

Omnis Studio
External Components
Creating your own External Components

TigerLogic Corporation
May 2010

12-052010-01

The software this document describes is furnished under a license agreement. The software may be
used or copied only in accordance with the terms of the agreement. Names of persons, corporations, or
products used in the tutorials and examples of this manual are fictitious. No part of this publication may
be reproduced, transmitted, stored in a retrieval system or translated into any language in any form by
any means without the written permission of TigerLogic.

© TigerLogic Corporation, and its licensors 2010. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2009 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation
(http://www.apache.org/).

OMNIS® and Omnis Studio® are registered trademarks of TigerLogic Corporation.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2003 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company
Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered
trademarks of Sun Microsystems Inc.

J2SE is Copyright (c) 2003 Sun Microsystems Inc under a licence agreement to be found at:
http://java.sun.com/j2se/1.4.2/docs/relnotes/license.html

MySQL is a registered trademark of MySQL AB in the United States, the European Union and other
countries (www.mysql.com).

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase
Inc.

Acrobat is a trademark of Adobe Systems, Inc.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power
Macintosh and PowerPC are trademarks of Apple Computer, Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering
(www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL ... 6

CHAPTER 1ðOMNIS EXTERNAL COMPO NENTS 8

INTRODUCTION .. 8
CREATING YOUR OWN EXTERNAL COMPONENTS 9
CREATING NON-VISUAL COMPONENTS 33
BACKGROUND COMPONENTS .. 44
WEB CLIENT COMPONENTS ... 45

CHAPTER 2ðSTRUCTURES, MESSAGES & FUNCTIONS 47

STRUCTURES ... 47
FLAGS .. 59
GENERAL MESSAGES ... 63
WM_CONTROL MESSAGES .. 115
GENERAL FUNCTIONS .. 124
MEMORY FUNCTIONS .. 166
QHANDLEPTR CLASS ... 173
RESOURCE FUNCTIONS .. 176
BIT FUNCTIONS ... 179
OBJINST FUNCTIONS ... 181

CHAPTER 3ðSTRXXX CLASS REFERENCE 184

MEMBER FUNCTIONS STRXXX CLASS 184
MEMBER FUNCTIONS STR15 CLASS 190
MEMBER FUNCTIONS STR80 CLASS 191
MEMBER FUNCTIONS STR255 CLASS 192
OTHER FUNCTIONS .. 193

CHAPTER 4ðUNICODE CHARACTER CO NVERSION 196

INTRODUCTION .. 196
UNICODE DATA TYPES .. 197
UTILITY CLASSES .. 197
OTHER FUNCTIONS .. 216

CHAPTER 5ðEXTBMPREF & EXTCURRE F 218

INTRODCUTION .. 218
ENUMERATIONS... 218
EXTBMPREF CLASS REFERENCE....................................... 219

Table of Contents

4

EXTCURREF CLASS REFERENCE (V2.2) 223

CHAPTER 6ðQKEY REFERENCE 225

INTRODUCTION .. 225
ENUMERATIONS... 225
QKEY CLASS REFERENCE ... 226
OTHER FUNCTIONS .. 229

CHAPTER 7ðEXTFILE REFERENCE 231

INTRODUCTION .. 231
API FUNCTIONS ... 231
EXTFILE CLASS REFERENCE ... 237

CHAPTER 8ðCRB REFERENCE 243

INTRODUCTION .. 243
API FUNCTIONS ... 243
EXTCRB CLASS REFERENCE ... 251

CHAPTER 9ðEXTQLIST REFERENCE 259

INTRODUCTION .. 259
STRUCTURES AND ENUMERATIONS 262
EXTQLIST CLASS REFERENCE ... 263

CHAPTER 10ðEXTFLDVAL REFERENCE 276

INTRODUCTION .. 276
ENUMERATIONS AND STRUCTURES 282
EXTFLDVAL CLASS REFERENCE ... 287

CHAPTER 11ðHWND REFERENCE.......................... 306

THE HWND .. 306
STRUCTURES, DATA TYPES, AND DEFINES 309
STYLES .. 322
MESSAGES ... 326
FUNCTIONS .. 358

CHAPTER 12ðGDI REFERENCE 423

STRUCTURES, DATA TYPES, AND DEFINES 423
FUNCTIONS .. 436

CHAPTER 13ðPRI REFERENCE 525

THE INPUT MANAGER ... 526
THE OUTPUT MANAGER .. 534
INTERNAL OUTPUT DEVICES ... 547
STRUCTURES, DATA TYPES AND DEFINES 551

 Table of Contents

 5

MESSAGES (PRINTING) .. 574
MESSAGES (CUSTOM DEVICES) ... 579
FUNCTIONS .. 598

APPENDIX AðPORTING EXTERNAL COMPONE NTS TO MACH -O 642

HARDWARE REQUIREMENTS ... 642
SOFTWARE REQUIREMENTS ... 642
SETTING UP ... 643
COMPONENT ARCHITECTURE .. 643
CREATING AN XCODE PROJECT ... 646
RESOURCES ... 648

About This Manual

6

About This Manual
This manual describes how you can create your own external components to integrate into

Omnis Studio. You can download sample source code from the Omnis website to help you

do this.

For more information about Omnis external components, and to download the latest source

files, please go to:

Ç www.omnis.net/download/components

This manual introduces key development topics and expands to form a reference guide for

each of the main APIs provided by the Omnis component library:

Chapter 1 Omnis External Components

Introduces the different types of Omnis external components. There is a

brief tutorial to get you up-and-running with the Generic visual

component plus general notes on building and testing.

Chapter 2 Structures, Messages and Functions

Discusses key structures used by external components and how they are

used in conjunction with messages sent to your component. There are also

descriptions of general purpose functions you can use as well as memory

and resource management functions

Chapter 3 Simple String Management

Introduces the strxxx() class family which facilitates simple management

of text strings of up to 255 characters.

Chapter 4 Unicode Character Conversion

Discusses the issues involved in writing Unicode compatible components

and also lists data types, utility classes and helper functions you can use to

convert character data between various Unicode encodings.

Chapter 5 Managing Icons and Cursors

Introduces the EXTBMPref() class which can be used to manage icons in

the Omnis icon datafiles. The EXTCURref() class can be used to assign

custom mouse cursors for use with your component.

Chapter 6 Handling Keyboard Input

Discusses the qkey class and other functions, which allows your

component to process keyboard input.

http://www.omnis.net/download/components

 About This Manual

 7

Chapter 7 Managing File Data

Discusses the FILE API commands and their wrapper class; EXTfile()

which provides your component with cross-platform access to files and

folders.

Chapter 8 Omnis Data Collections

This chapter discusses the CRB API and its associated wrapper class;

EXTcrb() which is used to manage Omnis data collections. An Omnis

data collection is a block of data with a variable number of data items,

providing your components with simple, self-extending, random access

blocks of memory.

Chapter 9 Omnis List Data

Introduces the EXTqlist() class which gives your component access to

Omnis list data. Using EXTqlist(), you can also create, interrogate and

modify lists to pass back to Omnis.

Chapter 10 Omnis Field Values

The EXTfldval() class is a generic storage object which gives your

component access to Omnis field values. You can get and set EXTfldvals

using a variety of data types and also convert between different types.

Chapter 11 Window Management

This chapter discusses the HWND module and its associated window

messages, which visual components may be required to process. The

HWND module provides many drawing, resizing and status functions.

Chapter 12 Graphics Management

The Graphics Drawing Interface module (GDI) provides many drawing,

positioning and formatting functions for use by visual components. This

chapter also introduces associated structures, data types and constants.

Chapter 13 Printer Management

The Cross-platform printer interface module (PRI) provides your

component with printing and reporting functions which are hardware-

independent. This chapter also discusses the associated messages your

component may need to process as well as associated structures and

constants.

Appendix A Porting External Components to Mach-O

This chapter discusses the issues involved in writing components using

Mac OSX 10.5 and Xcode and porting older-style MacOS 9 projects from

Code Warrior.

Chapter 1ðOmnis External Components

8

Chapter 1ðOmnis
External Components

Introduction
Omnis external components are plug-in modules that extend the range of visual and non-

visual objects available in the design and runtime environments in Omnis, as well extending

the Omnis programming language. There are many different external components supplied

with Omnis, but you can create your own using your own software development tools and

the information in this manual.

Once built and installed into Omnis, external components behave in exactly the same way as

standard built-in Omnis components. You can change the properties of an external

component in design mode using the Property Manager. Likewise, at runtime you can

manipulate an external component using methods and the notation, and examine its runtime

properties in the Notation Inspector. External components can also contain functions or

methods and events, which you can call or intercept using Omnis methods. You can build

all of these features into your own external components.

The type and range of external components include:

Ç Window objects (including background objects) and Report objects

Both window and report external components appear in the Omnis Component Store

and can be used in your libraries in exactly the same way as built-in GUI objects.

Ç Static Functions

Static functions are components that contain functions, that appear in the Omnis

Catalog under the óFunctionsô group. These functions can be invoked from calculations

in your Omnis code.

Ç Omnis objects

Omnis objects or so-called ónon-visualô components are objects that can contain

methods and properties, which can be used in the Omnis language or called to perform

some specific function. External objects can be sub-classed, just like normal Omnis

objects, to form new objects. The SQL DAMs are examples of non-visual components.

 Creating your own External Components

 9

Creating your own External

Components
Using the libraries supplied, you can create Omnis external components that run under all

platforms supported in Omnis. All of the samples supplied, except QuickTime, have

independent source code. The Omnis resource compilers for Linux and Mac OSX (Xcode)

are supplied. These compile simple Windows style .RC files, and support image types

.BMP, allowing the entire component to be portable.

Components in Omnis

When you start Omnis, you have to tell it to load your new component. You can load an

external component via the #EXTCOMP system table. You can access this via the Browser,

or open a window class in design mode and right-click on the Component Store, and select

the External Components option.

If the components you create are OK, they should appear in the #EXTCOMP system table.

If you cannot find your component in the external component list, check the Omnis Trace

Log window. Omnis will always write any errors to the trace log during startup. Use one of

the radio button options to load the component. Close the dialog. When you return to the

design window, you should see your component in the Component Store, under the External

Components button in the Component Store toolbar. You should be able to drag the control

on to a window class and your component is created.

Windows and Child Windows

Omnis supports two window types. Top level windows and child windows. In the Omnis

IDE, you can create top level windows as window classes, and design the contents of the

window by adding controls such as buttons and lists. All window controls such as button

and list controls are child windows. A child window is a window that sits inside another

parent window. Child windows can also contain other window controls, thus the parent-

child relationship can be nested at several levels. For example, a scrollbox window field is a

child control within the window class, but it can have other child controls placed within it,

thus making it a parent.

An external component operates inside a child window and performs some kind of

operation within the child window. The component can do virtually anything from draw a

graph, scroll a message, or pick up a click within it and send a message back to Omnis. To

do this, the window receives and processes messages. A message informs the child window

of all events that affect it, such as the user clicking on it with the mouse. Later, when you

create a component, you need to tell Omnis the name of a procedure that Omnis can call

with your message. This procedure is often referred to as the WNDPROC (short for

Window Procedure) or message handler. There are many messages defined by the

Chapter 1ðOmnis External Components

10

component library that your procedure is sent, some you will want to deal with, others you

can ignore; you will see how to deal with these messages.

Data types Defined by the Component Library

To help you write platform-independent components, you should use the data types declared

by the component library. All APIs in the library use the following data types.

C-type Omnis type Description

unsigned char or

unsigned long*

qchar standard unsigned char value

*qchar is defined as 4 bytes for Unicode targets.

char or

unsigned short

qoschar platform API-dependent Unicode character. 2 bytes

for Win32 & Mac OSX Unicode targets. 1 byte for

Linux targets & non-Unicode targets.

unsigned char qbyte assumed to hold 0-255

unsigned char qbool assumed to hold qtrue or qfalse

short qshort standard short value

unsigned short qushort standard unsigned short value

long qlong standard long value

unsigned long qulong standard unsigned long value

platform dependent qreal used for real arithmetic

short qret return type from some API calls

enum qnil can be used to assign to some objects to clear them

unsigned char qint1 1 byte unsigned integer (as stored on disk)

short qint2 2 byte integer (as stored on disk)

unsigned short qword2 2 byte unsigned integer (as stored on disk)

long qint4 4 byte integer (as stored on disk)

unsigned long qword4 4 byte unsigned integer (as stored on disk)

long rstrno uses when calling RESxxx functions

short attnum property numbers

qbool qfalse = 0 false boolean value

qbool qtrue = 1 true boolean value

qret e_ok = 0 no error occurred

qret e_negative = 1 error occurred

 Creating your own External Components

 11

As well as using the data types, you should try to use the component API as much as

possible to ensure platform independent code. In the long run, it may mean you have to

recompile for another platform, rather than having to port lots of code.

Types of visual components

Omnis supports different types of external component which you can add to window and

report classes. When Omnis starts up, the component specifies what kind of component it is,

and what class type it should appear in.

Ç cObjType_Basic

a generic window class component.

Ç cObjType_Picture

a derived Omnis picture component for window classes.

Ç cObjType_List

a derived Omnis list component for window classes.

Ç cObjType_DropList

a derived Omnis droplist component for window classes.

Ç cObjType_IconArray

a derived Omnis icon array component for window classes.

Ç cObjType_PriOutput

a custom report output device

Ç cRepObjType_Basic

a generic report class component.

Ç cRepObjType_Picture

a derived Omnis picture component for report classes.

Components can be both window and report objects. For example, you may want to create a

picture-handling component, that works in both window and report mode, therefore its

returns type should be:

cObjType_Picture | cRepObjType_Picture

Basic Components

Basic components are generic controls that receive all messages via the WNDPROC. You

must code all actions that you want to happen inside your control.

See the examples provided.

Chapter 1ðOmnis External Components

12

Picture Components

Picture components are objects derived from the internal Omnis picture field. Omnis calls

your WNDPROC with standard messages, but you also receive some specific messages only

for derived picture controls. For example, Omnis calls you to inquire how big your image is,

so it can handle the scrolling and call you to paint.

See the PCX example.

List Components

List components are objects derived from the internal Omnis list field. Omnis calls your

WNDPROC with standard messages, but you also receive some specific messages only for

derived list controls. For example, when Omnis paints your list, you are called to draw

individual lines, possibly in a selected state.

See the PICLIST example.

Droplist Components

Droplist components are objects derived from the internal Omnis droplist field. Omnis calls

your WNDPROC with standard messages, but you also receive some specific messages only

for derived droplist controls. For example, when Omnis paints your droplist contents, you

will be called to draw individual lines.

Icon Array Components

Icon array components are objects derived from the internal Omnis icon array field. Omnis

calls your WNDPROC with standard messages, but you also receive some specific

messages only for derived icon array controls. For example, when Omnis paints your icon

array, you will be called to draw individual icons and icon labels.

See the ICNARRAY example.

Report Components

Report components should be treated as if they were window components. When printing is

required, you are called with specific report printing messages.

See the PCX example.

Background Components

Background components are objects that behave like internal Omnis background objects.

For example, background objects never have the focus or receive events. They are always

drawn as part of the background of the window they belong to. One of the sample

background components supplied is an object that allows a bitmap to be tiled over an area.

Background components do not have their own cObjType_XXX type, and need to be

defined as a cObjType_Basic type component. A flag needs to be set on ECM_CONNECT

to indicate the component should be treated as a background component.

 Creating your own External Components

 13

However, it is important to note that you cannot have both background and other visible

components in the same library.

See the TILE or WASH example.

Types of non-visual components

Omnis supports various types of non-visual components. In this context, ónon-visualô means

a component that does not have a visual interface but one that provides some functionality,

such as functions or methods, that can be used in the Omnis programming language. Most

non-visual components do not need to be placed on a window or report for their functions

or methods to be called. Non-visual and visual components may co-exist in the same library.

Picture Format Conversion (New for Studio 2.1)

Picture format conversion are libraries which provide functionality to convert from the

specified format to a native O/S picture and visa-versa.

See PCX example.

Static Functions

Static functions behave just like Omnis functions and appear in the catalog just like in-built

Omnis functions.

See the FILEOPS example.

Object Components

Object components appear in Omnis as objects and can therefore be utilized by adding an

óObjectô variable (with the appropriate sub-type).

Just like Omnis object classes, external object components may be sub-classed to form new

objects.

See the FILEOPS example.

DAMs

Writing custom Data Access Modules for Omnis Studio is the subject of a supplementary

manual; "Omnis Studio DAM API". This manual discusses the additional damlib library

needed to build these specialized non-visual components as well as datatypes, structures,

classes and general techniques involved.

Chapter 1ðOmnis External Components

14

Writing Thread-Safe Components

Where several instances of your component may be in use at the same time, you will need to

design your code with thread isolation in mind. Use of object-oriented techniques provides

the basis for thread-safety as this gives each object instance its own memory and variables.

Where shared memory or commonality exists between multiple instances, the C/C++

programming language facilitates thread management, semaphores and mutual-exclusive

execution (MUTEXs) which can be used to control access to the shared resources. Any such

commonality should be identified at the design stage.

You can also enhance the thread-safety of your component by passing the

EXT_FLAG_SESSION flag to Omnis when processing the ECM_CONNECT message.

(See Structures, Messages and Functions for more details).

Source Files on the Omnis web site

To build an Omnis external component, you must use the latest versions of the following

applications:

Ç Microsoft Windows

Microsoft Visual Studio 2008.

Ç Mac OS X

Mac OS X 10.5.5 or later, Xcode 3.0.

See Appendix A about creating and porting external components for Mach-O.

Ç Linux

GNU g++ compiler version 4.2.1.

All examples ship with makefiles, which can be used with the make utility.

You can download the SOURCE trees for external components from the Omnis website at

the following location:

Ç www.omnis.net/download/components

There is one source tree for every supported platform. Each source tree contains example

external components, ranging from the very simple, GENERIC (lets you create a basic shell

component, and previously supplied as a tutorial), to the more complicated controls such as

CALENDAR or QuickTime (QuickTime is Windows and Mac only). The source code for

the components is generally 100% cross platform and has been duplicated in the various

source trees. A few components have some code which is not shared by all platforms. Such

platform dependant source will usually be found in source files with names that start with an

óxô. The source trees have makefiles or projects that can be used to build the components.

When creating external components, try to keep to the tree structure, that is, if you want to

create a new component called óSimpleô, create a directory called Simple inside the source

tree. Keeping to the structure will help when porting to other platforms.

http://www.omnis.net/download/components

 Creating your own External Components

 15

For the purpose of this tutorial, rename the source tree to XCOMP.

Getting Started with Generic

One of the many samples supplied to help you create Omnis external components is

generic. There are four versions of this control in the source tree that explain how to write

Omnis components and give you a useful starting framework for building your own

components. Before you begin to write some code, you need to setup your development

environment.

Setting up your development tree

Inside the source tree you will find the following folders which are of special importance.

COMPLIB ï Header files and libraries for building XCOMP and WEBCOMP components.

EXTLIB ï Header files for building OLD TYPE externals.

HEADERS - Header files for building web client components

LIBS - Libraries for building web client components (win32 and linux only)

JPEGLIB - Libraries for building HTML device

ORFCSTAT - Library for building web client components

On Mac OS, there are some additional folders which are of special importance (we will

bring the other platforms in line in future releases). The Mac OS projects we ship place the

components they build into the following folders:

_OSXUnicode - release versions of XCOMP components

_OSXUnicodeDbg - debugging versions of XCOMP components

_OSXUnicodeWeb - release versions of WEB CLIENT components

_OSXUnicodeWebDbg - debugging versions of WEB CLIENT components

_OSXUnicodeWebDesign - release versions of WEBCOMP components

_OSXUnicodeWebDesignDbg - debugging versions of WEBCOMP components

Mac OS:

For the Mac Xcode environment we also supply various stationery and a resource compiler

that you will need to install.

¶ Install the Mac OSX10.4.u SDK (This can be found on the xcode tools disk and must

be installed manually).

¶ Copy the Mach-O resource compiler (Omnisrc.app) to your /Developer/Tools folder

This is the new Omnis Resource Compiler and is included in the tools folder supplied with

this document.

¶ Copy the lower_files utility to your /usr/bin folder (Note that you will need

administrator privileges to do this)

Chapter 1ðOmnis External Components

16

This utility is useful for changing the case of filenames and is included in the tools folder of

the same package as this document. For further information on building components for

Mac OSX 10.5 and later, please refer to Appendix A.

Linux OS:
For the Linux environment you will need to set a few environment variables and configure

the resource compiler.

Please note that these instructions assume that you installed the source tree in ó/ô resulting in

a source tree called óomnisextô. If you installed the tree elsewhere then you will need to

change óomnisextô with your installation path.

¶ Set the environment variable LD_LIBRARY_PATH by typing :

LD_LIBRARY_PATH=/omnisext/omnisxi:$LD_LIBRARY_PATH

export LD_LIBRARY_PATH

¶ Set the environment variable V4DIR by typing :

V4DIR=/omnisext/omnisxi

export V4DIR

¶ Configure the resource compiler by setting the environment variable OMNISRC by

typing :

OMNISRC=/omnisext/omnisrc

export OMNISRC

¶ If you installed to a folder other than ó/ô, you will need to edit the omnisrc.ini by

typing:

emacs /omnisext/omnisrc/omnisrc.ini

The two sub-sections Template and IncludeDirs contained within the

section [Setup] needs to be modified to point to the installation folder.

The defaults values are :-

Template=/omnisext/omnisrc/omnisrc.tpl

IncludeDirs=/omnisext/omnisxi;/omnisext/complib;/omnisext/extlib

¶ When you are satisfied with your changes, choose óSaveô and exit

¶ Copy the omnisrc executable to a folder, which is on your search path

For example: cp /omnisext/omnisrc/omnisrc /usr/bin/omnisrc

All platforms

When you have built your component, you should add your Windows DLL or Mac OS

Code Fragment to the XCOMP or WEBCOMP folder located inside the main Omnis folder,

or to your web client installation, depending on what you are building. Run Omnis and use

the #EXTCOMP system table to load the component. If all is well, the control appears in

 Creating your own External Components

 17

the Component Store and can be dragged on to a window or report class. Any load errors

are reported in the Omnis trace log.

Now you have setup your build environment and tree we can get to work creating our new

component.

