 pName- The string variable populated with the column name after the call.

Note: The name of a column corresponds to the name used when the list was defined using

the 6Define | istd Omnis command, or using

EXTqlist::getCol()

void EXTqlist::getCol(gshort pCol, strxxx& pName)

Retrieves the column name for the column specified.

1 pCol - The column number to retrieve the name.

1 pName- The string variable populated with thelumn name after the call.

Note: The name of a column corresponds to the name used when the list was defined using

the 6Define |listd Omnis command, or using

EXTqlist::getColType()

void EXTqlist::getColTypéqgshort pCol, ffttype& pFft, gshort & pFdp)

void EXTqlist::getColType(gshort pCol, ffttype& pFft, gshort & pFdp, glong & pLen)
Retrieves data type information from a column number.

1 pCol - The column number for which to retrieve data type information.

1 pFft - The data type for the column is returned here.

1 pFdp - The subdata type for the column is returned here.

1

pLen - The maximum data length of the column.

EXTqlist Class Reference

EXTqlist::getColVal()

void EXTqlist::getColVal(glong pRow, gshort pCdittype pFft, gshort pFdp,
EXTfldval& pFval)

Returns the contents from a row and column in the form of a EXTfldval object. The data
can be optionally converted.

1 pRow - The list row to access.

1 pCol - The list column to access.

1 pFft - The type the returng data should be converted to.

1 pFdp - The type the returning data should be converted to (sub type) see EXTfldval.
1 pFval - The EXTfldval object modified to hold the contents of the row/column.

Note: T h @Fval6parameter is a copy of the columns corgefhe memory associated
with the copy pFvalod eplaertaente tvelren st hdee léet e d.

EXTqlist::getColVal()

gbool EXTqlist::getColVal(glong pRow, gshort pCol, EXTfldval& pFvalp)
Populates a readnly EXTfldval object with the data for row/column.

1 pRow - The list row to access.

1 pCol - The list column to access.

1 pFvalp - An EXTfldval modified to allow access to row/column.

Returns qtrue if successful, gfalse otherwise. Developers should note fagefig
returned (e.g. when requesting a row greater than the row count) the contents of pFvalp
remain unchanged.

Note: As the EXTfldval objectis marked asreach | vy, any call s t o moc
data (e.g. via setChar, setLong etc..) will fdiydu wish to modify the lists data you must
use EXTqlist::getColValRef with pWillAlter set to qgtrue.

EXTqlist::getColValRef()

gbool EXTqlist::getColVal(glong pRow, gshort pCol, EXTfldval& pFvadool
pWillAlter)

Populates a EXTfldval object with the data for row/column.
1 pRow - The list row to access.

1 pCol - The list column to access.

269

Chapter 96 EXTqlist Reference

1 pFvalp - An EXTfldval modified to allow access to row/column.
1 pWillAlter - gtrue if you want to modify the ctents ofpFvalp.

Returns qgtrue if successful, gfalse otherwise. Developers should note that if gfalse is
returned (e.g. when requesting a row greater than the row count) the contents of pFvalp
remain unchanged.

Note: If pWillAlter if false (i.e. equivalento calling EXTqlist::getColVal(glong, gshort,
EXTfldval&) then the EXTfldval object is marked as realy. Consequently any calls to
modi fy the EXTfldvals6é data (e.g. vVvia set(

EXTqlist::getCurRow()

glong EXTqlist::getCurRow()
Returns the current row number.

returns - Returns the current row number associated with this list.

EXTqlist::getLstPtr()

Isttype* EXTqlist::getLstPtr()

Returns the pointer to the Omnis list data.

EXTqlist::getColFlags() (v4.1)

glong EXTqlist::getColFlags(gshort col)

Returns the flags describing an individual column of the list. Flag values are listed in
EXTDAM.HE and include the following: cTABflaglsPrimaryKey,
cTABflagExcludeFrominsert, cTABflagiEludeFromUpdate, cTABflagCalculated,
cTABflagSequenceType & cTABflagExcludeFromWhere

1 coli 1 based column number to inspect.

EXTqlist::getColNullinfo() (v4.1)

gbool EXTqlist::getColNullinfo(gshort col)
Returns qgtrue if the list column supports NULL valugialse otherwise.

1 coli 1 based column number to inspect.

270

EXTqlist Class Reference

EXTqlist::getRow()

void EXTqlist::getRow(glong pRow, str255* pString)

Retrieves the string value added with eithieisertRow or ::;putRow function.
1 pRow - The row to extract the string from.

1 pString - The string to copy the list sting into.

Note: listScol only.

EXTqlist::getRow()

void EXTqlist::getRow(glong pRow, glong& pMark)

Retrieve the | on ¢eithendnsekitRow oraputRev fuactiosh.e d wi t

T pRow-The row to extract the &émarkd value f
1 pMark - The mark value stored in the list is returned here.

Note: listScol only.

EXTqlist::getRowCrb()

gcrb EXTqlist::getRowCrb(glong pRow, gbool pWillAlter = tfa.)
Returns a pointer to the Omnis data collection of a list.
1 pRow - specifies the row of the list the data collection will reference.

1 pWillAlter - specify gtrue if you want to make changes to the data of the row.

Returns the poicollecian. t o t he | i stds dat a

Warning: Once you have retrieved the pointer to the data collection, changing the current
row of the list will change the data in the collection to that of the new current row. But the
new row will not be marked as changed until you executéhangetRowCrb(rowNumber,

gtrue). If you do not mark a row as changed, any changes you make to the data will be lost
when the current row is changed.

/I example changing the data of column 3 in row 2 of a list
EXTqlist Ist(listVlen);

Ist.setFinalRow(5);

gcrb crb = Ist.getRowCrb(2, gtrue);

CRBsetLong(crb, 3, 255);

/I no further action needs to be taken.

/I column 3 of row 2 will now contain the value 255

271

Chapter 96 EXTqlist Reference

EXTqlist::getRowMax()

glong EXTqlist::getRowMax()
Returns the maximumumber of rows this list can have.

9 returns - Returns the maximum row count.

EXTqlist::insertRow()

glong EXTqlist::insertRow(glong pBefore = 0, str255* pText = NULL, glong pMark = 0)
Inserts a new row into the list.

1 pBefore - The row number to insert the new row before. 0 indicates the end of the list.
1 pText- The text to be inserted in to the list for the new rgWote: listScol only.

1 pMark - A long value that can be added to identifg tiew rowg Note: listScol only.

9 returns - The new line number is returned if the insert was successful.

EXTqlist::isRowSelected()

gret EXTqlist::isRowSelected(glong pRow, gboolgdsed = gfalse)

Returns the selected state of a row.

1 pRow - The row to test.

1 plsSaved- gtrue if the check is to be made on the saved selected states.

1 returns - gtrue if the row is selected, and gfalse if the row is not selected.

EXTqlist::loadRows()

void EXTqlist::loadRows(gqchar* pRowData)

Takes a 6+6 separated string and converts
iRowl+Row2+Row30.

1 pRowData- A pointer to a estyle string to be converted into rows for the list.

The listis redefined as listScol type.

EXTqlist::operator = (gniltype gnil)
void EXTqlist::operator =(gniltype gnill)

Frees the memory used by the list.

272

EXTqlist Class Reference

EXTqlist::putColVal()

void EXTqlist::puColVal(glong pRow, gshort pCol, EXTfldval& pFval)

Sets the contents of a column value from the passed EXTfldval object.

1 pRow - The list row to access.

1 pCol - The list column to access.

1 pFval-The EXTfldval object whodsn.data shoul

Note:T h @Fvallop ar amet er 6s contents are duplicate
for the duplicated contents is ownpgFdldby tt
parameter is deleted when the parameter is deleted.

EXTqlist::putRow()

gret EXTqlist::putRow(glong pRow, str255* pText = NULL, glong pMark =0)
Replaces the contents for a particular row.

1 pRow - The row number to be modified.

1 pText- The text to be stored in the list for the new rguNote: listScol only.

1 pMark - A long value that can be added to the new pWMote: listScol only.

9 returns - e_ok if the contents were replaced successfully.

EXTqlist::rowCnt()

glong EXTqlist::rowCnt()
Returns the number of rows in this list.

9 returns - Returns the row count.

EXTqlist::selectRow()

gret EXTqlist::selectRow(glong pRow, gbool pSelect, gbool plsSaved = gfalse)
Selects or degects a row in the list.

1 pRow - The row to select or deselect.

1 pSelect- gtrue if the row is to be selected.

1 plsSaved- gtrue if the change of state is to happen to the lists saved selection buffer.
1

returns - e_ok if the lines state changed.

273

Chapter 96 EXTqlist Reference

274

Note: Contmol over the list selections is handled in the Omnis environment via command
such as Swap selected and saved.

EXTqlist::setCol() (v5.0)

void EXTqlist::setCol(gshort col, strxxx* name)
Changes the name of an existing list column.
1 col- 1-based column number

name- New column name.

EXTqlist::setCurRow()

gret EXTqlist::setCurRow(glong pCurrentRow)
Sets the current row number for this list object.
1 pCurrentRow - The new current row for this list.

1 returns - e_ok if the current rowhanged.

EXTqlist::setFinalRow()

gret EXTqlist::setFinalRow(glong pLastRow)

Maodifies the list to contain the number of rows as specifiedlastRow. If necessary
rows are deleted or empty rows are added.

9 pLastRow - The nev final row number of the list.

9 returns - e_ok if the final row was set.

EXTqlist::setRowMax()

gret EXTqlist::setRowMax(glong pLastMaxValue)
Prevents the list from extending beyond the value passed.
1 pLastMaxValue - The new &st row for the list.

1 returns - e_ok if the lists max line is changed.

Note:| fpLastMaxValue6 i s | ess than the number of
of rows the list current | plLastMagRowbe.c o me s

t he

EXTqlist Class Reference

EXTqlist::sort()
gbool EXTglist::sort(EXTsortStruct* pSortltems)

Sorts the list object according to the sort options set in the passed sorting structure.

1 pSortitems - The sorting options for columns in the list.

il

returns - Returns gtrue if the list wesorted, and gfalse if the sort failed.

Example:

EXTqlist* paramlist = new EXTqlist (listVlen);
for (. gshort rows = 1; rows<=10; rows++)

{

}

glong paramrow = paramlist - >insertRow();

/| Parameter name
paramlist - >getColValRef(paramrow, 1, cva I, gtrue);
cval.setChar(newCharValue);

/I fft Data type
paramlist - >getColValRef(paramrow, 2, cval, gtrue);
cval.setLong(newLongValue2);

[EXTD_ flags
paramlist - >getColValRef(paramrow, 3, cval, gtrue);
cval.setLong(newLongV alue3);

paramlist = gnil;
delete paramlist;

275

Chapter 108 EXTfldval Reference

Chapter 100 EXTfldval
Reference

Introduction

The EXTfldval class gives your external components a generic data storage object. All data
passed to and from Omnis and your component is in thedbenEXTfldval object. This

object can store a variety of datges, offering some basic conversion between various

data formats. For example, you can put a long numeric value into the EXTfldval class and
retrieve it in string or data form.

EXTfldval Memory Issues

The EXTfldval class can be constructed in two ways, one as a reference to a known Omnis
field such as #S1, or as an individual object. You should think of the class as a container,
which either has some data stowethin it, or as a reference to another data value. The
container can store a range of difaes from pictures and lists to simple data types such as
numbers and strings. The memory associated with the EXTfldval clalsgigsowned by

Omnis, with the pssible exception when the container is storing a list (see below). If the
EXTfldval object is being used to store data as opposed to being used as a reference, the
memory is deleted when the object i stofdel et
the EXTfldval object going out of scope. Some API calls such as ECOaddParam cause the
memory used by the EXTfldval object to be disassociated, thus Omnis takes ownership of
the memory from the EXTfldval and uses it elsewhere. When this happens, THe\EX

object does not delete the memory on destruction. These APIs will be marked in this
document.

/I Storing a string and getting a number
void myMethod()
{
EXTfldval myFldval;
str255 stringWithNumber (A1000) ;

myFldval.setChar(stringWithNumber);
glong number = myFldval.getLong();

if (number==100)

{

276

Introduction

/I string was converted to a number ok.

In the above example, an EXTfldval object is storing a string. When the object goes out of
scope, Omnis will delete the memory used to store theysBelow is another example

where the data being stored is unknown (binary), but again Omnis will delete the memory
when the object goes out of scope or is deleted. All the example has to do is take care of
deleting the memory it used to assign the EXMV4l object.

/I Storing some binary information in an EXTfldval
void myMethod()
{

EXTfldval myFldval;

HGLOBAL someBinary = NULL;

/I Allocates some memory and returns it.

someBinary = getSomeBinaryData();

if (someBinary)

{
myFldval.setHandle(so meBinary, fftBinary);
MEMglobalFree(someBinary);

}
EXTfldvals and EXTqlists

Generally, all EXTfldval objects have their own memory to store the data contents. The one
exception to this rule can be the storage ofilt®bject, EXTqlist. EXTqlist objects can

have their own data storage (see EXTqlist object). Some lists can become very large, such
as lists of rows received from a SQL database. When Omnis needs to pass lists objects
around, it uses the EXTfldval adgjt. For the sake of memory and speed, the EXTfldval
object can carry a reference to a list object, rather than a copy of the object. When you
assign a list to an EXTfldval object, you have to specify if the data to be stored will be a
reference to a listbject, or if it will store the contents of a list object. If you want to store a
reference, the referencedsly valid while the EXTqlist is valid. That is, if you delete the
EXTqlist, the reference stored is no longer valid, and when used will cauasha I you

decide to store the contents of a list object, the EXTfldval takes ownership of the memory
used to store the content of the list from EXTqlist object, and as such the EXTqlist contents
should not be cleared by using t@l assignment as itmlonger owns the memory.

277

Chapter 108 EXTfldval Reference

278

Here is an example of using an EXTfldval object to store the contents of a EXTqlist.

/I Using a EXTfldval to store an EXTqlist
void myMethod(EXTfldval& pFldval)

{

EXTqlist* tempList = new EXTqlist(listVien);

for (gshorti = 0; i<10; i++)

{
EXTfldval cval;
glong newRow = tempList - >insertRow();
tempList - >getColValRef(newRow, 1, cval, gtrue);
cval.setLong(i);

}

pFldval.setList(&templList, gtrue);
delete templList;

}

In the above example, an EXTfldval objgetssed in to the function will be given a list to
store. The temporary EXTqlist object is first filled with some new rows, then the contents of
the list are transferred to the EXTfldval object. At the end of the function, the list is deleted.

Getting a list from an EXTfldval

Once you have been given an extfldval object with a list in it, you can retrieve it in two

ways, as a complete list object, or as a reference. Remember in the EXTglist section you
specified the EXTqlist object can be a reference tetadr an individual object. When you

ask the EXTfldval object for a list, you can choose what sort of list is returned. If you

choose a complete object, a new EXTqlist is created with a duplicate of the list contents
associated with the EXTfldval objedthe memory for this object needs to be emptied using
theqgnil assignment operator before the object is deleted. If you choose the reference, a new
EXTqlist is created, but as a reference to another EXTqlist object. This also needs to be
deleted.

Introduction

Here is arexample building on from the previous example. It uses the EXTfldval object
that was passed in to the function above to extract a list from.

/I Using a EXTfldval to store an EXTqlist
void myMethod(EXTfldval& pFldval)
{

é(see above)

}

/| Takes a comjete copy of the list, adds a row and frees the list
void alterList()
{

EXTfldval myFldval,

EXTqlist* myQlist;

I/ call to fill a list
myMethod(myFldval);

/I now get a duplicate of the list stored
myQlist = myFldval.getList(qtrue);

// add another row

EXTfldval cval;

glong newRow = myQlist.insertRow();

myQlist - >getColValRefPtr(newRow, 1, cval, gtrue);
cval.setLong(999);

/I do something else
callAnotherFunction(myQlist);

/I free duplicated list
*myQlist = gnil;

delete myQlis t;

/I real list stored in myFldval is deleted as scope ends.

279

Chapter 106 EXTfldval Reference

280

Here is another example, but this does not take a copy and operates on a reference to the

list.

Note: If you get a EXTqlist as a reference from an EXTfldval, you MUST delete the object,
but d not use the gnil assignment operator because that clears the original.

/I Gets a reference to a list, adds a row and frees reference.
void alterAnotherList()

{

EXTfldval myFldval;
EXTqlist* myQlist;

I/ call to fill a list
myMethod(myFldval);

/I now get a reference to the list
myQlist = myFldval.getList(qfalse);

/I add another row

EXTfldval cval;

glong newRow = myQlist.insertRow();

myQlist - >getColValRef(hewRow, 1, cval, gtrue);
cval.setLong(999);

/I do something else
callAnothe rFunction(myQlist);

/I free reference list
delete myQlist;

Introduction

The next example demonstrates a crash, as an EXTqlist reference is used after the
EXTfldval has been deleted.

/I Gets a reference to a list, and uses it after the original

/I has been deledd.
void doNotDoThis()

{
EXTqlist* myQlist;
/I extra scope added for example
{
EXTfldval myFldval;
/I call to fill a list
myMethod(myFldval);
/I now get a reference to the list
myQlist = myFldval.getList(gfalse);
}
/I at this point, the EXTfldval has been deleted, so the list
/I reference no longer points to a good list
/'l Any call below that uses oO6myQlistd causes
/I add another row
EXTfldval cval;
glong newRow = myQlist.insertRow();
myQlist.getColValRef(newRow, 1, cval, qtrue);
cval.setLong(999);
/I do something else
callAnotherFunction(myQlist);
Il free reference list
delete myQlist;
}

If the above example had taken a copy of the list as shown below, the crash would not
occur.

281

Chapter 108 EXTfldval Reference

/I extra scope addedor example

{
EXTfldval myFldval;

/I call to fill a list
myMethod(myFldval);

/I take a copy
myQlist = myFldval.getList(qtrue);
}

As it is a complete copy, deleting the EXTqlist* at the end of the function also needs to
delete the coents like this.

/I free reference list
*myQlist = gnil;
delete myQlist;

Enumerations and Structures
ffttype

An enum defining the data storage types that the EXTfldval supports.

fftNone
No valid object is stored

fftCharacter
Character or ational character storage

fftBoolean
Simple Boolean storage.

fitDate
Date, Time and DateTime storage

fftNumber
Real number storage

fftinteger
4 or 2 byte integer storage

fftPicture
Picture image storage

fftBinary
Binary storage

282

Enumerations and Structures

fftList
List storage

fftRow
Row storage

fftObject
Object storage

fftCrb
Omnis data collection (see EXTqcrb)

fftCalc
Tokenised calculation

fftConstant
Omnis constant

In addition to the major data types, some data types s'éibate, fitNumber need to
know exactly what sort of date number to store. This is accomplished usisglatype

The subtypes foiftCharacter are:

dpFcharacter
Character data storage

dpFnational
National character data storage

The subtypes faiftDate are:

dpFdate1900
Short date field 1900999

dpFdate1980
Short date field 198@079

dpFdate2000
Short date field 2002099

dpFdtime1900
Date and time as above

dpFdtime1980
Date and time as above

dpFdtime2000
Date and time as above

dpFtime
Short time field

283

Chapter 108 EXTfldval Reference

284

dpFdtimeC
Date and time including century

The subtypes fofftNumber are:

dpFmask
a mask for accessing the number field decimal places.

dpFsnumber
Short number fields. Allows 0 and 2 decimal places.

dpFloat
Floating number

The subtypes faiftinteger are:

0
4 byte integer

dpFsinteger
2 byte integer

The subtype fofftList are:

0
Normal list

dpFrow
Row variable

Subtype that can be used for all ffttypes for default settings is

dpDefault

Default subtype. This varies depending on the fft.

fftCharacter - dpDefault results in dpFcharacter subtype.
fftBoolean - dpD€ault is ignored.

fftDate - dpDefault results in dpFdtime1980subtype.
fftNumber - dpDefault results in a zero decimal place number.
fftinteger - dpDefault results in ahort integer.

For all other types dpDefault is ignored.

Enumerations and Structures

crbFieldinfo (V2.2)

This dructure is used with ECOgetCrbFieldinfo to get format information of an Omnis
variable. The members are:
struct crbFieldinfo

{
ffttype fft;
gshort fdp;
glong fln;
gbool fdx;
gshort iln;

fft
the data type

fdp
the data sub type. See ffttype dagtion for more information

fln
for character data it specifies the maximum length of the field

fdx
if true, the field is indexed.

iin
if the field is indexed, it specifies the index length

285

Chapter 108 EXTfldval Reference

datestamptype

Structure used for passingté and time information in and out of the EXTfldval object.
The members are:

typedef struct

{
gshort mYear;
gchar mMonth;
gchar mDay;
gchar mHour;
gchar mMin;
gchar mSec;
gchar mHun;
gchar mDateOKk;
gchar mTimeOKk;
gchar mSecOk;
gchar mHunOKk;

} datestamptype;

mYear
Year values. e.g. 1900.

mMonth
Month values. 412

mbDay
Day values. 431

mHour
Hour values. 412

mMin
Minute values. €9

mSec
Second values.-B9

mHun
Hundredth of second values

mDateOk
gtrue if the datesi valid

mTimeOk
gtrue if the time is valid

mSecOk
gtrue if the seconds are valid

286

EXTfldval Class Reference

mHunOKk
gtrue if the hundredth of seconds are valid

EXTfldval Class Reference
EXTfldval::EXTfldval()

EXTfldval::EXTfldval()

The constructor for aempty EXTfldval container.

EXTfldval::EXTfldval()

EXTfldval::EXTfldval(gfldval pData=0)

The constructor for a EXTfldval container which will refer to the defined pData.

EXTfldval::EXTfldval()

EXTfldval::EXTfldval(strxxx& pVariableName, gbool pWillAlter =gfalse, locptype*
pLocp = NULL)

The constructor for an EXTfldval container that sets itself up to refer to-@efireed
named field. e.g. #S1

1 pVariableName - The feld to associate the new EXTfldval object with.
1 pWillAlter - gtrue if you want to alter the data.