If you are using Windows:

¶ Startup Visual Studio 2008

¶ Go to the File menu and select New / Project

¶ From the Visual C++ project types select ATL, enter a name and click OK

¶ Click Finish

If you are using Mac OS X:

¶ Startup Xcode 3.0

¶ Go to the File menu and choose the New Project... option

¶ Select 'Empty Project' and click Next

¶ Enter a project name and click Finish

If you are using Linux:

¶ Create a new folder in the /omnisext folder

¶ Copy the file extcomp.mak from /omnisext/generic into your new folder. This file is a

generic makefile which is the same for all of the examples (except HTML)

¶ Copy the file makefile from /omnisext/generic into your new folder. This file contains

the name of the component and the source files needed to build it

Chapter 1ðOmnis External Components

18

Generic.cpp

You are now ready to create the generic external component. Create a new file called

generic.cpp and enter the following:

#include <extcomp.he>

#include <hwnd.he>

#include <gdi.he>

#include "generic.he"

extern "C" qlong OmnisWNDPROC GenericWndPr oc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_GETCOMPLIBINFO:

 {

 return ECOreturnCompInfo(gInstLib, eci, LIB_RES_NAME,

 OBJECT_COUNT);

 }

 case ECM_GETCOMPID:

 {

 if (wParam==1)

 return ECOreturnCompID(gInstLib, eci, OBJECT_ID1,

 cObjType_Basic);

 return 0L;

 }

 case ECM_GETCOMPICON:

 {

 if (eci - >mCompId==OBJECT_ID1)

 return ECOreturnIcon (gInstLib, eci, GENERIC_ICON);

 return qfalse;

 }

 case ECM_OBJCONSTRUCT:

 {

 tqfGenericObject* object = new tqfGenericObject(hwnd);

 ECOinsertObject(eci, hwnd, (void*)object);

 return qtrue;

 }

 Creating your own External Components

 19

 case ECM_OBJDESTRUCT:

 {

 tqfGenericObject* object =

(tqfGenericObject*)ECOremoveObject(

 eci, hwnd);

 if (NULL!=object)

 {

 delete object;

 }

 return qtrue;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

Letôs look at this in more detail. First the includes:

#include <extcomp.he>

#include <hwnd.he>

#include <gdi.he>

#include "generic.he"

extcomp.he, hwnd.he and gdi.he are external component library header files. extcomp.he

declares various external component specific APIs; hwnd.he declares the child window API

calls; gdi.he declares the graphical API calls; and generic.he which you will create below.

The message procedure is as follows.

extern "C" qlong OmnisWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

OmnisWNDPROC is a #define that the Omnis component library has setup. This defines

some calling conventions that vary from platform to platform. For now this is all you really

need to know. Next is the name, GenericWndProc. This is the message procedure Omnis

calls with your child window messages. This procedure has the following parameters:

HWND hwnd This is a handle to the child window the message is for

LPARAM Msg This is the message

WPARAM wParam This is extra information for the message

LPARAM lParam This is extra information for the message

EXTcompInfo* eci This is a pointer to some information about your component

When Omnis calls the message procedure, it sends along the HWND in the hwnd

parameter. This is the child window the message was for. Complex components may have

Chapter 1ðOmnis External Components

20

many child windows all using the same message procedure. Using the HWND helps the

component do the right thing for the right child window.

Msg is the message. There are many messages that can be sent to your procedure, such as

WM_PAINT or WM_LBUTTONDOWN.

wParam is some extra information for the message. Sometimes messages need to pass other

information, such as the cursor position when the WM_LBUTTONDOWN was generated.

lParam, like wParam, is used for extra message information.

eci is a pointer to a structure holding information about your component. It is used with

various API calls. See later.

Next is the first and most important line of the message procedure.

 ECOsetupCallbacks(hwnd, eci);

Most of the API calls call Omnis for some information, or to do some processing. This line

enables the call to Omnis to work. If this line is missing, your component will crash.

Next there is a switch statement testing the message parameter:

ECM_GETCOMPLIBINFO . This is the first message the message procedure handles.

Omnis is calling your message procedure trying to find out how many controls your

component supports, and the name of your library.

return ECOreturnCompInfo(gInstLib, eci, LIB_RES_NAME , OBJECT_COUNT

);

Here you return the result of a function call ECOreturnCompInfo. This function is

described later, but usually takes a string resource number which holds the name of your

component library, and takes the number of controls your component contains.

ECM_GETCOMPID. Omnis now knows how many controls you are intending to support

in your component library due to the result of the last message. It now wants to know what

ID each control within the component library should have. The id can be any number you

decide to associate with the control. In the future when Omnis wants something to happen to

a control, it uses the id you return here. Omnis calls you with this message for 1 to n times,

where n is the number of controls your library supports. The calling count is passed in

wParam.

 if (wParam==1)

 return ECOreturnCompID(gInstLib, eci, OBJECT_ID1,

cObjType_Basic);

 return 0L;

Since generic supports one control (OBJECT_COUNT=1, this is defined in your header

file), you wait for a call where wParam is 1. On this message, you return the result of

ECOreturnCompID. This API specifies the controls id, and the type of control you want it

to be. See Types Of Component later in this document. Here you indicate the control has an

id of OBJECT_ID1 and is a cObjType_Basic basic component.

 Creating your own External Components

 21

ECM_GETCOMPICON. Now Omnis knows how many controls your library has and the id

for each control, it asks for the icon to use in the Omnis Component Store.

 if (eci - >mCompId==OBJECT_ID1)

 return ECOreturnIcon(gInstL ib, eci, GENERIC_ICON);

 return qfalse;

Here, you are checking a member of the eci parameter, mCompId. This is set to an id you

returned from the last message (OBJECT_ID1). The ECOreturnIcon API is described

later, but generally it extracts a .bmp (bitmap) from the resource file so you can return it to

Omnis.

With regards to setting up your component so that Omnis knows it is there, these messages

are generally all you need. The next set of messages are used when you place your

component on a window or report class. When that happens, Omnis calls your message

procedure with many more messages. Here are the important ones.

ECM_OBJCONSTRUCT. Omnis is calling the message procedure as it is just about to

create an instance of your object. This can happen when you drag a component out of the

Component Store on to a design window or report class, or a window class is being opened

in runtime mode, or a report is being printed. This is the code you need to execute:

 tqfGenericObject* object = new tqfGenericObjec t(hwnd);

 ECOinsertObject(eci, hwnd, (void*)object);

 return qtrue;

The first line creates a new object called tqfGenericObject, which is defined below. This

class performs all of the operations for your control. Next it is calling ECOinsertObject.

This API adds a pointer to the tqfGenericObject just created into a chain of objects. The

pointer and the hwnd being passed are stored in the chain. The external component library

maintains this chain, so later when a message arrives in your message procedure, you can

ask for the object (tqfGenericObject) based on the child window the message was for, and

get the correct object to process the message. This is necessary as multiple instances of your

component can be created.

Finally you return qtrue. This informs Omnis you have processed the message. Not all

messages expect qtrue to indicate the message was handled. The return value from all

messages can be found in this manual.

ECM_OBJDESTRUCT is the next message. Omnis is calling the message procedure as it is

just about to delete an instance of your object. This can happen when you close a window

class containing your component, or a report has finished printing your component:

Chapter 1ðOmnis External Components

22

 tqfGenericObject* object =

(tqfGenericObject*)ECOremoveObject(eci,hwnd);

 if (N ULL!=object)

 {

 delete object;

 }

 return qtrue;

The first line here is calling ECOremoveObject to find an object in the chain of objects

based on the passed hwnd. If an object is found, it is removed from the list and a pointer to

the object is returned. If the pointer is valid, you delete it, freeing all memory previously

allocated. Again, you return qtrue to inform Omnis you have processed the message.

Finally:

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

This is another very important line. Remember that many messages are sent to the message

procedure, some important, others not so important. This is where the not so important

messages should go. WNDdefWindowProc is an API to which all messages not handled

should be passed. This allows Omnis to do the default operation for messages you do not

want to handle.

To complete this file, enter the following:

tqfGenericObject::tqfGenericObject(HWND pFieldHWnd)

{

 mHWnd = pFieldHWnd;

}

tqfGenericObject::~tqfGenericObject()

{

}

qbool tqfGenericO bject::paint()

{

 WNDpaintStruct paintStruct;

 WNDbeginPaint(mHWnd, &paintStruct);

 WNDendPaint(mHWnd, &paintStruct);

 return qtrue;

}

On previous messages, ECM_OBJCONSTRUCT and ECM_OBJDESTRUCT referred to

the tqfGenericObject class. This class contains the code which makes the component

actually do something. You can add to this later.

 Creating your own External Components

 23

Generic.he

New file, generic.he, enter the following code. This defines the class referred to above.

/* Number of controls within library */

#define O BJECT_COUNT 1

/* Resource id of library name */

#define LIB_RES_NAME 1000

/* Resource id of control within library */

#define OBJECT_ID1 2000

/* Resource bitmap id */

#define GENERIC_ICON 1

class tqfGenericObject

{

private:

 HWND mHWnd;

public:

 tqfGenericObject(HWND pFieldHWnd);

 ~tqfGenericObject();

 qbool paint();

};

Generic.rc

New file, generic.rc, this is the resource file. It is laid out like a Windows (Window OS)

resource file. Under Mac OS and Linux, you can use a resource compiler supplied on the

Omnis CD which supports a very basic set of resource keywords. If you keep the resource

files simple, they will be cross-platform.

1 BITMAP DISCARDABLE "GENERIC.BMP"

STRINGTABLE DISCARDABLE

BEGIN

 1000 "Generi c Library"

 2000 "Generic Control"

 31000 "GenericWndProc"

END

The resource file first includes a bitmap (generic.bmp). You can either create a small

Window .BMP file (16x16 preferably), or take a copy of the generic.bmp file from the

Omnis CD.

String 31000 is very important , as this is the name of the message procedure that Omnis

tries to call. If you do not have this string, the name of you message procedure should be

Chapter 1ðOmnis External Components

24

óOmnisEXTCOMPONENTô. If the message procedure is not called this, and you do not

have a string defining the name to call, Omnis will not call you.

Omnis Web Client

If you intend to release your component as a web component that can be used with the

Omnis Web Client, do not use string number 31020. This is reserved for version number

checking.

.DEF and .EXP files

Under Windows, an export file is needed for the compiler. This file describes what

functions can be called from outside the component. As described above, Omnis needs to

call your message procedure with messages for your child windows. For it to do that, the

message procedures must be exported.

Under Windows, Generic.def:

Create a Generic.def file and enter the following:

LIBRARY GENERIC

EXPORTS

 GenericWndProc @1

This allows Omnis to get and call the message procedure.

Note for all platforms: The name entered in string 31000, the name of the message

procedure in generic.cpp and the name in generic.def must all be identical. If you do not

supply a 31000 string, the message procedure name in generic.cpp and defined in the

generic.def must be óOmnisEXTCOMPONENTô.

Building the Generic Component

If you are using Windows:

¶ Add the generic.cpp, generic.def and generic.rc files to the project using the Project

menu and choose the Add New Item... option.

¶ Open the project Properties and select the C/C++, preprocessor category from the

treelist. Add iswin32, isXCOMPLIB to the preprocessor definitions.

¶ Select the Linker, Input category from the treelist and add omnisu.lib to the Additional

Dependencies.

¶ Close the Property Pages.

¶ Go to the Build menu and select Build Solution.

If all is successful, you should have created a generic.dll file. This can be moved to the

XCOMP folder of your Omnis installation.

 Creating your own External Components

 25

If you are using Mac OSX:

¶ Add the generic.cpp by right-clicking on Source and selecting AddŸExisting Files.

Add generic.rc by right-clicking on Resources and selecting AddŸExisting Files.

¶ Select the target and configuration you wish to build and select Build from the Build

menu.

If you selected the target UnicodeCore, the component, once built, will be placed in the

folder _OSXUnicode inside the source tree. Please note: The ReleaseBuild targets contain

no debugging information.

If you are using Linux:

¶ From the component folder type:

- ómake Releaseô to build the XCOMP component. The resulting component will be in

the releaseuni folder.

- ómake ReleaseWebô to build the Web Client component. The resulting component

will be in the releaseuniweb folder.

- ómake ReleaseWebDesignô to build the WEBCOMP component. The resulting

component will be in the releaseuniwebdesign folder.

You can substitute Release for Debug if you wish to build debug versions.

For all platforms:

If all is successful, you should have created a generic file. You can move it to the XCOMP

folder in the main Omnis folder. Remember if Omnis is currently running, you will need to

quit and restart.

Moving On From Generic

The Generic example component you have created is only a shell. It can be dragged from

the Component Store and created in runtime mode. Next, you can add a property to the

component that will appear in the Property Manager. You can modify component properties

in design mode and runtime using the Property Manager.

First you need to add some functionality to the tqfGenericObject class. In generic.he enter

the following:

Chapter 1ðOmnis External Components

26

qcol mMyColor;

// and

qlong attributeSupport(LPARAM pMessage, WPARAM wParam, LPARAM

lParam, EXTCompInfo* eci);

// Your class header should now look like this:

class tqfGenericObject

{

private:

 HWND mHWnd;

 qcol mMyColor;

public:

 tqfGenericObject(HWND pFieldHWnd);

 ~tqfGenericObject();

 qbool paint();

 qlong attributeSupport(LPARAM pMessage, WPARAM wParam, LPARAM

lParam, EXTCompInf o* eci);

};

Here a new member is added to the class mMyColor . Its type is qcol. This is a type defined

in gdi.he and represents a color value (RGB).

A new member function attributeSupport is also added. This function is used when Omnis

is doing something with your properties.

Now open generic.cpp.

Go to the tqfGenericObject:: tqfGenericObject method (constructor). Add the following

line:

 mMyColor = GDI_COLOR_WINDOW;

Go to the tqfGenericObject::paint() method. This was added previously, but until now was

unused. Alter the method so it looks like this:

 Creating your own External Components

 27

qbool tqfGenericObject::paint()

{

 WNDpaintStruct paintStruct;

 WNDbeginPaint(mHWnd, &paintStruct);

 qrect cRect;

 WNDgetClientRect(mHWnd, &cRect);

 HBRUSH brush = GDIgetStockBrush(BLACK_BRUSH);

 GDIsetTextColor(paintStruct.hdc, mMyColor);

 GDIfillRect(paintStruct.hdc, &cRect, brush);

 WNDendPaint(mHWnd, &paintStruct);

 return qtrue;

}

The paint method uses some API calls from both hwnd.he and gdi.he. When this method is

called as a result of a message, it fills your component with the color that is stored in the

new color member mMyColor. You should read the HWND and GDI document for an

explanation of the APIs used, but generally, the code gets the size of your child window

(left, top, width, height), and gets a solid brush. It sets the color of the solid brush to the

color in the new color member and then fills the child window with that color.

Back to the message procedure now, and add cases for the following messages:

 case WM_PAINT:

 {

 tqfGenericObject* object = (tqfGenericObject*)ECOfindObject(

 eci, hwnd);

 if (NULL!=object && object - >paint())

 return qtrue;

 break;

 }

 case ECM_GETPROPNAME:

 {

 return ECOreturnProperties(gInstLib, eci, &MyProperties[0], 1

);

 }

 case ECM_PROPERTYCANASSIGN:

 case ECM_SETPROPERTY:

 case ECM_GETPROPERTY:

 {

 tqfGenericObject* object = (tqfGenericObject*)ECOfindObject(

Chapter 1ðOmnis External Components

28

 eci, hwnd);

 if (object)

 return object - >attributeSupport(Msg, wParam, lParam, eci);

 return 0L;

 }

Consider the following messages:

WM_PAINT message informs use the hwnd needs painting.

ECM_GETPROPNAME is sent by Omnis to ask for the componentôs property table.

ECM_PROPERTYCANASSIGN is sent by Omnis to see if a property can have values

assigned.

ECM_SETPROPERTY is sent by Omnis to get the value of a property.

ECM_GETPROPERTY is sent by Omnis to set the value of a property.

When you get a WM_PAINT message, you find the object in the chain of object instances

from the hwnd coming into the message procedure. If you find the object, you call the

::paint() member function of the object.

When you get a ECM_GETPROPNAME message, you call another ECO API to build a

property table and return it to Omnis. This API is described later, see Component

Properties.

Now to add some more code. At the top of the file add the following:

const cMyColorProp = 1;

ECOproperty MyProperties[] =

{

 cMyColorProp, 4000, fftInteger, EXTD_FLAG_PWINDCOL, 0, 0, 0

};

This table defines your properties. The layout of the table is defined in the Component

Properties section, but generally it describes the property id, the resource name of the

property, its data type, and the type of data as shown in the Property Manager. The property

table, when returned to Omnis using the code shown below, controls how your properties

are handled.

return ECOreturnProperties(gInstLib, eci, &MyProperties[0], 1);

The only thing left to do in this file is to add the ::attributeSupport() method you declared in

the header file. Somewhere near the tqfGenericObject class add the following:

 Creating your own External Components

 29

qlong tqfGenericObject::attributeSupport(LPARAM pMessage, WPARAM

wParam,

 LPARAM lParam, EXTCompInfo* eci)

{

 switch(pMessage)

 {

 case ECM_PROPERTYCANASSIGN:

 {

 return 1L;

 }

 case ECM_SETPROPERTY:

 {

 EXTParamInfo* param = ECOfindParamNum(eci, 1);

 if (param)

 {

 EXTfldval fval((qfldval)param - >mData);

 switch(ECOgetId(eci))

 {

 case cMyColorProp:

 {

 mMyColor = (qcol)fval.getLong();

 WNDinvalidateRect(mHWnd, NULL);

 break;

 }

 }

 }

 return 1L;

 }

 case ECM_GETPROPERTY:

 {

 EXTfldval fval;

 switch(ECOgetId(eci))

 {

 case cMyColorProp:

 {

 fval. setLong((qlong)mMyColor);

 break;

 }

 }

 ECOaddParam(eci,&fval);

 return 1L;

 }

Chapter 1ðOmnis External Components

30

 }

 // no property found or message was wrong

 return 0L;

}

This method is called when Omnis needs to do something with your properties. This is

covered in more detail within the Component Properties section later, but generally it lets

you handle your color property or any future properties you decide to add. For this example,

when a color property is assigned, you alter the member in the tqfGenericObject class with

the new color value being sent from Omnis, force your child window to be repainted,

resulting in the new color being drawn on screen. When the Property Manager needs to

know what the color is, you send it the value back, and you also tell the Property Manager if

it is allowed to assign color to your object.

Finally open generic.rc and add the following:

4000 "$mycolor:This is a color property"

// your RC file should look like this:

1 BITMAP DISCARDABLE "GENERIC.BMP"

STRINGTABLE DISCARDABLE

BEGIN

 1000 "Generic Library"

 2000 "Generic Control"

 4000 "$mycolor:This is a color property"

 31000 "GenericWndProc"

END

Now recompile the component. Close Omnis if it is still running, and move the component

into your XCOMP folder. Restart Omnis. In the Omnis IDE, when you open a window class

and click on your component control, a Custom tab is displayed in the Property Manager.

Select it and you should see your color property. Now try assigning some values and it

should change the color of your component.

You have covered the very basics of building your own external component. The source

contains further generic samples that build on from the basic one adding more properties,

events, and component methods.

If you are ready for more of a challenge, the source has many other controls that

demonstrate much more of the external components interface. All of the samples supplied

(except QuickTime) are completely cross-platform.

Bear in mind Omnis is a cross-platform development tool, and the external component

interface has been designed with this in mind. If you want your controls to run on all

platforms supported in Omnis, try to use the Omnis API as much as possible. There is very

 Creating your own External Components

 31

little it cannot do, and if you only use the API, your code should remain completely

portable, all you need to do is recompile.

General Hints

Here are some general points you should remember when writing Omnis components:

¶ Keep to the External Component API; this helps you port your controls to other

platforms

¶ Initialize all members used to handle properties. When the control is first created, the

initial values, as displayed in the Property Manager, are the values you initialize your

members to.

¶ Read the óMemory Issuesô for the EXTfldval and EXTqlist classes later defined.

¶ Do NOT nest painting. See WNDstartDraw and WNDendDraw in the HWND

documentation.

¶ For large amounts of data, such as picture components, you can use the

MEMincAddr and MEMdecAddr function to handle large images.

¶ If you have any problems with your component when you are within the Omnis IDE,

such as the DLL not appearing in the #EXTCOMP dialog, check the Omnis trace log.

Any problems encountered in Omnis with respect to your components are reported to

the trace log.

¶ String resource 31020 should not be used as it is reserved for Web Client version

number checking.

¶ If you declare a date property (fftDate), depending on the date subtype used with the

EXTfldval::setDate() API, the Property Manager uses either #FT or #FDT to format

the property value.

 EXTfldval fval;

 fval.setDate(myDateValue, dpFtime);

This example stores a date value in an EXTfldval object. The Property Manager would use

#FT to format value because the date subtype used was dpFtime.

Omnis and Microsoft Foundation Classes (Windows Only)

This section describes how to use the Omnis component classes within a Microsoft

Foundation Class (MFC) dynamic-linked library.

To use MFC and Omnis classes in a DLL you must include OmnisMFC.LIB in the project

instead of Omnis.LIB. The differences between these two libraries are:

¶ The function DllMain (Win32) or LibMain (Win16) does not exist in the

OmnisMFC.LIB library.

Chapter 1ðOmnis External Components

32

¶ The global variable gInstLib (previously initialized during DllMain or LibMain) does

not exist in the OmnisMFC.LIB library.

Mac OSX and XCode Resource Files

Please note that Xcode and its underlying build scripts may encounter problems where file

or folder names contain spaces. For this reason it is best to use underscores in place of

spaces. Alternatively, it may be possible to work around the issue by adding double quotes

around various build attributes, for example:

¶ The two arguments to the cp command that follows the omnisrc command in the rule

for compiling rc files.

¶ The header search path for the project headers.

¶ The framework search path.

Linux Compilation Issues

Please ensure that your Linux system has the necessary link libraries and development

packages installed in addition to the gcc compiler (version 4.1 or higher).

¶ You can obtain the version number of your compiler by typing:
gcc ïdumpversion

¶ You can install the missing standard C library (under Ubuntu for instance) using the

command:
sudo apt - get install libstdc++2.10 - glibc 2.2

 Creating Non-Visual Components

 33

Creating Non-Visual Components
Non-visual components are component libraries which contain either Omnis static functions

and/or Omnis external class objects.

Just like in high-level languages such as C++ static functions are useful when processing

single non-related tasks. However when functions are related, it is sometimes useful to build

a collection of related functions into a class object.

Static Functions

Static functions are functions which can be used in the Omnis script language in

calculations. Component library static functions appear in the óFunctionsô category in the

Catalog window.

Adding static functions to your component library requires the following steps:

Ç Add the flag EXT_FLAG_NVOBJECTS to the set of flags returned by

ECM_CONNECT message. Without adding this flag, Omnis will not request the list of

static functions from your library.

Ç Return a list via ECOreturnMethods in response to a ECM_GETSTATICOBJECT

message. This message is sent to the component library when Omnis requires a list of

static functions.

Ç Respond to ECM_METHODCALL. However, as these are static functions, the HWND

parameter will be NULL. As will wParam and lParam.

An example of static functions in use would be (excerpts from FILEOPS):

Chapter 1ðOmnis External Components

34

ECOmethodEvent fileStaticFuncs[cSMethod_Count] =

{ // Unique external ID Resource Number Flags

 cSMethodId_CreateDir , 8000, 0, 0, 0, 0, 0,

 é.

 cSMethodId_Rename , 8014, 0, 0, 0, 0, 0

};

extern "C" qlong OmnisWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_CONNECT:

 { // Component library contains NV objects & should always be loaded

 return

EXT_FLAG_LOADED|EXT_FLAG_ALWAYS_USABLE|EXT_FLAG_NVOBJECTS;

 }

 case ECM_GETSTATICOBJECT:

 { // Omnis is requesting a list of our static functions

 return ECOreturnMethods(gInstLib, eci,

 &fileStaticFuncs[0], cSMethod_Count);

 }

 case ECM_METHODCALL:

 { // Omnis requires a static method to be called

 switch (ECOgetId(pEci))

 {

 case cSMethodId_CreateDir:... Processing

 é

 case cSMethodId_Rename: é Processing

 }

 return 1L;

 }

 }

 return DefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECM_CONNECT, ECM_GETSTATICOBJECT,

ECM_METHODCALL, ECOreturnMethods

 Creating Non-Visual Components

 35

Class Objects

Class objects are, as in the Omnis language, objects which group together data and

functions into a single entity.

Adding class objects requires the following steps :-

Ç Add the flag EXT_FLAG_NVOBJECTS to the set of flags returned by

ECM_CONNECT message. Without adding this flag, Omnis will not request of list of

objects from your library.

Ç Respond to the ECM_GETOBJECT message and return a list of objects via

ECOreturnObjects. It is important to note that your ECOobject structure should

contain unique ids. During subsequent calls the EXTCompInfo mCompId member will

contain this id to inform you of the type of object.

Ç Respond to ECM_OBJCONSTRUCT, ECM_OBJDESTRUCT and

ECM_OBJECT_COPY to ensure that your objects are created, destructed and copied.

Ç Respond to ECM_GETMETHODNAME and ECM_GETPROPNAME to return any

methods and properties that your object may have.

Ç Respond to ECM_PROPERTYCANASSIGN, ECM_SETPROPERTY,

ECM_GETPROPERTY in normal manual to manage your objectsô properties.

Ç Finally, respond to ECM_METHODCALL to inform any of your objectsô methods.

It is important to note that during all of the above messages (except

ECM_GETMETHODNAME, ECM_GETPROPNAME and ECM_OBJECT_COPY)

lParam will contain a unique reference to your object. You should use ECOfindNVObject

to retrieve your objectsô data.

It is also important to note how you require your objects to be managed. For example the

FILEOPS example uses a container to hold the actual object. The object is only

released/freed when a reference count gets to zero. This allows several Omnis object

variables to point to the same FILEOPS object (similar to COM).

Chapter 1ðOmnis External Components

36

An example of use may be (excerpts from FILEOPS):

ECOobject fileObjects[cObject_Count] =

{ // Unique external ID Resource Number Flags

 cObject_FileOps, 2000, 0, 0

};

extern "C" qlong OmnisWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 swit ch (Msg)

 {

 case ECM_CONNECT:

 { // Component library contains NV objects & should always be loaded

 return

EXT_FLAG_LOADED|EXT_FLAG_ALWAYS_USABLE|EXT_FLAG_NVOBJECTS;

 }

 case ECM_GETOBJECT:

 { // Omnis is requesting a list of our object class names

 return ECOreturnObjects(gInstLib,eci,

 &fileObjects[0],cObject_Count);

 }

 case ECM_OBJCONSTRUCT:

 { // Omnis is requesting the construct of a new object.

 if (eci - >mCompId==cObject_FileOps)

 {

 tqfFileOpsContainer* object = (tqfFileOpsContainer*)

 ECOfindNVObject(eci - >mOmnisInstance, lParam);

 if (!object)

 {

 tqfFileOpsContainer* obj = new

 tqfFileOpsContainer((qobjinst)lParam);

 ECOinsertNVObject(eci -

>mOmnisInstance,lParam,(void*)obj);

 }

 return qtrue;

 }

 return qfalse;

 }

 case ECM_OBJDESTRUCT:

 { // Omnis is requesting the destruction of your object

 Creating Non-Visual Components

 37

 if (eci - >mCompId==cObject_FileOps &&

wParam==ECM_WPARAM_OBJINFO)

 {

 void* object=ECOremoveNVObject(eci - >mOmnisIn stance,lParam

);

 if (object)

 {

 tqfFileOpsContainer* fileOps =

 (tqfFileOpsContainer*)object;

 delete fileOps;

 }

 }

 return qtrue;

 }

 case ECM_OBJECT_COPY:

 { // Omnis requires a new object to be created from an existing one

 objCopyInfo* copyInfo = (objCopyInfo*)lParam;

 tqfFileOpsContainer* srcobj = (tqfFileOpsContainer*)

 ECOfindNVObject(eci - >mOmnisInstance,copyInfo -

>mSourceObject);

 if (srcobj)

 {

 tqfFileOpsContainer* destObj = (tqfFileOpsContainer*)

 ECOfindNVObject(eci - >mOmnisInstance,

 copyInfo - >mDestinationObject

);

 if (!destObj)

 {

 destObj = new tqfFileOpsContainer(

 (qobjinst)copyInfo - >mDestinationObject,srcobj);

 ECOinsertNVObject(eci - >mOmnisInstance,

 copyInfo - >mDestinationObject, (void*)destObj);

 }

 else

 destObj - >setObject(

 (qobjinst)copyInfo - >mDestinationObject,srcobj);

 }

 break;

 }

 case ECM_GETMETHODNAME:

 { // Omnis is requesting a list of our objectsô methods

 if (eci - >mCompId==cObject_FileOps)

Chapter 1ðOmnis External Components

38

 return ECOreturnMethods(gInstLib, eci,

 &fileObjFuncs[0], cIMethod_Count);

 break;

 }

 case ECM_GETPROPNAME:

 { // Omnis is requesting a list of our objectsô properties

 // but we donôt have any so simply return

 break;

 }

 case ECM_PROPERTYCANASSIGN:

 case ECM_SETPROPERTY:

 case ECM_GETPROPERTY:

 { // Omnis requires property management

 // but we donôt have any so simply return

 break;

 }

 case ECM_METHODCALL:

 { // Omnis requires a method to be invoked

 if (eci - >mCompId==cObject_FileOps)

 {

 void* object = (void*)ECOfindNVObject(eci -

>mOmnisInstance,

 lParam

);

 tqfFileOpsContainer* fileOps =

(tqfFileOpsContainer*)object;

 if (fileOps - >mObjec t)

 return fileOps - >mObject - >methodCall(Msg, wParam,

 lParam, eci);

 }

 break;

 }

 }

 return DefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

 Creating Non-Visual Components

 39

Control Handlers

This section describes how to develop a control handler component. Control handlers are

essentially components which handle other components, such as an ActiveX.

To create a control handler, you should follow these steps. Note that the CONTROLLIB

and CONTROL classes are used for illustration purposes and do not exist in the Omnis

component environment.

¶ Add EXT_FLAG_CTRLHANDLER to the component flags.

¶ Process ECM_GETHANDLERICON to inform Omnis of the HBITMAP to use for the

components' group in the Component Store.

¶ Support for ECM_GETCOMPLIBINFO must be restructured. The component must

provide the information for all the control libraries that it supports. The control library

names that the component supports must include a file path as a prefix. An example of

this would be:

if (!pEci - >mCompLibId)

{

 // Omnis is inquiring on the handler.

 ECOreturnCompInfo(gInstLib,pEci,CTRL_RES_NAME,0);

 // Id of first library

 pEci - >mCompLibId = 1;

 return qtrue;

}

else

{

 // Omnis is inquiring on a control libraries

 CONTROLLIB* prevLib = getLib(pEci - >mCompLibId);

 // Find library from id

 CONTROLLIB* nextLib=0;

 if (prevLib)

 nextLib=prevLib - >mNextLibrary;

 if (nextLib)

 {

 // you have another library for Omnis

 EXTfldval exfldval;

 // Format of returned name <FilePath>+'\0'+<Library Name>

 str255 ctr lInfo = nextLib - >mLibraryPath;

 // Space for NULL

Chapter 1ðOmnis External Components

40

 ctrlInfo[0]++;

 // Terminate Cstring

 ctrlInfo[ctrlInfo.Length()] = ' \ 0';

 // Add control library name

 ctrlInfo.concat(nextLib - >mLibraryName);

 exfldval.setChar(ctrlInfo);

 ECOaddParam(pEci,&exfldval);

 // Set Unique id of this library. The id may change between sessions.

 pEci - >mCompLibId = nextLib - >mLibraryId;

 // Return number of controls within library

 return nextLib - >mControlCount;

 }

 // No more libraries

 return qfalse;

}

¶ Support for ECM_GETCOMPID message must return the unique identifier for the

control. It should be noted that like the controls' library (mCompLibId), it is not

necessary to maintain the same unique identifier between Omnis sessions. Example of

ECM_GETCOMPID:

 CONTROLLIB* curLib = getLib(pEci - >mCompLibId);

 if (curLib)

 {

 EXTfldval exfldval;

 exfldval.setChar(curLib - >getControlName(wParam));

 ECOaddParam(eci,&exfldval);

 pEci - >mCompId = curLib - >getControlId(wParam);

 }

 return cObjType_Basic;

 Creating Non-Visual Components

 41

¶ Support for ECM_GETCOMPICON must be restructured to return the HBITMAP for

the control. The code for this, may be:

 // wParam is true if the library is to be loaded. This enables fastest

 // load time as it avoids loading the bitmap for every library that

 // the handler supports.

 if (wParam)

 {

 CONTROL* control = getControl(pEci - >mCompLibId, pEci - >mCompId

);

 if (control)

 {

 EXTfldval exfldval;

 exfldval.setLong((qlong) control - >get HBitMap());

 ECOaddParam(eci,&exfldval);

 // Bitmap returned

 return qtrue;

 }

 }

 // No bitmap returned

 return qfalse;

¶ Support for ECM_GETCONSTNAME must be restructured. Obviously control

constants are not in the handlers' resources, so the constant list returned to Omnis must

be manually built. An example of this would be:

 CONTROLLIB* curLib = getLib(pEci - >mCompLibId);

 if (curLib)

 {

 EXTfldval extfldval;

 EXTqlist list; list.clear(listVlen);

 for (qshort constCount=1; constCount<=curLib - >mConstantCount;

constCount++)

 {

 EXTfldval cva l; qlong line = list.insline();

 // Constant ID

 list.getColValRef(line , 1, cval, qtrue);

 cval.setLong(curLib - >getConstId(constCount));

 // Constant String

 l ist.getColValRef(line , 2, cval, qtrue);

 cval.setChar(curLib - >getConstantName(constCount));

Chapter 1ðOmnis External Components

42

 }

 extfldval.setList(list, qtrue);

 ECOaddParam(pEci,&extfldval);

 return qtrue;

 }

 // No constants

 return qfalse;

¶ Support for ECM_GETPROPNAME, ECM_GETEVENTNAME,

ECM_GETMETHODNAME must be restructured to return the properties for a

control. An example of this would be:

 CONTROL* cntrl = getControl(pEci - >mCompLibId, pEci - >mCompId);

 if (cntrl)

 {

 EXTfldval extfldval;

 EXTqlist list; lis t.clear(listVlen);

 for (qshort num=1; num <= cntrl - >getCount(); num ++)

 {

 EXTfldval cval;

 qlong line = list.insertLine();

 // External id

 list.getColValRef(line , 1, cval, qtrue);

 cval.setLong(cntrl - >getId(num));

 // Name

 list.getColValRef(line, 2, cval, qtrue);

 cval.setChar(cntrl - >getName(num));

 // fft type of property/return type

 list.getColValRef(line , 3, cval, qtrue);

 cval.setLong(cntrl - >getType(num));

 // EXTD_ flags

 list.getColValRef(line, 4, cval, qtrue);

 cval.setLong(cntrl - >getFlags(num));

 if (ECM_GETPROPNAME==message)

 {

 // For properties you need to set the constant range

 // Const Start (zero if none)

 list.getColValRef(line , 6, cval, qtrue);

 Creating Non-Visual Components

 43

 cval.setLong(cntrl - >getConstStart(num));

 // Const End (zero if none)

 list.getColValRef(line , 7, cval, qtrue);

 cval.setLong(cntrl - >getConstEnd(num));

 }

 else

 {

 // For functions & events you need to add a

 // list containing parameters

 EXTqlist paramlist;

 paramlist.clear(listVlen);

 for (qshort m=1; m<=cntrl - >getParamCount(); m++)

 {

 qlong pa ramline = paramlist.insertLine();

 // Parameter name

 paramlist.getColValRef(paramline, 1, cval, qtrue);

 cval.setChar(cntrl - >getParamName(m));

 // fft Data type

 paramlist.getColValRef(paramline, 2, cval, qtr ue);

 cval.setLong(cntrl - >getParamType(m));

 // EXTD_ flags

 paramlist.getColValRef(paramline, 3, cval, qtrue);

 cval.setLong(cntrl - >getParamFlags(m));

 }

 list.getColValRef(line , 6, cval, qtrue);

 cval.se tlist(paramlist, qtrue);

 }

 }

 extfldval.setList(list, qtrue);

 ECOaddParam(pEci,&extfldval);

 return qtrue;

 }

 // No properties

 return qfalse;

¶ Finally, on receipt of the ECM_OBJCONSTRUCT, the control handler needs to

construct the appropriate control. To enable this, the members mCompId and

Chapter 1ðOmnis External Components

44

mCompLibId in the EXTCompInfo structure will contain the unique identifiers as

declared during ECM_GETCOMPLIBINFO and ECM_GETCOMPID messages.

See also ECM_CONNECT, ECM_GETHANDLERICON, ECM_GETCOMPLIBINFO,

ECM_GETCOMPID, ECM_GETCOMPICON, ECM_GETCONSTNAME,

ECM_GETPROPNAME, ECM_GETEVENTNAME, ECM_GETMETHODNAME.

Background Components
When creating a background external component, you need to be aware of the differences

between real components, and of the extra messages you may need to respond to.

A background component is created in a different way within Omnis during runtime and

design mode. When you are designing a background component in design mode, the

component will be given a child window (HWND) to draw within. During design mode,

Omnis maintains this child window. During runtime, no child window is created. Omnis will

call your object to paint, in an existing window at a certain location. Given this

runtime/design mode difference, you should not use any HWND API that requires a

window, such as WNDsetCapture() as you may not have a valid child window.

The following messages describe the differences or meaning when received by a

background component.

ECM_OBJCONSTRUCT

ECM_OBJCONSTRUCT is sent to all component types. For background components you

can test the wParam parameter and the ECM_WFLAG_NOHWND flag to tell if you are

being created during design or runtime. For example :

case ECM_OBJCONSTRUCT:

{

 tqfTile* object = new tqfTile(hwnd);

 object - >mIsRealHWND = !(wParam & ECM_WFLAG_NOHWND);

 ECOinsertObject(eci, hwnd, (void*)object, wParam);

 return qtrue;

}

The above example creates a new background component object, and stores a flag in the

class so the control knows if it has a real child window or not.

 Web Client Components

 45

ECM_CONNECT

The ECM_CONNECT needs to be handled for background external components. When

Omnis calls your component with this message, the following code should be used. If the

code is omitted, Omnis will create the control as a first class foreground object.

case ECM_CONNECT:

{

 return EXT_FLAG_LOADED | EXT_FLAG_BCOMPONENTS;

}

ECM_PRINT

ECM_PRINT is a very important message. Normally with standard components you pick up

the WM_PAINT message so you can paint your control. During runtime, as you do not have

a child window, you will never receive a WM_PAINT message. During design mode you

do have a child window, so in theory you could get a WM_PAINT message, but you will

not. To help background components keep a simple interface, Omnis sends only

ECM_PRINT to your component during runtime and design mode to indicate that it needs

to be painted. A WNDpaintStruct is passed in the lParam parameter which holds the area

that needs painting and a HDC to paint within.

case ECM_PRINT:

{

 tqfTil e* object = (tqfTile*)ECOfindObject(eci - >mOmnisInstance,

 hwnd, wParam);

 WNDpaintStruct* ps = (WNDpaintStruct*)lParam;

 if (object) object - >paint(ps - >hdc, &ps - >rcPaint);

 return qtrue;

}

The above example shows how to paint you background object in runtime or design mode.

Web Client Components
Writing Web Client components is almost identical to writing standard window

components. In fact, you can build both from the same source. There are however some

small differences.

Ç You will need to link against a different set of libraries. Use the example project files as

a guide.

Ç The final DLL/shared library name must match the component library name as

specified by your resources. The library name resource ID is returned by

ECOreturnCompInfo as a response to the ECM_GETCOMPLIBINFO. As a rule of

Chapter 1ðOmnis External Components

46

thumb, all our web client component names start with ñFORMò, i.e. FORMTREE,

FORMTIME, etc.

Ç Web client components must respond to the ECM_GETCOMPSTOREGROUP

message and return the group name with ECOreturnCStoreGrpName

ECM_GETVERSION (see Chapter 2ðComponents Reference). The group name must

be ñWEB Componentsò for web controls and ñWEB Background Objectsò for web

background objects.

Ç Web client components must be data bound in order to manipulate Omnis data. There

is no other way of telling the client that data has changed and needs to be sent to the

server for the next event. There is a message ECM_HASPRIMARYDATACHANGED

(see Chapter 2ðComponents Reference) which the component needs to implement.

You use it to tell the web client if the primary data has been changed by the user. If the

component only displays data, it can have non-data bound properties which take

instance variable names, but the component will not know when the data has changed.

Ç Web client components need to implement the following additional messages which

deal with focusing and mouse clicks.

ECM_CANFOCUS

ECM_ CANCLICK

 (see Chapter 2ðComponents Reference)

Ç In addition, web client components must implement a proper versioning system. There

is a new ECOreturnVersion function which must be used as a response to

ECM_GETVERSION (see Chapter 2ðComponents Reference).

Ç ECOsendEvent function will always return true when called from web client

components. In order to receive a result, the component must implement the

ECM_EVENTRESULT message (see Chapter 2ðComponents Reference).

Ç Some functions or classes require additional parameters when used from web client

components. These are

EXTBMPref::EXTBMPref

EXTCURref::EXTCURref

(see Chapter 3ðEXTBMPref/EXTCURref Class Reference)

Ç The EXTfile class and related functions are currently not supported.

The new generic stationary in the MACIDE folder (Mac only) includes basic code needed

for writing web client components.

 Structures

 47

Chapter 2ðStructures,
Messages & Functions

This section describes control, resource allocation and general functions provided by the

component library. Where object classes provide additional functions related to their

operation, these are documented at the end of the relevant section.

Structures

ECOmethodEvent (for methods)

This is the structure defining information about a component method. The address to a table

of method items should be used with the ECOreturnMethodsEvents API.

See some of the samples for an example.

struct ECOmetho dEvent

{

 qlong mId;

 qlong mNameResID;

 qlong mReturnDataType;

 qlong mParameterCount;

 ECOparam* mParameters;

 qlong mFlags;

 qlong mExFlags;

};

¶ mId - The unique identifier, within the method table, for the method. All external

methods must have a positive number and must not be zero. All negative numbers are

assumed to be Omnis internal methods, presently only Omnis internal methods

ECF_CUSTOM & ECF_ABOUT are supported (neither have any parameters).

¶ mNameResID - Resource id which contains the method name. Method names should,

ideally, be unique to avoid ambiguity in Omnis notation. If there is a clash between Omnis

and the component method names, you may use a prefix of ó::ô to reference the external

method. For example, Calculate #1 as $cobj.$::clashMethod.

¶ mReturnDataType - Returned data type of type fftxxx. Specify 0 for no returned data

(e.g. void) and fftNone for an unspecified data type.

Chapter 2ðStructures, Messages & Functions

48

¶ mParameterCount - Number of parameters for the method. Specify zero for no

parameters.

¶ mParameters - Pointer to an array of parameters. Specify NULL if there are no

parameters.

¶ mFlags - Method flags of type EXTD_FLAG_xxxx.

¶ mExFlags - Use zero. Extended flags for future enhancement.

Once a table of methods has been returned, you should be ready to receive the

ECM_METHODCALL message.

If the method is to support parameters, you need to supply information describing the

parametersô properties. This is the parameter structure.

struct ECOparam

{

 qlong mNameResID;

 qlong mDataType;

 qlong mFlags;

 qlong mExFlag s;

};

¶ mNameResID - Resource id which contains the parametersô name.

¶ mDataType - fftxxx data type of the parameter. Use fftNone for an unspecified data

type.

¶ mFlags - Parameter flags of type EXTD_FLAG_xxxx. Examples are

EXTD_FLAG_PARAMOPT and EXTD_FLAG_PARAMALTER.

¶ mExFlags - Must be zero. Extended flags for future enhancement.

 Structures

 49

Example of a method table

// The parameters

ECOparam CALENDARparams[2] =

{

 // string 7000 for param name, fftInteger type

 7000, fftInteger, 0, 0,

 // string 7001 for param name, fftInteger type

 7001, fftInteger, 0, 0

};

// The method table

ECOmethodEvent CALENDARmethods[3] =

{

 cCalendarMethodSetDayIcon, 6000, 0, 2, &CALENDARparams[0], 0,

0,

 cCalendarMethodClearDayIcons,

 6001,fftInteger,1,&CALENDARparams[0],0,0,

 cCalend arMethodGetDayIcon, 6002, 0, 0, 0, 0, 0

};

// method cCalendarFuncSetDayIcon uses string 6000 for its name,

// no return type, 2 parameters, the address to a parameter.