1 pLocp - points to the context. The EXTComplnfo structure which is passed to external
components contains two context pointers. The context pointer mingploaas to the
context of the class instance which contains the component. The context pointer
mLocLocp points to the context of the calling method.

EXTfldval::~EXTfldval()

EXTfldval::~EXTfldval()
The destructor for the EXTfldl object.

287

Chapter 108 EXTfldval Reference

EXTfldval::operator =()
void EXTfldval::operator =(EXTfldval& pFval)
Assigns (copies) the contents of pFval to the object.

Example:
EXTfval myFldVal = pFldVal;

EXTfldval::compare()

gshort EXTfldval::compareleXTfldval& pFldval)
Compares the contents of two EXTfldval objects.

1 pFldVal - The EXTfldval object to compare against.

9 returns - Returns 0 if both objects match.
Returns-1 if pFldval is less than this.
Returns 1 if pFldval is greaterah this.

EXTfldval::compare()

gshort EXTfldval::compare(EXTfldval& pFldval, gbool plgnoreCase)
Compares the character contents of two EXTfldval objects.

1 pFldVal - The EXTfldval object to compare against.

1 plgnoreCase- gtrue if the case of the characters is ignored.

9 returns - Returns 0 if both objects match.
Returns-1 if pFldval is less than this.
Returns 1 if pFldval is greater than this.

EXTfldval::compare()

gshort EXTfldval::compare(strxxxx& pString, gbool plgnoreCase)
Compares the character contents of the EXTfldval object and pString.
1 pString i A string object to compare against.

1 plgnoreCase- gtrue if the case of the characters is ignored.

1 returns- Returns 0O if both the string in the EXTfldval and pString match.
Returns-1 if pString is less than this.
Returns 1 if pString is greater than this.

288

EXTfldval Class Reference

EXTfldval::concat()

void EXTfldval::concat(qchar pGin)

Concatenates a character on to the end of the existing stored data. If the data is not in
character form, it is converted first.

1 pChar - The character to concatenate.

EXTfldval::concat()

void EXTfldval::concat(ghar* pAddress, glong pDatalLen)

Concatenates a range of characters on to the end of the existing stored data. If the data is not
in character form, it is converted first.

1 pAddress- A buffer to some data.

1 pDataLen - The number of characters to concatenate

EXTfldval::concat()
void EXTfldval::concat(EXTfldval* pFldval)

Concatenates characters from another EXTfldval object on to the end of the existing stored
data. If the data is not in character form, it is convertes fi

M pFldval-The EXTfIl dval objects whodéds data is

EXTfldval::concat()

void EXTfldval::concat(strxxx& pString)

Concatenates a string on to the end of the existing stored data. If the data is not in character
form, it is converted first.

1 pString - The string to be concatenated.

EXTfldval::conv()

gbool EXTfldval::conv(ffttype pDataType, gshort pSubDataType)
Tries to convert to another data type.

1 pDataType- The data type to try to ceart to.

1 pSubDataType- The sub data type to try to convert to.

returns - Returns qgtrue if the conversion was successful.

289

Chapter 108 EXTfldval Reference

290

EXTfldval::evalCalculation() (Studio 2.0)

gbool EXTfldval::evalCalculation(EXTfldval& pResult, locptypptocp,

EXTqlist* pList = NULL, gbool pUseCache = gtrue)
Evaluates the calculation stored in the EXTfldval.
1 pResult- The result of the calculation is returned in this parameter.

1 pLocp - The EXTComplnfo structure which is passed to external componentsm®nt
two context pointers. The context pointer minstLocp points to the context of the class
instance which contains the component. The context pointer mLocLocp points to the
context of the calling method.

9 pList - If alist is specified, the calculationévaluated against the list. If the calculation
refers to field names which exist as columns within the list, the data in the current row of
that column is used.

1 pUseCache If true, Omnis will use a global cache for storing the result. This increases
efficiency when dealing with large amounts of data, but it is potentially dangerous, since
the there is only one cache, which is reused when another calculation is evaluated.
Unless performance is an issue, always pass gfalse.

See also EXTfldval::getCalculatio, EXTfldval::setCalculation

EXTfldval::getBinary()

void EXTfldval::getBinary(glong pBufferLen, qchar* pBuffer, glong& pReallLen)
Retrieves the objectbés data as binary.
91 pBufferLen - The maximum size of the buffer.

1 pBuffer - Thebuffer to receive a copy of the data.

1 pRealLen- Returned is the real length of the data copied.

EXTfldval::getBinLen()

glong EXTfldval::getBinLen()
Returns the size of the object stored, in bytes.
See also EXTfldval::getChaten()

EXTfldval Class Reference

EXTfldval::getBool()

gshort EXTfldval::getBool(gbool* pBool = 0)

Retrieves a boolean value.

1 pBool- Returns gtrue if the EXTfldval object result can be used.
1 returns - If supplied, returns 0, 1 or 2.

Note: Boolean vales have the following values:

Return (0) value is not set (fldval is empty or null).
Return (1) value is gfalse.
Return (2) value is gtrue.

EXTfldval::getCalculation() (Studio 2.0)

void EXTfldval::getCalculdabn(locptype* pLocp, gshort &pCalculationType,
EXTfldval &pText)
Returns the calculation type and text representation of a tokenized calculation.

1 pLocp - The EXTComplnfo structure which is passed to external components contains
two context pointers. Theoatext pointer minstLocp points to the context of the class
instance which contains the component. The context pointer mLocLocp points to the
context of the calling method.

I pCalculationType - The calculation type ctySquare or ctyCalculation is returned in
this parameter.

1 pText - The textual representation of the calculation is returned in the given
EXTfldval.

See also EXTfldval::setCalculation, EXTfldval::evalCalculation

EXTfldval::getChar()

void EXTfldval::getChar(gxxx& pString, gbool pZeroEmpty = gfalse)
Returns a string version of the data stored.
9 pString - The string to copy the data into.

1 pZeroEmpty - if true and EXTfldval stores a number, the pString will be empty if that
number is zero.

291

Chapter 108 EXTfldval Reference

292

EXTfldval::getChar()

strxxx& EXTfldval::getChar(gbool pZeroEmpty = gfalse)
Returns a reference to the string version of the data stored.

1 pZeroEmpty - if true and EXTfldval stores a number, the returned string reference will
be empty if that amber is zero.

1 Returnsi A string reference to the string version of the data stored.

EXTfldval::getChar()

void EXTfldval::getChar(glong pMaxLen, qchar* pAddress, glong& pReallLen,
gbool pZeroEmpty gfalse)

Returns a string version of the data stored.

1 pMaxLen - The maximum number of bytes allowed to copy ipéadress.
1 pAddress- The buffer to copy the string into.

1 pRealLen- The returned real length that was copied into pAddress.

1

pZeroEmpty - if true and EXTfldval stores a number, the pString will be empty if that
number is zero.

EXTfldval::getCharLen() (v4.1)

glong EXTfldval::getCharLen()

When the fldval contains character data, getCharLen() returns the length of the data in
characters.

See also EXTfldval::getBinLen()

EXTfldval::getConstant()

preconst EXTfldval::getConstant(preconst pMin, preconst pMax, gbool *pRet=0)

Returns the constant ID of the value stored with the fldval. The constant must be in the
range speciéd by pMin and pMax.

1 pMin i The constant range start ID. Please see the source file dmconst.he for valid
values.

1 pMax i The constant range end ID. Please see the source file dmconst.he for valid
values.

1 pReti Optional pointer to a boolean result. If gfalis returned, the value of the fldval
did not conform to the given constant range.

EXTfldval Class Reference

 Returnsi the constant ID of the value.

Example:

gbool ok;
preconst cid = fval.getConstant(preButtmodeF,preButtmodeL,&0k);
if (oK)
{
/I cid will be in the range preButtmadeF to preButtmodelL
}

See also EXTfldval::setConstant, EXTfldval::getLong(preconst,preconst,qbool*)

EXTfldval::getCrbRef()

qgcrb EXTfldval::getCrbRef(gbool pDuplicate)
Returns an Omnis data collection.

1 pDuplicate - If true, acopy is returned, which must be disposed of by calling
CRBdestroy

EXTfldval::getDate()

void EXTfldval::getDate (datestamptype& pDateTime,
gshort pSubDataType = dpDefault, gbool* pError = 0)

Retrieves the data stored asafimhe information.
1 pDateTime- The datetime structure to modify.
1 pSubDataType- Defines what type of datetime is retrieved. 8pBefault above.

1 pError - If supplied, returns gtrue of the date could be retrieved.

EXTfldval::getFldVal()
gfidval EXTfldval::getFldVal()

Returns the pointer to the Omnis data. Some print manager functions and structures require
these data pointers instead of EXTfldval pointers.

1 returns - An Omnis data pointer.
See also EXTfldval::setFldVal, EXTfldval::setOmnisData

293

Chapter 108 EXTfldval Reference

294

EXTfldval::getHandle()

HGLOBAL EXTfldval::getHandle()
Returns a moveable block of memory which is a copy of the data stored in the EXTfldval.

1 returns - A moveable block of memory.

EXTfldval::getHandle()

gHandle EXTfldval::getHandle(gbool pMakeCopy)
Returns an Omnis handle containing the data.

1 pMakeCopy- If true, getHandle will make a copy of the data. You will be responsible
for disposing of the handle by calling HANglobalFree()

1 returns - An Omnis handle.

EXTfldval::getList()

EXTqlist* EXTfldval::getList(gbool pDuplicate)
Retrieves a list value.

1 pDuplicate - gtrue if the returned object is a duplicate of the list in the EXTfldval
object.

1 returns - A new EXTqlist object. Thisnust be deleted. NULL is returned if the
EXTfldval object cannot return an EXTqlist object.

EXTfldval::getList()

void EXTfldval::getList(EXTqlist* pList, gbool pDuplicate)
Populates the supplied list with thet lis the EXTfldval object.

1 pList i A EXTqlist object which will be populated upon return. This value cannot be
NULL.

1 pDuplicate - gtrue if the EXTqlist object is a duplicate of the list in the EXTfldval
object.

EXTfldval Class Reference

EXTfldval::getLong()

glong EXTfldval::getLong(preconst pMin, preconst pMax, gbool *pRet=0)

Returns the long value of the constant stored with the fldval. The value must be in the range
of values specified by the pMin and pMax constant IDs.

1 pMin i Theconstant range start ID. Please see the source file dmconst.he for valid
values.

1 pMax 1 The constant range end ID. Please see the source file dmconst.he for valid
values.

1 pReti Optional pointer to a boolean result. If gfalse is returned, the value fifitiae
did not conform to the given constant range.

1 Returnsi the long value of the constant.

Example:

gbool ok;

glong value = fval.getLong(preButtmodeF,preButtmodeL,&0k);
if (ok)

{

// value will be in the range of values as specified by
/I constants peButtmodeF to preButtmodeL

}
See also EXTfldval::getConstant(), EXTfldval::setConstant

EXTfldval::getLong()

glong EXTfldval::getLong()
Retrieves the value in the EXTfldval object as a glong value.

9 returns - A glong value.

EXTfldval::getNum()

void EXTfldval::getNum(greal& pNumValue, gshort& pSubDataType, gbool* pError=0)
Returns a number value.

1 pNumValue - Variable to receive the numeric value.

1 pSubDataType The required decimal places. dpDefault dogsconvert.

1 pError - If an error parameter is supplied, gtrue if the number could be converted.

295

Chapter 108 EXTfldval Reference

296

EXTfldval::getObjlnst()

gobjinst EXTfldval::getObjlnst(gbool pDuplicate)
Retrieves a gobjinst pointer.

1 pDuplicate - gtrue if thereturned object is a duplicate of the gobjinst in the EXTfldval
object.

1 returns i A qobjinst pointer. NULL is returned if the EXTfldval object cannot return
an gobjinst object.

EXTfldval::.getOmnisField()

gbool EXTfldval:getOmnisField(strxxx& pVariableName, gbool pWillAlter)
Sets the EXTfldval object to refer to a gtefined Omnis variable. e.g. #S1.

1 pVariableName - The field to associate the new EXTfldval object to.

1 pWillAlter - gtrue if you want to alter the data.

1 returns - gtrue if the variable name was found and the EXTfldval object can be used.

EXTfldval::getType()

void EXTfldval::getType(ffttype& pDataType, gshort* pSubDataType = 0)
Retrieves the data type information from the EXTfldvfject

i pDataType- Receives the data type.

1 pSubDataType Receives the sub data type if supplied.

EXTfldval::insertStr

void EXTfldval::insertStr(glong pPos, const strxxx& pString)
Inserts a suistring at a given index position
1 pPos The index location at which to insert at. Index starts from 1.

1 pString- The string to insert.

EXTfldval::isEmpty()
gbool EXTfldval::isEmpty()
Tests if the EXTfldval object contains no data.

1 returns - Returns gtrue if thebject is empty and gfalse if the object contains data.

EXTfldval Class Reference

EXTfldval::isList()
gbool EXTfldval::isList()
Tests if the EXTfldval object contains list data.

9 returns - Returns gtrue if the object contains a lifftl(ist) as its data.

EXTfldval::isLongChar()

gbool EXTfldval::isLongChar()

Tests if the EXTfldval object contains character data and that the length is less than 256
characters.

9 returns - Returns gtrue if the object contains characté&Character) as its data and
that the length is less than 256 characters.

EXTfldval::isNull()

gbool EXTfldval::isNull()
Tests if the EXTfldval object contains null data.

1 returns - Returns gtrue if the object contains null (#NULL) data.

EXTfldval::isOmnisData()

gbool EXTfldval::isOmnisData()

Tests if the Omnis data pointer in the EXTfldval belongs to the EXTfldval.
9 returns - Returns gtrue if the object contains null (#NULL) data.

See also EXTfldval::setOnnisData

EXTfldval::isReadOnly()
gbool EXTfldval::isReadOnly()

9 returns - Returns qtrue if the data can not be altered.

297

Chapter 108 EXTfldval Reference

298

EXTfldval::pos()

glong EXTfldval::pos(EXTfldval& pFldval)

Returns the position of a sudtring frompFldval in this EXTfldval object.
1 pFldval - The EXTfldval to search for. (in character form)

9 returns - 0 if the string in pFldval could not be found in this object. Returns a positive
value to indicate the stitring index location.

EXTfldval::pos()

glong EXTfldval::pos(qchar* pAddreess, glong pDatalLen)

Returns the position of the sgkring pAddress in this EXTfldval object.
1 pAddress- The address of a stdiring to search for.

1 pDataLen - The length of the subtring inbytes.

9 returns - 0 if the data fronpAddresscould not be found in this object. Returns a
positive value to indicate the sslring index location.

EXTfldval::pos()

glong EXTfldval::pos(gchar pChar)
Returns the position of éharacter in this EXTfldval object.
1 pChar- The character to search for.

91 returns - 0 if the character could not be found in this object. Returns a positive value to
indicate the characterds index |l ocation.

EXTfldval::pos()

glong EXTfldval::pos(const strxxx& pString)
Returns the position of a string in this EXTfldval object.
1 pString- The string to search for.

9 returns - 0 if the string could not be found in this object. Returns a positive value to
i ndi cat e teklecatest ri ngds i nd

EXTfldval Class Reference

EXTfldval::replaceStr()

gbool EXTfldval::replaceStr(strxxx& pFindStr, const strxxx& pReplaceStr,
gbool plgnoreCase = gfalse)

Searches for a stgiring and if found, replaces widnother string.
1 pFindStr- The string to search for.

1 pReplaceStr- The replacement string.

1 plgnoreCase- gtrue if the case during find can be ignored.
1

returns - gtrue if the string was found and replaced successfully.

EXTfldval::replaceStr()

void EXTfldval::replaceStr(EXTfldval & pFindObject, EXTfldval& pReplaceObiject,
gbool pAll')

Searches for a stgiring extracted from pFindObject and if found, replaces with another
string extracted from pRemaObject.

1 pFindObject- The EXTfldval object containing the string to search for.
1 pReplaceObject The EXTfldval object containing the string to replace with.

1 pAll - gtrue if the call replaces all occurrences of the find string.

EXTfldval::setBinary()

void EXTfldval::setBinary(ffttype pDataType, gchar* pAddress, glong pDatalLen, gshort
pSubDataType = dpDefault)

Stores data in binary form.

1 pDataType- The type of data being stored.

1 pAddress- The buffer to read data from astbre.

1 pDataLen - The length of the data to store.

1 pSubDataType- The sub data type. This depends on the pDataType parameter.

299

Chapter 108 EXTfldval Reference

300

EXTfldval::setBool()

void EXTfldval::setBool(gshort pValue)
Stores a boolean value.
1 pValue - The bodean value to be stored.

Note: Boolean values has the following values:
pValue(0)- value is not set (to store empty or NULL)
pValue(1)- value is gfalse
pValue(2)- value is gtrue

EXTfldval::setCalculation() (Studio 2.0)

gret EXTfldval::setCalculation(locptype* pLocp, gshort pCalculationType, qchar* pBuffer,
glong pLen, glong* pErrorl=NULL,
glong* pError2=NULL)

Tokenizes the specified calculation and stores it in the EXTfldval. If the calculation was not
valid, the function returns an error code, and the starting and end positions of the offending
part of the calculation.

1 pLocp - The EXTComplnfo structure which is passed to external components contains
two context pointers. The context pointer minstLocp pointeeéacontext of the class
instance which contains the component. The context pointer mLocLocp points to the
context of the calling method.

1 pCalculationType - The calculation type ctySquare or ctyCalculation.
1 pBuffer - Address of the calculation in text form

1 pLen - The length of the calculation in text form.

1 pErrorl - First character of offending text in calculation.

1 pError2 - Last character of offending text in calculation.

See also EXTfldval::getCalculation, EXTfldval::evalCalculation

EXTfldval::setChar()

void EXTfldval::setChar(const strxxx& pString, gshort pSubDataType = dpDefault)
Stores a string in the EXTfldval object.

9 pString - The string to be stored.

1 pSubDataType- The sub data type to convert toeSpDefault above.

EXTfldval Class Reference

EXTfldval.:setChar()

void EXTfldval::setChar(gchar* pAddress, glong pLen)
Stores a string in the EXTfldval object.
1 pAddress- The address of some data to be stored as a string value.

1 plLen - The nunber of bytes to copy from pAddress.

EXTfldval::setConstant()

void EXTfldval::setConstant(preconst pX)
Sets the value of the fldval the specified constant.
1 pX7i The ID of the constant. Please see the source file dshberfor valid values.

Example:
fval.setConstant(preButtmodeOKk);
See also EXTfldval::getConstant, EXTfldval::getLong(preconst,preconst,gbool*)

EXTfldval::setConstant()

void EXTfldval::setConstant(preast pMin, preconst pMax, glong pVal)

Sets the value of the fldval to the constant ID of the given value. Omnis will find the
constant ID, using the range of Ids specified by pMin and pMax.

1 pMin i The constant range start ID. Please see the source filendtrhe for valid
values.

1 pMax 1 The constant range end ID. Please see the source file dmconst.he for valid
values.

1 pVvali The value to search for.

Example:

fval.setConstant(preButtmodeF,preButtmodelL,1);
/I this will set the fldval to preButtmodeOk
See ao EXTfldval::getConstant, EXTfldval::getLong(preconst,preconst,qbool*)

301

Chapter 108 EXTfldval Reference

EXTfldval::setConstant() (v4.1)

gbool EXTfldval::setConstant(strxxx& pX)
Sets the fldval to a constant value directly from the supplied string.
1 pX7 String containing the constantlua.

Example:

EXTfldval fldval;
str255 colorStr (QTEXT(AkDar kMagentao)) ;
fldval.setConstant(colorStr);

EXTfldval::setCrbRef()

void EXTfldval::setCrbRef(gcrb pCrb, gbool pTransferOwnership)
Stores an Omnis data collection.
1 pCrb - Points to the data collection to be stored.

1 pTransferOwnership - If true, the data collection will belong to the EXTfldval, and
must NOT be destroyed. If false, Omnis will store a copy of the data.

EXTfldval::setDate()

void EXTfldval::setDate (const datestamptype& pDateTime,
gshort pSubDataType = dpDefault)

Stores a datetime value.
1 pDateTime- The datetime structure to store.

1 pSubDataType- Defines what type of datetime is stored.

EXTfldval::setEmpty() (v3.1)

void EXTfldval::setEmpty(ffttype fft1, gshort fdpl);

Sets the data to empty and sets it to the specified data type.

1 fftl - The data type

1 fdpl- The sub data type. This depends on the fftl parameter.
See also EXTfldval::setNull

302

EXTfldval Class Reference

EXTfldval::setFldVal()
void EXTfldval::setFldVal(gfldval pData)

Sets the Omnis data pointer in the EXTfldval to the given pointer. Any data belonging to
the EXTfldval is destroyed prior to the pointer being changed.

Note: The data isot duplicated, and will not belong to the EXTfldval.
1 dfldval - The new Omnis data pointer.
See also EXTfldval::getFldVval, EXTfldval::setOmnisData

EXTfldval::setHandle()

void EXTfldval::setHandle (ffttyp@DataType, HGLOBAL pHandle,
pSubDataType = dpDefault)

Stores data in binary form.
1 pDataType- The type of data that is assumed to have been stored.
1 pHandle - The buffer to read the data from and store.

1 pSubDataType- The sub data type. This dependstbe pDataType parameter.

EXTfldval::setHandle()

void EXTfldval::setHandle (ffttype pDataType, gqHandle pHandle,
gbool pTakeACopy, pSubDataType = dpDefault)

Stores data in binary form.

1 pDataType- The type of data that is assumed to have been stored.

1 pHandle - The buffer to read the data from and store.

1 pTakeACopy- Should Omnis take a copy of the given gHandle

1 pSubDataType- The sub data type. This depends on the pDataType parameter.

303

Chapter 108 EXTfldval Reference

EXTfldval::setList()

void EXTfldval::setList(EXTqlist* pList, gbool pTransferOwnership)
Stores a list in the EXTfldval object

9 pList - The list to store.