// The last two items are method flags, see member description above.

extern "C" qlo ng OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETMETHODNAME:

 {

 // you want to support method, so send OMNIS the method table.

 return ECOreturnMethods(gInstLib, eci, &CALENDARmethods[0],

3);

 }

 case ECM_METHODCALL:

 {

 // OMNIS code is calling your component method

Chapter 2ðStructures, Messages & Functions

50

 qlong methodID = ECOgetId(eci);

 switch(methodID)

 {

 case cCalendarMethodSetDayIcon: éé.

 case cCalendarMethodClearDayIcons: éé.

 case cCalendarMethodGetDayIcon:

 {

 // this method supports parameters

 // so get information for parameter 1

 EXTParamInfo* param = ECOfindParamNum(eci, 1);

 // create an EXTfldval from the information data

 EXTfldval passedParam((qlong)param - >mData);

 qlong valuePassed = passedParam.getLong();

 éé.

 break;

 }

 }

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnMethodsEvents, ECM_METHODCALL,

 EXTD_FLAG_PARAMOPT, EXTD_FLAG_PARAMALTER

ECOmethodEvent (for events)

This is the structure defining information about a componentôs events. The address to a

table of events information should be used with the ECOreturnMethodsEvents API call.

struct ECOmethodEvent

{

 qlong mId;

 qlong mNameResID;

 qlong mReturnDataType;

 qlong mParameterCount;

 ECOparam* mParameters;

 qlong mFlags;

 qlong mExFlags;

};

¶ mId - The unique identifier, within the event table, for the event. All external events

must have a positive number and must not be zero. All negative numbers are assumed to be

 Structures

 51

Omnis internal events. For a list of supported internal events, look for ECE_ in

EXTDEFS.HE.

¶ mNameResID - Resource id which contains the event name. Event names must be

unique and must not clash with Omnis internal events. The string óevô is used automatically

as a prefix for any event.

¶ mReturnDataType - Returned data type of type fftxxx. Specify 0 for no returned data

(e.g. void) and fftNone for an unspecified data type.

¶ mParameterCount - Number of parameters for the event. Specify zero for no

parameters.

¶ mParameters - Pointer to an array of parameters. Specify NULL if there are no

parameters.

¶ mFlags - Event flags of type EXTD_FLAG_xxxx.

¶ mExFlags - Use zero. Extended flags for future enhancement.

Once a table of event information has been returned, you can use the ECOsendEvent API.

If your events support parameters, you need to supply information describing the

parameters. See the Component Methods section for a description of the ECOparam

structure, or see some of the example components.

Chapter 2ðStructures, Messages & Functions

52

Example of an events table

// The event parameters

ECOparam SLIDERnewPos[1] =

{

 // resource 6000 for its name and type fftInteger

 6000, fftIntege r, 0, 0

};

// The event table

ECOmethodEvent SLIDERevents[3] =

{

 cSliderEvStartSlider, 5000, 0, 0, 0, 0, 0,

 cSliderEvEndSlider, 5001, 0, 0, 0, 0, 0,

 cSliderEvNewSliderPos, 5002, 0, 1, &SLIDERnewPos[0], 0, 0

};

// function cSliderEvNewSliderPos uses string 5002 for its name, no return

// type, 1 parameters, the address to a parameter table. The last two items

// are event flags, see memeber description above.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETEVENTNAME:

 {

 // you want to support events, so send OMNIS the event table.

 return ECOreturnEvents(gInstLib,eci,&SLIDERevents[0],3);

 }

 }

 re turn WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

// Events can be sent using the ECOsendEvent API.

// e.g. ECOsendEvent(mHWnd, cSliderEvStartSlider, 0, 0);

// or with an event parameter

// EXTfldval evParam;

// evParam.setLong(10);

// ECOsendEvent(mHWnd, cSliderEvNewSliderPos, &evParam, 1);

 Structures

 53

ECOproperty

This is the structure of a single property. The address to a table of properties should be used

with the ECOreturnProperties API when Omnis calls your component with a

ECM_GETPROPNAME message.

See some of the samples for an example.

struct ECOproperty

{

 qlong mPropID;

 qlong mNameResID;

 qlong mDataType;

 qlong mFlags;

 qlong mExFlags;

 qlong mEnumStart;

 qlong mEnumEnd;

};

¶ mPropID - Property Identifier. External properties ids must be positive and unique

within the property table. These idôs link the Omnis data with the associated property and

therefore must not change.

¶ mNameResID - Resource id for the property name. Property names should, ideally, be

unique to avoid ambiguity in Omnis notation. If there is a clash between Omnis and the

component property, you may use a prefix of ó::ô to reference the external property, e.g.

Calculate #1 as $cobj.$::clashProperty.

¶ mDataType - fftxxx data type.

¶ mFlags - EXTD_FLAG_xxx.

¶ mExFlags - Extended flags for future enhancements.

¶ mEnumStart - Constant id enumeration start (0 if not required).

¶ mEnumEnd - Constant id enumeration end (0 if not required).

Chapter 2ðStructures, Messages & Functions

54

Example Property Table

ECOproperty OMNISICNproperties[4] =

{

 cOmnisIcnBa ckColor, 4000, fftInteger, EXTD_FLAG_PWINDCOL, 0,

0, 0,

 cOmnisIcnIsTransparent, 4001, fftBoolean, 0, 0, 0, 0,

 cOmnisIcnIconId, 4002, fftInteger, EXTD_FLAG_PWINDICON, 0, 0,

0, cOmnisIcnScale, 4003, fftBoolean, 0, 0, 0, 0

};

extern "C" qlon g OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPROPNAME:

 {

 // you want to support properties, so send OMNIS

 // the property table.

 return ECOreturnProperties(gInstLib, eci,

 &OMNISICNproperties[0], 4);

 }

 case ECM_PROPERTYCANASSIGN:

 {

 // OMNIS wants to know if you allows assignment to a property

 qlong propID = ECOgetId(eci);

 // you should return 1L if the

 // propID (e.g. cOmnisIcnBackColor) can be assigned.

 return 0L;

 }

 case ECM_SETPROPERTY:

 {

 // OMNIS is informing you to set a property value.

 qlong propID = ECOgetId(eci);

 // get the parameter information

 EXTParamInfo * param = ECOfindParamNum(eci, 1);

 // create a EXTfldval object containing the new value

 EXTfldval newValue((qlong)param - >mData);

 // assign property ópropIDô the value stored in ónewValueô

 Structures

 55

 // always return 1L if you handled the assignment.

 return 1L;

 }

 case ECM_GETPROPERTY:

 {

 // OMNIS wants to know a property value

 qlong propID = ECOgetId(eci);

 // prepare a EXTfldval for return

 EXTfldval returnVal;

 // you must return the value for ópropIDô, the value 10

 // is returned for this example

 returnVal.setLong(10);

 // send the return value back to OMNIS

 ECOaddParam(eci,& returnVal);

 // always return 1L if you handled the call.

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

Once a table of properties has been returned, you should be ready to receive the

ECM_PROPERTYCANASSIGN, ECM_SETPROPERTY and

ECM_GETPROPERTY messages.

The property flags are used to describe information about a property in the property table

that must be returned to Omnis if you intend to support properties.

See also ECOreturnProperties, ECM_GETPROPNAME,

ECM_PROPERTYCANASSIGN, ECM_SETPROPERTY,

ECM_GETPROPERTY.

EXTclipType

The following enum values are used with the function ECOclipboardHasFormat().

enum EXTclipType

{

 eExtClipText = 0,

 eExtClipPicture = 1

};

¶ eExtClipText ï use this enum when testing the clipboard for text data.

¶ eExtClipPicture - use this enum when testing the clipboard for picture data.

Chapter 2ðStructures, Messages & Functions

56

See also ECOclipboardHasFormat

EXTCompInfo

This is the structure which is passed from Omnis to the componentsô message function.

EXTCompInfo contains all the information needed to process ECM_xxxx messages.

struct EXTCompInfo

{

 qlong mCompLibId;

 qlong mCompId;

 void* mGdata;

 EXTHANDLE mOmnisInstance;

 EXTParamInfo* mParamFirst;

 void* mPrivate;

 EXTADDR mECOCallBack;

 EXTADDR mGDICallBack;

 EXTADDR mHWNDCallBack;

 EXTADDR mFVALCallBack;

 EXTADDR mQLISTCallBack;

 EXTADDR mBMPCallBack;

 EXTADDR mCRBCallBack;

 EXTADDR mPRICallBack;

 EXTADDR mQFILECallBack;

 locptype* mLocLocp;

 locptype* mInstLocp;

 EXTADDR mDAMCallBack;

};

¶ mCompLibId - Contains the unique identifier for the component library. This value

should only be used by control handlers.

¶ mCompId - Unique identifier for the control.

¶ mGdata - Pointer which is maintained by the external component.

¶ mOmnisInstance - Instance of Omnis.

¶ mParamFirst - Pointer to the first parameter.

¶ mPrivate - Private pointer used by Omnis. The component must not alter this member.

¶ mECOCallBack, mGDICallBack, mHWNDCallBack, mFVALCallBack,

mQLISTCallBack, mBMPCallBack, mCRBCallBack, mPRICallBack,

mQFILECallBack, mDAMCallBack(v3.1) - Data for Omnis call-back functions. The

component must not alter these members.

 Structures

 57

¶ mLocLocp - The context of the calling Omnis method. When the external component is

not called from an Omnis method, it is identical to mInstLocp.

¶ mInstLocp - The context of the Omnis class instance, which contains the object

instance. When the external component is not called from a class instance, it points at the

library or root.

EXTParamInfo

This structure contains all the parameter information required for many ECM_xxxx

messages and functions.

struct EXTParamInfo

{

 long mId;

 long mInfo;

 void* mData;

 long mParent;

 unsigned char mNum;

 char mFlags;

 EXTParamInfo* mNext;

 void* mItem;

 void* mVpt;

};

¶ mId ï Parameter id. Depends on the context in which the EXTParamInfo structure is

used. For example, during property messages this will contain the unique property identifier

(mPropID).

¶ mInfo ï Not currently used.

¶ mData ï Pointer to data.

¶ mParent ï Not currently used.

¶ mNum ï Specifies the parameter number. A value of zero indicates that it is a return

parameter.

¶ mFlags ï Flags of type EXTC_FLAG_xxxx for the parameter.

¶ EXTC_FLAG_EXTDEL ï Indicates that the parameter should be deleted by

the component. The component must not manually set this flag.

¶ EXTC_FLAG_PARAMCHANGED ï Indicates that the parameter has been

changed. The component must not manually set this flag.

¶ EXTC_FLAG_HASITEM (v3.1) - Indicates that the EXTParamInfo contains

valid mItem and mVpt fields. These fields are required by some of the new

Chapter 2ðStructures, Messages & Functions

58

callbacks in v3.1. If building components for 3.1 you should return this flag during

connect.

¶ mNext ï Pointer to the next EXTParamInfo structure (may be NULL).

¶ mItem (v3.1) ï Contains pointer to an Omnis item reference. Required by some new

callbacks in v3.1.

¶ mVpt (v3.1) ï Contains pointer to an Omnis parameter info structure. Required by some

new callbacks in v3.1.

EXTParamTypeInfo (v3.1)

Returns information about the Omnis data field.

struct EXTParamInfo

{

 qshort mType;

 qshort mSubType;

 qlong mLength;

 str255 mName

};

¶ mType ï The Omnis data type.

¶ mSubType ï The Omnis data sub type.

¶ mLength ï The maximum length in bytes or characters of the data field. Zero means

unlimited (10,000,000).

¶ mName ï The Omnis data field name.

See also ECOgetParamInfo

EXTSerialise (v3.1)

Structure used by the IS_SERIALISED control message.

struct EXTserialise

{

 str255 mProductCode;

 str255 mFunctionCode;

 str255 mSerial;

 str255 mNotes;

};

¶ mProductCode ï Product code supplied by component. Must be 4 alpha/numeric

characters.

 Flags

 59

¶ mFunctionCode ï Functionality code returned by Omnis. These consist of 4

alpha/numeric characters describing the enabled functionality.

¶ mSerial ï Complete serial number. Returned by Omnis.

¶ mNotes ï Notes as entered with the serial number by the user. Returned by Omnis.

See also ECOisSerialised, IS_SERIALISED

Flags

EXTD_EFLAG_xxx

These defines are used in the mExFlags member of the ECOproperty structure.

EXTD_EFLAG_REPFONT

Indicates that Omnis should use report fonts for this property.

EXTD_FLAG_xxx

These defines are used in the mFlags member of the ECOproperty structure.

EXTD_FLAG_BUTTON

Indicates that Omnis should provide a button on the Property Manager.

EXTD_FLAG_EDITRONLY

Indicates that Omnis stops editing of the property on the Property Manager.

EXTD_FLAG_ENUM

Indicates that the property is an ENUM. For this type of property, Omnis sends the

component the ECM_GETPROPERTYENUMS message.

See also ECM_GETPROPERTYENUMS

EXTD_FLAG_EXTCONSTANT

Indicates the property is an external constant value. For example, the following property

entry (extract from QuickTime) indicates that the property is a external (i.e. Component)

constant between constant ids, 23000 & 23004.

eQTIME_Movie_scaling, 25017,

 fftNumber,EXTD_FLAG_EXTCONSTANT,0,23000,23004

EXTD_FLAG_FAR_SRCH

Indicates that the property will be searched on during find and replace.

Chapter 2ðStructures, Messages & Functions

60

EXTD_FLAG_FONTPROP

Indicates that the property is a font.

EXTD_FLAG_HIDDEN

Indicates that the property is hidden, that is, the property does not appear in the Property

Manager at all.

EXTD_FLAG_INTCONSTANT

Indicates the property is an internal constant value. For example the following property

entry (extract from Calendar) indicates that the property is a internal (i.e. Omnis) constant

between constant ids, pre3DStyleF & pre3DStyleL (See DMCONST.HE for the entire

Omnis constant range).

cCalendar_HeadingMode,4002,fftInteger,EXTD_FLAG_INTCONSTANT,0,pre3DS

tyleF,pre3DStyleL

EXTD_FLAG_PARAMALTER

Indicates that the parameter can be altered during a function call.

See also ECOsetParameterChanged

EXTD_FLAG_PARAMOPT

Indicates that the function parameter (and every parameter after) is optional.

EXTD_FLAG_PRIMEDATA

Indicates the property is a data field. Each object may have only one primary data field and

appears as the $dataname property in Omnis.

See also ECM_SETPRIMARYDATA, ECM_GETPRIMARYDATA,

ECM_GETPRIMARYDATALEN, ECM_CMPPRIMARYDATA,

ECM_PRIMARYDATACHANGE

EXTD_FLAG_PROPACT

Indicates that the property appears on the action tab.

EXTD_FLAG_PROPAPP

Indicates that the property appears on the appearance tab.

EXTD_FLAG_PROPCUSTOM

Indicates that the property appears on the custom tab (default).

EXTD_FLAG_PROPDATA

Indicates that the property appears on the data tab.

EXTD_FLAG_PROPGENERAL

Indicates that the property appears on the general tab.

 Flags

 61

EXTD_FLAG_PROPPREFS

Indicates that the property appears on the preferences tab.

EXTD_FLAG_PROPTEXT

Indicates that the property appears on the text tab.

EXTD_FLAG_PROPPANE

Indicates that the property appears on the pane tab.

EXTD_FLAG_PROPSECTIONS

Indicates that the property appears on the sections tab.

EXTD_FLAG_PROPGRP1

Mask for Property Manager tab.

EXTD_FLAG_PROPPANE

Indicates that the property appears on the pane tab.

EXTD_FLAG_PWINDCOL

Indicates that the popup color window should be provided.

EXTD_FLAG_PWINDCOL256

Indicates that the popup 256 color window should be provided. Useful for interfacing with

non-Omnis components such as Active-X or Java Beans.

EXTD_FLAG_PWINDCURSOR (v3.1)

Indicates that the popup cursor window should be provided.

EXTD_FLAG_PWINDFSTYLE

Indicates that the popup font style window should be provided.

EXTD_FLAG_PWINDICON

Indicates that the popup icon window should be provided.

EXTD_FLAG_PWINDLSTYLE

Indicates that the popup line style window should be provided.

EXTD_FLAG_PWINDMLINE

Indicates that the popup multi line edit window should be provided.

EXTD_FLAG_PWINDPAT

Indicates that the popup pattern window should be provided.

Chapter 2ðStructures, Messages & Functions

62

EXTD_FLAG_PWINDSET

Indicates that the popup checkbox selection window should be provided.

EXTD_FLAG_PWINDTYPE

Mask for the popup window types.

EXTD_FLAG_RUNTIMEONLY

Indicates that the property is runtime only, that is, the property appears in the Property

Manager during design mode if the Show runtime properties option is switched on.

EXTD_FLAG_SECTIONS

Indicates that the property appears on the sections tab.

EXTD_FLAG_SINGLESEL

Indicates that the property appears in the Property Manager when only one object is

selected.

EXTD_FLAG_STATEONLY

Indicates that Omnis displays [Empty] or [Not Empty] in the Property Manager.

EXTD_FLAG_SUPPRESS

Indicates that the standard anum (see anums.he) property should be suppressed in the

Property Manager.

 General Messages

 63

General Messages
This section describes some of the messages you receive via your WNDPROC. For

additional messages see the HWND and GDI message section.

ECM_ADDTOPRINTJOB

The ECM_ADDTOPRINTJOB message is send to a report object when the object is to add

itself to the print job. This message will only be sent if you returned 1L as a response to the

message ECM_CANADDTOPRINTJOB.

¶ lParam - points to the printInfo structure. This structure contains a pointer to the print

job mJob of type PRIjob, and a pointer to the object information mObj of type

PRIobjectStruct. See print manager documentation for more information about

PRIobjectStruct and adding objects to a print job.

Returns:

If the component has added objects to the print job, return 1L. Otherwise return 0L.

case ECM_ADDTOPRINTJOB:

{

 tqfRepObj *obj = (tqfRepObj*)ECOfindObject(eci, hwnd);

 if (obj)

 {

 printInfo *info = (printInfo*)lParam;

 info - >mObj- >mType = PRI_O BJ_TEXT;

 info - >mObj- >mAddEllipsis = qtrue;

 qprierr err = PRIaddObject(info - >mJob, info - >mObj);

 return err == PRI_ERR_NONE ? 1L : 0L;

 }

 return 0L;

}

ECM_BOBJ_EXERASE

The ECM_BOBJ_EXERASE message is sent to the background components to inquire on

whether the background objectsô frame region should be excluded from the erase

background region.

Returns:

The component should return true if the componentsô frame region should be excluded,

false otherwise.

Chapter 2ðStructures, Messages & Functions

64

ECM_CANADDTOPRINTJOB

External report objects can have full control over what is added to a print job when the

object is about to be printed. In order to take advantage of this feature, you must implement

this message and return 1L. You will then receive a ECM_ADDTOPRINTJOB message

which allows you to add one or more objects supported by the print manager. See print

manager documentation for more information about adding objects to a print job.

Returns:

Return 1L if you wish to control what is added to a print job, otherwise return 0L.

ECM_CANCLICK (Web Client 1.0)

The ECM_ CANCLICK message is sent, when the web client needs to know if the

component can receive mouse messages.

Parameters:

¶ wParam ï is 1 if the component is enabled, otherwise it is 0.

Returns:

Return 1L if the component can receive mouse messages, otherwise return 0.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_ CANCLICK:

 {

 // the component can receive mouse messages if it is enabled

 return wParam;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_CANFOCUS (Web Client 1.0)

The ECM_CANFOCUS message is sent, when the web client needs to know if the

component can receive the input focus.

Parameters:

¶ wParam ï is 1 if the component is enabled, otherwise it is 0.

 General Messages

 65

Returns:

Return 1L if the component can receive the input focus, otherwise return 0.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_ CANFOCUS:

 {

 // the component can receive the focus if it is enabled

 return wParam;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_CANSHOWSYSTEMFOCUS (V3.2)

This message is send to the component when Omnis needs to know if the systems focus

border is to be drawn around the component (Macintosh only).

Returns:

Return 1L if a focus border is to be drawn, otherwise return 0.

Chapter 2ðStructures, Messages & Functions

66

ECM_CMPPRIMARYDATA

The ECM_CMPPRIMARYDATA message is sent to the component to compare its objectsô

data with the data provided in parameter one.

Returns:

The component should return DATA_CMPDATA_SAME if the data is the same, or

DATA_CMPDATA_DIFFER if the data is different, false otherwise.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCo mpInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_CMPPRIMARYDATA:

 {

 EXTParamInfo* param = ECOfindParamNum(eci,1);

 if (param && param - >mData)

 {

 EXTfldval newValue((qlong)param - >mData);

 if (newValue.compare (myComponentData)==0)

 return DATA_CMPDATA_DIFFER;

 }

 return DATA_CMPDATA_SAME;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also EXTD_FLAG_PRIMEDATA

 General Messages

 67

ECM_COMPONENTCMD

The ECM_COMPONENTCMD message is sent to the component in response to the $cmd

notation method being executed.

The $cmd method provides functionality to Omnis scripting language which might

otherwise be inaccessible.

For example, the javabean component provides functionality to enumerate beans. However,

this functionality is normally only available via a dialog. $cmd also provides this

functionality without the use of the dialog.

Once invoked, all parameters are passed to the component.

An example of use may be :-

OMNIS script code : -

 Do $components.MyLibrary.$cmd(1)

External C++ Library code : -

 case ECM_COMPONENTCMD:

 {

 EXTParamInfo* param = ECOfindParamNum(pEci, 1);

 if (!param) return rtnVal; // Method called with too few

parameters EXTParamInfo* ecp = eci.findParam((q byte)n);

 EXTfldval fval((qfldval)ecp - >mData);

 If (fval.getLong()==1)

 // Do processing é

 break;

 }

ECM_CONNECT

The ECM_CONNECT message is sent to the component after an Omnis instance has

loaded the component.

Returns:

The component should return one or more of the following flags: -

¶ EXT_FLAG_LOADED - Component has been loaded successfully. The component

must return this flag otherwise Omnis assumes the component failed to load.

¶ EXT_FLAG_USABLE ç Note: FOR INTERNAL USE ONLY. A component must

not return this flag.

¶ EXT_FLAG_ALWAYS_USABLE - Component is always available regardless of its

load status. This flag enables components to be usable in Omnis without having to load

Chapter 2ðStructures, Messages & Functions

68

it via the external component dialog. For example, Omnis OLE & Graph components

both set this flag.

¶ EXT_FLAG_REMAINLOADED - Component remains loaded even after its usage

has returned to zero. This flag provides the best component performance and may be

used if the component connection process is too slow.

¶ EXT_FLAG_HIDDEN (v3.3)ï Component will not be visible in the object notation

tree displayed when creating variables of type óObjectô.

¶ EXT_FLAG_DAM (v5.0) - The external component is a DAM; must be set in addition

to EXT_FLAG_SESSION for DAMs only.

¶ EXT_FLAG_CTRLHANDLER - Component is a control handler . Please refer to the

section óControl Handlersô for more information.

¶ EXT_FLAG_EVENTHANDLER ï Component in an event handler. Treatment of this

flag is the same as EXT_FLAG_CTRLHANDLER.