1 pTransferOwnership-qt rue i f the EXTfldval should
contentslf this is gtrue, you should NOT assignil to the EXTqlist object as it
causes a crash. If this parameter is gfalse, the EXTfldval contains a reference to the
EXTqlist being passed in, and as such will only be valid while the EXTqlist is valid.

EXTfldval::setLong()

void EXTfldval::setLong(glong pValue)
Stores a glong numeric value.

1 pValue- The value to store.

EXTfldval::setNull() (v3.1)

void EXTfldval::setNull(ffttype fft1, gshort fdp1=(gqshort)dpfaeilt);
Sets the data to NULL and sets it to the specified data type.

1 fftl - The data type

1 fdpl- The sub data type. This depends on the fft1l parameter.
See also EXTfldval::setEmpty

EXTfldval::setNum()

void EXTfldval::setNum(geal pNumValue, gqshort& pSubDataType = dpDefault)
Stores a number value.
1 pNumValue - The numeric value to be stored.

1 pSubDataType The decimal places to store the number as. dpDefault does not
convert.

304

EXTfldval Class Reference

Example:

/I sending an event parameter

EXTfldval evPar am;

evParam.setLong(10);

ECOsendEvent(mHWnd, myEvent, &evParam, 1);

/I converting a number to a string.

EXTfldval general;

str255 s;

general.setLong(10);

general.getChar(s);

s.concat(str255(f errors were foundo) ;

/'l s now cosgt awieme O6ODAUNeOror

EXTfldval::setObjlnst()

void EXTfldval::setObjlnst(gobjinst pObjinst, gbool pTransferOwnership)
Stores an objinst in the EXTfldval object.
1 pObjinst - The object to store.

1 pTransferOwnership - gtrue if the EXTftival should take ownership of the object
instance.

EXTfldval::setOmnisData()

void EXTfldval::setOmnisData(gbool plsOmnisData)
Sets the ownership of the Omnis data pointer in the EXTfldval.

1 plsOmnisData- If true, the Omrs data pointer will belong to the EXTfldval, and will
be destroyed when the EXTfldval is destroyed.

See also EXTfldval::isOmnisData, EXTfldval::setFldVal, EXTfldval::getFldVal

EXTfldval::setReadOnly()

Internal use only.

305

Chapter 118 HWND Reference

Chapter 1160 HWND
Reference

This chapter describes the public interface of the HWND module, which is the Omnis cross
platform window manager. This chapter includes a description of the Structures, Data types,
and Defines required by some HWND functions, Stydgglfor the Omnis window, the
Messages sent to a windowds message procec

The HWND

The HWND is a child window, the graphical container for an Omnis window control. It is
split into two areas, thelient areaand thenon-client area The norclient area contains the
border (there are a number of border styles available) and scrollbars of the window. The
client area (the area which remains after subtracting the border and scrollbars) can be used
to displ ay tfaee The aienttareadardbasso dontain éurther child windows

which are part of the controlés interface,

The Z-order

TheZ-orderis the order in which windows appear on the str&éhen thinking in terms of

a chain of sibling windows, or child windows belonging to the same parent window, the Z
order is like a deck of cards. The top most card can always be seen in its entirety, and how
much can be seen of all remaining cards, dépem how they are laid out on the table.

When thinking in terms of parent and child windows, therder becomes more complex.
Parent windows can be thought of as boxes with a rectangular opening in the lid, through
which the child windows can be viewethe size and location of the opening depends on
the windowds coordinates. How much of a ct
on the childés coordinates in relation to
to be below their parent windoin terms of Zorder, but are considered to be above all

sibling windows of their parent if these sibling windows are positioned below that parent
(just as if you were to stack a number of parent boxes containing child cards). Changing the
parent of a chhil (see WNDsetParent) alters its position in therder.

When enumerating windows (see WNDenumChildWindows) it is tbed2r which
determines the order of the enumer ated wir
children, and so on.

When systenupdates occur, windows are painted starting at the top of-tindet.

306

The HWND

HWND Components

Given that the client area of a window can contain any number of child windows, these

child windows normally have a location and size within tpairent window which is

specified at the time they are created, and altered later on. If the parent window has been
given scrollbars, the child window can be

Child windows can also be created as specificcompot s i n a parentds
case the parent should have no scrollbars). A component window has a fixed location within
its parent, and usually only the width or height of a component can be specified, if at all.
When t he par eightdrwidticchanges all canpomnents tesze accordingly.

Any window can contain one of each component type. Any component in turn can contain a
further full set of components. There is no specific limit to the number of nested windows or
component windog. The following diagram shows all component types in their correct
position.

WND_WC_MENUBAR

WND_WC_MAIN_HEADER

- WND_WC_TOOLBAR_TOP
——

WND_WC_HORZ_HEADER

~—]
 \\\ WND_WC_HEADER_BUTTON
—

——— WND_WC_TOOLBAR_LEFT

< ——— WND_WC_VERT_HEADER
\~—-— WND_WC_CLIENT

4 WND_WC_TOOLBAR_RIGHT

N _n

~——__ | WND_WC_TOOLBAR BOTTOM
~— WND_WC_STATUSBAR

|:| = Scrollbars
. = Dead areas

In this diagram only the client component is displayed with scrollbars, but any other
component could have scrollbars, if appropriate.

307

Chapter 118 HWND Reference

Note: The name®sf the components bear no relationship to objects generally described by
these names; a componentés name gives you
example, Menubar tells you that the component is at the top of the window where you
would expecta find a menu bar.

The following is a listing of all the components and their special function.

Name Special function Sizeability

WND_WC_FRAME This is the default component ID of a | all
window. A frame window has no specii
functionality.

WND_WC_MENUBAR Wi dth i s dependen|height
WND_WC_TOOLBAR_TOP Wi dth i s dependen|height
WND_WC_TOOLBAR_LEFT Hei ght i s depende| width

minus the height of MENUBAR,
TOOLBAR_TOP,
TOOLBAR_BOTTOM and
STATUSBAR components

WND_WC_TOOLBAR_RIGHT Hei ght i s depende]|width
minus the height of the MENUBAR,
TOOLBAR_TOP,
TOOLBAR_BOTTOM and
STATUSBAR components

WND_WC_TOOLBAR_BOTTOM (Wi dt h i s dependen]|height
WND_WC_STATUSBAR Widthisdeped ent on p ar| height

WND_WC_MAIN_HEADER Wi dth is depende n| height
minus the width of the left and right
toolbar components

WND_WC_HORZ_HEADER Wi dth is dependen|height
minus the width of the left toolbar, right
toolbar, and vertical header componen|
This componentds
and position is linked to that of the clie
component 6s hori z
position. When the client component is
scrolled horizontally, this component
receives a dupdiate of all scroll
messages.

WND_WC_VERT HEADER Hei ght i s depende|width

minus the height of the MENUBAR,
TOOLBAR_TOP, MAIN_HEADER,

308

Structures, Data types, and Defines

Name

Special function

Sizeability

HORZ_HEADER,
TOOLBAR_BOTTOM and
STATUSBAR components.

This componentds
and posibn is linked to that of the clien
componentdés verti
position. When the client component is
scrolled vertically, this component
receives a duplicate of all scroll
messages.

WND_WC_HEADER_BUTTON

Height and width are dependent thie
horizont al and ve
and width.

none

WND_WC_CLIENT

Height and width are dependent on thg
remai nder of the

after subtracting all other components.

none

Structures, Data types, and Defines

GW_xxXx

These flags are used with the function WNDgetWindow:

GW_CHILD

Identifies the window's first child window.

GW_HWNDFIRST

Returns the first sibling window for a child window.

GW_HWNDLAST

Returns the last siblingindow for a child window.

GW_HWNDNEXT

Returns the sibling window that follows the given window in the window

manager's list.
GW_HWNDPREV

Returns the previous sibling window in the window manager's list.

309

Chapter 118 HWND Reference

GWL_xxx

These flags are used with thunctions WNDgetWindowLong and WNDsetWindowLong:

GWL_STYLE
Returns the windowds basic window styl

GWL_EXSTYLE
Returns the windowds extended window s

GWL_EXCOMPONENTID
Returns the windowds ©OJdNGpxaxstylest Thisflag (on e
cannotbe used with WNDsetWindowLong.

GWL_BKTHEME
Stores the window theme background. See WNDdrawThemeBackground for full
details. Setting this value will invalidate the HWND area.

GWL_BKTHEME_NOINVAL
Same as GWL_BKTHEME, but dg not invalidate the HWND area when setting
this value.

GWL_INFLATE_ALL (Mac OSX only)

Allows you to set an area around the HWNDs visual area for drawing by this
HWND. In other words during painting to this HWND, you may paint outside the
HWNDS bounding eea. This is useful if you need to paint drop shadows around
your control. To specify the inflate values you canuget grect and use the
function WNDmakeLong to convert the grect to a long value.

Example:

I/l inflate the paint area on the left and ridit by 2 pixels, and 4

/I pixels to the bottom

grect inflateRect(-2,0,2,4);

WNDsetWindowLong(theHwnd,GWL_INFLATE_ALL,
WNDmakeLong(&inflateRect));

GWL_INFLATE_FRAME (Mac OSX only)
Same as GWL_INFLATE_ALL but only effects the nolient painting.

HDC

The HDC is a graphical device context and is fully documented i@iHeReference
chapter.

310

Structures, Data types, and Defines

HTxXxX

These defines are used by some mouse related message, for example, WM_SETCURSOR,
to specify the part of a window, theonrse is currently over.

HTNOWHERE
The mouse is not over the window.

HTCLIENT
The mouse is over the client area.

HTHSCROLL
The mouse is over the horizontal scroll bar.

HTVSCROLL
The mouse is over the vertical scroll bar.

HTGROWBOX
The mouse is over the grdvox (WIN95 and MacOS only).

HTBORDER
The mouse is over the border of the window.

HWND

A handle or reference to a child window.

HWND_xxx

You can use the following defines instead of a valid HWND with some of the functions in

the API:

HWND_DESKTOP

Refers to the desktop window. HWND_DESKTOP can be used with various
functions including WNDstartDraw and WNDendDraw, if unclipped drawing to
anywhere on the screen is required. Under MacOS it is the sum of all connected
monitors.

HWND_MAI NWINDOW
Under Windows it refers to the Omnis Program window. Under MacOS it is the
main monitor (the one with the menu bar).

HWND_TOP
Can be used with WNDsetWindowPos to move the window to the top of the z
order (Top of its sibling chain).

HWND_BOTTOM
Canbe used with WNDsetWindowPos to move the window to the bottom of the z
order (Bottom of its sibling chain).

311

Chapter 118 HWND Reference

LPARAM

LPARAM is a typedef and is of type unsigned long. The IParam and uParam parameters of
the WndProc function are of this type.

SW_xxx

These flags are used with the function WNDshowWindow:

SW_HIDE
Hides the window.

SW_SHOW
Shows the window.

SWP_xxx

These flags are used with the functions WNDsetWindowPos and WNDsetWindowPosEXx:

SWP_NOSIZE
If specified no sizig of the window takes place.

SWP_NOMOVE
If specified no moving of the window takes place.

SWP_NOZORDER
If specified the position in thearder of the window is not altered.

SWP_NOREDRAW
If specified no invalidating takes place. Any changes to the visibitiorder or
position and size is not reflected on screen.

SWP_SHOWWINDOW
If specified the window is made visible.

SWP_HIDEWINDOW
If specified the window is hidden.

UINT

The UINT is defined as an unsigned integer. The message parametevafdReoc
function is of this type.

312

Structures, Data types, and Defines

WM_EXUSER

WM_EXUSER is the base define for all user defined messages for the external components.
External components which use the HWND module can create their own message by
defining a WM_your_constant 8M_EXUSER + n, where n can be in the range HEX 0 to
HEX 1FFF.

Example:

#define WM_MY_MESSAGEWM_EXUSER+1
#define WM_MY_MESSAGERVM_EXUSER+2

WND_CAPTURE_ XXX

These flags are used with the functions WNDsetCapture and WNDreleaseQaspecify
the capture for mouse or key events:

WND_CAPTURE_KEY

Captures all keyboard events. It is not necessary for external components to
capture the key events. Omnis sets the key capture for a window when it receives
the input focus.

WND_CAPTURE_MOU SE
Captures all mouse events.

WND_BORD_xxx

These are the flags for the various border styles of a window. They are used to set the
mBorderStylanember of the WNDborderStruct. WNDborderStruct is used with the
functions WNDcreateWindow, WDigetBorderSpec, WNDsetBorderSpec,
WNDinsetBorderRect, WNDinflateBorderRect, WNDaddWindowComponent and
WNDpaintBorder.

WND_BORD_NONE
No border.

WND_BORD_PLAIN

Draws a plain border using the gpen specified byrthaeStyleanember of the
WNDborderStruct. Foa complete description of a gpen refer to the GDI
documentation.

WND_BORD_INSET
Draws a 3D inset border. Standard 3D system colors are used to draw the effect.

WND_BORD_EMBOSSED
Draws a 3D embossed border. Standard 3D system colors are used to draw the
effect.

313

Chapter 118 HWND Reference

314

WND_BORD_BEVEL

Combination of the embossed and inset border styles, with the inset frame being
drawn inside the embossed frame and a flat area in betweemSihelmSize2
andmSize3nembers of the WNDborderStruct specify the sizes of the beesl

parts (embossed, flat and inset). Standard 3D system colors are used to draw the
effect.

WND_BORD_INSETBEVEL
Same as WND_BORD_BEVEL, except that the three bevel parts are reversed,
making the bevel appear inset.

WND_BORD_CHISEL
Draws a two pixel wde chiseled border. Standard 3D system colors are used to
draw the effect.

WND_BORD_EMBOSSEDCHISEL
Same as WND_BORD_CHISEL, except that it appears embossed.

WND_BORD_SHADOW

Gives client area the appearance of having a shadow. The two mengized
andmSize2are used to specify the horizontal and vertical shadow size (offset) and
themColorspecifies the shadows colanLineStylds used to give the client area

an additional simple frame. A shadow border has two areas called dead area. These
are areagiat are not covered by the border effect itself, but nevertheless need to

be erased. The HWND module queries the erase colors by sending a
WM_GETERASEINFO message to the WndProc function.

WND_BORD_SINGLE_INSET

Draws a 3D single pixel width inset bordetagdard 3D system colors are used to
draw the effect.

WND_BORD_SINGLE_EMBOSSED

Draws a 3D single pixel widtambossed border. Standard 3D system colors are
used to draw the effect.

WND_BORD_3DFACE
Same as WND_BORD_INSET, but uses 3DFACE color and no black

WND_BORD_3DHILITE
Same as WND_BORD_INSET, but uses 3DHILITE color and no black.

WND_BORD_CTRL_EDIT (v3.1)
Draws the correct border for a edit control. Platform dependent.

WND_BORD_CTRL_LIST (v3.1)
Draws the correct border for a list control. Platfatependent.

WND_BORD_CTRL_LISTCELL (v3.1)
Draws the correct border for a list cell control. Platform dependent.

Structures, Data types, and Defines

WND_BORD_CTRL_TABPANE (v3.1)

Draws the correct border for a tab pane control. Platform dependent. Generates a
WM_GETSHADOWRECT message to allmaller to manipulate the border rect
prior to drawing.

WND_BORD_CTRL_SHADOW (v3.1)
Draws a system shadow border. Platform dependent.

WND_BORD_CTRL_SHADOW_EX (v3.1)

Same as WND_BORD_CTRL_SHADOW, but generates a
WM_GETSHADOWRECT message to allow callemtanipulate the border rect
prior to drawing.

WND_BORD_CUSTOM

When specified, custom borders can be drawn in the windowsligon area

(frame). The messages WM_BORDCALCRECT and WM_BORDPAINT are send
to the WndProc function when the nolent area needs tbe calculated or the
border needs painting.

WND_CURS_xxx

These flags are used with the WNDsetWindowCursor and WNDgetWindowCursor
functions to specify the cursor type associated with a window, and the functions
WNDsetCursor and WNDgetsor, to instantly change the cursor on screen.

WND_CURS_DEFAULT
Cursor does not change when moving over the window. Control over the cursor is
passed to the parent window.

WND_CURS_ARROW
Standard cursor.

WND_CURS_IBEAM
Standard edit text cursor.

WND_CURS_WATCH
Standard time/watch cursor.

WND_CURS_LOCK
Record locked cursor.

WND_CURS_MOVE
Cursor for moving objects.

WND_CURS_SIZE_VERT
Cursor for sizing object vertically only. (Center top/bottom size knobs)

WND_CURS_SIZE_HORZ
Cursor for sizing objects horintally only. (Center left/right size knobs)

315

Chapter 118 HWND Reference

316

WND_CURS_SIZE_LTRB
Cursor for sizing objects diagonally left.top to right.bottom. (Left.Top and
Right.Bottom size knobs)

WND_CURS_SIZE_LBRT
Cursor for sizing objects diagonally left.bottom to right.top. (Left®&otand
Right.Top size knobs)

WND_CURS_INSERT
Cursor for inserting rows between rows etc.

WND_CURS_COPY_SINGLE
Cursor for copying a single object or data item.

WND_CURS_COPY_MULTI
Cursor for copying multiple objects or data items.

WND_CURS_DRAG_OBJECT
Cur=r for dragging objects.

WND_CURS_DRAG_DATA
Cursor for dragging data.

WND_CURS_SPLITTER_VERT
Cursor for moving vertical splitter bars.

WND_CURS_SPLITTER_HORZ
Cursor for moving horizontal splitter bars.

WND_CURS_NOGO
Nogo cursor used for letting user kndvat you cannot put something here. (Drag

or copy)
WND_CURS_HELP

Help cursor, when used to click on an objects, should bring up context sensitive
help.

WND_CURS_EXAMINE
Examine cursor used for expanding data etc.

WND_CURS_TRASH
Trash cursor.

WND_CURS_ARROW_WATCH
Cursor displaying an arrow and watch.

WND_CURS_CROSS
Area selection tool.

WND_CURS DROPPER
Color suction tool.

Structures, Data types, and Defines

WND_CURS BUCKET
Area fill tool.

WND_CURS_PENCIL
Drawing tool.

WND_RW_xxx

Used with WNDredrawWindow to redraw/invalidateugdate the nowglient and/or client
area of a window:

WND_RW_NCPAINT
Redraws all of the nealient area.

WND_RW_PAINT
Redraws the specified area within the client area of the window.

WND_RW_ERASE
If specified, erase background messages are generated.

WND_RW_ALLCHILDREN
If specified, all children are included in the redraw operation.

WND_RW_INVALIDATE
If specified, the specified area is invalidated only, and repainted during the normal
update process.

WND_RW_UPDATE

If specified, any invalid area of the wiow is immediately updated. The grgn and
grect parameters are ignored. Only the WND_RW_ALLCHILDREN and
WND_RW_ERASE flags can be specified in combination with this flag.

WND_SCROLLBAR_WIDTH (v3.1)

Returns the width in pixels of a standard scrollbar.

WND_TIMER_xXxx

These constants are used with the WNDsetTimer and WNDKillTimer functions:

WND_TIMER_NULL
Internal use only.

WND_TIMER_TOOLTIP
Internal use only.

WND_TIMER_FIRST
Base constant for all timer ids which are used by external comfsonen

317

Chapter 118 HWND Reference

WNDborderStruct

The border struct contains information for the border style of a window. It is used with the
functions WNDcreateWindow, WNDaddWindowComponent, WNDsetBorderSpec, and
WNDgetBorderSpec.
struct WNDborderStruct
{

gshort mBorderStyle;

gpen mLineStyle;

gqdim mSizel;

gqdim mSize2;

gdim mSize3;

gcol mColor;

WNDborderStruct();

WNDborderStruct(gshort pBorderStyle);

WNDborderStruct(qshort pBorderStyle, gpen pLineStyle);

WNDborderStruct(gshort pBorderStyle, qdim p Sizel, qdim pSize2,
qdim pSize3);

WNDborderStruct(qshort pBorderStyle, gpen pLineStyle, qdim
pSizel,

gdim pSize2, qcol pColor);

-

mBorderStyle specifies one of the WND_BORD _xxx constants.
mLineStyle is used by WND_BORD_PLAIN border styles

mSizelis used by WND_BORD_BEVEL, WND_BORD_INSETBEVEL and
WND_BORD_SHADOW.

1 mSize2is used by WND_BORD_BEVEL, WND_BORD_INSETBEVEL and
WND_BORD_SHADOW.

1 mSize3is used by WND_BORD_BEVEL and WND_BORD_INSETBEVEL.
1 mColor is used by WND_BORD_SHADOW.

= =a -A

The WNDborerStruct has various default constructors for the border styles. Simply specify
the border style in the first parameter of the constructor, followed by parameters of the
relevant information for the specified style, for example, the constructor call\fel be

border would be WNDborderStruct(WND_BORD_BEVEL, mySizel, mySize2, mySize3).

318

Structures, Data types, and Defines

WNDenumProc

32-bit pointer to a callback function.
typedef gbool (*WNDenumProc)(HWND hwnd, LPARAM |Param);
WNDenumProc is used with the function WNDenum@Windows.

WNDeraselnfoStruct

This structure must be filled in response to a WM_GETERASEINFO in. This message is
generated during neclient painting of a window, when the nahient area contains dead
areas which need to be erasBegad areas occur when a window has both horizontal and
vertical scrollbars, or has a shadow border style. It may also be generated by windows
which paint their own custom border.

struct WNDeraselnfoStruct

{
gcol mBackColor;
gcol mForeColor;
gcol mkFil IPat;
qulong mBKTheme;

mBackColor - specifies the color for all clear pixels in the fill pattern.

}
1
1 mForeColor - specifies the color for all set pixels in the fill pattern.
1 mpFillPat - specifies the fill pattern.

1

mBKTheme i specifies the background thense¢ GWL_BKTHEME)

WNDminMaxInfo

The WNDmi nMaxl nfo structure contains infor
maximum tracking size. This structure must be filled in response to a
WM_GETMINMAXINFO message.
struct WNDminMaxInfo
{

gpoint ptReserved;

gpoint ptMaxSize;

gpoint ptMaxPosition;

gpoint ptMinTrackSize;

gpoint ptMaxTrackSize;

1 ptReserved- Reserved for internal use.

319

Chapter 118 HWND Reference

320

il

ptMaxSize - Currently NOT used for child windows.
ptMaxPaosition - Currently NOT used for child windows.

ptMinTr ackSize- Specifies the minimum tracking width (point.h) and the minimum
tracking height (point.v) of the window.

ptMaxTrackSize - Specifies the maximum tracking width (point.h) and the maximum
tracking height (point.v) of the window.

WNDmultiKey (v4.1)

WNDmultiKey is a class used to pass multiple keypress information via event parameters
and is used in conjunction with WM_MULTIKEYxxx events. WNDmultiKey is defined in
hwnd.he and contains the following public members:

f
f

f
f

WNDmultiKey() i Default constructor.

WNDmultiKey(qchar *pData, glong pLen) 7 Initializes the class using the supplied
keys (one per qchar position). The number of keys is specified via pLen.

WNDmultiKey(WNDmultiKey &pMultiKey) T Initializes the class copying data
from an existing WNDmultiKeynstance.

~WNDmultiKey() 1 Default destructor.

void set(qchar *pData, glong pLen)i Assigns the kexxombination held in pData to
the class. pLen contains the number of keys being pressed.

glong len()1 Returns the number of key presses stored by the class

gchar *dataPtr() T Returns a pointer to the keys stored by the class.

WNDpaintStruct

The WNDpaintStruct structure contains information for painting the client area of a

window.
struct WNDpaintStruct
{
HDC hdc;
gbool fErase;

grec t rcPaint;
HDC fRestore;

hdc - Identifies the display context to be used for painting.

fErase - Specifies whether the background needs to be redrawn.

Structures, Data types, and Defines

1 rcPaint - Specifies the uppédeft and lowefright corners of the rectangle in which the
paintingis requested.

1 fRestore- Reserved; internal use.

WNDprocClass

The WNDprocClass class is the base class for all control classes that wish to receive
messages via the virtual function WndProc. Prior to creating a window, an instahise of t
class must have been created, of which a pointer is passed to WNDcreateWindow or
WNDaddWindowComponent functions. You can create more than one window with the
same instance of the WndProc class.

class WNDprocClass

{
public:
virtual glong WndProc(HWND hwnd, UINT message, WPARAM wParam,
LPARAM [Param, LPARAM uParam) = 0;
h

WNDwindowPosStruct

The WNDwindowPosStruct structure contains information about the size and position of a
window. It is sent along on to WM_WINDOWPQHANGING and
WM_WINDOWPOSCHANGED messages, and can be used with the function
WNDsetWindowPosEX.

struct WNDwindowPosStruct

{
HWND hwnd;
HWND hwndlInsertAfter;
gdim X;
qdim y;
gqdim cX;
qdim cy;

qulong flags;

hwnd - Identifies the window.
hwndInsertAfter - Identifies the window behind which this window is placed.
X - Specifies the position of the left edge of the window.

y - Specifies the position of the right edge of the window.

= =4 4 A4 A 7

cx - Specifies the window width.

321

Chapter 118 HWND Reference

Styles

322

1 cy- Specifies the window lght.

1 flags- Specifies window positioning options. This member is one or more of the
SWP_xxx flags.

WPARAM

Under MacOS and WIN32 the WPARAM is defined as an unsigned long value, and on
WIN16 it is defined as an unsigned short value. The amararameter of the WndProc
function is of this type.

WND_ DRAGBORDER (extended style)

If this extended style is specified for a component other than WND_WC_FRAME and
WND_WC_CLIENT, the user can size the windatwuntime. When the cursor moves over
the correct border edge (which edge can be dragged depends on the component type) the
cursor changes to WND_CURS_SPLITTER_VERT or WND_CURS_SPLITTER_HORZ.
Sizing a component effects the size of other sibling companents

WND_FLOAT xxx (extended style)

These are the floating styles for a window. Floating takes place if the parent of a floating
window is sized. The window is sized or moved, horizontally or vertically by the same
amount the parent hasogvn or shrunk by. The floating style can only be specified for
windows of type WND_WC_FRAME. The following styles are defined:

WND_FLOAT_NONE
No floating.

WND_FLOAT_LEFT
If set, the window grows or shrinks horizontally by floating the left edge of the
window.

WND_FLOAT_RIGHT
If set, the window grows or shrinks horizontally by floating the right edge of the
window.

WND_FLOAT LEFT_RIGHT
If set, the window moves horizontally. (WND_FLOAT_LEFT |
WND_FLOAT_RIGHT)

WND_FLOAT_TOP
If set, the window grows or shrinkertically by floating the top edge of the
window.

Styles

WND_FLOAT_BOTTOM
If set, the window grows or shrinks vertically by floating the bottom edge of the
window.

WND_FLOAT_TOP_BOTTOM
If set, the window moves vertically.

WND_FLOAT_MASK
Masking bits for maskingut floating styles in the extended style window long.

WND_KEYPREVIEW (extended style)

If specified, WM_KEYDOWNPREVIEW and WM_KEYUPPREVIEW messages are
generated and sent to all parents of the window for which the actual key message wa
intended. The parameters are identical to WM_KEYDOWN and WM_KEYUP. If a parent
deals with a key and returns 0, no further messages are sent relating to the key.

WND_NOADJUSTCOMPONENTS (extended

style)
If this style is speci&d, the component windows of the window are not sized when the
windowds size changes. The window componer

WND_NOFLOATCHILDREN (extended style)

If this style is specified, no child windows thfe window are floated when the window size
changes. All floating styles of all child windows are ignored.

WND_ OSMESSAGES (extended style)

If this style is specified, the window can receive additionalcrmssplatform messages,
messges which are not normally supported by the hwnd module. Under Windows 95
platform this may be messages like WM_DROPFILES, etc. This style is cumetly
supported under MacOS.

WND_REDRAWONSIZE (extended style)

If this style is spcified, all of the client area of the window is invalidated when the width or
height of the window changes. By default only the uncovered areas are invalidated.

323

Chapter 118 HWND Reference

324

WND_TRANSPARENT (extended style)

If this style is specified, the windolsecomes transparent. Transparent windows do not
receive erase background messages and are painted last (aftertedhsparent windows
have been painted) and in reverse order. They do not clip the visual region of sibling
windows which they cover, nowodhey clip their parent. If areas within a transparent
window are invalidated, all intersecting sibling windows are effected as well as the area
within the parent.

Note: Transparent windows are less efficient, and may not always yield the desired results.
Omnis uses transparent windows only for background objects in window and report classes.

WND_ WC xxx (extended style)

The WND_WC_xxx styles are used with the functions WNDaddWindowComponent,
WNDremoveWindowComponent, WNDgetWindowComponeunigl
WNDnextWindowComponent. These flags specify the component type of a window.

WND_WC_FRAME
the default type for all windows created by WNDcreateWindow. It is ignored by
the component functions.

WND_WC_MENUBAR
the menu bar component. A window of thipayis always positioned in the
topmost area of the parent window.

WND_WC_TOOLBAR_TOP
the top toolbar component. A window of this type is always positioned in the
topmost area of the parent window just below the menu bar component.

WND_WC_TOOLBAR_BOTTOM
thebottom toolbar component. A window of this type is always positioned in the
bottommost area of the parent window just above the status bar component.

WND_WC_TOOLBAR_LEFT
the left toolbar component. A window of this type is always positioned in the
leftmast area of the parent window.

WND_WC_TOOLBAR_RIGHT
the right toolbar component. A window of this type is always positioned in the
rightmost area of the parent window.

WND_WC_HEADER_BUTTON

can be created in conjunction with the WND_WC_HORZ_HEADER and
WND_WC _VERT_HEADER components both of which must exist. Its position
and size depends entirely on these two components being positioned irtldfe top
corner between the two header components.

Styles

WND_WC_MAIN_HEADER
the main header component. A window of this tigoalways positioned in the
topmost area of the parent window just below the top toolbar.

WND_WC_HORZ_HEADER

horizontally scrolling header component which works in conjunction with the
WND_WC_CLIENT component. It sits just above the client component, and
scrolls horizontally in the same direction by the same amount, when the client
component is scrolled horizontally.

WND_WC_VERT_HEADER

vertically scrolling header component which works in conjunction with the
WND_WC_CLIENT component. It sits just to the leftthe client component,

and scrolls vertically in the same direction by the same amount, when the client
component is scrolled vertically.

WND_WC_CLIENT

the client component. It is positioned to fill in any space not used by any of the
other componentsithin the same parent window. If components are used, this is
the component which should receive the scrollbars, if scrollbars are required.

WND_WC_STATUSBAR
the status bar component. A window of this type is always positioned in the
bottommost area of h parent window.

WND_WC_MASK
define which can be used to specify all component types.

WS XxX

These are the windows basic styles.

WS_CHILD
Must always be specified.

WS_CLIPSIBLINGS

Clips child windows relative to each other; that is, wheargiqular child window
receives a WM_PAINT message, this style clips all otheil@apl child windows
out of the region of the child window to be updated. (If the WS_CLIPSIBLINGS
style is not given and child windows overlap, it is possible, when drawitigei
client area of a child window, to draw in the client area of a neighboring child
window.)

WS_CLIPCHILDREN
Excludes the area occupied by child windows when drawing within the parent
window. Used when creating the parent window.

WS_DISABLED
If specified, the window is disabled and receives no mouse events. All mouse

325

Chapter 118 HWND Reference

events which would normally be received by this window, are sent to the parent
window.

WS _HSCROLL and WS_VSCROLL
Creates a window that has a horizontal or vertical scroll bar.

WS_VISIBLE
Creates a window that is initially visible.

Messages

326

When users interact with a window, or a wi
are generated. These messages can be received-biassing theVNDprocClassand
overloadingthe virtual functionVndProc. An instance of that class must be specified when
creating a window. More than one window can be associated with the same instance in this
way. The correct HWND is sent to the WndProc function along with its message.

Example o a WndProc function:

glong MyWndProc::WndProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM IParam, LPARAM uParam)

switch (message)
{

case WM_GETMINMAXINFO:

{
/I calculate the minimum tracking size
WNDminMaxInfo* info = (WNDmi nMaxInfo*)IParam;
Il first get minimum tracking size for child windows from HWND
WNDgetMinMaxInfo(hwWnd, info);
if (info - >ptMinTrackSize.h < 300)
{

/I do not allow size less than 300 pixels horizontally
info - >ptMinTrackSize.h = 300;

}
return OL;

}

case WM_WINDOWPOSCHANGED:

{
/I reset the scroll range
gdim hRange = 200;
gdim vRange = 400;
grect cRect;

Messages

WNDgetClientRect(hwnd, &cRect);

WNDsetScrollRange(hwnd, SB_HORZ, 1, hRange,
cRect.width() , qtrue);

WNDsetScrollRange(hWnd, SB_VERT, 1, vRange,
cRect.height(), gtrue);

break;

}
}

return DefWindowProc(hwnd, message, wparam, Iparam);
}

Note: All message examples are assumed to have the following pieces of code surrounding
them:

glong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM
wParam,

LPARAM IParam, LPARAM uParam)

switch (message)

{

case WM_ xxx:
{
Il example
}
}

return DefWindowProc(hwnd, message, wparam, Iparam);

}
WM_BORDCALCRECT

The WM_BORDCALCRECT message is sent when the client area of window needs to be
calculated and the border style of the window is WND_BORD_CUSTOM.

Parameters:

1 inflate - Boolean value of wParam. If gtrue, the supplied rectanglelis toflated,
otherwise it is to be inset.

1 rect - Value of IParam. Points to the grect to be inflated or inset.
Returns:
Always return 1.

The amount by which the rectangle is inflated or inset depends on how much space the
custom border requires. It dirgceffects the size of the client area of the window.

327

Chapter 118 HWND Reference

328

Example:

/I this example custom border has a single pixel line at the top and bottom
grect* pRect = (grect*)IParam;
if (wParam)
{
[inflate
pRect - >top++;
pRect - >bottom++;

}

else

{

/] inset
pRect - >top -- ;
pRect - >bottom -- ;

}

return 1L;

WM_BORDERCHANGED (v3.1)

The WM_BORDERCHANGED message is send when WNDsetBorderSpec is called, and
after the border has been changed in the HWND.

Parameters:

1 borderSpec- Value of IParam. Point® the border spec structure.
Returns:

Always return 1L.

See also WM_BORDERCHANGING, WNDsetBorderSpec

WM_BORDERCHANGING (v3.1)

The WM_BORDERCHANGING message is send when WNDsetBorderSpec is called,
prior to the border being chardye

Parameters:

1 redraw - Value of wParam. If 1, the caller called WNDsetBorderSpec with the redraw
flag set.

1 borderSpec- Value of IParam. Points to the border spec structure.
Returns:

Return 1 if WNDsetBorderSpec is to go ahead. Return 0 to prevent ther iam
changing.

Messages

Example:

/I this example makes a copy of the border spec and prevents WNDsetBorderSpec from changing
/Il the border in the HWND (the control draws and manages the border it self)
gbool redraw = (gbool)wParam;
WNDborderStruct* borderSpec = (WNDborderStruct*)IParam;
mBorderSpec = *horderSpec;
if (redraw)
{
/I invalidate our control
}
See also WM_BORDERCHANGED, WNDsetBorderSpec

WM_BORDERASEBACKGROUND (v4.0)

The WM_BORDERERASEBACKGROUND messagesent when painting
WND_BORD_CTRL_GROUPBX onWindowsXP. The message informs the control that
two 3-pixel strips immediately above and below the control should be erased.

1 dc- Value of wParam. Points to the device in which the border is to be painted.

9 rect - Value of IParam. Points to the gredbich forms the outside edge of the border
rect. The coordinates are local to the device.
Example: (excerpt from WndProc)

..
case WM_BORDERASEBACKGROUND:

{
if (isSetup()) eraseBorderBackground(hWnd, (HDC) wParam, (grect
*) IParam);
return 1L;
}

WM_BORDPAINT

The WM_BORDPAINT message is sent when the border of a window needs painting and
the border style of the window is WND_BORD_CUSTOM.

Parameters:
9 dc- Value of wParam. Points to the device in which the border is to be painted

1 rect - Value of IParam. Points to the grect which forms the outside edge of the border
rect. The coordinates are local to the device.

329

Chapter 118 HWND Reference

Returns:
Always return 1.

Example:

/I this example custom border has a single pixel line at the top and bottom
HDC dc = (HDC)wParam;

grect* pRect = (grect*)IParam;

HPEN oldPen = GDIselectObject(dc, GDIgetStockPen(BLACK_PEN));

GDlsetTextColor(GDI_COLOR_QBLACK);
GDImoveTo(dc, pRect - >left, pRect ->top);

GDIlineTo(dc, pRect - >right, pRect - >top);
GDImoveTo(dc, pRect - >left, pRect - >bottom);
GDIlineTo(dc, pRect - >right, pRect - >bottom);

GDlselectObject(dc, oldPen);
return 1L;

WM_CAPTUREABORT

This message is sent by WNDabortMouseCapture() before it releases capture of the mouse
pointer (WNDreleaseCapture()). Returpeyis void.

Parameters:None.

Example:

/Iwill be followed immediately by WM_CAPTURECHANGED
case WM_CAPTUREABORT:
{
tqfFishEyeObject *object = (tqfFishEyeObject *)ECOfindObject(eci, hwnd);
if (object)
{
object - >trackingEnabled(qgtrue);
object - >mDestr oyOnCaptureChange = gtrue;

}

break;

330

Messages

WM_CHILDPAINT

The WM_CHILDPAINT message is sent for every child window when a window requests
its children to be painted by calling the WNDredrawChildren function.

Parameters:
T hWnd - is the windowhandle of the child window.

1 flags- value of IParam. This is WND_RW_NCPAINT or WND_RW_NCPAINT and
WND_RW_PAINT. If WND_RW_PAINT is specified, the client area needs painting. If
WND_RW_NCPAINT is specified the netlient area needs painting.

Returns:

An external component should return zero if it processes this message-z¢rwis
returned, a WM_PAINT message is sent to the child window.

Example:
See WNDredrawChildren.

WM_COREPATTERNGRADIENTSUPPORT (v5.0)

This message returns qgtrue if the object wgnaslients to be shown in the pattern palette in
the property inspector, i.e. for $backpattern. Return gfalse to disable gradient back patterns.

Parameters:None.

WM_CREATE

The WM_CREATE message is sent when an external component reqaestsvthdow be
created by calling the WNDcreateWindow or WNDaddWindowComponent function. The
WndProc function for the new window receives this message after the window is created
but before the window becomes visible. The message is sent to the windosvthefo
WNDcreateWindow or WNDaddWindowComponent function returns.

Parameters:
None.
Returns:

Must always return 0.

331

Chapter 118 HWND Reference

332

WM_DESTROY

The WM_DESTROY message is sent when a window is being destroyed. It is sent to the
WndProc function of the windwe being destroyed after the window is removed from the
screen.

This message is sent first to the window being destroyed and then to the child windows as
they are destroyed. During the processing of the WM_DESTROY message, you can assume
that all child wirdows still exist.

Parameters:
None.
Returns:

Must always return O.

WM_DRAGBORDER

WM_DRAGBORDER is sent during border dragging every time the size of the component
is changed, after all children and sibling components have been sized.

Parameters:
1 isVert - value of wParam. If gtrue we are dragging a vertical border.
Returns:

Must always return O.

Messages

WM_DRAGDROP

WM_DRAGDROP message is sent during drag & drop operations. Care should be taken
not to process these messadearing design mode. Most of these messages can be ignored
and simply passed into WNDdefWindowProc or returned with a statdsfof WebClient.

Parameters:

il

IParam - Value of IParam depends on wDragDropCode, refer to the individual
messages.

wDragDropCode - Value of wParam. Specifies a drag drop code that indicates the
request. This parameter can be one of the following values:

DD_STARTDRAG
Indicates that the drag process is starting. Normally this message is ignored.
LParam will contain a pointer ttdi¢ FLDdragDrop structure.

DD_ENDDRAG
Indicates that the drag process is finishing. Normally this message is ignored.
LParam will contain a pointer to the FLDdragDrop structure.

DD_CHILD_STARTDRAG
Indicates that the drag process is starting. Sent to tieatpaf the dragging
window. LParam will contain a pointer to the FLDdragDrop structure.

DD_CHILD_ENDDRAG
Indicates that the drag process is finishing. Sent to the parent of the dragging
window. LParam will contain a pointer to the FLDdragDrop structure.

DD_CANDRAG_ON_DOWN

Enquiry on whether dragging can be started by a mouse button down action.
Return true or false, or simply ignore the message. LParam will contain a pointer
to a gpoint structure which will contain the mouse position. The point is local to
the client area of the window which receives these messages.

DD_CANDRAG_ON_MOVE

Enquiry on whether dragging can be started by a mouse move action. Return true
or false, or simply ignore the message. LParam will contain a pointer to a gpoint
structure whib will contain the mouse position. The point is local to the client area
of the window which receives these messages.

DD_CANDROP

Sent to the drop control and it can return gtrue if drop action is allowed. LParam
will contain a pointer to the FLDdragDropg@tture and member mDropPoint may
be used to establish drop position.

DD_CANDROP_OVER

Sent to the drop control and it can return gtrue if dropping is allowed. LParam will
contain a pointer to the FLDdragDrop structure and member mDropPoint may be
used to stablish mouse position.

333

Chapter 118 HWND Reference

DD_CANDROPPARENT

Sent to the parent of the drop control and it can return gtrue if dropping is allowed.
LParam will contain a pointer to the FLDdragDrop structure and member
mDropPoint may be used to establish mouse position.

DD_HILITE
Request to the current dropping control to hilite its acceptance to allow dropping.
LParam will contain a pointer to the FLDdragDrop structure.

DD_UNHILITE
Request to the current dropping control to unhilite itself. LParam will contain a
pointer to tle FLDdragDrop structure.

DD_ALWAYS_HILITE

Request to the current dropping control to establish whether highlighting is
required. Return gtrue or gfalse. LParam will contain a pointer to the
FLDdragDrop structure

DD_SHOWDRAGSHAPE
Message to show the dragagie. Normally this is ignored. LParam will contain a
pointer to the FLDdragDrop structure.

DD_HIDEDRAGSHAPE
Message to hide the drag shape. Normally this is ignored. LParam will contain a
pointer to the FLDdragDrop structure.

DD_MOVEDRAGSHAPE
Message to mee the drag shape. Normally this is ignored. LParam will contain a
pointer to the FLDdragDrop structure.

DD_CANSCROLL

Request to the current dropping control to establish whether scroll is required.
Return gtrue or gfalse. If gtrue is returned then DD_DR#R®PSCROLL will be
sent. LParam will contain a pointer to the FLDdragDrop structure.

DD_GETSCROLLRECT

Request to the current dropping control for it to adjust the scrolling rectangle, if
required. Return gtrue if processed. IParam will contain a pointbetqrect

which can be adjusted.

DD_DRAGDROPSCROLL

Request to the current dropping control for it to scroll, if required. Return gtrue if
processed. IParam will contain a pointer to the gpoint which can be used to ensure
that the point is inside the coalr

DD_SETDRAGVALUE

Request for control to set the drag value and can be used, for example, to set the
drag value to a selection of text. LParam will contain a pointer to the
FLDdragDrop structure.

334

Messages

DD_GETDRAGCONTAINER

Request for control to set the dramuece HWND (FLDdragDrop member
mDragSourceHwnd). Normally this is ignored but can be useful for complex
controls that allow dragging of multiple HWNDs. LParam will contain a pointer to
the FLDdragDrop structure.