¶ EXT_FLAG_SESSION (v3.1) ï Component is a SQL session object. (Omnis Studio

version 3.0 onwards). This flag is also used to elicit thread-safe behavior when writing

multi-threaded components.

¶ EXT_FLAG_OWNROOTNODE (v4.1) ï Specifies that the component should be

assigned its own root node in the object notation tree displayed when creating variables

of type óObjectô.

¶ EXT_FLAG_BCOMPONENTS - Component library contains only background

components.

¶ EXT_FLAG_NVOBJECTS ï Component library contains non-visual objects (either

static functions or Omnis objects).

¶ EXT_FLAG_PRI_OUTPUT - Component library contains output devices.

¶ EXTC_FLAG_HASITEM (v3.1) - Indicates that the EXTParamInfo contains valid

mItem and mVpt fields. These fields are required by some of the new callbacks in v3.1.

If building components for 3.1 you should return this flag during connect.

Note: Most components do not need to catch this message. The default returned value in

WNDdefWindowProc is EXT_FLAG_LOADED.

ECM_CONSTPREFIX

The ECM_CONSTPREFIX message is sent when Omnis requires the prefix string for all

componentsô constants.

If the component requires a constant prefix, it should add a parameter containing the string.

 General Messages

 69

Returns:

Return true if the constant prefix has been returned.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_CONSTPREFIX:

 {

 EXTfldval prefixName;

 str15 pref ixStr;

 prefixStr[0] = RESloadString(gInstLib, resourceID,

 &prefixStr[0], 15);

 prefixName.setChar(prefixStr);

 ECOaddParam(eci,&prefixName);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_CONVFROMHPIXMAP (Studio 2.1)

The ECM_CONVFROMHPIXMAP message is sent to a picture format component when

Omnis requires an HPIXMAP to be converted into raw binary picture data (as stored on

disk).

Parameters:

¶ lParam ï HPIXMAP required to convert.

Returns:

Return qtrue if the component has successfully converted the HPIXMAP to binary data,

qfalse otherwise.

Chapter 2ðStructures, Messages & Functions

70

extern "C" qlong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 case ECM_CONVFROMHPIXMAP:

 {

 qbool rtnVal = qfalse;

 HPIXMAP thePixMap = (HPIXMAP)lParam;

 qHandle binaryPCX;

 if (PixmapToPCX(thePixMap ,binaryPCX))

 {

 EXTfldval fval;

 fval.setHandle(fftBinary,binaryPCX,qfalse);

 ECOaddParam(eci,&fval);

 rtnVal = qtrue;

 }

 binaryPCX.setNull();

 return rtnVal;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_CONVHEADER (Studio 2.1)

The ECM_CONVHEADER message is sent to a picture format component when Omnis

requires a picture formatsô header to be added or removed.

Parameters:

¶ wParam ï True if a header should be added, false if it should be removed.

¶ Parameter 1 ï Picture data.

Returns:

Return qtrue if the picture data has had any headers added or removed, false otherwise.

 General Messages

 71

extern "C" qlong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_CONVHEADER:

 {

 EXTParamInfo* param = ECOfindParamNum(e ci,1);

 if (param)

 {

 EXTfldval fldval((qfldval)param - >mData);

 qHandle srcHan = fldval.getHandle (qfalse);

 qHandle destHan;

 if (wParam)

 { // Add tqgpict header (& any other component header)

 addPCXheader(srcHan,destHan);

 }

 else

 { // Remove tqgpict header (& any other component header)

 removePCXheader(srcHan,destHan);

 }

 EXTfldval fval; fval.setHandle(fftBinary,destHan,qfalse);

 ECOaddParam(eci,&fval);

 return qtrue;

 }

 return qfalse;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_CONVTOHPIXMAP (Studio 2.1)

The ECM_CONVTOHPIXMAP message is sent to a picture format component when

Omnis requires an raw picture data to a HPIXMAP. It is important to note that the data

supplied may, or may not, include any headers.

Parameters:

¶ Parameter 1 ï Picture data.

Chapter 2ðStructures, Messages & Functions

72

Returns:

Return an HPIXMAP handle, NULL otherwise.

extern "C" qlong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lPa ram, EXTCompInfo* eci

)

{

 case ECM_CONVTOHPIXMAP:

 {

 EXTParamInfo* param = ECOfindParamNum(eci,1);

 EXTfldval fldval((qfldval)param - >mData);

 qHandle theData = fldval.getHandle (qtrue);

 HPIXMAP thePixmap = PCXtoPixMap(theData);

 return (qlong) thePixmap;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_CUSTOMTABNAME

The ECM_CUSTOMTABNAME message is sent to the component when Omnis requires

the name of the custom tab in the Property Manager.

The component should add a parameter containing the custom tab character name.

A component should call ECOsetCustomTabName to provide the necessary information.

Returns:

Return true if a custom tab name has been supplied.

 General Messages

 73

extern "C" qlong OMNISWNDPROC GenericWn dProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_CUSTOMTABNAME:

 {

 // use resource 8000 for the name of the tab in the Property Manager

 ECOsetCustom TabName(gInstLib, eci, 8000);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOsetCustomTabName

ECM_DEBUGGING

The ECM_DEBUGGING message is sent to the component:

¶ just after a component library has been loaded (immediately after ECM_CONNECT).

¶ when sys(4000) to enable debugging has been called.

¶ when sys(4001) to disable debugging has been called.

Components may utilize this message to provide debugging statements in the trace log, and

so on.

The debugging flag is maintained between Omnis sessions.

Parameters:

¶ wParam - True if debugging is enabled, false otherwise.

Returns:

Any returned value is ignored.

Chapter 2ðStructures, Messages & Functions

74

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_DEBUGGING:

 {

 qbool debuggingOn = (qbool)wParam;

 if (debuggingOn)

 {

 // If debugging is on, the component may wish to provide

 // verbose information to the developer via various

 // methods (e.g. trace log, and so on)

 }

 break;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_DISCONNECT

The ECM_DISCONNECT message is sent to the component before an Omnis instance

unloads the component. It should always be passed to the WNDdefWindowProc.

Returns:

Any returned value is ignored.

Note: Most components do not need to catch this message.

ECM_EVENTRESULT (Web Client 1.0)

The ECM_EVENTRESULT message is sent to a Web Client external component, when the

result of a custom event is returned from the server. Because events are executed on the

server, the result returned from ECOsendEvent is meaningless and will always return qtrue

in the Web Client environment. The true result will be sent as the ECM_EVENTRESULT

message once the server returns control to the client.

Parameters:

¶ wParam - the event code which was specified when ECOsendEvent was called.

¶ lParam - the result 0 or 1.

 General Messages

 75

Returns:

Return 1L.

See also ECOsendEvent

ECM_FMT_CANASSIGN

The ECM_FMT_CANASSIGN message is sent to the component when Omnis needs to

know if a property can be written to. This message is used for format notation and even if

the component does not respond to the message, it is assumed that the property can be

written to.

Returns:

Return FMT_CANASSIGN if the property can be written to, return

FMT_NOCANASSIGN otherwise.

See also ECM_PROPERTYCANASSIGN,Component Properties section.

ECM_FMT_GETPROPERTY

The ECM_FMT_GETPROPERTY message is sent to the component when Omnis needs to

know the value of a property.. This message is used for format notation and even if the

component doesnôt respond to the message the property will be retrieved from the format.

Parameter one contains the current property value.

Returns:

Return FMT_VALID if the property was successfully retrieved, FMT_INVALID otherwise.

See also ECM_GETPROPERTY, Component Properties section.

ECM_FMT_SETPROPERTY

The ECM_FMT_SETPROPERTY message is sent to the component when Omnis needs to

set the value of a property.. This message is used for format notation and even if the

component doesnôt respond to the message the property will be modified in the format.

Parameter one contains the new property value.

Returns:

Return FMT_VALID if the property was successfully modified, FMT_INVALID otherwise.

See also ECM_SETPROPERTY,Component Properties section.

Chapter 2ðStructures, Messages & Functions

76

ECM_GETCOMPICON

The ECM_GETCOMPICON message is sent to the component when Omnis requires the

HBITMAP for the component icon. A component should add a long parameter containing

the HBITMAP or may call ECOreturnIcon to provide the information. Please note that the

HBITMAP returned belongs to Omnis and is deleted by Omnis when the component is of

no further use.

Parameters:

¶ wParam - wParam is true if the library is available to the user.

Returns:

Return true if the bitmap has been returned, false otherwise.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETCOMPICON:

 {

 return ECOreturnIcon(gInstLib, eci, iconResID);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_GETCOMPID

The ECM_GETCOMPID message is sent when Omnis requires the object name, type and

unique identifier.

The component should add a parameter which contains the character name of the object, it

should also set the EXTCompInfo member mCompId to a unique identifier for that object.

The mCompId is used by the component to determine to which type of object messages are

referring.

Parameters:

¶ wParam - Contains a sequential number (starting from 1) which indicates the object

which is being inquired upon.

Returns:

The component should return the object type cRepObjType_xxxx and/or cObjType_xxxx

or FALSE if there are no more objects in the component.

 General Messages

 77

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETCOMPID:

 {

 // returns a single component of id ócompIDô and

 // of type ócObjType_Basicô

 return ECOreturnCompID(gInstLib, eci, compID,

cObjType_Basic);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnCompID

ECM_GETCOMPLIBINFO

The ECM_GETCOMPLIBINFO message is sent when Omnis requires the componentsô

library name and the number of objects it supports.

Returns:

The component should add a parameter containing the character name of the component

library and should also return the number of objects supported. A component may use the

function ECOreturnCompInfo to provide the necessary information.

Chapter 2ðStructures, Messages & Functions

78

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETCOMPLIBINFO:

 {

 // returns the name of the component library (resource id)

 // and the number of components this library supports.

 return ECOreturnCompInfo(gInstLib, eci, LIB_RES_ NAME,

COMPONENT_COUNT);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnCompInfo

ECM_GETCOMPSTOREGROUP (Studio 2.1)

The ECM_GETCOMPSTOREGROUP message is sent to the component library when

Omnis requires the name of the component store group.

The component should add a parameter containing the component store group name

(maximum 31 characters), if required.

A component should call ECOreturnCStoreGrpName to provide the necessary information.

Returns:

Return true if a component store group name has been supplied.

 General Messages

 79

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM _GETCOMPSTOREGROUP:

 {

 // use resource 8000 for the name of component store group

 ECOreturnCStoreGrpName(gInstLib, eci, 8000);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnCStoreGrpName

ECM_GETCOMPSTOREICON (Studio 2.1)

The ECM_GETCOMPSTOREICON message is sent to the component when Omnis

requires the bitmap of the component store group. This message will only be sent if the

component library returned a component store group name (see

ECM_GETCOMPSTOREGROUP).

The component should add a parameter containing the bitmap.

A component should call ECOreturnIcon to provide the necessary information.

Returns:

Return true if a bitmap has been supplied.

Chapter 2ðStructures, Messages & Functions

80

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETCOMPSTOREICON:

 {

 // use resource 8000 for the component store groupsô bitmap

 ECOreturn Icon (gInstLib, eci, 8000);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECM_GETCOMPSTOREGROUP, ECOreturnIcon

ECM_GETCONSTNAME

The ECM_GETCONSTNAME message is sent to the component when Omnis requires a

list of the constants that the component library supports.

Constant resource strings are in the format of: -

¶ Name - The name of the constant as it appears in Omnis methods. Constant names may

contain a group name (name prefixed by group name followed by a tilde [ó~ô] mark)

which informs Omnis that the component constants should be sub-grouped.

¶ Numeric value - The numeric value of the constant.

¶ Character value - The character value of the constant.

¶ Description - The description of the constant.

A component should call ECOreturnConstants to provide the event information.

Returns:

Return true if the event list has been returned.

 General Messages

 81

example strings (extracts from QuickTime component):

 // Scaling constant group

23000 "Scaling~kQTScaleNone:0:kQTSc aleNone:No Scaling is applied to

 the movie."

23001 "kQTScaleNoAspectRatio:1:kQTScaleNoAspectRatio:The movie is

 expanded to fit the current field."

23002 "kQTScaleKeepAspectRatio:2:kQTScaleKeepAspectRatio:The movie

 is expanded to fit the current fi eld."

23003 "kQTScaleProportional:3:kQTScaleProportional:The movie is

 equally expanded vertically and horizontally to fit the

 current field."

23004 "kQTScaleField:4:kQTScaleField:The movie's field is expanded

 around the movie."

 // Resource slots 23005-23009 left for future scaling options

 // Controller constant group

23010 "Controller~kQTnoButtons:0:kQTnoButtons:The Controllers all

 buttons list."

23011 "kQTstepButton:1:kQTstepButton:The Controllers step and

reverse

 button are removed."

2301 2 "kQTsoundButton:2:kQTsoundButton:The Controllers sound button

 are removed."

23013 "kQTgrowButton:4:kQTgrowButton:The Controllers grow button

area

 are removed."

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETCONSTNAME:

 {

 return ECOreturnConstants(gInstLib, eci, 23000, 23013);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnConstants

Chapter 2ðStructures, Messages & Functions

82

ECM_GETEVENTMETHOD

The ECM_GETEVENTMETHOD message is sent to the component when Omnis requires

the list of method lines for the objectsô event. This message is only sent during design mode

when a new object has been created.

The component should add a single column list parameter or call function

ECOreturnEventMethod.

Returns:

Return true if a method list has been provided, false otherwise.

example strings:

8000, ñon evMyEventò

8000, ñ; This event is sent for xxx reasonò

8001, ñò

8002, ñò

8003, ñon evMyEvent2ò

8004, ñ; This event is sent for yyy reasonò

// a break in the run is needed (8005 is missing)

8010, ñò

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lPara m, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETEVENTMETHOD:

 {

 // this uses strings 8000 onward, until a gap in the run

 return ECOreturnEventMethod(gInstLib, eci, 8000);

 }

 }

 return WNDdefWindowProc(hwn d,Msg,wParam,lParam,eci);

}

See also ECOreturnEventMethod

 General Messages

 83

ECM_GETEVENTNAME

The ECM_GETEVENTNAME message is sent to the component when Omnis requires a

list of the events that the object supports.

A component should call ECOreturnFuncsEvents to provide the event information.

Returns:

Return true if the event list has been returned.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,ec i);

 switch (Msg)

 {

 case ECM_GETEVENTNAME:

 {

 return ECOreturnFuncsEvents(gInstLib, eci, &eventTable[0],

evtTableCnt);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnFuncsEvents

ECM_GETHANDLERICON

The ECM_GETHANDLERICON message is sent to the component when Omnis requires

the HBITMAP for the control handler icon. A component should return the HBITMAP for

the bitmap. Note that the HBITMAP returned belongs to Omnis and is deleted by Omnis

when the control handler is of no further use.

Returns:

Return the HBITMAP of the handlersô icon.

Chapter 2ðStructures, Messages & Functions

84

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETHANDLERICON:

 {

 // Provide OMNIS with a bitmap for the Component Store group.

 HBITMAP compStoreIcon = RESloadBitMap(gInstLib,

 COMP_STORE_GROUP_ID);

 return (qlong)compStoreIcon;

 }

 }

 retur n WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_GETMETHODNAME

The ECM_GETMETHODNAME message is sent to the component when Omnis requires a

list of the methods that the object supports.

A component should call ECOreturnMethodsEvents to provide the method information.

Returns:

Return true if the function list has been returned.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_GETMETHODNAME:

 {

 return ECOreturnMethodsEvents(gInstLib, eci, &funcTable[0],

funcTableCnt);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnMethodsEvents

 General Messages

 85

ECM_GETOBJECT

The ECM_GETOBJECT message is sent to a library which supports non-visual objects.

A component should call ECOreturnObjects to provide the object information.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETOBJECT:

 {

 return

ECOreturnObjects(gInstLib,eci,&objTable[0],objTableCnt);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnObjects, EXT_FLAG_NVOBJECTS, Non-Visual Components

ECM_GETOBJECTRECT

The ECM_GETOBJECTRECT message is sent to the component to retrieve the initial

dimensions of the object during design mode when the object is created via the Component

Store drag and drop or by double-clicking.

Parameters:

¶ lParam - Pointer to qrect structure which should be populated with the initial

dimensions of the object.

Returns:

Return qtrue if the object rectangle has been set, false otherwise.

Chapter 2ðStructures, Messages & Functions

86

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETOBJECTRECT:

 {

 qrect* initialRect = (qrect*)lParam ;

 // sets the controls initial size to 100, 100

 GDIsetRect(initialRect, 0, 0, 100, 100);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_GETPICTFILEDESC (Studio 2.1)

The ECM_GETPICTFILEDESC message is sent to a picture format component when

Omnis requires a string for the ñPaste from fileò file dialog.

The string returned must be a valid file filter string.

Returns:

Return qtrue if the component has returned a string, qfalse otherwise.

 General Messages

 87

extern "C" q long OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPICTFILEDESC:

 { // Return a string containing the picture file filter

 str1 5 name(ñPCX Files (*.pcx)|*.pcx|");

 EXTfldval fval; fval.setChar(name);

 ECOaddParam(eci,&fval);

 return qtrue;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_GETPICTFORMAT (Studio 2.1)

The ECM_GETPICTFORMAT message is sent to the component during the initial loading

of the component. A component which supports picture conversion, for example PCX,

should return a string containing the name of the format e.g. ñJPEGò or ñPCXò etc..

Returns:

Return qtrue if the component supports a picture format conversion, qfalse otherwise.

extern "C" qlong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPICTFORMAT:

 { // Return a string (ñPCXò) containing the picture format

 str15 name(ñPCXò);

 EXTfldval fval; fval.setChar(name);

 ECOaddParam(eci,&fval);

 return qtrue;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

Chapter 2ðStructures, Messages & Functions

88

ECM_GETPICTUREDIM

The ECM_GETPICTUREDIM message is sent to the component to retrieve the dimensions

of the object which has been defined as cObjType_Picture.

Parameters:

¶ lParam - Pointer to a qrect structure. The component should modify the members

accordingly.

Returns:

Return true if the component has populated the structure, false otherwise.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,e ci);

 switch (Msg)

 {

 case ECM_GETPICTUREDIM:

 {

 qrect* pictDim = (qrect*)lParam ;

 // returns the bounds of the picture you are currently displaying

 GDIsetRect(pictDim, 0, 0, mWidth, mHeight);

 return 1L;

 }

 }

 return WNDdefWindowPr oc(hwnd,Msg,wParam,lParam,eci);

}

ECM_GETPRIMARYDATA

The ECM_GETPRIMARYDATA message is sent to the component to obtain the data for

an object.

If the component is handling the data for an object, it should return this in parameter one.

Returns:

Return true if the data has been supplied, false otherwise.

 General Messages

 89

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 ca se ECM_GETPRIMARYDATA:

 {

 EXTfldval exfldval;

 EXTParamInfo* newparam = ECOaddParam(eci,&exfldval);

 exfldval.setBinary(fftPicture,mPCXData,mPCXDataLen);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also EXTD_FLAG_PRIMEDATA

ECM_GETPRIMARYDATALEN

The ECM_GETPRIMARYDATALEN message is sent to the component when Omnis

requires the objectôs data length.

Returns:

The component should return the objects data length.

extern "C" qlong OMNISWND PROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPRIMARYDATALEN:

 {

 return myDataLength;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wPa ram,lParam,eci);

}

See also EXTD_FLAG_PRIMEDATA

Chapter 2ðStructures, Messages & Functions

90

ECM_GETPROPERTY

The ECM_GETPROPERTY message is sent to the component when Omnis requires the

data for a property.

The component should add a return parameter which contains the property data.

Returns:

Return true if successful, false otherwise.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPROPERTY:

 {

 // propID is the id of the property defined in your proptable

 qlong propID = ECOgetId(eci);

 // Get the value of your property.

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also Component Properties section.

ECM_GETPROPERTYENUMS

The ECM_GETPROPERTYENUMS message is sent to the component when Omnis

requires the enum list for a property (previously defined with EXTD_FLAG_ENUM).

The component should return a list containing the line data and, optionally, the marks which

identify each line. After an item has been selected from the list, Omnis sends the component

an ECM_SETPROPERTY message with the line data or the line mark (if a line mark was

provided).

Returns:

Return true if enum list has been provided, false otherwise.

 General Messages

 91

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPROPERTYENUMS:

 {

 EXTqlist enumList;

 enumList.clear(listScol);

 for (qshort i = 1; i<=5; i++)

 {

 str255 enumName;

 enumName[0] = RESloadString(gInstLib, i, &enumName[1],

255);

 enumList.insline(0, &enumName, i);

 }

 EXTfldval returnVal;

 r eturnVal.setList(&enumList, qtrue);

 ECOaddParam(eci, &returnVal);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also EXTD_FLAG_ENUM

ECM_GETPROPNAME

The ECM_GETPROPNAME message is sent to the component when Omnis requires a list

of the properties that the object handles.

A component should call ECOreturnProperties to provide the property list.

Returns:

Return true if the property list has been returned.

Chapter 2ðStructures, Messages & Functions

92

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwn d, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETPROPNAME:

 {

 return ECOreturnProperties(gInstLib, eci, &propTable[0],

 propTableCnt);

 }

 }

 retu rn WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnProperties

ECM_GETSTATICOBJECT

The ECM_GETSTATICOBJECT message is sent to a library which supports non-visual

objects.

A component should call ECOreturnMethods to provide the static object information.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_GETSTATICOBJECT:

 {

 return ECOreturnMethods(gInstLib,eci, &objStaticTable[0],

objStaticTableCnt);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOreturnMethods, EXT_FLAG_NVOBJECTS, Non-Visual

Components

 General Messages

 93

ECM_GETVERSION

The ECM_GETVERSION message is sent when Omnis requires the version number of the

component.

A component should call ECOreturnVersion to provide the version number. If the

component fails to respond to this message then Omnis will assume a version number of

1.0.

For web client components, the version number of the component must be implemented as a

string in the string resources of the component. The web client plug-in reads this string for

the purpose of the automated download mechanism. See ECOreturnVersion for more

details.

Returns:

Return the return value from ECOreturnVersion

See also GDIreadVersion, ECOreturnVersion

ECM_HASPRIMARYDATACHANGED (Web Client

V1.0)

The ECM_HASPRIMARYDATACHANGED message is sent to web client components to

determine if the components primary data has changed since the last

ECM_SETPRIMARYDATA or ECM_GETPRIMARYDATA. When writing data bound

web client controls, the control is responsible for maintaining its own modified state. This is

so the web client only returns data for fields to the server, which have been changed by the

user. Return one of the following:

¶ ECMRET_NOTIMPLEMENTED - default return value.