DD_BUTTONDOWN

Message that the button is dowduring drag move. Normally this is ignored but it
can be used to change drop tabs on a tabbed pane control, for example. LParam
will contain a pointer to the FLDdragDrop structure.

DD_BUTTONUP

Message that the button is up during drag move. Normallystigsiored but it can

be used to change drop tabs on a tabbed pane control, for example. LParam will
contain a pointer to the FLDdragDrop structure.

Returns:

Depends on the value of wDragDropCode, but most of these messages can be ignored and
simply passé into WNDdefWindowProc or returned with a statuslofor WebClient.

Example:

/I #1: this example is taken from the list control
case WM_DRAGDROP:
{
switch (wParam)
{
case DD_CANDRAG_ON_DOWN: return gfalse;
case DD_CANDRAG_ON_MOVE: {
glong lin eNumber = lineNumberFromPoint((gpoint*)lParam);
return lineNumber!=0; } /I Start drag if the mouse is over a line
case DD_SETDRAGVALUE: {
FLDdragDrop* dragDrop = (FLDdragDrop*)IParam;

EXTfldval dtype(dragDrop - >mDragType);

dtype.setLong(c FLDdragDrop_dragData); I/l We are dragging data
EXTfldval dval(dragDrop - >mDragValue);

dval.setList(mLocallList, gfalse); /I Set data to our list

return gtrue; }
default: /I Not processed
#ifdef isRCC
return OXffffffffL; /l Web component
#endif
return DefWindowProc(hWnd,pMsg,wParam,|Param);

}

[1#2: this example is taken from the droplist control

335

Chapter 116 HWND Reference

gbool tgfDroplist::dragDrop(HWND hwnd, UINT message, WPARAM wParam, LPARAM
IParam, gbool pDoEdwc)

{
switch(message) {
case WM_DRA®ROP: {
switch (wParam) {
case DD_CANDRAG_ON_DOWN:
case DD_CANDRAG_ON_MOVE:{
if (mIsDropped) return gfalse;
if (lisDesign() && readOnly() &&
udDragMode()==cFLDdragDrop_dragData) {
gpoint pt =*((qp oint*)IParam);
grect r; WNDgetClientRect(hwnd(), &r);
r.left = r.right - mButtonWidth;
if (GDIptinRect(&r, &pt)) return gfalse; //don't allow
data dragging from the button
}
break;
}
case DD_SETDRAGVALUE:
{
if (lisDesign() && udDragMode()==cFLDdragDrop_dragData &&
lImList) {
FLDdragDrop *dragDrop = (FLDdragDrop *) IParam;
dragDrop - >setDragType(cFLDdragDrop_dragData);
fldval* dval = dragDrop - >getDragValue(gtrue);
dval ->setlist (mList.getlstptr(), gfalse); //don't make
copy of list
return gtrue;
}
break;
}
}
}
}
return tgfld::dragDrop(hWnd, message, wParam, IParam, pDoEdwc);
}
See also FLDdragDrop

336

Messages

WM_ERASEBKGND

The WM_ERASEBKGNDmessage is sent when the window background needs to be
erased (for example, when a window is sized). It is sent to prepare an invalidated region for
painting. From v3.1 onwards you should always call WNDdrawThemeBackground and only
erase the area manuaiflyhe function returns gfalse. See example below.

Parameters:
 hdc - Value of wParam. Identifies the device context.
Returns:

An external component should return reero if it erases the background; otherwise, it
should return zero.
Example:

HDC dc =(HDC)wParam;
grect cRect; WNDgetClientRect(hwWnd, &cRect);

if ('WNDdrawThemeBackground(hWnd,dc,&cRect, WND_BK_DEFAULT))

{
GDlsetTextColor(dc, GDI_COLOR_WINDOW);

GDlfillRect(dc, &cRect, GDIgetStockBrush(BLACK_BRUSH));
}

return 1L;
See also WNDdrawThemeBackground

WM_FOCUSCHANGED

This message is generated when the input focus has been changed by Omnis. If a window
displays an input caret, this is the time when the caret should be created or destroyed.

Parameters:

1 focus- Valueof wParam. If zero, the window looses the input focus. If 1 the window
receives the input focus.

Returns:

An external component should return reero if it creates or destroys the caret; otherwise,
it should return zero.

337

Chapter 116 HWND Reference

Example:

/I this example creates text input cursor at character position 7

/I of some text the control is displaying
switch (message)

{
case WM_FOCUSCHANGED:
{
if (wParam)
{
// create the caret, if ovrTypeOn is gtrue, we in over type mode
/I and the caret is displayed as block, otherwise we are in
/l insert mode, and the caret is displayed as a vertical line.
GDltextSpecStruct
tSpec(fntEdit,styPlain,GDI_COLOR_WINDOWTEXT jstLeft);
str255 text(AThis is an example for WNDcr e:
gdim caretHeight = G DifontPart(&tSpec.mFnt, tSpec.mSty,
eFontHeight);
gdim caretWidth = (ovrTypeOn ? GDIcharWidth(text[8],
&tSpec):1);
gdim caretLeft = GDItextWidth(&text[1], 7, &tSpec);
grect cRect;
gpoint pt;
WNDgetClient Rect(hwnd, &cRect);
pt.h = cRect.left + caretLeft;
pt.v = cRect.top + 1;
WNDcreateCaret(hwWnd, caretWidth, caretHeight);
WNDsetCaretPos(&pt);
WNDshowCaret();
}
else
{
/I destroy the caret
WNDdestroyCaret(hwnd);
}
retur n1L;
}
}

338

Messages

WM_GETERASEINFO

This message is generated during-gbent painting of a window, when the nalient area

contains dead areas which need to be erased. Dead areas occur when a window has both
horizontal and vertical scroltss, or has a shadow border style. In response to this message
the WNDeraselnfoStruct must be filled in. A pointer to this structure is supplied in IParam.

Parameters:

1 eraselnfo- Value of IParam. Pointer to the WNDeraselnfoStruct .
Returns:

Always returnO.

Example:

WNDeraselnfoStruct *eraselnfo = (WNDeraselnfoStruct*)IParam;
eraselnfo - >mBackColor = colWhite;

eraselnfo - >mForeColor = colBlack;

eraselnfo - >mFillPattern = patFill;

return OL;

WM_GETMINMAXINFO

The WM_GETMINMAXINFO messageés sent to a window whenever Omnis needs the
maximum or minimum tracking size of the window. The maximum tracking size of a
window is the largest window size that can be achieved by using the borders to size the
window. The minimum tracking size of a winw is the smallest window size that can be
achieved by using the borders to size the window. This message is not usually generated by
the HWND module (except during border dragging, see WM_DRAGBORDER), but by
other parts of Omnis, for example, window desigowever, the function
WNDgetMinMaxInfo can be used to assist in calculating the minMaxInfo of a component
window when this message is received. When components are used this function should
always be called. It is recursive in that it generates fukiiidr GETMINMAXINFO
messages for all child windows. After calling this function, any further restrictions can be
applied to the minMaxInfo it calculated.

Parameters:
T minMaxinfo - Value of IParam. Pointer to the WNDminMaxInfo struct .
Returns:

Always return 1.

339

Chapter 118 HWND Reference

340

Example:

WNDminMaxInfo* minMaxInfo = (WNDminMaxInfo*)IParam;
WNDgetMinMaxInfo(hwnd, minMaxInfo);

if (minMaxInfo - >ptMinTrackSize < 100) minMaxInfo - >ptMinTrackSize =
100;

if (minMaxInfo - >ptMaxTrackSize > 400) minMaxInfo - >ptMinTrackSize =
400;

return 1L,

WM_GETSHADOWRECT (Mac OSX only)

The WM_GETSHADOWRECT message is send when the HWND manager needs to paint
a WND_BORD_CTRL_TABPANE or WND_BORD_CTRL_SHADOW_EX border on

Mac OSX. This allows the control to manipulate the rect gdat being drawn. If the

border is to be drawn as is, you do not need to respond to this message.

Parameters:

1 theRectPtr - Value of IParam. Contains pointer to the grect at which the border will be
painted. The rect will be local to the client area ofgiven HWND.

Example:

grect* theRectPtr = (grect*)IParam;
theRectPtr - >top += 10;
return 1L;

WM_HSCROLL and WM_VSCROLL

The WM_HSCROLL message is sent to a window when the user clicks the window's
horizontal scroll bar (WM_VSROLL if the user clicks the vertical scrollbar).

Parameters:

1 wScrollCode- Value of wParam. Specifies a scroll bar code that indicates the user's
scrolling request. This parameter can be one of the following values:

SB_ENDSCROLL
End scroll.

SB_LEFT or SB_TOP
Scroll to far left or top.

SB_LINELEFT or SB_LINEUP
Scroll one line left or up.

SB_LINERIGHT or SB_LINEDOWN
Scroll one line right or down.

Messages

SB_PAGELEFT or SB_PAGEUP
Scroll one page left or up.

SB_PAGERIGHT or SB_PAGEDOWN
Scroll one page right or down.

SB_RIGHT or SB_BOTTOM
Scroll to far right or bottom.

SB_THUMBPOSITION
Scroll to absolute position. The current position is specified by the LOWORD of
IParam.

SB_THUMBTRACK
Drag scroll box (thumb) to specified position. The current position is specified by
the LOWORD of IParam.

1 nPos- Value of the loworder word of IParam. Specifies the current position of the
scroll box if the wScrollCode parameter is SB_ THUMBPOSITION or
SB_THUMBTRACK; otherwise, the nPos parameter is not used.

Returns:
An external componersthould return zero if it processes this message.

The SB_THUMBTRACK scroll bar code is typically used by external components that give
some feedback while the scroll box is being dragged.

If an external component scrolls the contents of the window (seedstdDNVindow), it
must also reset the position of the scroll box by using the WNDsetScrollPos function.

341

Chapter 116 HWND Reference

Example:

gdim min, max, page, oldPos, newPos;
gshort sbar = (message == WM_HSCROLL ? SB_HORZ : SB_VERT);

/I get current scrollbar settings
WNDgetScrollPos(hWnd, sbar, &oldPos);
WNDgetScrollRange(hWnd, sbar, &min, &max, &page);

/I calculate newPos appropriately
switch (wParam)

{

/I in this example 1 scroll unit equals 8 pixels

case SB_LINEDOWN: newPos = oldPos + 8; break;
case SB_LIENUP: newPos = oldPos - 8 break;

case SB_PAGEDOWN: newPos = oldPos + page; break;

case SB_PAGEUP: newPos = oldPos - page; break;

case SB_TOP: newPos = min; break;

case SB_BOTTOM: newPos = max; break;

case SB_THUMBPOSITION:
case SB_THUMBTRACK:
{
/I handle sign extension correctly
gshort shortNewPos = LOWORD(IParam);
newPos = shortNewPos;
break;

case SB_ENDSCROLL: return 1L;
default: newPos = oldPos; break;

if (newPos != oldPos)

{
gdim hOff = (sbar == SB_HORZ ? oldPos - newPos :0);

gdim vOff = (sbar == SB_VERT ? oldPos - newPos:0);

WNDsetScrollPos(hWnd, sbar, newPos, gtrue);
WNDscrollWindow(hwnd, hOff, vOff);

342

Messages

WM_IPHONE_ROUNDRECT_TEXTFIELDSTYLE

This message should return gtrue if the iPhone rounded rectangle isatgesame as the
UlTextField border, gfalse otherwise. This message applies only to iPhone client
component development (Studio v5.0).

Parameters:

None

WM_KEYXXxX

The WM_KEYDOWN message is sent when a key is pressed and the winddve tkay t
capture (See function WNDsetCapture). If a parent window has the WND_KEYPREVIEW
style, the WM_KEYDOWNPREVIEW message is sent to that parent prior to the child
receiving the WM_KEYDOWN message. WM_KEYUP and WM_KEYUPPREVIEW
messages are generated wtienkey is released.

WM_KEYDOWN
sent to the window who has the key capture.

WM_KEYUP
sent to the window who has the key capture.

WM_KEYDOWNPREVIEW
sent to all parents of the window who has the key capture, and the parents specify
WND_KEYPREVIEW in their gtended styles.

WM_KEYUPPREVIEW
sent to all parents of the window who has the key capture, and the parents specify
WND_KEYPREVIEW in their extended styles.

Parameters:
1 key - Value of IParam. Specifies a pointer to a gkey.
Returns:

An external component shilal return zero if it processes this message. Otherwise it must
return 1, so Omnis can continue processing the key.

343

Chapter 118 HWND Reference

Example:

// in this example we are only interested in movement keys to scroll
/I the window vertically on a WM_KEYDOWN message

gkey* key = (gkey*)IParam;

vchar vch =key ->getVChar();

if (vch) switch (vch)

{
case vcUp: wParam = SB_LINEUP; break;
case vcDown: wParam = SB_LIENDOWN; break;
case vcPup: wParam = SB_PAGEUP; break;
case vcDown . wParam = SB_ PAGEDOWN;break;
case vcHome: wParam = SB_TOP; break;
case vcEnd: wParam = SB_BOTTOM; break;
default: return 1L;

}

else

{
return 1L;

}

WNDsendMessage(hwWnd, WM_VSCROLL, wParam, 0);

return OL;

WM_LBUTTONxxx and WM_RBUTTONXxXxx

The WM_LBUTTONxxxand WM_RBUTTONxxx messages are generated when the user
operates the left or right mouse button.

WM_LBUTTONDOWN or WM_RBUTTONDOWN
The WM_LBUTTONDOWN or WM_RBUTTONDOWN message is sent when
the user presses the left or right mouse button.

WM_LBUTTONUP or WM_R BUTTONUP
The WM_LBUTTONUP or WM_RBUTTONUP message is sent when the user
releases the left or right mouse button.

WM_LBUTTONDBLCLK or WM_RBUTTONDBLCLK
The WM_LBUTTONDBLCLK or WM_RBUTTONDBLCLK message is sent
when the user double clicks the left or right medbutton.

Note: Under MacOS right button clicks are generated by holding down the option key while
operating the mouse button.

344

Messages

Parameters:

1 point - Value of IParam. Specifies the point as a long value (use WNDmakePoint to
retrieve the point). The point iscal to the client area of the window which receives
these messages.

Returns:
An external component should return zero if it processes this message.

Example:

/I This is an example for a simple pushbutton dealing with mouse tracking
/I when the user clickson the button.
switch (message)
{
case WM_LBUTTONDOWN:

{
if (! WNDhasCapture(hwnd, WND_CAPTURE_MOUSE))

{
/I set the capture for mouse tracking
WNDsetCapture(hwnd, WND_CAPTURE_MOUSE);
// paint the button in the down position

I/l remember the position in a member
mDown = qgtrue;

}

return OL;
}
case WM_MOUSEMOVE:

{
if (WNDhasCapture(hwWnd, WND_CAPTURE_MOUSE))

{
gpoint pt; WNDmakePoint(IParam, &pt);

grect cRect; WNDgetClientRect(hWnd, &cRect);

if (mDown != GDlIptinRect(&cRect, &pt))

{
I/l the user has moved the mouse out of the button,
/I or into the button.

/I paint the button up or down
mDown = ImDown;

}

return OL;

345

Chapter 118 HWND Reference

346

case WM_LBUTTONUP:

{
if (WNDhasCapture(hWnd, WND_CAPT URE_MOUSE))
{
/I tracking has finished, release the mouse capture
WNDreleaseCapture(hwnd, WND_CAPTURE_MOUSE);
/I was the mouse button released inside the client area
if (mDown)
{
/I do something
/I paint the button in the up position
mDown = gfalse;
}
}
return OL;
}

}
WM_MULTIKEYDOWNPREVIEW

Sentto parenwindowon a WM_MULTIKEYDOWN eventif parent has
WND_KEYPREVIEW set (currently WM_MULTIKEYDOWN only applies to Mac OSX)

Parameters:

1 Keysi Value of IParam. Thigs a pointer to WNDmultiKey class instance (defined in
hwnd.he) and contains the key combination being held down.

Returns:

An external component should return zero if it processes this message.

WM_MOUSEMOVE

The WM_MOUSEMOVE message isrg¢o a window when the mouse cursor moves. If
the mouse is not captured, the message goes to the window beneath the cursor. Otherwise,
the message goes to the window that has captured the mouse.

Parameters:

1 point - Value of IParam. Specifies the pointabng (use WNDmakePoint to retrieve
the point). The point is local to the client area of the window which receives these
messages.

Returns:

An external component should return zero if it processes this message.

Messages

Example:
See WM_LBUTTONDOWN

WM_NCACTIVATE

The WM_NCACTIVATE message is sent when a window is activated or deactivated. A
window becomes active when it becomes the topmost window (ignoring all floating palette
windows).

Parameters:

9 active- Value of wParam. This is a boolean \alulf gtrue, the window has become
active, otherwise the window has become inactive.

Returns:
Always return zero.
Example:

/I in this example the control needs to draw its control items disabled
/l when a window is not active.

gbool active = (gbool)wParam ;

if (active)

{

/I paint control enabled

}

else

{

/I paint control disabled

}
WM_NCLBUTTONDOWN

The WM_NCLBUTTONDOWN message is sent when the left mouse button has been held
down over the nowglient area of a window.

Parameters:

1 hittest - Value of wParam. Specifies thehdtst area code. This parameter is one of the
Htxxx defines.

1 point - Value of IParam. Specifies the point as a long (use WNDmakePoint to retrieve
the point). The point is local to the desktop.

Returns:

An externalcomponent should return zero if it processes this message.

347

Chapter 116 HWND Reference

Example:

/I this example lets the user drag the window via the top area of the
/I border restricting the movements to the client area of the parent window
if (wParam == HTBORDER)
{
/I test if the mouse is in the top part of the border
gpoint pt; WNDmakePoint(IParam, &pt);
grect cRect; WNDgetClientRect(hWnd, &cRect);
/I map client rect to desktop
WNDmapWindowRect(hwnd, HWND_DESKTOP, &cRect);
if (pt - >v <= cRect.top)
{
/lresticcmovement of mouse to parentds client ar
HWND parentHwnd = WNDgetParent(hwnd);
WNDgetClientRect(parentHwnd, &cRect);
WNDmapWindowRect(parentHwnd, HWND_DESKTOP, &cRect);
WNDclipCursor(&cRect);

/' loop following the mouse movements whilthe button is held down
gpoint lastPt = pt;
gpoint curPt;
while (WNDmouseLeftButtonDown())
{
WNDgetCursorPos(&curPt);
gdim hDiff = curPt.h - lastPt.h;
gdim vDiff = curPt.v - lastPt.v;
if (hDiff || vDiff)
{
/I move the windav
grect wRect; WNDgetWindowRect(hWnd, &wRect);
/I WNDmoveWindow expects coordinates for the window local to
/'l the parentés client area
WNDmapWindowRect(HWND_DESKTOP, parentHwnd, &wRect);

WNDmoveWindow(hwnd, wRect.left + hDiff, wRe ct.top +
vDiff,

wRect.width(), wRect.height(), gtrue);
// update parent and all children to give immediate feedback

/I to the user
WNDredrawWindow(parentHwnd, NULL, NULL, WND_RW_UPDATE |
WND_RW_ALLCHILDREN | WND_RW_ERASE);

348

Messages

lastPt = curPt;

}

/I must clear cursor clipping before returning
WNDclipCursor(NULL);
return OL;

}

return 1L;

WM_NULL

This message is generated while the computer is idle, that is, no other messages are
pending, and the mze capture is set (see WNDsetCapture).

Parameters:
None.
Returns:

Always return 1.

WM_PAINT

The WM_PAINT message is sent when a portion of a window needs repainting. To repaint
a window the function WNDbeginPaint must be called, followed bgll to WNDendPaint
after all painting has been done.

Note: Nested calls to WNDbeginPaint or WNDstartDraw are not supported and result in a
runtime error.

Parameters:

None.

Returns:

An external component should return zero if it processes this message.

Example:
WNDpaintStruct paintinfo;
WNDbeginPaint(hwnd, &paintinfo);

/I paint the control
WNDendPaint(hWwnd, &paintinfo);
return OL;

349

Chapter 118 HWND Reference

350

WM_PRI_INSTALL

The WM_PRI_INSTALL message is sent when the print manager opens the page preview
or screen report, and an alternative hwnd has been specified in PRIdestParmStruct when
calling PRIstartJob or PRIredirectJob. For more information about printing refer to the print
manager documentation.

It is possible to write external components which didiplay screen or preview reports.
When a report is about to be displayed in the given HWND, WM_PRI_INSTALL is sent to
the HWND. When the report is closed, WM_PRI_REMOVE is sent.

The component will be responsible for killing an active print job when gaoieve about to
use the HWND. The component must store the pointer to the job which currently occupies
the HWND.

Parameters:

1 job - Value of IParam. Specifies the pointer to the print job, PRIjob.
9 device- Value of uParam. Specifies the pointer to the outievice.
Returns:

An external component should return 1L if it processes this message.
Example:

/I if there is an existing job occupying the hwnd, kill the job
if (mJob) PRIdefOutputProc(mJob, mOutput, PM_OUT_KILL, 0, 0, 0);

/I remember the new job &d device
mJob = (PRIjob)IParam;

mOutput = (void*)uParam;

return 1L;

WM_PRI|_REMOVE

The WM_PRI_REMOVE message is sent when the print manager closes the page preview
or screen report, and an alternative hwnd has been specified in PRidestRict when
calling PRIstartJob or PRIredirectJob. See WM_PRI_INSTALL.

The component will be responsible for killing an active print job when a new job is about to
use the HWND. The component must store the pointer to the job which currently occupies
the HWND.

Parameters:
None.
Returns:

An external component should return 1L if it processes this message.

Messages

Example:

/I clear the job and device
mJob = 0;

mOutput = O;

return 1L;

WM_RBUTTONXxxx

See WM_LBUTTONXxX.

WM_OSXREPAINTPLUGIN (v5.0)

This message informs an OSX browser plugin that it needs to repaint. It is issued by
WNDabortMouseCapture()

Parameters:
None.