¶ ECMRET_NOTCHANGED - return this if the data has NOT been changed by the

user since the last ECM_GETPRIMARYDATA or ECM_SETPRIMARYDATA. This

should be the default return value for read only controls.

¶ ECMRET_CHANGED - return this if the data has been changed by the user since the

last ECM_GETPRIMARYDATA or ECM_SETPRIMARYDATA.

¶ ECMRET_CURROWCHANGED - return this if the primary data is a single selection

list and the current row has changed since the last ECM_GETPRIMARYDATA or

ECM_SETPRIMARYDATA.

¶ ECMRET_ROWSELECTCHANGED (v3.1) - return this if the primary data is a

multiple selection list and the current row and list selection state has changed since the

last ECM_GETPRIMARYDATA or ECM_SETPRIMARYDATA

¶ ECMRET_CURROWSELECTCHANGED (v3.1) - return this if the primary data is a

multiple selection list and the current row and list selection state of the current row only

Chapter 2ðStructures, Messages & Functions

94

has changed since the last ECM_GETPRIMARYDATA or

ECM_SETPRIMARYDATA

See also ECM_SETPRIMARYDATA, ECM_GETPRIMARYDATA

ECM_ICONDRAWENTRY

The ECM_ICONDRAWENTRY message is sent to inform the component to draw an icon

for an object which has been defined as cObjType_IconArray.

Parameters:

¶ lParam - Pointer to EXTIconArrayInfo structure (see Below).

Returns:

Return true if the icon was drawn, false otherwise (which results in Omnis drawing the

icon).

struct EXTIconArrayInfo

{

 HDC mHdc;

 qlong mLine;

 qrect mEntryRect;

 qrect mDrawRect;

 qbool mDrawFocus;

 qbool mSelected;

 qbool mDragging;

 qbool mSmallIcons;

 EXTqlist* mListPtr;

};

¶ mHdc - Device context into which the icon should be drawn.

¶ mLine - The line number.

¶ mEntryRect - The rectangle of the icon array entry/cell.

¶ mDrawRect - The rectangle of the text or icon (dependant on whether the message is

ECM_ICONDRAWENTRY or ECM_TEXTDRAWENTRY).

¶ mDrawFocus - True if the icon array entry/cell currently has the input focus.

¶ mSelected - True if the entry/cell is selected.

¶ mDragging - True if the entry is currently being dragged.

¶ mSmallIcons - True if the small icons are to be drawn (as opposed to large icons).

 General Messages

 95

¶ mListPtr - List data pointer. This member contains the list variable pointer as defined in

the property member data name.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_ICONDRAWENTRY:

 {

 EXTIconArrayInfo* arrayInfo = (EXTIconArrayInfo*)lParam ;

 // Draw icon using info supplied in arrayInfo

 return 1L;

 }

 case ECM_TEXTDRAWENTRY:

 {

 EXTIconArrayInfo* arrayInfo = (EXTIconArrayInfo*)lParam ;

 // Draw text using info supplied in arrayInfo

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also cObjType_IconArray, ECM_TEXTDRAWENTRY

ECM_INBUILT_OVERRIDE

The ECM_INBUILT_OVERRIDE message is sent from Omnis for certain buil t in

properties which are normally handled by Omnis. Built in properties consist of anumFont,

anumFontsize, anumTextColor, anumFontStyle, anumAlign, anumVScroll, anumHScroll,

anumHScrolltips, anumVScrolltips, anumHorzscroll, anumVertscroll, anumEffect,

anumHelpid, anumContextmenu, and anumFldStyle.

A component return 1L if it wants to manually maintain the built in property.

ECM_INSTALLLIBRARY

The ECM_INSTALLLIBRARY message is sent to a control handler when a request has

been made to install another library via the #EXTCOMPS dialog>>Install button.

Returns:

Return true if message is processed, false otherwise.

Chapter 2ðStructures, Messages & Functions

96

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_INSTALLLIBRARY:

 {

 // Control handler may wish to create a modal window to enable

 // controls to be installed/uninstalled etcé

 doInstallComponent();

 return 1L;

 }

 }

 return WN DdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_ISCONVFORMAT (Studio 2.1)

The ECM_ISCONVFORMAT message is sent to a picture format component when Omnis

is attempting to establish, from binary data, the picture format. This will be sent because the

Omnis script function pictformat has been invoked.

It is important to note that the data supplied may, or may not, include any headers.

Parameters:

¶ Parameter 1 ï Picture data.

Returns:

Return qtrue if the picture data is in a format that the component supports, false otherwise.

 General Messages

 97

extern "C" qlong OMNISWNDPROC PCXWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci

)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_ISCONVFORMAT:

 {

 EXTParamI nfo* param = ECOfindParamNum(eci,1);

 if (param)

 {

 EXTfldval fldval((qfldval)param - >mData);

 qHandle srcHan = fldval.getHandle(qfalse);

 if (PCXObject::isPCXdata(srcHan))

 return qtrue;

 }

 return qfalse;

 }

 }

 return WN DdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_LISTDRAWLINE

The ECM_LISTDRAWLINE message is sent to inform the component to draw a list line

for a object which has been defined as cObjType_List or cObjType_DropList.

Parameters:

¶ lParam - Pointer to EXTListLineInfo structure (see Below).

Returns:

Return true if the list line was drawn, false otherwise (which results in Omnis drawing the

line).

Chapter 2ðStructures, Messages & Functions

98

struct EXTListLineInfo

{

 HDC mHdc;

 qrect mLineRect;

 qlong mLine;

 qbool mSelected ;

 EXTqlist* mListPtr;

 qbool mDrawFocusRect;

};

¶ mHdc - Device context into which the line should be drawn.

¶ mLineRect - The rectangle of the line.

¶ mLine - The line number.

¶ mSelected - True if the line is selected.

¶ mListPtr - List data pointer. This member contains the list variable pointer as defined in

the property member data name.

¶ mDrawFocusRect - True if the focus rectangle should be drawn.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCom pInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_LISTDRAWLINE:

 {

 EXTListLineInfo* lineInfo = (EXTListLineInfo *)lParam ;

 // paint line using info supplied in lineInfo

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd ,Msg,wParam,lParam,eci);

}

See also cObjType_List, cObjType_DropList

 General Messages

 99

ECM_MEMORYDELETION

The ECM_MEMORYDELETION message is sent to inform the component library it needs

to free previously allocated memory. This message should always be passed on to

WNDdefWindowProc.

Note: Components do not need to catch this message, just pass it to the

WNDdefWindowProc.

See also ECOmemoryDeletion

ECM_METHODCALL

The ECM_METHODCALL message is sent to inform the component that an objectsô

method has been invoked. All parameters for the method have been added to the

EXTCompInfo structure. A component should add any return parameter.

Returns:

Return true if method has been invoked, false otherwise.

extern "C" qlong OMNISWNDPROC Gen ericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_METHODCALL:

 {

 // OMNIS code is calling your component method

 qlong methodID = ECOgetId(eci) ;

 switch(methodID)

 {

 case cMyMethod1: éé.

 case cMyMethod2: éé.

 case cMyMethod3: éé.

 }

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also Component Methods Section

Chapter 2ðStructures, Messages & Functions

100

ECM_NEWMETHODFLAGS

The ECM_NEWMETHODFLAGS message is sent to the component in response to the

component sending a WM_CONTROL message (wParam = RESET_METHOD_FLAGS)

to the objects HWND.

It enables controls such as Graphs to update the Property Manager depending on the

context.

Returns:

The component should return the new EXTD_FLAG_xxx flags for the method.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_NEWMETHODFLAGS:

 {

 qlong newMethodFlags = 0;

 Cobj* object = (Cobj*)ECOfindObject(eci - >mOmnisInstance,

hwnd);

 if (object)

 {

 qlong methodId = (qlong)lParam;

 newMethodFlags = object - >getMethodFlags(methodId) ;

 }

 return newMethodFlags;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also RESET_METHOD_FLAGS

ECM_NEWPROPERTYFLAGS

The ECM_NEWPROPERTYFLAGS message is sent to the component in response to the

component sending a WM_CONTROL message (wParam =

RESET_PROPERTY_FLAGS) to the objects HWND.

Enables controls such as Graphs to update the Property Manager depending on the context.

Returns:

The component should return the new EXTD_FLAG_xxx flags for the property.

 General Messages

 101

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_NEWPROPERTYFLAGS:

 {

 qlong newPropertyFlags = 0;

 Cobj* ob ject = (Cobj*)ECOfindObject(eci - >mOmnisInstance,

hwnd);

 if (object)

 {

 qlong propId = (qlong)lParam;

 newPropertyFlags = object - >getPropertyFlags(propId);

 }

 return newPropertyFlags;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,l Param,eci);

}

See also RESET_PROPERTY_FLAGS

ECM_OBJCONSTRUCT

The ECM_OBJCONSTRUCT message is sent to instruct the component to construct an

instance of the object.

Parameters:

¶ hWnd - The HWND of the object which is being constructed.

¶ wParam ï

¶ For visual components wParam is either ECM_WPARAM_WINDOWOBJ or

ECM_WPARAM_REPORTOBJ depending on the type of object to construct.

¶ For non-visual components wParam is either :-

¶ ECM_WPARAM_OBJMSG to indicate that the message is due to $construct.

¶ Or ECM_WPARAM_OBJINFO to indicate that the message is due to a new

object being created.

¶ wParam may also contain the flag ECM_WFLAG_NOHWND for background

objects.

Chapter 2ðStructures, Messages & Functions

102

Returns:

The component should return qtrue if it processes the message.

Note: It is good practice to use the ECO Object chain. New objects can be added to the

chain with ECOinsertObject, and removed using ECOremoveObject. All supplied examples

use this chain.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_OBJCONSTRUCT:

 {

 // create a new object - Cobj is an example class name

 Cobj* object = new Cobj(hwnd);

 // and add it to the ECO object chain

 ECOinsertObject(eci, hwnd, (void*)object);

 // if your component library supports multiple controls,

 // you can use eci->mCompId to determine what sort of control to create.

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_OBJDESTRUCT

The ECM_OBJDESTRUCT message is sent to instruct the component to destruct an

instance of the object.

Parameters:

¶ hWnd - The HWND of the object which is to be destructed.

¶ wParam ï

¶ For non-visual components wParam is either :-

¶ ECM_WPARAM_OBJMSG to indicate that the message is due to $destruct.

¶ Or ECM_WPARAM_OBJINFO to indicate that the message is due to a new

object being destroyed.

 General Messages

 103

Returns:

Any returned value is ignored.

Note: It is good practice to use the ECO Object chain. New objects can be added to the

chain with ECOinsertObject, and removed using ECOremoveObject. All supplied examples

use this chain.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTComp Info* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_OBJDESTRUCT:

 {

 // retrieve and remove your object from the ECO object chain.

 Cobj* object = (Cobj*)ECOremoveObject(eci, hwnd);

 // and delete it.

 if (object) dele te object;

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_OBJECTDATABLOCK

The ECM_OBJECTDATABLOCK message is sent to the component when Omnis is

setting or getting the properties for the object. Most components ignore this message as

property assignment/retrieval is provided automatically in Omnis, and in this case the

component must return false.

However, some control types (ActiveX for example) require objects to be initialized using a

data block. In this case, if wParam = ECM_WPARAM_BLOCKLOAD, the first parameter

contains the property data for the object otherwise the component should add a parameter

which contains the property data for the object.

Parameters:

¶ wParam - Contains either ECM_WPARAM_BLOCKSAVE or

ECM_WPARAM_BLOCKLOAD.

Returns:

Return true if successful (i.e. the object supports data block property assignment), false

otherwise.

Chapter 2ðStructures, Messages & Functions

104

ECM_OBJECT_COPY

The ECM_OBJECT_COPY message is sent to the component when a non-visual object

assignment is required.

Parameters:

¶ lParam ï lParam contains a pointer to a objCopyInfo structure which contains the copy

information.

¶ Returns: Any return value is ignored.

See also EXT_FLAG_NVOBJECTS, Non-Visual Components

ECM_OBJECT_REBUILD

The ECM_OBJECT_REBUILD message is sent to the component to inquire whether a

rebuild of a non-visual objectsô properties and/or methods is required.

Returns:

Return true if the object requires a rebuild.

See also EXT_FLAG_NVOBJECTS, Non-Visual Components

ECM_OBJINITIALIZE

The ECM_OBJINITIALIZE message is sent twice during the construction of an object.

Once, just before any properties have been set, and once after.

Parameters:

¶ wParam - wParam contains false before the object is initialized (i.e. properties set), true

after the object has been initialized.

Returns:

Any returned value is ignored.

Note: Components do not need to catch this message, just pass it on the

WNDdefWindowProc.

 General Messages

 105

extern "C" qlo ng OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_OBJINITIALIZE:

 {

 // You may need to load other DLLôs once only.

 // after, you always need to pass this message

 // on to WNDdefWindowProc

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_PAINTCONTENTS

The ECM_PAINTCONTENTS message is sent to inform the component to draw the

droplist contents window for a object which has been defined as cObjType_DropList.

Parameters:

¶ lParam - Pointer to EXTListLineInfo structure (see ECM_LISTDRAWLINE).

Returns:

Return true if the list line was drawn, false otherwise (which results in Omnis drawing the

line).

See also ECM_LISTDRAWLINE, cObjType_DropList

ECM_PRIMARYDATACHANGE

The ECM_PRIMARYDATACHANGE message is sent to inform the component that its

objects data has changed. Most components ignore this message, but more specialized

components may need to complete additional data processing after the data has changed.

Returns:

Any return value is ignored.

Chapter 2ðStructures, Messages & Functions

106

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg ,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_PRIMARYDATACHANGE:

 {

 Cobj* object = (Cobj*)ECOfindObject(eci - >mOmnisInstance,

hwnd);

 if (object)

 {

 // é Additional processing é

 object - >inval();

 }

 break;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also EXTD_FLAG_PRIMEDATA

ECM_PRINT

The ECM_PRINT message is sent by Omnis to inform the component to print the object.

You will also receive ECM_PRINT messages for background components when they need

to be painted. Background objects do not receive WM_PAINT messages.

Parameters:

¶ wParam - Picture object type: wParam contains ECM_WPARAM_PICTNOSCALE

bit set if no scaling if required.

¶ lParam - lParam contains a pointer to a WNDpaintStruct structure which contains the

printer HDC and the object print rectangle.

¶ Parameter 1 - contains any primary data (as during ECM_SETPRIMARYDATA

message).

Returns:

Any return value is ignored.

 General Messages

 107

ex tern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_PRINT:

 {

 PCXObject* object = (PCXObject*)ECOfindObject(eci -

>mOmnisInstance,

 hwnd);

 if (object)

 {

 EXTParamInfo* param = ECOfindParamNum(eci,1);

 if (param && param - >mData)

 {

 // Set objectsô data from param variable.

 object - >setPrimaryData(eci, param);

 }

 WNDpaintStruct* paintInfo = (WNDpaintStruct*)lParam;

 // you can paint your object using

 //

 // paintInfo ->hdc

 //

 // using the bounds

 //

 // paintInfo ->rcPaint;

 object - >print(paintInfo);

 }

 return 1L;

 }

 }

 return WNDdef WindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECM_SETPRIMARYDATA

Chapter 2ðStructures, Messages & Functions

108

ECM_PRINTMAPPING

The ECM_PRINTMAPPING message is sent to the component to inquire on any print

mapping required.

Print mapping enables Omnis to suitably scale the object. See CALENDAR and PCX for

examples.

Returns:

The component should return true if print mapping is required, false otherwise.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_PRINTMAPPING:

 {

 return 1L;

 // returns 1L for print mapping - scales object

 // dependent on print DPI

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

 General Messages

 109

ECM_PROPERTYCALCTYPE

The ECM_PROPERTYCALCTYPE message is sent to the component when Omnis needs

to know the calculation type for calculation properties. If a property is not a calculation, do

not implement this message.

Returns:

Return ctySquare if the property is of type square bracket calculation (the actual

calculations are embedded in text using square brackets. Return ctyCalculation if it is a

standard calculation, i.e. field name or functions.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_ PROPERTYCALCTYPE:

 {

 // return the property calculation type

 EXTfldval calcType;

 calcType.setLong(ctySquare);

 ECOaddParam(ec i, &calcType);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECM_PROPERTYCANASSIGN

The ECM_PROPERTYCANASSIGN message is sent to the component when Omnis needs

to know if a property can be written to or not.

Returns:

Return true if the property can be written to, false otherwise.

Chapter 2ðStructures, Messages & Functions

110

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_PROPERTYCANASSIGN:

 {

 // propID is the id of the property defined in your proptable

 qlong propID = ECOgetId(eci);

 // you should return 1L if the property ópropIDô is

 // assignable, and 0L if the property is read-only

 re turn 0L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also Component Properties section.

ECM_SETPRIMARYDATA

The ECM_SETPRIMARYDATA message is sent by Omnis to inform the component to set

the data for the object. The first parameter contains the new data for the object.

Returns:

Return true if the component handles the data, false otherwise.

 General Messages

 111

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_SETPRIMARYDATA:

 {

 EXTParamInfo* param = ECOfindParamNum(eci,1);

 if (param && param - >mData)

 {

 EXTfldval newValue((qlong)param - >mData);

 // new value stored in EXTfldval ónewValueô

 }

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also EXTD_FLAG_PRIMEDATA

ECM_SETPROPERTY

The ECM_SETPROPERTY message is sent to the component when Omnis requires a

property to change.

Parameter one contains the new data for the property.

Parameters:

¶ wParam - wParam is set to ECM_WPARAM_PROPBUTTON if the Property Manager

popup button was pressed to set the property. For example, a file name property may

wish to use a file open dialog if the popup button was pressed. Please note that if

wParam is ECM_WPARAM_PROPBUTTON, parameter one does not contain any

data.

Returns:

Return true if successful, false otherwise.

Chapter 2ðStructures, Messages & Functions

112

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_SETPROPERTY:

 {

 // propID is the id of the property defined in your proptable

 qlong propID = ECOgetId(eci);

 // set the new value of your property.

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also Component Properties section.

ECM_SQLOBJECT_COPY (v3.1)

wParam is 0 (add to NV Chain), 1 (remove from NV Chain)

This message can be used to prevent Omnis from creating unnecessary copies of external

objects. Once implemented you can simply create a single object instance and increment or

decrement the usage count, depending on the value of wParam.

Parameters:

¶ wParam ï if 0 increment usage count, if 1 decrement usage count.

Returns:

Return 1L if you wish to prevent Omnis from duplicating the object.

ECM_TEXTDRAWENTRY

The ECM_TEXTDRAWENTRY message is sent to inform the component to draw the text

for an object which has been defined as cObjType_IconArray.

Parameters:

¶ lParam - Pointer to EXTIconArrayInfo structure (see Below).

Returns:

Return true if the text was drawn, false otherwise (which results in Omnis drawing the text).

 General Messages

 113

struct EXTIconArrayInfo

{

 HDC mHdc;

 qlong mLine;

 qrect mEntryRect;

 qrect mDrawRect;

 qbool mDrawFocus;

 qbool mSelected;

 qbool mDragging;

 qbool mSmallIcons;

 EXTqlist* mListPtr;

};

¶ mHdc - Device context into which the text entry should be drawn.

¶ mLine - The line number.

¶ mEntryRect - The rectangle of the icon array entry/cell.

¶ mDrawRect - The rectangle of the text or icon (dependant on whether the message is

ECM_ICONDRAWENTRY or ECM_TEXTDRAWENTRY).

¶ mDrawFocus - True if the icon array entry/cell currently has the input focus.

¶ mSelected - True if the entry/cell is selected.

¶ mDragging - True if the entry is currently being dragged.

¶ mSmallIcons - True if the small icons are to be drawn (as opposed to large icons).

¶ mListPtr - List data pointer. This member contains the list variable pointer as defined in

the property member data name.

Chapter 2ðStructures, Messages & Functions

114

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case E CM_TEXTDRAWENTRY:

 {

 EXTIconArrayInfo* arrayInfo = (EXTIconArrayInfo*)lParam ;

 // Draw text using info supplied in arrayInfo

 return 1L;

 }

 case ECM_ICONDRAWENTRY:

 {

 EXTIconArrayInfo* arrayInfo = (EXTIconArrayInfo*)lParam ;

 // Draw icon using info supplied in arrayInfo

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also cObjType_IconArray, ECM_ICONDRAWENTRY

 WM_CONTROL Messages

 115

WM_CONTROL Messages
WM_CONTROL is a group of messages which may be sent to the HWND to instruct

Omnis objects to perform specialized actions. Some of the messages described are

implemented as functions in Omnis, but are included here for completeness.

DESKTOP_MENU_ENABLED

Instructs Omnis to set the enabled state of the desktop switch. This is useful if the

component supports functionality similar to OLE in-place activation (as Omnis OLE does),

whereby, during in-place activation the desktop switch menu should be disabled to avoid

the user changing the desktop mode.

Please note that the menu enabled state can be changed on the development version of

Omnis only, the runtime version (which doesnôt have the menu) ignores this message.

¶ lParam - qtrue if menu should be enabled, qfalse otherwise.

// Disable menu

WNDsendMessage(mHwnd, WM_CONTROL, DESKTOP_MENU_ENABLED, qfalse);

é Processing é

// Enable menu

WNDsendMessage(mHwnd, WM_CONTROL, DESKTOP_MENU_ENABLED, qtrue);

DRAW_DESIGN_NAME

Instructs Omnis to draw the objectsô name. Functionally the same as ECOdrawDesignName.

¶ lParam ï The HDC to draw into.

WNDsendMessage(mHwnd, WM_CONTROL, DRAW_DESIGN_NAME, (LPARAM)hdc);

See also ECOdrawDesignName

DRAW_MULTIDESIGN_KNOBS

Instructs Omnis to draw the multi-selected design knobs. Functionally the same as

ECOdrawMultiKnobs.

¶ lParam ï The HDC to draw into.

WNDsendMessage(mHwnd, WM_CONTROL, DRAW_MULTIDESIGN_KNOBS,

(LPARAM)hdc);

See also ECOdrawMultiKnobs

Chapter 2ðStructures, Messages & Functions

116

DRAW_NUMBER

Instructs Omnis to draw the objectsô number. Functionally the same as ECOdrawNumber.

¶ lParam ï The HDC to draw into.

WNDsendMessage(mHwnd, WM_CONTROL, DRAW_NUMBER, (LPARAM)hdc);

See also ECOdrawNumber

GET_MENUHANDLE (Windows only)

Returns the operating system menu handle for the Omnis menu.