Example:

case WM_OSXREPAINTPLUGIN:
{

mThis - >mNeedPaint = gtrue;
break;

}
WM_SETCURSOR

WM_SETCURSOR is generatevery time the mouse moves across a window and the
mouse capture has not been set. If WM_SETCURSOR is passed on to the DefWindowProc
the cursor is set to the arrow cursor if the mouse is over theligo area of the window.

If the function WNDcheckCuwor is called in response to this message, the HWND module
sets the cursor to the appropriate cursor depending on the cursor associated with the
window or the windows parents (see WNDsetWindowCursor).

Parameters:
1 hwndCursor - Value of wParam. Specifies thBA/ND that contains the cursor.

9 hittest - Value of the loworder word of IParam. Specifies the-tést area code. This
parameter can be one of the Htxxx defines.

1 mouseMsg- Value of the higkorder word of IParam. Specifies the number of the
mouse message.

If nHittest is set to HTCLIENT, the window procedure should call WNDcheckCursor.

Note: While the mouse capture is on, no WM_SETCURSOR messages are generated.

351

Chapter 118 HWND Reference

352

Example:

// in this example the cursor is set to a drag cursor when the mouse is over
/I the top part of the border
gword2 hittest = LOWORD(IParam);
if (hittest == HTBORDER)
{
/I test if we are in the top part of the windows border
gpoint pt; WNDgetCursorPos(&pt);
grect cRect; WNDgetClientRect(hWnd, &cRect);
/I map client rect to desktop
WNDmapWindowRect(hwnd, HWND_DESKTOP, &cRect);
if (pt.v <= cRect.top)
{
WNDsetCursor(WND_CURS_DRAG_OBJECT);
return 1L;

}

}
WNDcheckCursor(hwnd, hittest);

return 1L;

WM_SHOWSIZEGRIP

The WM_SHOWSIZEGRIP message is sent wiienHWND module needs to query the
window as regards to properties of the grow box within the client area of the window. If a
window has both horizontal and vertical scrollbars, the grow box is displayed in the non
client area, and no WM_SHOWSIZEGRIP megs#s generated.

Parameters:
1 submerge- value of wParam. This parameter is one of the following values:

WND_GRIP_ALLOWED
Is the grow box allowed to be in the client area. Return one of the following:

WND_GRIP_ALLOW_NO No grow box is allowed.
WND_GRIP_ALLOW _YES The grow box is allowed.
WND_GRIP_ALLOW_STOP The grow box is allowed but not visible.

Note: Under MacOS, the return value is ignored. A grow box is always enforced,
if the MacOS window has been given the grow box property.

WND_GRIP_GET_RECT

Position he supplied grow box rect. IParam points to a grect which is already
positioned for the bottom right corner of the client area. The window can adjust
this rectangle, so the grow box is painted in the correct location within the client
area of the window (D NOT alter the width or height of the rect).

Messages

WND_GRIP_GET_RECT should return the same value which was returned by
WND_GRIP_ALLOWED.

WND_GRIP_CHANGED
The grow box is removed or added to the window.

1 growboxrect-val ue of | Par am. A reptangleis seppliedimthis h e
parameter, if the sulmessage is WND_GRIP_GET_RECT.

Returns:
For WND_GRIP_ALLOWED return one of the WND_GRIP_ALLOW _xxx flags.

For WND_GRIP_GET_RECT return the same value which is returned by
WND_GRIP_ALLOWED.

For WND_GRIP_CHAGED always return 0.

Example:

/I this window has no scrollbars, so it needs to implement th/M_SHOWSIZEGRIP
/I messages if it wants to allow a growbox in its client area
switch (wParam)

{
case WND_GRIP_ALLOWED:

{
return WND_GRIP_ALLOW_YES;

}

case WND_GRIP_GET_RECT:

{
Il rect is already positioned for bottom right corner of the client
/I area, but you want to bring it in an additional 2 pixels to give
/I as room for our special border
grect* theRect = (grect*)IParam;
GDloffsetRect(the Rect, -2, -2);
return WND_GRIP_ALLOW_YES,;

}

case WND_GRIP_CHANGED:

{
/I get the growbox rect so we can invalidate it. Note:
/I WNDgetGrowBoxRect generates a WND_GRIP_GET_RECT message.
grect theRect; WNDgetGrowBoxRect(hwnd, &theRect);
WNDinvalidateRect(hWnd, &theRect);

353

Chapter 118 HWND Reference

354

WM_SHOWWINDOW

The WM_SHOWWINDOW message is sent when the function WNDshowWindow is
called to show or hide a window.

Parameters:

1 show- Value of wParam. If window is shown, this value is one, otherivisezero.
Returns:

An external component should return zero if it processes this message.
Example:

/I this example only allows the window to be shown if the member mVisible is gtrue.
if (wParam && !mVisible) return OL;
return 1L;

WM_TIMER

The WM_TIMER message is sent to the WndProc function of a window after each interval
which was specified when the WNDsetTimer function was called to install the timer.

Note: Because WM_TIMER messages are only generated if no other messages are on the
message queue, the accuracy of the intervals at which they are generated cannot be
guaranteed, that is, while Omnis is busy, no WM_TIMER messages are generated.

Parameters:

9 timerID - Value of wParam. The timer id which was specified when the timer was
instaled.

Returns:

Always return zero.

Messages

Example:

/I this example implements a typical about box behavior by destroying the window
/I after it has been around for 5 seconds or on a mouse button up. While the mouse

// button is held down, the window stays around.
switch (message)

{

case WM_PAINT:

{

}

/I leave the window around for 5 seconds after the first paint
static gbool sTimerSet = gfalse;
WNDpaintStruct paintinfo;

WNDbeginPaint(hwWnd, &paintinfo);

I paint the window
WNDendPaint(hWnd, &paint Info);
if (! sTimerSet)

{
WNDsetTimer(hwnd, 1, 5000);
sTimerSet = qtrue;

}

return OL;

case WM_TIMER:

{

}

/I'5 seconds later destroy the window if the mouse button
/'is not held down

WNDKkillTimer(hWnd, 1);

if ('WNDmouseLef tButtonDown())

{

WNDdestroyWindow(hwnd);
}
return OL;

case WM_LBUTTONDOWN:

{
}

return OL;

case WM_LBUTTONUP:

{

/I always destroy the window on a button up

355

Chapter 118 HWND Reference

WNDdestroyWindow(hwnd);
return OL;

}
WM_VSCROLL

SeeWM_HSCROLL.

WM_WINDOWPOSCHANGED

The WM_WINDOWPOSCHANGED message is sent to a window whose size, position,
visibility, or z-order has changed as a result of a call to WNDsetWindowPos or another
window-management function.

Parameteas:

1 wpos- Value of IParam. Points to\WNDwindowPosStructlata structure that contains
information about the window's new size and position.

Returns:
Always return 1.
Example:

/I this example resets the scroll ranges if the width or height of the windowak been changed
WNDwindowPosStruct* windowPosInfo = (WNDwindowPosStruct*)IParam;

if ((windowPosInfo - >flags & SWP_NOSIZE) ==0)

{
gdim min, max, page;
WNDgetScrollRange(windowPosInfo - >hwnd, SB_HORZ, &min, &max,
&page);
page = windowPosInfo - >CX;
WNDsetScrollRange(windowPoslInfo - >hwnd, SB_HORZ, min, max, page
);
WNDgetScrollRange(windowPosInfo - >hwnd, SB_VERT, &min, &max,
&page);
page = windowPosInfo - >cy;
WNDsetScrollRange(windowPosInfo - >hwnd, SB_HORZ, min, max, page
);

}

return 1L;

356

Messages

WM_WINDOWPOSCHANGING

The WM_WINDOWPOSCHANGING message is sent to a window whose size, position,
visibility, or z-order is about to be changed as a result of a call to WNDsetWindowPos or
another windowmanagement function.

Parameters:

1 wpos- Value of IParam. Points to\WNDwindowPosStructiata structure that contains
information about the window's new size and position.

Returns:
An external component should return zero if it processes this message.

During this message, modifying any of theuesd in the/NDwindowPosStrucstructure

affects the new size, position, eoeder. An external component can prevent changes to the
window by setting or clearing the appropriate bits in the flags member of the
WNDwindowPosStrucstructure.

Example:

/I this example prevents the window being sized outside a specific size range
WNDwindowPosStruct* windowPosInfo = (WNDwindowPosStruct*)IParam;

if ((windowPoslInfo - >flags & SWP_NOSIZE) ==0)
{
if (windowPosInfo ->cx <100)
windowPosInfo - >cx = 100;
else if (windowPosInfo - >cx >400)

windowPosInfo - >cx = 400;

if (windowPosInfo ->cy<80)
windowPosInfo - >cy = 80;
else if (windowPosInfo ->cy >200)
windowPosInfo - >cy = 200;
}
return 1L;

357

Chapter 118 HWND Reference

Functions

358

HIWORD()
gword2 HIWORD(qword4 pVal)

Returns the high order word of the given long value.

LOWORD()

gword2 LOWORD(gword4 pVal)

Returns the low order word of the given long value.

WNDabortMouseCapture()

void WNDabortMouseCapture()

Aborts mouse capture asesult of some user action elsewhere in the process, e.g.
CMND+N to open a new window in a web browser. Sends WM_CAPTUREABORT to the
hwnd with the mouse capture, and then releases the mouse capture.

WNDaddWindowComponent()

HWND WNDaddWindowComponent(HWND pHwnd, qulong pComponent,
qulong pStyle, qulong pExStyle,
WNDprocClass* pObiject,
gdim pSizeOR grect pRect,
WNDborderSpec* pBorderSpec)

Adds a new window component to the specified parent. Adding aoemts may cause the
position of other components to be altered, and generates WM_PAINT messages if these
components are visible.

1 pHwnd - identifies the window to which to add the component.
1 pComponent- specifies one of the following component types:

WND_WC_MENUBAR
WND_WC_TOOLBAR_TOP
WND_WC_TOOLBAR_LEFT
WND_WC_TOOLBAR_BOTTOM
WND_WC_TOOLBAR_RIGHT
WND_WC_HEADER_BUTTON
WND_WC_MAIN_HEADER
WND_WC_HORZ_HEADER
WND_WC_VERT_HEADER

Functions

WND_WC_CLIENT
WND_WC_STATUSBAR

pStyle - specifies the styles for the window. Samdad/NVNDcreateWindow.

pPEXStyle - specifies the extended styles for the window. Same as for
WNDcreateWindow.

pObject - specifies the WNDprocClass instance which is to be associated with the new
component.

pSize or pRect pSize specifies the height or widththe component (if pRect is

specified only the height or width of the rectangle is used), depending on whether it is a
horizontal or vertical component. If zero is passed, the default size applies. pSize is
ignored for WND_WC_CLIENT and WND_WC_HEADER_BUON components.

pBorderSpec- specifies the border style of the component.

return - returns the new HWND of the component.

359

Chapter 118 HWND Reference

Example:

[/ in this example a window adds a menu and client component to it self
/I when it is first created
glong cMyWndProcClass: :WndProc(HWND hWnd, UINT message, WPARAM

wParam,
LPARAM IParam, LPARAM uParam)
{
switch (message)
{
case WM_CREATE:
{
qulong style = WS_CHILD | WS_CLIPSIBLINGS |
WS_CLIPCHILDREN | WS_VISIBLE;
WNDborderStruct border(WND_B ORD_EMBOSSED);
mMenuHwnd = WNDaddWindowComponent(hwnd,
WND_WC_MENUBAR,
style,
WND_DRAGBORDER,
this,
20,
&border);
style |= WS_HSCROLL | WS_VSCROLL;
mClientHwnd = WN DaddWindowComponent(hwnd,
WND_WC_CLIENT,
style,
WND_DRAGBORDER,
this,
0,
&border);
return OL;
}
}
return DefWindowProc(hwnd, message, wparam, Iparam);
}
See also WNDcreateWindow, WNDgetWindowComponent,
WNDnextWindowComponent, WNDremoveWindowComponent,
WNDborderSpec

360

Functions

WNDbeginPaint()
WNDprocClass* WNDbeginPaint(HWND pHwnd, WNDpaintStruct* pPaintStruct)

Prepares the given window for painting antsfd WNDpaintStruct structure with

information about the painting. The WNDbeginPaint function automatically sets the visual
region of the device context to exclude any area outside the update region. The update
region is set by the WNDinvalidateRect or WiKizalidateRgn function and by the HWND
module after sizing, moving, creating, scrolling, or any other operation that affects the client
area. If the update region is marked for erasing, WNDbeginPaint sends a
WM_ERASEBKGND message to the window.

If the caet is in the area to be painted, WNDbeginPaint automatically hides the caret to
prevent it from being erased.

Warning: This function must only be called in response to a WM_PAINT or
WM_CHILDPAINT message, and must always be followed by a call to WNDentdPain
before the next call to WNDbeginPaint (must NOT be nested).

1 pHwnd - identifies the window to be repainted.

1 pPaintStruct - points to the WNDpaintStruct structure that receives the painting
information.

1 return - returns a pointer to the WNDprocClass ins&amwhich is associated with this
window. WARNING: the pointer is NULL if the window has no associated instance.

Example:
See WM_PAINT, WM_TIMER, WNDredrawChildren.
See also WNDendPaint, WNDstartDraw, WNDendDraw, WM_PAINT,

WM_NCPAINT, WM_ERASEBKGND, WM_CHLDPAINT,
WNDpaintStruct, HDC

WNDbringWindowToTop()
gbool WNDbringWindowToTop(HWND pHwnd)

Brings the given child window to the top of a stack of overlapping windows. The
WNDbringWindowToTop function should be used to uncoverwimdow that is partially
or completely obscured by any overlapping windows.

Calling this function is similar to calling the WNDsetWindowPos function to change a
window's position in the -order.

1 pHwnd - identifies the window to bring to the top.

9 return - returns qgtrue if successful. Otherwise, it is gfalse.

361

Chapter 118 HWND Reference

362

Example:

// in this example a window brings itself to the top when it is being clicked on

glong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM
wParam,

LPARAM IParam, LPARAM uParam)

switch (message)

{
case WM_LBUTTONDOWN:

{
WNDbringWindowToTop(hwnd);

return OL;

}
}

return DefWindowProc(hwnd, message, wparam, Iparam);

}
See also WNDsetWindowPos

WNDchangeComponentid()
gbool WNDclrangeComponentld(HWND pHwnd, qulong pComponent)

Changes the component type of the given window. All the usual restrictions apply, that is,
only one of each component type can be present in the same parent window at any one time.

1 pHwnd - identifiesthewid ow whods component type is t
1 pComponent- specifies the new component type.
9 return - returns qgtrue if successful.

Example:
WNDchangeComponentld(myComponentHwnd, WND_WC_CLIENT);
See also WNDaddWindowComponent, WNDremoveWindowComponent

WNDcheckCursor()
void WNDcheckCursor(HWND pHwnd, gword?2 pHittest)

Checks the window to see if the cursor needs changing and changes it if necessary. This
function should be called when a WM_SETCURSOR message is received.

1 pHwnd - identifiesthe window to check.

9 pHittest - specifies the hit test area code. If pHittest is set to HTCLIENT and the
windowés cursor is anything other than W

Functions

changed. I f pHittest is set to HTCLI ENT
WND CURS DEFAULT, the parentdéds window cur ¢
is also WND_CURS_DEFAULT, the parentdés p
parents have a cursor set, the cursor is set to WND_CURS_ARROW. If pHittest is
anything other than HTIGENT, the cursor is set to WND_CURS_ARROW.

Example:
See WM_SETCURSOR.
See also WNDsetCursor, WNDgetCursor, WNDsetWindowCursor,

WNDgetWindowCursor, WNDclipCursor, WNDgetCursorPos,
WNDsetCursorPos, WM_SETCURSOR

WNDchildPaintBegin() (v3.1)

void* WNDchildPaintBegin(void* pChildPaintinfo, HWND pParentHwnd, HDC
pParentHdc, HWND pChildHwnd, grect* pChildRect, grect* pClipRect)

This function allows you to paint childindowsinside the parent DC during the parents

paint at a locatiospecified by the parent. This is useful for complex lists which use
embedded controls to paint the list data (i.e. Omnis Complex Grid). Such a list will need to
paint the same child multiply times, once for every visible row of the list.

You call WNDchildPaintBegin repeatedly for each child which requires painting. When the
last child has been painted you must call WNDchildPaintEnd. You would repeat this for
every row.

The children must be painted starting with the bottom most child, since visual refiibas o
children are ignored.

You should use GDloffscreenPaintBegin and GDloffscreenPaintEnd when painting each
row, to avoid unwanted flicker while painting the children.

pChildPaintinfo i the paint info returned by a previous call to WNDchildPaintBegin.
pParentHwnd i identifies the parents HWND.

pParentHdc i identifies the parents DC.

pChildHwnd 71 identifies the HWND of the child to be painted.

pChildRect i specifies the coordinates at which to paint the child.

= 4 -4 A -a -2

pClipRect i identifies the area in the paremhich requires painting.

363

Chapter 116 HWND Reference

364

Example:

/I start the parent update

WNDpaintStruct ps;

WNDbeginPaint(parentHwnd, &ps);

/Il prepare painting of rows

/I for the benefit of the example we hard code the row height,

/I and assume that the top of each child within e&crow is zero,

[/l and the left, right and bottom are correct

glong rowHeight = 50;

grect clientRect; WNDgetClientRect(parentHwnd, &clientRect);
glong fstVisRow = 1,

glong IstVisRow = (clientRect.height() + rowHeight T1)/
rowHeight;
grect rowRect = cli entRect; rowRect.bottom = rowHeight T

void* offscreeninfo = 0;
HDC paintDC = ps.hdc;
/I paint the rows
for (glong row = fstVisRow ; row<=IstVisRow ; row++)
{
/I prepare the offscreen paint
grect paintRect = rowRect;
grect updRect = ps.rcPaint;

voi d* offscreeninfo2 = GDloffscreenPaintBegin(offscreeninfo,
paintDC,

paintRect, updRect);
/1 if offscreenlnfo2 == NULL this
/'l so we don6ét need to paint anyt
if (offscreeninfo2)
{
offscreeninf o = offscreeninfo2;
void* childInfo = 0;
/I erase the background prior to painting the children
WNDdrawThemeBackground(parentHwnd, paintDC, &paintRect,
WND_BK_CONTAINER);
/I get the bottom most child window
HWND childHwnd = WNDgetWind ow(parentHwnd, GW_CHILD);
if (childHwnd) childHwnd = WNDgetWindow(parentHwnd,
GW_HWNDLAST);
/I next through the children and paint them
while (childHwnd)

{

row doesnoi
hing

Functions

/I calculate the childs rects
grect childUpdRect = updRect;
grect childRect ; WNDgetWindowRect(childHwnd, &childRect);
WNDmapWindowRect(HWND_DESKTOP, parentHwnd, &childRect);
GDloffsetRect(&childRect, - paintRect.left,

paintRect.top - childRect.top);
I/ prepare painting of child

void* childinfo2 = WNDchil dPaintBegin(childinfo,
parentHwnd,

paintDC, childHwnd,
&childRect, &childUpdRect);
/I if childinfo2==NULL the child does not intersect the
/I childUpdRect and there is nothing to paint
if (childinfo2)
{
childin fo = childinfo2;
/ paint the child
WNDsendMessage(childHwnd, WM_PAINT, WPARAM(paintDC), 0

}

/I get the next child, making the assumption that we only have
/I one level of children
childHwnd = WNDgetWindow(childHwnd, GW_HWNDPREV)
}
/I we have painted all children for this row, so we must finish off
if (childinfo) WNDchildPaintEnd(childInfo);

}
/I prepare for next row
GDloffsetRect(&rowRect, 0, rowHeight);

}

/I we have painted all rows, so finish off offscreen paint
GDloffscreenPaintEnd(offscreenlinfo);

/I finish the parent update
WNDendPaint(parentHwnd, &ps);

See also WNDchildPaintEnd, GDloffscreenPaintBegin, GDloffscreenPaintEnd

365

Chapter 118 HWND Reference

366

WNDchildPaintEnd() (v3.1)
void WNDchildPaintEnd(void* pChilPaintinfo)

This function completes the painting of child windows inside the parents DC. For a full
description of WNDchildPaintBegin and WNDchildPaintEnd see WNDchildPaintBegin
above.

See also WNDchildPaintBegin

WNDclipCursor()

void WNDclipCursor(grect* pRect)

Clips the screen cursor to the specified rect, that is, the movement of the cursor is restricted
to within the bounds of the rectangle.

1 pRect- points to the rectangle which must be in screen coordinates. If this par&ameter
NULL, any clipping previously set by this function is cleared.

Example:
See WM_NCLBUTTONDOWN.

See also WNDsetCursor, WNDgetCursor, WNDsetWindowCursor,
WNDgetWindowCursor, WNDgetCursorPos, WNDsetCursorPos

WNDcreateCaret()
void WNDcreateCaret(HWND pHwnd, gdim pWidth, gdim pHeight)

Creates a new shape for the system caret and assigns ownership of the caret to the given
window. The WNDcreateCaret function destroys the previous caret automatically, if any,
regardless of which childimdow owns the caret. Once created, the caret is initially hidden.
To show the caret, use the WNDshowCaret function. A child window should create a caret
only when it has the input focus (see WM_FOCUSCHANGED).

1 pHwnd -identifies the window that owns thew caret.
1 pWidth - specifies the width of the caret in pixels.
1 pHeight - specifies the height of the caret in pixels.

Example:
See WM_FOCUSCHANGED.
See also WNDdestroyCaret, WNDgetCaretPos, WNDsetCaretPos,

WNDhideCaret, WNDshowCaret, WM_FOCUSCHANGED

Functions

WNDcreateWindow()

HWND WNDcreateWindow(HWND pParentHwnd, qulong pStyle, qulong pExStyle,
WNDprocClass* pObiject, grect* pRect,
WNDborderStruct* pBorderSpec)

Creates a window of type WND_WC_FRAME. The new window becomes thadsp
window in its parent.

1 pParentHwnd - identifies the parent of the window being created.

1 pStyle - specifies the styles for the window. The following styles can be passed in the
pStyle parameter:

WS_CHILD
WS_CLIPSIBLINGS
WS_CLIPCHILDREN
WS_HSCROLL
WS_VSCROLL
WS_VISIBLE

Note: For Omnis child windows to work correctly, WS_CHILD, WS_CLIPSIBLINGS, and
WS_CLIPCHILDREN must always be specified. If WS_VISIBLE is specified, the window
is made visible.

1 pExStyle - specifies special Omnis extended styles for thredaiv. The following styles
can be passed in the pExStyle parameter:

WND_FLOAT_xxx
WND_KEYPREVIEW
WND_REDRAWONSIZE
WND_TRANSPARENT
WND_DRAGBORDER
WND_NOFLOATCHILDREN
WND_NOADJUSTCOMPONENTS
WND_OSMESSAGES

1 pObject - specifies the WNDprocClass instance whiglo be associated with the new
window.

pRect-speci fies the initial window rectangl
pBorderSpec- specifies the border information for the window.

9 return - returns the new HWND, or NULL if the module fails teate the window.

367

Chapter 116 HWND Reference

Example:

/I this example subclasses the WNDprocClass for receiving messages for its
/I windows and creates a window with an inset border, scrollbars and bottom
/I and right floating properties so when the parent sizes, the new window
/I sizes by the same amount
/I the cMyWndProcClass declaration
class cMyWndProcClass : public WNDprocClass
{
cMyWndProcClass() {} // default constructor
~cMyWndProcClass() {} // default destructor

virtual glong WndProc(HWND hWnd, UINT message, WPARAM wPar am,

LPARAM IParam, LPARAM uParam);

h

/I first instantiate the WNDprocClass

cMyWndProcClass myWndProc = hew cMyWndProcClass();

/I prepare for window creation

grect myWRect(10, 10, 100, 20);

WNDborderStruct myBorder(WND_BORD_INSET);

/I now create the window invisibly

HWNDmyHwnd = WNDcreateWindow

(
myParentHwnd,

WS_CHILD | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | WS_HSCROLL |
WS_VSCROLL,

WND_FLOAT_RIGHT | WND_FLOAT_BOTTOM,
myWndProc,
&myWRect,
&myBorder
)i
/I WM_CREATE will h ave been sent by now, make the window visible
WNDshowWindow(myHwnd, SW_SHOW);
See also WNDaddWindowComponent, WNDdestroyWindow,
WNDgetWindowComponent, WNDnextWindowComponent,
WNDremoveWindowComponent, WM_CREATE

368

Functions

WNDdelay()

void WNDdelay(glong pMilliSecs)

Delays program execution by the specified number of milliseconds.
1 pMilliSecs- specifies the delay in milliseconds.

Example:

See WNDgetCursor.

WNDdestroyCaret()

void WNDdestroyCaret()
void WNDdestroyCaret(HWND kwnd)

Destroys the system caret. A child window should destroy the caret if it loses the input
focus.

1 pHwnd - if this parameter is specified, the caret is only destroyed if it belongs to the
given window. If the window is NOT specified, the caret is dg®d regardless.

Note: External components should always specify the window parameter, to prevent
destroying the caret if it is owned by another window.

Example:
See WM_FOCUSCHANGED.
See also WNDcreateCaret, WNDgetCaretPos, WNDsetCaretPos, WNDhideCaret,

WNDshowCaret, WM_FOCUSCHANGED

WNDdestroyWindow()

gbool WNDdestroyWindow(HWND pHwnd)

Destroys the given window and all its children. When a window is destroyed, a
WM_DESTROY message is sent to the window and all of its child wisd®e window
procedure can NOT prevent the windows from being destroyed.

1 pHwnd - identifies the window to be destroyed.

1 return - returns gtrue if successful. Otherwise, it is gfalse.

369

Chapter 118 HWND Reference

370

Example:
if (WNDdestroyWindow(myHwnd))
{

/l window has been destrogd

}

else

{
/l window has NOT been destroyed

}
See WM_TIMER.

See also WNDaddWindowComponent, WNDcreateWindow,
WNDgetWindowComponent, WNDnextWindowComponent,
WNDremoveWindowComponent, WM_DESTROY

WNDdragAcceptFiles()

void WNDdragAcceptFiles(HWND pHwnd, giol pAccept)

Registers whether a window accepts dropped files.

1 pHwnd - identifies the window that is registering whether it will accept dropped files.

1 pAccepti A value that indicates if the window identified by the hwnd parameter
accepts dropped file$his value is gtrue to accept dropped files or gfalse to
discontinue accepting dropped files.

WNDdrawThemeBackground() (v3.1)

gbool WNDdrawThemeBackground(HWND pHwnd, HDC pHdc, grect* pRect, qulong
pBKTheme)

Calling this function will erase the rectangle with the specified theme background.
1 pHwnd - identifies the window to be erased.

1 pHdc - identifies the device context for drawing.

1 pRect- specifies the area to be erased.

1 pBKTheme - specifies the theme for the erase. Tlais be one of the following

WND_BK_TEST

This will simply test if the window has a theme background specified (see
GWL_BKTHEME). No drawing takes place. If the window has a theme the
function returns gtrue.

Functions

WND_BK_DEFAULT

The function will use the backgroutiteme as set by GWL_BKTHEME for
drawing. If the window has no theme, no drawing takes place and the function
returns gfalse.

WND_BK_PARENT

Fill the area using the parents theme or erase colors. This will send a
WM_GETERASEINFO message to the parent ifplaegent has no theme. Function
returns gtrue.

WND_BK_HILITE
The area is filled with the standard hilite colors. Function returns gtrue.

WND_BK_NONE
No painting takes place, function returns gfalse.

WND_BK_WINDOW
Area is filled with the standard window bagkund theme. Function returns qtrue.

WND_BK_CONTAINER
Area is filled with the standard container background theme. Function returns
gtrue.

WND_BK_TABPANE
Area is filled with the standard tab pane background theme. Function returns gtrue.

WND_BK_TABSTRIP
Area is filled with the standard tab strip background theme. Function returns gtrue.

WND_BK_CONTROL
Area is filled with the standard control background theme. Function returns gtrue.

WND_BK_MENUBAR
Area is filled with the standard menu bar background thé&mection returns
gtrue.

WND_BK_MENU
Area is filled with the standard menu background theme. Function returns qgtrue.

1 returns i qtrue if painting has taken place, otherwise returns gfalse.

Example:
See WM_ERASEBKGND
See also GWL_BKTHEME, WM_ERASEBKGND, WNRirawThemeControl

371

Chapter 118 HWND Reference

372

WNDdrawThemeControl()

gbool WNDdrawThemeControl(HWND hwnd, HDC pHdc, qulong pType,

qulong pFlags, grect* pRect)

Draws the specified control using the systems current theme.

f
f
f

pHwnd - identifies the controls window.
pHdc - identifies the dvice context for painting.

pType T identifies the control type. Please note that not all control types are supported
on all platforms. The function will return false if a control can not be drawn. The control
type can be one of the following:

THEME_PUSHBUTTON

Draws a standard system button. The following flags can be used with this control:
THEME_CONTROL_DISABLED, THEME_CONTROL_PRESSED,
THEME_CONTROL_HOT, THEME_CONTROL_DEFAULT.

THEME_CHECKBOX

Draws a standard system checkbox. The following flags can blenigethis
control: THEME_CONTROL_DISABLED, THEME_CONTROL_ACTIVE,
THEME_CONTROL_PRESSED, THEME_CONTROL_HOT

THEME_RADIOBUTTON
Draws a standard system radio button. The following flags can be used with this
control: see THEME_CHECKBOX

THEME_TABPANE

Draws astandard system tab pane control. The following flags can be used with
this control: THEME_CONTROL_FRAME, THEME_CONTROL_CLIENT,
THEME_CONTROL_HOT, THEME_CONTROL_DISABLED,
THEME_CONTROL_ACTIVE, THEME_CONTROL_POS_TOP,
THEME_CONTROL_POS_BOTTOM.

THEME_COMBOBOX
Draws a standard system combo box. The following flags can be used with this
control: THEME_CONTROL_PRESSED, THEME_CONTROL_HOT.

THEME_SCROLLBAR
Draws a standard scrollbar.

THEME_HEADER
Draws a standard header. The following flags can be used with thislco
THEME_CONTROL_PRESSED, THEME_CONTROL_HOT.

THEME_TOOLBAR
Draws a standard toolbar. The following flags can be used with this control:

Functions

THEME_CONTROL_POS_TOP, THEME_CONTROL_POS_BOTTOM,
THEME_CONTROL_POS_LEFT, THEME_CONTROL_POS_RIGHT.

1 pFlagsi additiona drawing flags. See control types for flags which can be used. Please
note that some flags may only apply to some platforms. The function will return false if
a control can not be drawn using the given flags.

1 pRecti points to the grect structure speaifyithe ceordinates for drawing the control.

returns T gtrue if painting has taken place, otherwise returns gfalse and the control
needs to be painted manually.

See also WNDdrawThemeBackground

WNDendDraw()

void WNDendDraw(HWND pHwnd, BC pHdc)

Marks the end of painting in the given window. This function is required for each call to the
WNDstartDraw function, but only after painting is complete.

WNDstartdraw and WNDendDraw can be used to paint a window without having received
a WM_PAINT message.

1 pHwnd - identifies the window that has been repainted.

1 pHdc - identifies the device context to be released.

Example:

See WNDredrawChildren, WNDgetWindowFromPt, WNDpaintBorder.
See also WNDstartDraw, WNDbeginPaint, , HDC (GDI document)
WNDendPaint()

void WNDendPaint(HWND pHwnd, WNDpaintStruct* pPaintStruct)

Marks the end of painting in the given window. This function is required for each call to the
WNDbeginPaint function, but only after painting is complete.

Warning: WNDbeghPaint and WNDendPaint must only be ever used in response to a
WM_PAINT message.

1 pHwnd - identifies the window that has been repainted.

1 pPaintStruct - points to a WNDpaintStruct structure that contains the painting
information retrieved by the WNDbeginP&fanction.

373

Chapter 118 HWND Reference

374

Example:
See WM_PAINT, WM_TIMER, WNDredrawChildren.
See also WNDbeginPaint, WNDstartDraw, WNDendDraw, WNDpaintStruct

WNDenumChildWindows()

gbool WNDenumChildWindows(HWND pParentHwnd, WNDenumProc pEnumProc,
LPARAM IParam)

Enumerates all child windows of the given window and calls the specified WNDenumProc
function with the given IParam for each child.

Warning: Destroying the window which is currently being processed causes the system to
crash. Changing the part of a child window during the enumeration process may cause the
child window not to be enumerated.

1 pParentHwnd - identifies the parent window.

1 pEnumProc - identifies the user WNDenumProc which is to be called for each
enumerated child window. If thisfigtion wants the enumeration process to continue,
gtrue must be returned, otherwise the enumeration process is halted.

9 [IParam - specifies the IParam value to be passed to pEnumProc.

return - returns gtrue if all windows have been successfully enumeragtdrrihg
gfalse from pEnumProc stops enumeration, and returns gfalse to the calling function. If
the given window has no child windows, gtrue is returned.

Functions

Example:

/I this example sends a key message to all child windows of a window and
/I stops the enumeation process once a window has accepted the key

/I enumeration methods which are called for every child window

static qbool sSendKeyDown(HWND hwWnd, LPARAM |Param)

{

return (gbool) (WNDsendMessage(hwnd, WM_KEYDOWN, 0, IParam) !=
o .

/I note: returning gfalse stops enumeration

static gbool sSendKeyUp(HWND hWnd, LPARAM IParam)

{
return (gbool) (WNDsendMessage(hwnd, WM_KEYUP, 0, IParam) =0

)

/I note: returning gfalse stops enumeration

/I the parent window receiving a key message
glong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM
wParam,

LPARAM IParam, LPARAM uParam)

{
switch (message)
{
case WM_KEYDOWN:
case WM_KEYUP:
{
gbool result;
if (message == WM_KEYDOWN)
) result = WNDenumChildWindows(h Wnd, sSendKeyDown, IParam
else

result = WNDenumChildWindows(hwnd, sSendKeyUp, IParam);
/I check if a child accepted the key message
if (result)
{

/I NO child accepted the key

return 1L;

375

Chapter 118 HWND Reference

376

else

{

I/ the key was acepted by one of the child windows
return OL;

}
}

return DefWindowProc(hwnd, message, wparam, Iparam);

}
See also WNDgetWindow

WNDfloatChildren()
void WNDfloatChildren(HWND pHwnd, gdim pXOffset, qdim pYOffset)

Sizes or moves all floating child windows of the given parent window by the specified
amounts. A child window is sized or moved only if it has the appropriate floating styles.

Note: Their should be no need to call this function from outside the HWND motige.
HWND module calls this function automatically when a window sizes.

1 pHwnd - identifies the window whose children are to be floated.

1 pXOffset - specifies the amount by which the parent window has altered in size
horizontally.

1 pYOffset - specifies the aount by which the parent window has altered in size
vertically.

See also WNDsetWindowPos, WNDwindowPosStruct., WND_FLOAT_xxX,
WND_NOFLOATCHILDREN, WM_WINDOWPOSCHANGING,
WM_WINDOWPOSCHANGED

WNDgetBorderSpec()

void WNDgetBorderSpeddWND pHwnd, WNDborderSpec* pBorderSpec)
Returns the windows border information.
1 pHwnd - identifies the window.

1 pBorderSpec- the windows border information is returned in this structure.

Functions

Example:

/I this example gets the border spec and changes the bordelor if it has a plain border
WNDborderSpec border;
WNDgetBorderSpec(myHwnd, &border);
if (border.mBorderStyle == WND_BORD_PLAIN)
{
border.mLineStyle.setColor(GDI_COLOR_QRED);
WNDsetBorderSpec(myHwnd, &border, gtrue);

}
See also WNDsetBorder$ec, WNDborderSpec
WNDgetCapture()

HWND WNDgetCapture(qulong pFlags)
Returns the window which has the specified capture.

1 pFlags- specifies the capture for which to return the window. This parameter can be
WND_CAPTURE_MOUSE or WND_&PTURE_KEY. Only one of the two flags
must be specified.

9 return - returns the window that has the specified capture. NULL is returned if no
window has the capture.

Example:

HWND keyCapture = WNDgetCapture(WND_CAPTURE_KEY);
HWND mouseCapture = WNDgetCaptu re(WND_CAPTURE_MOUSE);
gbool haveBothCaptures = gbool(myHwnd == keyCapture
&&
myHwnd == mouseCapture);
I is the same as

gbool haveBothCaptures = gbool(WNDhasCapture(myHwnd,
WND_CAPTURE_KEY)

&&
WNDhasCapture(myHwnd, WND_CAPTURE_MOUSE));

See also WNDsetCapture, WNDhasCapture, WNDreleaseCapture,
WND_CAPTURE_xxx

377

Chapter 118 HWND Reference

WNDgetCaretPos()

void WNDgetCaretPos(gpoint* pPos)

Retrieves the system caret position in client coordinates of the assogiatiow.
1 pPos- points to the gpoint structure which is to receive the coordinates.
Example:

/I this example makes sure the caret position is within the client area of the window
gpoint pt; WNDgetCaretPos(&pt);
grect cRect; WNDgetClientRect(myHwnd, &c Rect);

/I the assumed width of the caret is 1.
cRect.right -=1;

/I the assumed height of the caret is 8
cRect.bottom -=8;
if (!GDIptinRect(&cRect, &pt))

{
if (pt.h < cRect.left) pt.h = cRect.left;

else if (pt.h > cRect.right) pt.h = cRect.righ t;

if (pt.v < cRect.top) pt.v = cRect.top;
else if (pt.v > cRect.bottom) pt.v = cRect.bottom;

WNDsetCaretPos(&pt);
}

See also WNDcreateCaret, WNDdestroyCaret, WNDsetCaretPos, WNDhideCaret,
WNDshowCaret, WM_FOCUSCHANGED

WNDgetClientRect()

void WNDgetClientRect(HWND pHwnd, grect* pRect)
Retrieves the coordinates of the windows client area.
1 pHwnd - identifies the window for which to return the client rect.

1 pRect- points to the grect structure which is to receive therdioates local to the
client area. Left and top are always zero.

Example:

See WM_NCLBUTTONDOWN, WM_SETCURSOR, WNDgetCaretPos,
WNDgetWindowFromPt, WNDpaintBorder, WNDsetCursorPos.

See also WNDgetWindowRect

378

Functions

WNDgetCursor()

gshort WNDgeEursor()

Returns the id of the currently displayed screen cursor.

9 return - returns one of the WND_CURS_xxx cursor ids.
Example:

/I this example changes the screen cursor for a number of
/I seconds and restores it

gshort oldCursor = WNDgetCursor();

WNDsetQursor(WND_CURS_WATCH);

WNDdelay(5000); // wait 5 seconds

WNDsetCursor(oldCursor);

See also WNDsetCursor, WNDgetCursorPos, WNDsetCursorPos,
WNDclipCursor, WNDgetWindowCursor, WNDsetWindowCursor
WNDgetCursorPos()

void WNDgetCusorPos(gpoint* pPoint)
Returns the location of the cursors Hotpoint in screen coordinates.

i pPoint-points to the qpoint structure which

Example:
See WM_NCLBUTTONDOWN.
See also WNDsetCursorPos, WNDclipCursqri'WNDsetCursor,

WNDgetWindowCursor, WNDsetWindowCursor

WNDgetFloat()

gulong WNDgetFloat(HWND pHwnd)
Returns the floating properties of the given window.
1 pHwnd - identifies the window for which to return the floating properties.

1 return - returns the WND_FLOAT_xxx flags of the window.

379

Chapter 118 HWND Reference

Example:

/I this example retrieves the floating properties of a window and switches off the bottom edge
floating.

qulong float = WNDgetFloat(myHwnd);

float &= ~WND_FLOAT_BOTTOM,;

WNDsetFloat(myHwnd, float);

See also WNDsetFloat, WNDcreateWindow, WND_FLOAT _xxx

WNDgetGrowBoxRect()

gbool WNDgetGrowBoxRect(HWND pHwnd, grect* pRect)

Returns the rectangle of the grow box, if the given window owns the grow box, and the
grow box is l@ated within the client area of the window. The grow box only appears in the
client area of a window if it owns the grow box and the window has no scrollbars. This
function is useful if a control wants to take into account the position of a possible gxow b
within the client area, for example, in the case of a status bar control, the panes sizes are
restricted. Calling this function generates a WM_SHOWSIZEGRIP message for the given
window.

1 pHwnd - identifies the window for which to return the coordinatéthe grow box.
T pRect-poi nts to the qrect which is to recei

9 return - returns qgtrue if the given window has a grow box in its client area.

Example:
See WM_SHOWSIZEGRIP
See also WM_SHOWSIZEGRIP

WNDgetMinMaxInfo()

void WNDgetMinMaxInfo(HWND pHwnd, WNDminMaxInfo* pMinMaxInfo)

Calculates the basic minimum tracking sizes of the given window by querying all child

wi ndows and adding their minimum tracking
type. WM_ETMINMAXINFO messages are generated for all child windows, and if these
child windows call WNDgetMinMaxInfo, further WM_GETMINMAXINFO messages are
generated for their children, and so on. All windows which are known to possibly contain
child windows mustrplement the WM_GETMINMAXINFO message and must call this
function prior to applying any additional restrictions to the minimum or maximum tracking
sizes.

1 pHwnd - identifies the window for which to calculate the minimum tracking sizes.

1 pMinMaxInfo - pointsto the WNDminMaxInfo struct which is to receive the results.

380

Functions

Example:
See WM_GETMINMAXINFO.
See also WM_GETMINMAXINFO

WNDgetOS()

gbool WNDgetOS(HWND pHwnd, glong pSelector, glong pLngValue)

Returns or manipulates platform specific imf@tion about a window. What information is
returned depends on the selector. All information is written to the given buffer.

1 pHwnd - identifies the window for which to return the platform specific information.
1 pSelector- platform specific selector. Diffent platforms have different selectors.
This can be one of the following:

GOS_WINDOW (Mac OS only)
Retrieves the MacOS window port of the given HWND.

Example:

CGrafPtr macGrafPtr;
WNDgetOS(myHwnd, GOS_WINDOW, (glong)&macGrafPtr);

GOS_EVENT (Mac OSonly)
Retrieves the MacOS event record for the currently executing window message.

Example:

EventRecord ev;

WNDgetOS(NULL, GOS_EVENT, &ev);
GOS_REGION (Mac OS only)
Retrieves the given windowds requested
modifiers which can be added to the selector. These are:
WND_CLIENT - returns the visual region of the client area.
WND_FRAME - returns the visual region of the nolient and client area.
WND_EXCLUDE_CLIENT - can be used together with WND_FRAME to get the
visualregion of the nostlient area only.
WND_EXCLUDE_SIBLINGS- if specified, all overlapping sibling windows are
subtracted from the visual region.
WND_EXCLUDE_CHILDREN- if specified, all child window regions are
subtracted from the visual region.
WND_LOCAL - if specified, the region is local to the rolent or client area
depending on which was requested. If not specified the region is local to the
MacOS windowbds port.
WND_INTERSECT_MAC_VISUAL- if specified, the visual region is intersected

381

Chapter 118 HWND Reference

with the visuar e gi on of the HWND&és MacOS windo

WND_EXCLUDE_FOCUS (V3.2) if specified, the visual region does not
include the area covered by the Mac OS focus rectangle.

Example:

I the region handle must be allocated by the caller
RgnHandle rgn = NewRgn();

// the next line returns the true visual region of the norclient
/I and client area as the window can be seen on screen.

/'l The region is local to the MacOS windo

WNDgetOS(myHwnd, GOS_REGION | WND_FRAME |
WND_EXCLUDE_SIBLINGS |

WND_EXCLUDE_CHILDREN | WND_INTERSECT_MAC_VISUAL,
(glong)rgn);

/I the next line returns the true visual region of the client

/l area as can be seen on screen, but includes all areas occupied

/I by the windows children. The region is local tahe MacOS

/'l windowds port.