¶ lParam - Menu handle required. Currently only MM_FILE is supported.

HMENU menuHandle = WNDsendMessage(mHwnd, WM_CONTROL,

GET_MENUHANDLE, MM_FILE);

if (menuHandle)

{

 qshort itemCount = GetMenuItemCount((HMENU)menuHandle);

}

GET_OMNIS_HPALETTE (Windows only)

Returns the Omnis palette handle.

HPALETTE omnisPalette = WNDsendMessage(mHwnd, WM_CONTROL,

GET_OMNIS_PALETTE, 0);

HPALETTE myObjectPalette = 0;

if (omnisPalette)

{

 // Create new palette using OMNIS palette

 HLOCAL hl; LOGPALETTE* Logpal;

 hl = GlobalAlloc(GMEM_MOVEABLE | GMEM_ZEROINIT,

 sizeof(LOGPALETTE)+(256*sizeof(PALETTEENTRY)));

 if(hl)

 {

 Logpal = (LPLOGPALETTE) GlobalLock(hl);

 GetPaletteEntries(omnisPalette,0,256, Logpal - >palPalEntry);

 Logpal - >palVersion = 0x300;

 Logpal - >palNumEntries = 256;

 myObjectPalette = CreatePalette(Logpal);

 GlobalUnlock(hl);

 GlobalFree(hl);

 }

}

 WM_CONTROL Messages

 117

HAS_FOCUS

Returns true if the object has the focus. Functionally the same as ECOhasFocus.

qlon g result = WNDsendMessage(mHwnd, WM_CONTROL, HAS_FOCUS, 0);

if (result)

{

 // object currently has the focus

}

See also ECOhasFocus

HIDE_TOOLTIP

Instructs Omnis to hide the on-screen tool tip if it is shown. Functionally the same as

ECOhideTooltip.

// hides tooltip

WNDsendMessage(mHwnd, WM_CONTROL, HIDE_TOOLTIP, 0);

See also ECOhideTooltip

IS_FLD_EDITABLE

Returns true if the object is editable (i.e. in runtime and not read-only).

qlong result = WNDsendMessag e(mHwnd, WM_CONTROL, IS_FLD_EDITABLE, 0

);

if (result)

{

 // object is in edit mode

}

IS_IN_DESIGN

Returns true if in design mode. Functionally the same as ECOisDesign.

qlong result = WNDsendMessage(mHwnd, WM_CONTROL, IS_IN_DESIGN, 0);

if (result)

{

 // object is in design mode.

}

See also ECOisDesign

Chapter 2ðStructures, Messages & Functions

118

IS_MULTISELECTED

Returns true if the object is currently one of many objects selected. Functionally the same as

ECOisMultiSelected.

qlong result = WNDsendMe ssage(mHwnd, WM_CONTROL, IS_MULTISELECTED,

0);

if (result)

{

 // object is multi-selected.

}

See also ECOisMultiSelected

IS_OMNIS_IN_BUILDMODE

Returns qtrue if Omnis is currently in build mode. Build mode is the state when Omnis is

debugging an Omnis method. During this state, components should not execute events (

ECOsendEvent).

if (WNDsendMessage(mHwnd, WM_CONTROL, IS_OMNIS_IN_BUILDMODE, 0

)==0)

{

 // send my event

}

See also ECOisOMNISinTrueRuntime

IS_SELECTED

Returns true if the object is currently selected. Functionally the same as ECOisSelected.

qlong result = WNDsendMessage(mHwnd, WM_CONTROL, IS_SELECTED, 0);

if (result)

{

 // object is selected.

}

See also ECOisSelected

 WM_CONTROL Messages

 119

IS_SERIALISED (v3.1)

Asks Omnis if the component has been serialised and returns information about the serial

number.

EXTserialise serInfo;

serInfo.mProductCode = str15(ñXXXXò);

 // mProductCode = first four alpha/numeric chars of serial number

qbool result = (qbool)WNDsendMessage(mHwnd, WM_CONTROL,

IS_SERIALISED, (LAPARAM)&serInfo);

if (result)

{

 // component has been serialised.

 // on return

 // serInfo.mFunctionCode contains codes for enabled functions

 // serInfo.mSerial contains the complete serial number

 // serInfo.mNotes contains the serial number notes

}

See also ECOisSerialised, EXTserialise

IS_SETUP

Allows the component to inquire on the set-up state of the object. The set-up state of an

object is false before properties have been initialized, true afterwards. Functionally the same

as ECOisSetup.

qbool result = (qbool)WNDsendMessage(mHwnd, WM_CONTROL, IS_SETUP,

0);

if (result)

{

 // object is setup and ready for action.

}

See also ECOisSetup

Chapter 2ðStructures, Messages & Functions

120

IS_SHOWNUMBER

Returns true if the object is in design-mode and óShow numberô is true. Functionally the

same as ECOisShowNumber.

qlong result = WNDsendMessage(mHwnd, WM_CONTROL, IS_SHOWNUMBER, 0

);

if (result)

{

 // Show number is on.

}

See also ECOisShowNumber

IS_WINDOW_TOP

Returns true if the object is a member of the top-most window. Functionally the same as

ECOisWndTop.

qbool result = (qbool)WNDsendMessage(mHwnd, WM_CONTROL,

IS_WINDOW_TOP, 0);

if (result)

{

 // object is at top

}

See also ECOisWndTop

LIST_SETLINEHEIGHT

Informs Omnis of a new line height for cObjType_List objects. Functionally the same as

ECOlistSetLineHeight.

¶ lParam - qlong which represents the new line height for the list.

// Forces all lists lines in a derived picture component to be 50 pixels high.

WNDsendMessage(mHwnd, WM_CONTROL, LIST_SETLINEHEIGHT, 50);

See also ECOlistSetLineHeight

 WM_CONTROL Messages

 121

OMNIS_IN_BACKGROUND

Returns true if the Omnis is currently a background application.

qlong result = WNDsendMessage(mHwnd, WM_CONTROL,

OMNIS_IN_BACKGROUND, 0);

if (result==0)

{

 // OMNIS is the foremost application

}

PICTURE_ERASEBKGROUND

Instructs the cObjType_Picture object to erase the background.

WNDsendMessage(mHwnd, WM_CONTROL, PICTURE_ERASEBKGROUND, 0);

See also cObjType_Picture

PICTURE_UPDSCROLLRANGE

Instructs the cObjType_Picture object to recalculate the scroll range for the object. On

receipt of this message, Omnis sends the component the ECM_GETPICTUREDIM

message.

WNDsendMessage(mHwnd, WM_CONTROL, PICTURE_UPDSCROLLRANGE, 0);

See also ECM_GETPICTUREDIM

RESET_METHOD_FLAGS

Instructs Omnis to reset all method flags. Omnis sends the component repeated

ECM_NEWMETHODFLAGS for each method in the object.

WNDsendMessage(mHwnd, WM_CONTROL, RESET_METHOD_FLAGS, 0);

See also ECM_NEWMETHODFLAGS

RESET_PROPERTY_FLAGS

Instructs Omnis to reset all property flags. Omnis sends the component repeated

ECM_NEWPROPERTYFLAGS for each property in the object.

WNDsendMessage(mHwnd, WM_CONTROL, RESET_PROPERTY_FLAGS, 0);

See also ECM_NEWPROPERTYFLAGS

Chapter 2ðStructures, Messages & Functions

122

SET_EDITMENU

Instructs Omnis to rebuild the edit menu.

WNDsendMessage(mHwnd, WM_CONTROL, SET_EDITMENU, 0);

SET_PALETTE

Instructs Omnis that the objectsô palette has altered. Functionally the same as GDIsetPalette.

¶ lParam - HPALETTE handle of the new palette.

WNDsendMessage(mHwnd, WM_CONTROL, SET_PALETTE, (LPARAM)myPalette);

See also GDIsetPalette

SET_STATUSBAR_TEXT

Updates the Omnis status bar with the specified text.

¶ lParam - Pointer to null terminated string.

str255 newStatusBarMsg = str255(ñText to go into the status barò);

WNDsendMessage(mHwnd,WM_CONTROL,SET_STATUSBAR_TEXT,(LPARAM)newStatus

BarMsg.cString());

SET_TOOLGRPS_VISIBLE

Instructs Omnis to set the visibility state of all desktop toolbars. This is useful if the

component supports functionality similar to OLE in-place activation (as Omnis OLE does),

whereby, during in-place activation, all Omnis toolbars should be removed to avoid

confusion between Omnis and the activated application.

¶ lParam - qtrue if toolbars are visible, qfalse otherwise.

// Hide Toolbars

WNDsendMessage(mHwnd, WM_CONTROL, SET_TOOLGRPS_VISIBLE, qfalse);

é Processing é

// Show Toolbars

WNDsendMessage(mHwnd, WM_CONTROL, SET_TOOLGRPS_VISIBLE, qtrue);

 WM_CONTROL Messages

 123

SET_WINDOWS_VISIBLE

Instructs Omnis to set the visibility state of all windows, except the window which contains

the external component. This is useful if the component supports functionality similar to

OLE in-place activation (as Omnis OLE does), whereby, during in-place activation, all

Omnis windows should be removed to avoid confusion between Omnis and the activated

application.

¶ lParam - qtrue if windows are visible, qfalse otherwise.

// Hide Windows

WNDsendMessage(mHwnd, WM_CONTROL, SET_WINDOWS_VISIBLE, qfalse);

é Processing é

// Show Windows

WNDsendMessage(mHwnd, WM_CONTROL, SET_WINDOWS_VISIBLE, qtrue);

SETNOERASEFORPICTURES

This can only be used when deriving from an Omnis picture field (cObjType_Picture). This

message instructs Omnis not to erase the picture fieldôs client area when data changes. This

gives you more control if, for example, you want to fade an image over the previous image.

lParam is used to indicate if the erase should happen or not.

// disables erasing

WNDsendMessage(mHwnd, WM_CONTROL, SETNOERASEFORPICTURES, qtrue);

// enables erasing

WNDsendMessage(mHwnd, WM_CONTROL, SETNOERASEFORPICTURES, qfalse);

See also cObjType_Picture

UPDATE_PROPINSPECTOR

Instructs Omnis to update the Property Manager. Functionally the same as

ECOupdatePropInsp.

¶ lParam - qlong which represents the property to update. Zero updates all properties.

// Update all properties

WNDsendMessage(mHwnd, WM_CONTROL, UPDATE_PROPINSPECTOR, 0);

// Update myPropId

WNDsendMessage(mHwnd, WM_CONTROL, UPDATE_PROPINSPECTOR, myPropId);

See also ECOupdatePropInsp

Chapter 2ðStructures, Messages & Functions

124

General Functions

ECOaddParam()

EXTParamInfo* ECOaddParam(EXTCompInfo* pEci, EXTfldval* pFval,

 qlong pParamId = 0,

 qshort pParamType = 0, qlong pParamFlags = 0,

 qchar pParamNum=0, qlong pParamParent = 0)

The ECOaddParam function adds a new parameter to EXTCompInfo structure allowing you

to pass information to/from Omnis.

Normally a component calls this function passing only the pEci and pFval pointers. It

should be noted that after ECOaddParam has been called the data contents (memory) of

pFval belong to another object inside Omnis, so the deletion of the pFval causes no memory

to be deleted.

pFval data belongs to Omnis and may be deleted in the component.

¶ pEci - Specifies the pointer to the EXTCompInfo structure.

¶ pFval - Specifies the pointer to the parameter data.

¶ pParamId - Specifies the id of this parameter. The default value of 0 indicates a

returned parameter.

¶ pParamType - Specifies the parameter data type.

¶ pParamFlags - Specifies the parameter flags.

¶ pParamNum - Specifies the parameter number.

¶ pParamParent - Specifies the parametersô parent id.

¶ returns - Returns a pointer to the EXTParamInfo structure which contains the

parameter.

 General Functions

 125

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_CONSTPREFIX:

 {

 EXTfldval prefixName;

 str15 prefixStr;

 pr efixStr[0] = RESloadString(gInstLib, resourceID,

 &prefixStr[0], 15);

 prefixName.setChar(prefixStr);

 ECOaddParam(eci,&prefixName);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECOaddTraceLine()

void ECOaddTraceLine(str255* pString)

The ECOaddTraceLine function enables the component to add strings to the Omnis trace

log.

¶ pString - The pointer to the str255 class which contains the string.

 str255 myTraceLine(ñSome trace informationò);

 ECOaddTraceLine(&myTraceLine);

ECOcanSendEvent() (web client only)

qbool ECOcanSendEvent(HWND pHwnd, qlong pEventID)

Use ECOcanSendEvent to test if an event can be send now.

¶ pHwnd - The HWND of the object.

¶ pEventID - The id of the event.

¶ returns - Returns true if the event can be send now. If this function returns false and the

event must be send, the component should delay the sending by using a timer and

checking again later.

See also ECOsendEvent

Chapter 2ðStructures, Messages & Functions

126

ECOclipboardGetPicture() (v2.4)

qbool ECOclipboardGetPicture(qHandle& pPicture)

This function retrieves picture data from the clipboard.

¶ pHandle ï (output) the handle containing the clipboard data

¶ returns ï true if the clipboard contained picture data.

See also ECOclipboardHasFormat, ECOclipboardSetPicture,

ECOclipboardSetText, ECOclipboardGetText.

ECOclipboardGetPictureEx() (v5.1)

qbool ECOclipboardGetPictureEx(qHandle& pPicture)

This function retrieves a picture from the clipboard; with alpha support.

¶ pHandle ï (output) the handle containing the clipboard data

¶ returns ï true if the clipboard contained picture data.

// Paste from clipboard- excerpt from icon edit component

qHandle han;

if (ECOclipboardGetPictureEx(han) && han)

{

 {

 qHandle Ptr hp(han,0);

 qlong w1 = hp.dataLen();

 if (w1>0)

 {

 mPastePixMap = GDIHPIXMAPfromSharedPicture(*hp, w1);

 if (mPastePixMap)

 {

 HPIXMAPinfo pixInfo; GDIgetHPIXMAPinfo(mPastePixMap,

&pixInfo);

 mPastePixMap = convTo24(pixInfo, mPastePixMap);

 #ifdef ismacosx

 qbool isAlpha = qbool((**mPastePixMap).pixelFormat ==

k32RGBAPixelFormat);

 #endif

 }

 }

 }

}

 General Functions

 127

ECOclipboardGetText() (v2.4)

qbool ECOclipboardGetText(qHandle& pText)

This function retrieves text data from the clipboard.

¶ pText ï reference to a qHandle.

¶ returns ï true if the clipboard contained text data.

See also ECOclipboardHasFormat, ECOclipboardSetText,

ECOclipboardGetPicture, ECOclipboardSetPicture

ECOclipboardHasFormat() (v3.1)

qbool ECOclipboardHasFormat(EXTclipType pType)

Use this function to check if the clipboard contains data of the specified type.

¶ pType ï enum, one of the following

eExtClipText ï test the clipboard for text data

eExtClipPicture ï test the clipboard for picture data

¶ returns ï true if the clipboard contains data of the specified type

See also EXTclipType, ECOclipboardGetPicture, ECOclipboardGetText

ECOclipboardSetPicture() (v3.1)

qbool ECOclipboardSetPicture(qHandle pPicture)

This function places the given data as a picture on the clipboard.

¶ pText ï the picture data.

¶ returns ï true if the call was successful.

See also ECOclipboardGetPicture , ECOclipboardGetText, ECOclipboardSetText

ECOclipboardSetText() (v2.4)

qbool ECOclipboardSetText(qHandle pText)

This function places the given data as text on the clipboard.

¶ pText ï the text data.

¶ returns ï true if the call was successful.

See also ECOclipboardGetText, ECOclipboardGetPicture,

ECOclipboardSetPicture

Chapter 2ðStructures, Messages & Functions

128

ECOconvertHFSToPosix() (v3.3)

qlong ECOconvertHFSToPosix(strxxx& pSrcPath, strxxx& pDstPath)

Converts the supplied Mactintosh file/folder path from Hierarchical File System format

(colon separators) to Posix format (forward slash separators).

¶ pSrcPath ï a strxxx object containing the HFS formatted path string.

¶ pDestPath ï a strxxx object which receives the Posix formatted path string.

ECOconvertPosixToHFS() (v3.3)

qlong ECOconvertPosixToHFS(qbyte *pSrcPath, CFStringEncoding pSrcEncoding,

strxxx& pDstPath)

Converts the supplied Mactintosh file/folder path from Posix format (forward slash

separators) to Hierarchical File System format (colon separators).

¶ pSrcPath ï a buffer containing the null-terminated Posix formatted path string.

¶ pSrcEncoding ï A constant describing the Unicode encoding of the source string.

¶ pDestPath ï a strxxx object which receives the HFS formatted path string.

OpsErr err; EXTfldval srcpath; str255 sdstPath;

err = ECOconvertPosixToHFS(srcpath.getChar().cString(),

kCFStringEncodingMacRoman, sdstPath);

ECOconvKnownJavaObjs() (v4.2)

qbool ECOconvKnownJavaObjs(tqappfile* pLib, qlong &pFlag)

Returns the objectôs behavior with regard to Java object types. (Used internally by the Java

objects component). The value if pFlag after the call indicates the behavior:

¶ pFlag ï (output) qfalse => traditional behaviour object references are returned,

qtrue => known objects are converted to Omnis types.

tqappfile *app = ECOgetApp(pEci - >mLocLocp);

qbool mConvKnownObjects ;

if(app) ECOconvKnownJavaObjs(app, mConvKnownObjects);

 General Functions

 129

ECOdoMethod()

qret ECOdoMethod(qobjinst pObjInst, strxxx* pMethod, EXTfldval* pParams = 0, qshort

pParamCnt = 0, qbool pExecNow=qtrue)

The ECOdoMethod function enables a non-visual component to invoke an objectsô method.

For example, if an email object has a method called ó$newmailô then a component may wish

to use ECOdoMethod to inform Omnis of new mail.

This function is basically a wrapper for ECOdoMethodECI.

¶ pObjInst - Pointer which was originally generated by Omnis and passed to the external

during ECM_OBJCONSTRUCT.

¶ pMethod ï A strxxx object containing the name of the method to execute.

¶ pParams - Pointer to an array of EXTfldval which contain the parameters for the

method.

¶ pParamCnt - Number of parameters for the method.

¶ pExecNow - True if the method should be processed by Omnis immediately, false

otherwise.

¶ returns - Returns a qret data type containing the result.

// Inform sub-classed email object of new email

EXTfldval numOfEm ail; str255 methodName(ñ$newemailò)

numOfEmail.setLong(number_of_new_emails);

ECOdoMethod(mObjInst, &methodName, &numOfEmail, 1);

See also ECOdoMethodECI

ECOdoMethodECI()

qbool ECOdoMethodECI(qobjinst pObjInst, strxxx* pMethod, EXTCompInfo* pEci,

qbool pExecNow=qtrue)

The ECOdoMethodECI function enables a non-visual component to invoke an objectsô

method. For example, if an email object has a method called ó$newmailô then a component

may wish to use ECOdoMethodECI to inform Omnis of new mail.

Most components use ECOdoMethod in preference to this function.

¶ pObjInst - Pointer which was originally generated by Omnis and passed to the external

during ECM_OBJCONSTRUCT.

¶ pMethod ï A strxxx object containing the name of the method to execute.

¶ pEci - The EXTCompInfo structure which contains the method parameters.

Chapter 2ðStructures, Messages & Functions

130

¶ pExecNow - True if the method should be processed by Omnis immediately, false

otherwise.

¶ returns - Returns a qret data type containing the result.

 // Email event occurred. Invoke OMNIS objectsô method

 EXTCompInfo* eci = new EXTCompInfo();

 eci - >mParamFirst = 0;

 // Add parameters to EXTCompInfo structure

 EXTfldval myParam1;

 myParam1.setlong(someData);

 // Add parameter 1

 ECOaddParam(eci,&myParam1,0,0,0,1,0);

 // Invoke method

 str255 methodName(ñ$newemailò)

 qbool eventOk = ECOdoMethodECI(mObjInst, &methodName,eci, qtrue

);

 // Delete parameters from EXTCompInfo structure

 ECOmemoryDeletion(eci);

 // Delete eci structure

 delete eci;

See also ECOdoMethod

ECOdrawDesignName()

qbool ECOdrawDesignName(HWND pHWnd, HDC pHDC)

Allows the component to draw the name in the specified device context. Will have no effect

if the object is not in design mode.

¶ pHWnd - The HWND of the object.

¶ pHDC ï The device context to draw into.

ECOdrawDesignName(mHwnd, hdc);

See also DRAW_DESIGN_NAME

ECOdrawMultiKnobs()

void ECOdrawMultiKnobs(HWND pHWnd, HDC pHDC)

Allows the component to draw the multi-select knobs in the specified device context. Will

have no effect if only one object is selected or if the object is not selected.

¶ pHWnd - The HWND of the object.

¶ pHDC ï The device context to draw into.

 General Functions

 131

ECOdrawMultiKnobs(mHwnd, hdc);

See also DRAW_MULTIDESIGN_KNOBS

ECOdrawNumber()

qbool ECOdrawNumber(HWND pHWnd, HDC pHDC)

Allows the component to draw the number in the specified device context. Will have no

effect if óShow numberô is not active.

¶ pHWnd - The HWND of the object.

¶ pHDC ï The device context to draw into.

ECOdrawNumber(mHwnd, hdc);

See also DRAW_NUMBER

ECOexcludeToolTipRect()

void ECOexcludeToolTipRect(HWND pHWnd, HDC pHDC)

Allows the component to exclude the tool-tip rectangle from the device contextsô clipped

drawing area.

¶ pHWnd - The HWND of the object.

¶ pHDC ï The device context to exclude the tool-tip rectangle from.

See also ECOgetToolTipRect

ECOfindObject()

void* ECOfindObject(HINSTANCE pInstance, HWND pHWnd, WPARAM pWParam =0

)

Locates a pointer which has previously been stored via the ECOinsertObject function.

¶ pInstance - The Omnis instance. This may be NULL which results in the function

searching all Omnis instances for the HWND.

¶ pHWnd - The HWND being searched for.

¶ pWParam - Background components only. The WPARAM which was passed in from

Omnis, this should be passed for background components only.

¶ returns - Returns the pointer previously stored via the call to ECOinsertObject.

Chapter 2ðStructures, Messages & Functions

132

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg ,

 WPARAM wParam, LPARAM lParam, EXTCompInfo*

eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case WM_PAINT:

 {

 cObj* object = (cObj *)ECOfindObject(eci - >mOmnisInstance,

hwnd);

 if (NULL!=object && object - >paint()) return qtrue;

 break;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOinsertObject

ECOfindNVObject()

void* ECOfindNVObject(HINSTANCE pInstance, LPARAM pInstPtr)

Locates a pointer which has previously been stored via the ECOinsertNVObject function.