WNDgetOS(myHwnd, GOS_REGION | WND_CLIENT |
WND_EXCLUDE_SIBLINGS |

WND_INTERSECT_MAC_VISUAL, (glong)rgn);

// do NOT forget to dispose of the region when finished
DisposeRgn(rgn);

GOS_MACOSS8 (Mac OS only)
Reurns 1 if system is version 8 or above.

GOS_OFFSETHWNDS (Mac OS only)

This will offset the given HWND and its children by the gpoint pointed to by
pLngValue. No painting takes place. This is useful fopart plugins or

applications which use our GDhd HWND dll to implement HWNDs. This

selector should be called when the Macintosh window has been scrolled, and the
HWND containers need to be repositioned in the port without causing any
invalidation.

Example:

gpoint pt(0,20);

WNDgetOS(theTopHwnd, GOS_OFFSETHWNDS, (glong)&pt);
GOS_CLIPHWNDS (Mac OS only)
This will clip the given HWND and its children to the given rectangle which must
be local to the Macintosh port to which the HWND belongs. This is useful®for 3
part plugins or applications whicbhse our GDI and HWND dll to implement

HWNDs. The selector should be called to prevent HWNDs painting over areas in
the Mac port which they are not to paint in.

382

Functions

Example:

grect r(0,0,400,300);
WNDgetOS(theTopHwnd, GOS_CLIPHWNDS, (glong)&r);

1 pLngValue- this should point to the buffer which receives/gives the information. The
buffer size and type depends on the selector.

1 return - returns gfalse if an invalid selector was specified.

WNDgetParent()

HWND WNDgetParent(HWND pHwnd)
Returns the parent window of the given window.

Note: WNDgetParent does NOT return parent windows if their parent window is
HWND_MAINWINDOW. These windows are instantiated from Omnis window classes and
are private to Omnis, no direct support is given to actiesse windows (see WNDgetOS).
NULL is returned instead.

1 pHwnd - identifies the window for which to return the parent window.
9 return -returns the parent window.

Example:

See WM_NCLBUTTONDOWN, WNDupdateWindow.

See also WNDsetParent

WNDgetScrollPos()
void WNDgetScrollPos(HWND pHwnd, gshort pwWhich, gdim* pPos)
Retrieves the current scroll position of the given window and scrollbar.

¢ Note: Querying a vertical or horizontal header component returns the appropriate scroll
position fom the client component.

1 pHwnd - identifies the window for which to return the scroll position.
1 pWhich - identifies the scrollbar SB_VERT or SB_HORZ.

1 pPos- points to the qdim which is to receive the scroll position.

Example:
See WM_HSCROLL.
See also WNDsetScrollPos, WNDsetScrollRange, WNDgetScrollRange

383

Chapter 118 HWND Reference

384

WNDgetScrollRange()

void WNDgetScrollRange(HWND pHwnd, gshort pWhich, gdim* pMin,
gdim* pMax, qdim* pPage)

Retrieves the scroll range and page size of the given windovwceoitbar.

Note: Querying a vertical or horizontal header component returns the appropriate scroll
range and page size from the client component. The maximum range includes the page size
as specified by WNDsetScrollRange. In order to find the true ranggralf positions you

must subtract pPage from the pMax value.

1 pHwnd - identifies the window for which to return the scroll range.

I pWhich - identifies the scrollbar SB_VERT or SB_HORZ.

1 pMin - points to the gdim which is to receive the minimum scroll range.
1

pMax - points to the gdim which is to receive the maximum scroll range (includes page
size).

1 pPage- points to the qdim which is to receive the page size.

Example:
See WM_HSCROLL, WM_WINDOWPOSCHANGED.
See also WNDsetScrollPos, WNDgetScrollPos, WNDsetSifRahge

WNDgetThemeColor()

gcol WNDgetThemeColor(qulong pType, qulong pFlags, qulong pPropld)

Returns the color of the specified attribute when using the specified theme and state
information. Constants are defined in hwnd.he.

1 pTypei Type constant correspding to the theme type required.
1 pFlagsi Flags representing state information about the control.

1 pPropld i Constant representing the type of attribute required.

Functions

Example:

gcol textColor = textSpec().mTextColor;

if (WND_BORD_CTRL_GROUPBOX == border.mBorde rStyle && gmain.isXP() &&
GDI_COLOR_WINDOWTEXT == textColor && !gmain.isVista())

{

textColor = WNDgetThemeColor(THEME_GROUPBOX,
THEME_CONTROL_NORMAL, THEME_COLOR_TEXTCOLOR);

if (GDI_COLOR_QDEFAULT == textColor)
textColor = GDI_COLOR_ACTIVECAPTION;

}
WNDgetThemeState()

gulongWNDgetThemeState(HWND hwWnd)

Returns flags describing state informatior
in hwnd.he.

1 hwnd i identifies the window. If NULL is passed, the main HWND is assumed.

WNDgetThemeControlSize()

gboolWNDgetThemeControlSize(HWND hWwnd,HDC pHdc,qulong pType,aglo
pFlags,qpoint* pSize)

Returns the size coordinates of the specified themed control. Types and flags are defined in
hwnd.he

1 hwnd i identifies the window on which the control residéNULL is passed, the
main HWND is assumed.

1 pHdc - identifies the drawing device.

1 pTypei Type constant corresponding to the theme type required.
1 pFlagsi Flags representing state information about the control.

1 pSize- (output). A gpoint structure contang the size coordinates.

Example:

gpoint size;

if (WNDgetThemeControlSize(0, pHdc, THEME_STATUS,
THEME_CONTROL_DEFAULT, &size))

{1}

385

Chapter 118 HWND Reference

386

WNDgetUpdateRgn()
void WNDgetUpdateRgn(HWND pHwnd, grgn* pRgn)

Returns the update regiontbe given window. This function should only be called during
WM_PAINT and WM_CHILDPAINT messages prior to calling WNDbeginPaint (calling
WNDbeginPaint clears the update region of the window). Calling it at any other time may
not return the correct region.

T pHwnd-i denti fies the window whods wupdate

1 pRgn - points to the grgn which is to receive the update region.

Example:
See WNDredrawChildren.
See also WNDbeginPaint, WM_PAINT, WM_CHILDPAINT

WNDgetWindow()

HWND WNDgetWindow(HWND pHwnd, UINT pRelationFlag)

Retrieves the related window of the given window.

1 pHwnd - identifies the window for which to return the related window.

1 pRelationFlag - identifies the relation. One of the following flags can be specified:

GW_CHILD - returns the top most child window

GW_HWNDFIRST- returns the top most sibling window

GW_HWNDLAST - returns the bottom most sibling window
GW_HWNDNEXT - returns the sibling window just below the given window
GW_HWNDPREV- returns the sibling windoyjust above the given window

Example:

/I this example steps through all immediate children of the window.
HWND curChild = WNDgetWindow(myHwnd, GW_CHILD);
while (curChild)

{
curChild = WNDgetWindow(curChild, GW_HWNDNEXT);
}
See also WNDenumChildWindws, WNDgetWindowComponent,

WNDnextWindowComponent, GW_xxx

Functions

WNDgetWindowComponent()

HWND WNDgetWindowComponent(HWND pHwnd, qulong pComponent)
Returns the specified component of the given window.

1 pHwnd - identifies the windowor which to return the component.

1 pComponent- identifies the component to be returned. One of the WND_WC_ xxx
flags must be specified here.

1 return - the HWND of the component.

Example:

/I this example retrieves the client component of a window
HWND client Comp = WNDgetWindowComponent(myHwnd, WND_WC_CLIENT);

See also WNDgetWindow

WNDgetWindowCursor()

gshort WNDgetWindowCursor(HWND pHwnd)

Returns the cursor id which is associated with the given window.
1 pHwnd - identifies the wndow for which to return the cursor id.
i return -the cursor id.

Example:

/'l this example changes the windowds cursor if

/l'is not set, that is, is equal to WND_CURS_DEFAULT.
if (WNDgetWindowCursor(myHwnd) == WND_CURS_DEFAULT)

{
WNBetWindowCursor(myHwnd, WND_CURS_NOGO);
}
See also WNDsetWindowCursor, WNDcheckCursor, WM_SETCURSOR

WNDgetWindowFromPt()

gbool WNDgetWindowFromPt(HWND* pHwnd, gword2* pHitTest, gpoint* pPoint)

Takes a global point local toWND_DESKTOP and locates the window that is underneath
the point.

1 pHwnd - points to the HWND variable which is to contain the window which was found
underneath the point.

387

Chapter 118 HWND Reference

388

9 pHitTest - points to the variable which is to contain the window part which is
underreath the point. The value is one of the HTxxx values.

1 pPoint - points to the gpoint.

1 return - returns gtrue if a window was found. Otherwise gfalse is returned.

Example:

/I this example displays info about the hwnd the mouse is over if the user
/I clicks in the client area of this window and than drags around the screen

/I while holding down the mouse button
static HWND lastHwndUnder = NULL;

glong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM

wParam,

LPARAM IParam, LPARAM uParam)

switch (message)

{

case WM_LBUTTONDOWN:

{

WNDsetCapture(hWnd, WND_CAPTURE_MOUSE);
return OL;

}

case WM_MOUSEMOVE:

{

if (WNDhasCapture(hWnd, WND_CAPTURE_MOUSE))

{

gpoint pt; WNDmakePoint(IParam, &pt);
HWND hwndUnder = NULL;

gword2 hittest;

str255 txt;

WNDmapWindowPoint(hwnd, HWND_DESKTOP, pt);
if (WNDgetWindowFromPt(&hwndUnder, &hittest, pt))

{

grect wRect; WNDgetWindowRect(hwndUnder, &wRect);
strl5 num;

txt = str2 55(fiLeft=% ; Top=% ; Right=8%
stri(wRect.left, num); txt.insertStr(num);

stri(wRect.top, num); txt.insertStr(num);

stri(wRect.right, num); txt.insertStr(num);

B

Functions

stri(wRect.bottom, num); txt.insertStr(num);

}
if (hwndUnder != sLastHwndUnder)

{
sLastHwndUnder = hwndUnder;
HDC dc = WNDstartDraw(hwnd);
grect cRect; WNDgetClientRect(hwWnd, &cRect);
GDlsetTextColor(dc, GDI_COLOR_WINDOW);
GDlfillRect(dc, &cRect,

GDlgetStockBrush(BLACK_BRUSH));
GDlsetTextColor(dc, GDI_COLOR_WINDOWTEXT);
GDIdrawText(dc, 0, 0, &txt[1], txt[0], jstLeft);

WNDendDraw(hwnd, dc);

}

return OL;

}
case WM_LBUTTONUP:

{
if (WNDhasCapture(hwnd, WND_CAPTURE_MOUSE))

{
WNDreleaseCapture(WND_CAPTURE_MOUSE);

}

return OL;

}
}

return DefWindowProc(hwnd, message, wparam, Iparam);

}
WNDgetWindowLong()

gulong WNDgetWindowLong(HWND pHwnd, glong pOffget
Retrieves style and type information about a window.
1 pHwnd - identifies the window for which to return the information.

1 pOffset - identifies the information to be returned. One of the following flags can be
specified:

GWL_STYLE- returns the windows diy flags
GWL_EXSTYLE - returns the windows extended style flags
GWL_EXCOMPONENTID- returns the windows component id.

389

Chapter 118 HWND Reference

390

1 return - the requested information.

Example:

/I this example switches of the scrollbars of the window

qulong style = WNDgetWindowLong(myH wnd, GWL_STYLE);
style & ~(WS_HSCROLL | WS_VSCROLL);

WNDsetWindowLong(myHwnd, GWL_STYLE, style);

See also WNDsetWindowLong, WNDcreateWindow, WS_xxx (styles),
WND_xxx (extended styles), WND_WC_xxx (component ids)

WNDgetProcinst()

WNDprocClass* WNDgetProcinst(HWND pHwnd)

Returns a pointer to the WNDprocClass instance which is associated with the given
window.

1 pHwnd - identifies the window for which to return the associated WNDprocClass
instance.

9 return - returns a pointeto the WNDprocClass instand®ARNING : returns NULL if
the window has no associated WNDprocClass instance.

Example:

/I this example creates a number of child windows which have their own
/I WNDprocClass instance. On a delete key message the parent window
/I destroys all child windows.

class cChildWndProcClass: public WNDprocClass
{

cChildwndProcClass() {}

~ cChildwndProcClass() {}

virtual glong WndProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM IParam, LPARAM uParam);

}

glong cParentWn dProcClass::WndProc(HWND hWnd, UINT message,
WPARAM wParam, LPARAM |IParam, LPARAM uParam)
{
switch (message)
{
case WM_CREATE:

{

Functions

}

/I ** create the child windows **

/I first instantiate the WNDprocClass

cChildwndProcClass* childWnd Proc = new cChildWndProcClass();
/I prepare for first child creation

grect childWRect(10, 10, 100, 20);

WNDborderStruct childBorder(WND_BORD_INSET);

/I now create the first child window (we do not need to

/I remember the HWND)

WNpreateWindow
(
hwnd,

WS_CHILD | WS_CLIPSIBLINGS | WS_CLIPCHILDREN,
0,
childWndProc,
&childWRect,
&childBorder
);
/I prepare for second child creation
childWRect.top += 40;
I/l now create the second child window
WNDPreateWindow
(
hwnd,
WS_CHILD | WS_CLIPSIBLINGS | WS_CLIPCHILDREN,
0,
childwndProc,
&childWRect,
&childBorder
);

return OL;

case WM_KEY:

{

gkey* key = (gkey*)IParam;
vchar vch = key - >getVChar();
if (vch = =vcBack || veh == vcClear)
{
[l ** delete the child windows **
HWND curChild = WNDgetWindow(hWnd, GW_CHILD);
while (curChild)
{

391

Chapter 118 HWND Reference

// first get the WNDprocClass of the child
cChildwndProcClass* childWndProc =
(cChild WndProcClass*) WNDgetProclnst(curChild);

/I delete the childwndProc, but set the WNDprocClass in

/I the window to NULL first
WNDsetProclnst(curChild, NULL);
delete childWndProc;

/I destroy the window
WNDdestroyWindow(curC hild);

/I get the next child, always start at the top again
curChild = WNDgetWindow(hwWnd, GW_CHILD);

}

return OL;

}

return 1L;

}
}

return (DefWindowProc(hWnd, message, wParam, IParam));

}

See also WNDprocClass, WNDsetPobnst, WNDcreateWindow,
WNDaddWindowComponent

WNDgetWindowRect()

void WNDgetWindowRect(HWND pHwnd, grect* pRect)

Retrieves the global coordinates (local to HWND_DESKTOP) of the window.
1 pHwnd - identifies the window for which tceturn the rect.

1 pRect- points to the grect structure which is to receive the coordinates.
Example:

See WNDredrawChildren.

See also WNDgetClientRect

WNDhasCapture()

gbool WNDhasCapture(HWND pHwnd, qulong pFlags)
Returns qgtrue if th given window has the specified capture.

1 pHwnd - identifies the window to test for the specified capture.

392

Functions

1 pFlags- specifies the capture for which to test the given window. This parameter can be
WND_CAPTURE_MOUSE or WND_CAPTURE_KEY. Only one of the twag
must be specified.

1 return - returns gtrue if the given window has the specified capture.
Example:
See WM_LBUTTONxxx, WNDgetCapture, WNDgetWindowFromPt.

See also WNDgetCapture, WNDsetCapture, WNDreleaseCapture,
WND_CAPTURE_xxx

WNDhideCaret()
void WNDhideCaret()

Hi des the system caret if it is currently
this function is called more than once before calling WNDshowCaret, it takes the same
number of calls to WNDshowCaret, to make tlaeet visible again.

Example:

WNDhideCaret();

See also WNDcreateCaret, WNDdestroyCaret, WNDgetCaretPos,
WNDsetCaretPos, WNDshowCaret, WM_FOCUSCHANGED

WNDinflateBorderRect()

void WNDinflateBorderRect(HWND pHwnd, grect* pRect,
WNDborderStruct* pBorderSpec)

This function is the reverse of WNDinsetBorderRect. Inflates the supplied rectangle by the
left, top, right, and bottom by the amount which is required for the specified border
information (the amount which the bordequires to paint). For example, if the border

was of type WND_BORD_INSET the rectangle would be inflated by two pixels on all
sides.

For custom borders (WND_BORD_CUSTOM) the HWND module sends a
WM_BORDCALCRECT message to the WndProc function of the giviedow.

1 pHwnd - identifies the window to be called for custom borders.
1 pRect- points to the grect to be inflated.

1 pBorderSpec- points to the border information.

393

Chapter 118 HWND Reference

394

Example:
See WNDpaintBorder.
See also WNDborderStruct, WNDdrawBorder, WNDinsetBorderRect

WNDinsetBorderRect()

void WNDinsetBorderRect(HWND pHwnd, grect* pRect,
WNDborderStruct* pBorderSpec)

Reverse of WNDinflateBorderRect.

Insets the supplied rectangle by the left, top, right, and bottom by the amount which is
required for the specified border information (the amount which the border requires to
paint). For example, if the border was of type WND_BORD_INSET the rectangle would
be inset by two pixels on all sides.

For custom borders (WND_BORD_CUSTOM) the HWND miladsends a
WM_BORDCALCRECT message to the WndProc function of the given window.

1 pHwnd - identifies the window to be called for custom borders.
1 pRect- points to the grect to be inset.

1 pBorderSpec- points to the border information.

Example
See WNDpaintBater.
See also WNDborderStruct, WNDdrawBorder, WNDinflateBorderRect

WNDinvalidateFrame()

void WNDinvalidateFrame(HWND pHwnd)

Adds the norclient area of the given window to the windows update region.
WM_NCPAINT messages are gaated as a result of this call.

1 pHwnd - identifies the window to be invalidated.

Example:
WNDinvalidateFrame(myHwnd);
See also WNDinvalidateRect, WNDinvalidateRgn

Functions

WNDinvalidateRect()
void WNDinvalidateRect(HWND pHwnd, grecpRect)

Adds the given rectangular area within the client area of the given window to the windows
update region. WM_PAINT messages are generated as a result of this call.

1 pHwnd - identifies the window to be invalidated.

1 pRect- points to the grect to bevalidated inside the client area. If this parameter is
NULL, the whole client area is invalidated.

Example:
See WM_SHOWSIZEGRIP.
See also WNDinvalidateRgn, WNDinvalidateFrame

WNDinvalidateRgn()

void WNDinvalidateRgn(HWND pHwnd,rgn *pRgn)

Adds the given region within the client area of the given window to the windows update
region. WM_PAINT messages are generated as a result of this call.

1 pHwnd - identifies the window to be invalidated.

1 pRgn - points to the grgn to be invalidatéside the client area. If this parameter is
NULL, the whole client area is invalidated.

Example:

/I this example invalidates to rectangular areas in the client area of the
/I window in one call to WNDinvalidateRgn

qgrgn rgnl, rgn2;

GDlsetRectRgn(&rgnl, 10, 10, 50, 20);

GDlsetRectRgn(&rgn2, 10, 50, 80, 60);

GDIrgnOr(&rgnl, &rgnl, &rgn2);

WNDinvalidateRgn(myHwnd, &rgn1l);

See also WNDinvalidateRect, WNDinvalidateFrame

WNDisBorderExternal() (v3.1)
gbool WNDisBorderExternaHWND pHwnd, gshort pBorderStyle)

This function checks if the given border style will be drawn outside the HWNDs frame.
This is only true for some borders on Mac OSX.

1 pHwnd - identifies the window.

395

Chapter 118 HWND Reference

396

1 pBorderStyle - identifies the border style to test

9 returns- true if the border will be drawn outside the windows frame.

WNDisPaintinProgress|()

gbool WNDisPaintInProgress()
Returns qtrue if a paint is currently in progress, gfalse otherwise.

Example:
if (mMHWnNd)
{

setPicturesScrollRange();
if ('WNDisPaintInPr ogress())

{
WNDinvalidateRect(mHWnd,NULL);

WNDupdateWindow(mHWnd);
}
WNDisVistaTheme()

gulong WNDisVistaTheme()

Returns THEME_STATE_xxx flags describing the Windows Vista theme being used by the
operating system. This depends whether the comp@aimining under Vista and whether
Vista is running in Classic mode or not. Currently, if Windows Vista is using themes,
WNDisVistaTheme() returns the THEME_STATE_ACTIVE and
THEME_STATE_HOTACTIVE flags. Otherwise, THEME_STATE_NOTACTIVE is
returned.

Example:
misVista = (gbool) (WNDisVistaTheme() != 0);

Functions

WNDisWindowVisible()
gbool WNDisWindowVisible(HWND pHwnd)

Returns the current visibility state of the given window. It only returns gtrue if the window
is visible on screen (the WSISIBLE flag is set for it self and all of the windows parents)
although it may be hidden by overlapping sibling windows. If it is required to test the
WS_VISIBLE style of a window, use the WNDgetWindowLong function.

1 pHwnd - identifies the window to be $éed.
1 return - returns gtrue if the window is visible.
Example:

Il in this example, the window redraws itself if it is truly visible, that is, all of its

/I parents are also visible.
if (WNDisWindowVisible(myHwnd))

{
WNDredrawWindow(myHwnd, NULL, NUL L,
WND_RW_NCPAINT | WND_RW_PAINT | WND_RW_ERASE);
}
See also WS_VISIBLE, WNDgetWindowLong

WNDKkill Timer()

gbool WNDKillTimer(HWND pHwnd, qushort pTimerld)
Removes the timer of the specified id from the given window.
1 pHwnd - identifies the window who owns the timer.

1 pTimerld - specifies the id of the timer to be removed.

1 return - returns gtrue if the timer was removed successfully. If a timer of the given id
could not be found, gfalse is returned.

Example:
See WM_TIMER.
See als WNDsetTimer, WM_TIMER

397