¶ pInstance - The Omnis instance. This may be NULL which results in the function

searching all Omnis instances for the HWND.

¶ pInstPtr ï The unique object instance reference (as allocated by Omnis)

¶ returns - Returns the pointer previously stored via the call to ECOinsertNVObject.

See also ECOinsertNVObject, Non-visual components

ECOfindParamNum()

EXTParamInfo* ECOfindParamNum(EXTCompInfo* pEci, qlong pParamID)

Locates a parameter in the EXTCompInfo structure. This function should be used to locate

method and property parameters.

¶ pEci - The pointer to the EXTCompInfo structure.

¶ pParamID - The id of the parameter to be located.

¶ returns - Returns the pointer to the EXTParamInfo structure if successful, NULL

otherwise.

 General Functions

 133

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_METHODCALL:

 {

 // OMNIS code is calling your component method

 qlong methodID = ECOgetId(eci);

 switch(methodID)

 {

 case cMyMethod1:

 {

 EXTParamInfo* param1 = ECOfindParamNum(eci, 1);

 EXTParamInfo* param2 = ECOfindParamNum(eci, 2);

 if (param1 && param2)

 {

 // .. Do method processing é

 }

 return 1L;

 }

 }

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

ECOfindString() (v5.0)

void ECOfindString(str255 &pFindString, str255 &pStringToSearch, lsttype *pResultList)

Accesses the Omnis string table editor and searches for pFindString inside pStringToSearch

at the current find location. If found, a row is added to pResultList containing the current

find location and pStringToSearch.

¶ pFindString ï The string to search for.

¶ pStringToSearch ï The string to be searched.

¶ pResultList ï The out list which is appended with the search result.

Chapter 2ðStructures, Messages & Functions

134

ECOgetApp()

qapp ECOgetApp(locptype* pLocp)

Returns a reference to an Omnis application. The EXTCompInfo structure which is passed

to external components contains two context pointers. The context pointer mInstLocp points

to the context of the class instance which contains the component. The context pointer

mLocLocp points to the context of the calling method.

¶ pLocp - The context pointer.

¶ return - The Omnis library reference.

// fetch the library reference which contains the instance of the component

qapp app = ECOgetApp(pEci - >mInstLocp);

ECOgetBundleRef() (v3.1) Mac OSX only

void *ECOgetBundleRef(qlong pBundleID)

Returns a CFBundleRef dependant on the pBundleID.

¶ pBundleID - Should be either kXsocket or kCoreGraphics.

ECOgetCrbFieldInfo() (V2.2)

qbool ECOgetCrbFieldInfo(strxxx& pFieldName, locptype* pLocp,

crbFieldInfo& pFInfo)

ECOgetCrbFieldInfo gets the specified fields full format information. See structure

crbFieldInfo for full description of the information returned.

¶ pFieldName - The Omnis variable

¶ pLocp - The context pointer.

¶ pFInfo - Pointer the info structure

¶ return - Returns true if the Omnis variable was found.

crbFieldInfo info;

str255 fieldName(ñivTheVariableò);

if (ECOgetCrbFieldInfo(fieldName, eci - >mInstLocp, &info))

{

 qlong maxLen = info.fln;

}

See also struct crbFieldInfo in EXTfldval class reference

 General Functions

 135

ECOgetDeviceParms()

PRIdestParmStruct* ECOgetDeviceParms(locptype* pLocp)

Returns a reference to the global device parameters structure. It is not a copy, and altering

any values in the structure will effect the Omnis devices.

¶ pLocp - The context pointer. Currently not used.

¶ return - Points to Omnis device parameters.

// fetch a pointer to the global device parameters

PRIdestParmStruct *deviceParms = ECOgetDeviceParms(pEci - >mInstLocp

);

ECOgetDirectoryDialog()

qbool ECOgetDirectoryDialog(HINSTANCE pInstance, HWND pOwner,

qlong pTitle, str255& pDirName, strxxx* pInitDir = 0)

qbool ECOgetDirectoryDialog(HINSTANCE pInstance, HWND pOwner,

strxxx& pTitle, str255& pDirName, strxxx* pInitDir = 0)

The ECOgetDirectoryDialog function enables the component to invoke a dialog to request a

directory.

¶ pInstance - The instance which contains the string resources required. This would

normally be gInstLib.

¶ pOwner - The HWND of the owner.

¶ pTitle - The resource id for the title OR a str255 object containing the title.

¶ pDirName - The str255 object which contains the directory name upon return, if

successful.

¶ pInitDir - The pointer to the str255 object which specifies the initial directory. May be

NULL.

¶ returns - Returns true if a directory has been selected, false otherwise.

Note: On MacOS make sure the component project contains the OMNISLIB.RSRC file.

str255 newDirectory;

if (ECOgetDirectoryDialog(gInstLib,hwnd,5000,5001,newDirectory))

{

 é processing é

}

Chapter 2ðStructures, Messages & Functions

136

ECOgetFont()

void ECOgetFont(HWND pHwnd , qfnt* pFnt, qshort pFntIndex, qshort pFntSize)

The ECOgetFont function enables the component to obtain font details for the given index

and font size.

¶ pHwnd - The HWND of the object.

¶ pFnt - Pointer to the qfnt structure which is populated, if successful, by Omnis.

¶ pFntIndex - The index of the font required.

¶ pFntSize - The size of the font required.

// Create font from index & size (extract from CALENDAR example)

qfnt fnt = fntSmallFnt;

ECOgetFont(mHWnd, &fnt, mHeadingFont, mHe adingFontSize);

HFONT font = GDIcreateFont(&fnt, mHeadingBold ? styBold : styPlain

);

é processing ..

GDIdeleteObject(font);

ECOgetFont()

void ECOgetFont(qapp pApp, qbool pReportFont, qfnt* pFnt, qshort pFntIndex, qshort

pFntSize)

The ECOgetFont function enables the component to obtain font details for the given index

and font size from the specified Omnis library. It also allows you to specify if you require a

report font or windows font.

¶ pApp - Reference to the Omnis library. See ECOgetApp().

¶ pReportFont - Specify qtrue if you require a font from the libraries report font table.

¶ pFnt - Pointer to the qfnt structure which is populated, if successful, by Omnis.

¶ pFntIndex - The index of the font required.

¶ pFntSize - The size of the font required.

 General Functions

 137

// sample function retrieves a report font from the library containing the

// instance of the external component.

HFONT myCreateFont(EXTCompInfo* pEci)

{

 qfnt fnt; qapp app = ECOgetApp(pEci - >mInstLocp);

 ECOgetFont(app, qtrue, &fnt, 1, 1 2);

 return GDIcreateFont(&fnt, styPlain);

}

ECOgetFontIndex()

qshort ECOgetFontIndex(HWND pHwnd, EXTfldval& pFVal)

The ECOgetFontIndex function returns a font index from the specified font name.

¶ pHwnd ï The HWND of the component control.

¶ pFVal ï Specifies the EXTfldval which contains the font name in character format.

¶ Returns ï Returns a font index from 1 to 31 if succeeded, 0 otherwise.

str80 s(ñTimes Romanò);

EXTfldval fval; fval.setChar(s);

qshort fntIndex = ECOgetFontInd ex(hwnd, fval);

ECOgetId()

qlong ECOgetId(EXTCompInfo* pEci)

The ECOgetId function should be used to retrieve the id of the method or property.

¶ pEci - The pointer to the EXTCompInfo structure.

¶ returns - Returns the id of the method or property if successful, zero otherwise.

Chapter 2ðStructures, Messages & Functions

138

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_METHODCALL:

 {

 // OMNIS code is calling your component method

 qlong methodID = ECOgetId(eci);

 switch(methodID)

 {

 // é Method 1

 case cMyMethod1:

 // é Method 2

 case cMyMethod2:

 }

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam ,eci);

}

ECOgetLocalIpAddress() (v4.3)

qulong ECOgetLocalIpAddress(void)

Returns the client machineôs ethernet IP address as a hexadecimal long integer.

ECOgetNVObject() (v3.3)

void *ECOgetNVObject(objectinst *pInst)

Searches for an external component instance in the chain of super instances of this object,

returning the first instance found. If no external component instance is found, pInst is

returned.

¶ pInst ï The initial object instance.

 General Functions

 139

EXTfldval fval; fftttype ftype1;

//é.code excerpt from JavaObjs com ponent

fval.getType(ftype1);

if (ftype1 == fftObjref)

{

 qobjinst objInst = fval.getObjRef();

 if (objInst) objInst = (qobjinst)ECOgetNVObject(objInst); //

check for superinst..

 if (objInst)

 {

 tqfJObjectContainer* object =

(tqfJObjectContainer*)ECOF INDNVOBJECT(0, (LPARAM)objInst);

 if (object && object - >mObject)

 {

 EXTfldval fval1,fval2;

 l jline = ljlist - >insertRow();

 ljlist - >getColValRef(i,1,fval1,qtrue);

 fval1.setLong(object - >mObject - >mJObjID);

 ljlist - >getColValRef(i,2,fval2,qtr ue);

 fval2.setChar(lelemsig);

 }

 }

}

ECOgetParamCount()

qshort ECOgetParamCount(EXTCompInfo* pEci)

The ECOgetParamCount function enables the component to inquire on how many

parameters, which have ids sequentially from 1, are in the EXTCompInfo structure. This is

especially useful during the ECM_METHODCALL message to ensure that the correct

number of parameters have been supplied.

¶ pEci - The pointer to the EXTCompInfo structure.

¶ returns - Returns the number of parameters.

Chapter 2ðStructures, Messages & Functions

140

ex tern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case ECM_METHODCALL:

 {

 // OMNIS code is calling your component method

 qlong methodID = ECOgetId(eci);

 switch(methodID)

 {

 case cMyMethod1:

 {

 if (ECOgetParamCount(eci) != 2)

 {

 // Error - Method needs two parameters

 return 0l;

 }

 }

 }

 return 1L;

 }

 }

 return WNDdefWindow Proc(hwnd,Msg,wParam,lParam,eci);

}

ECOgetParamInfo() (v3.1)

qbool ECOgetParamInfo(EXTparamInfo* pParam, EXTparamTypeInfo&

pInfo);

Returns additional type information about the parameter specified by pParam.

¶ pParam ï Pointer to the parameter structure.

¶ pInfo ï Reference to the structure which will receive the additional info.

See also EXTparamInfo, EXTparamTypeInfo

 General Functions

 141

ECOgetProperty()

qbool ECOgetProperty(HWND pHwnd, qshort pAnum, EXTfldval& pFval)

The ECOgetProperty function enables the component to obtain information concerning

Omnis standard object properties.

¶ pHwnd - The HWND of the object.

¶ pAnum - The anum of the property which is requested (See ANUMS.HE for the list of

possible anums).

¶ pFval - The EXTfldval object which contains the property, if successful.

¶ returns - Returns true if successful, false otherwise.

// Get $dataname property

EXTfldval fldname;

if (ECOgetProperty(mHwnd, anumFieldname, fldname))

{

 // Get the name from the fldval

 str255 st r;

 fldname.getChar (str);

}

ECOgetStyle()

qbool ECOgetStyle(tqappfile* pApp, qchar* pStyleName, qshort pLen, GDItextSpecStruct*

pTextSpec)

The ECOgetStyle function enables the component to obtain the field style information.

¶ pApp ï The tqappfile pointer for the instance of the component.

¶ pStyleName ï A pointer to the field style name.

¶ pLen ï The length of the field style name.

¶ pTextSpec ï A pointer to a GDItextSpecStruct which will be populated upon return.

¶ returns - Returns true if successful, false otherwise.

// Get the fieldstyle name

EXTfldval fval; ECOgetProperty(hwnd,anumFldStyle,fval);

str255 s; fval.getChar(s);

GDItextSpecStruct textSpec;

ECOgetStyle(app, &s[1], s[0], &textSpec);

Chapter 2ðStructures, Messages & Functions

142

ECOgetToolTipRect()

qbool ECOgetToolTipRect(HWND pHwnd, qrect* pRect)

The ECOgetToolTipRect function enables the component to obtain the position of the tool

tip (if visible).

¶ pHwnd - The HWND of the object.

¶ pRect ï The pointer to a qrect object which will contain the tool-tip rectangle upon

return (only is a tool-tip is currently visible).

¶ returns - Returns true if successful, false otherwise.

ECOhasFocus()

qbool ECOhasFocus(HWND pHWnd)

The ECOhasFocus function enables the component to inquire on the focus state of the

object.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if the object currently has the focus, false otherwise.

qbool result = ECOhasFocus(mHwnd);

if (result)

{

 // object currently has the focus

}

ECOhideTooltip()

void ECOhideTooltip(HWND pHwnd)

The ECOhideTooltip function can be used by the components to hide the on screen tool tip.

The Omnis tool tip is drawn directly to the screen. It saves the bitmap where is it about to be

displayed for later restoring when the tool tip is not needed.

As a result, if a tool tip is displayed and partly covers the control, the control paints due to a

timer message for example, the bitmap saved by the tool tip that it uses for restoring could

now be invalid.

To avoid this problem, controls can call this API, passing their components HWND to hide

the tip.

¶ pHwnd - The HWND of the object.

 General Functions

 143

ECOinsertObject()

void ECOinsertObject(EXTCompInfo* pEci, HWND pHWnd, void* pObjPointer,

WPARAM pWParam)

Stores a pointer for the specified HWND in a list of Omnis instances.

¶ pInstance - Specifies the Omnis instance to which this pointer should belong to.

¶ pHWnd - Specifies the HWND which is linked to the pointer.

¶ pObjPointer - Specifies the pointer to be stored.

¶ pWParam - Background components only. The WPARAM which was passed in from

Omnis, this should be passed for background components only.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInf o* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_OBJCONSTRUCT:

 {

 cObj* myNewObject = new cObj();

 if (myNewObject)

 {

 ECOinsertObject(eci, hwnd, (void*) myNewObject);

 }

 else

 {

 // é Error - Out of memory é

 }

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECM_OBJCONSTRUCT

Chapter 2ðStructures, Messages & Functions

144

ECOinsertNVObject()

void ECOinsertNVObject(HINSTANCE pInstance, LPARAM pInstPtr, void*

pObjPointer)

Stores a pointer for the specified HWND in a list of Omnis instances.

¶ pInstance - Specifies the Omnis instance to which this pointer should belong to.

¶ pInstPtr ï Specifies the object instance pointer (as supplied by Omnis) to associate the

pObjPointer with.

¶ pObjPointer - Specifies the pointer to be stored.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_OBJCONSTRUCT:

 {

 cObj* obj = new cObj();

 ECOinsertNVObject(eci - >mOmnisInstance,lParam,(void*)obj);

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOfindNVObject, Non-visual components

ECOinvalBackObj() (v3.1)

void ECOinvalBackObj()

If the object is a background component, ECOinvalBackObj() invalidates the drawing area,

causing it to be redrawn.

ECOisDesign()

qbool ECOisDesign(HWND pHWnd)

The ECOisDesign function enables the component to inquire on the design state of the

object.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if the object is in design, false otherwise.

 General Functions

 145

qbool result = ECOisDesign(mHwnd);

if (result)

{

 // object is in design mode.

}

ECOisMultiSelected()

qbool ECOisMultiSelected(HWND pHWnd)

Allows the component to inquire on whether the object is currently one of many objects

selected.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if the object is currently multi-selected, false otherwise.

qbool result = ECOi sMultiSelected(mHwnd);

if (result)

{

 // object is selected as part of a group

}

See also IS_MULTISELECTED

ECOisOMNISinTrueRuntime()

qbool ECOisOMNISinTrueRuntime(HWND pHwnd)

Returns qtrue if Omnis is in a true runtime state. In this state it is safe for components to

send events. In some other states it is not safe. For example, your component maybe a

runtime component, but Omnis may be in build mode debugging another method. Omnis

always tries to switch to the correct mode when executing a method/event. If you send an

event during a debug session, Omnis brings your component to the front immediately,

executes your event and returns to the debug session. For some controls such as a clock

sending events every second, this is not what should happen.

¶ pHwnd - The HWND of the object.

¶ returns - qtrue if Omnis is in true runtime.

if (ECOisOMNISinTrueRuntime(mHWnd))

{

 // can send events

}

Chapter 2ðStructures, Messages & Functions

146

ECOisSelected()

qbool ECOisSelected(HWND pHWnd)

Allows the component to inquire on whether the object is currently selected.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if the object is currently selected, false otherwise.

qbool result = ECOisSelected(mHwnd);

if (result)

{

 // object is selected

}

See also IS_SELECTED

ECOisSerialised()

qbool ECOisSerialised(HWND pHOmnisCompHwnd, qchar* pProductCode, qchar*

pFunctionCode = NULL, qchar* pSerial = NULL, qchar* pNotes = NULL)

qbool ECOisSerialised(qchar* pProductCode, qchar* pFunctionCode = NULL, qchar*

pSerial = NULL, qchar* pNotes = NULL)

Asks Omnis if the component has been serialised and returns information about the serial

number.

¶ pHOmnisCompHwnd ï Components hwnd

¶ pProductCode ï Product code supplied by component. Must be 4 alpha/numeric

characters.

¶ pFunctionCode ï Functionality code returned by Omnis. These consist of 4

alpha/numeric characters describing the enabled functionality.

¶ pSerial ï Complete serial number. Returned by Omnis.

¶ pNotes ï Notes as entered with the serial number by the user. Returned by Omnis.

See also IS_SERIALISED

 General Functions

 147

ECOisSetup()

qbool ECOisSetup(HWND pHWnd)

Allows the component to inquire on the set-up state of the object. The set-up state of an

object is false before properties have been initialized, true afterwards.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if the object is set-up, false otherwise.

qbool result = ECOisSetup(mHwnd);

if (result)

{

 // object is setup and ready for action.

}

See also ECM_OBJINITIALIZE, IS_SETUP

ECOisShowNumber()

qbool ECOisShowNumber(HWND pHWnd)

Allows the component to inquire on whether the design-time option óShow numberô is on.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if óShow numberô is on, false otherwise.

qbool result = ECOisShowNumber(mHwnd);

if (result)

{

 // Show number is on

}

See also IS_SHOWNUMBER

ECOisWndTop()

qbool ECOisWndTop(HWND pHWnd)

Allows the component to inquire on whether the object is a member of the top-most

window.

¶ pHWnd - The HWND of the object.

¶ returns - Returns true if the object is a member of the top-most window, false

otherwise.

Chapter 2ðStructures, Messages & Functions

148

qbool result = ECOisWndTop(mHwnd);

if (result)

{

 // object is on top

}

See also IS_WINDOW_TOP

ECOlistFonts()

void ECOlistFonts(EXTqlist *pList, qbool pReportFonts)

Allows the component to obtain a list of window or report fonts installed on the machine.

¶ pList - The list to populate.

¶ pReportFonts ï True if a list of report fonts is required.

ECOlistSetLineHeight()

void ECOlistSetLineHeight(HWND pHOmnisCompHwnd, qlong pLineHeight)

The ECOlistSetLineHeight function should be used by the component to specify the line

height (in pixels) of objects which have previously been defined as cObjType_List.

¶ pHOmnisCompHwnd - The HWND of the object.

¶ pLineHeight - The list line height.

// Forces all lists lines in a derived picture component to be 50 pixels

// high.

ECOlistSetLineHeight(mHwnd,50);

See also WM_CONTROL - LIST_SETLINEHEIGHT, cObjType_List

ECOloadFileDialog()
qbool ECOloadFileDialog(HINSTANCE pInstance, HWND pOwner,

qlong pResTitle, qlong pResFilter, str255& pFileName,

str255* pInitDir = 0)

qbool ECOloadFileDialog(HINSTANCE pInstance, HWND pOwner,

strxxx& pTitle, strxxx& pFilter, str255& pFileName,

str255* pInitDir = 0)

The ECOloadFileDialog function enables the component to invoke the operating system

load file dialog.

¶ pInstance - The instance which contains the string resources required. This would

normally be gInstLib.

 General Functions

 149

¶ pOwner - The HWND of the owner.

¶ pResTitle or pTitle - The resource id or string for the title of the load file dialog.

¶ pResFilter or pFilter - The resource id or string for the filter string of the load file

dialog. Any platform dependent filters are removed if not required. e.g.

5001 "PCX Files (*.pcx)|*.pcx|All Mac Text Files|ôô,ôTEXTô|"

Note: Under MacOS you can specify both or either the finder creator & type code, for

example, |Omnis Libraries|ôOO$$ô,ôOO$Aô|All Omnis Files|ôOO$$ô,ôô|. Under Windows

the MacOS specific file filter is ignored.

¶ pFileName - The str255 object which contains the file name upon return, if successful.

¶ pInitDir - The pointer to the str255 object which specifies the initial folder. May be

NULL.

¶ returns - Returns true if a file has been selected, false otherwise.

Note: On MacOS make sure the component project contains the OMNISLIB.RSRC file.

// Load file (extract from PCX example)

str255 newFile;

if (ECOloadFileDialog(gInstLib,hwnd, 5000,5001,newFile))

{

 object - >mFile = newFile;

 object - >readPCX();

 WNDinvalidateRect(hwnd, NULL);

 ECOupdatePropInsp(hwnd);

}

ECOmapString() (v5.0)

qlong ECOmapString(qchar *pBuffer, qlong pBufferLen, qlong pLen)

Accesses the Omnis string table editor and searches for a string with ID matching the

contents of pBuffer. If found, pBuffer is assigned the contents of the string table element

and the character length is returned.

¶ pBuffer ï On input- the ID of the string to match, on output- the contents of the string

table element.

¶ pBufferLen ï the length in bytes of the buffer (prevents overrun).

¶ pLen ï the length in characters of the input ID string.

Chapter 2ðStructures, Messages & Functions

150

ECOmemoryDeletion()

void ECOmemoryDeletion(EXTCompInfo* pEci)

Deletes memory previously allocated in the external component (returned parameters for

example). WNDdefWindowProc processes the ECM_MEMORYDELETION message. See

ECOpushCompEvent for an example of the use of ECOmemoryDeletion.

¶ pEci - Pointer to EXTCompInfo structure which contains the parameters to delete.

See also ECM_MEMORYDELETION

ECOmessageBox() (v3.3)

qbool ECOmessageBox(qulong pFlags,qbool pBell,str255& pMsg)

Provides external components with access to Omnis message box dialogs.

¶ pFlags - Determines the type of message box which can be: MSGBOX_OK,

MSGBOX_YESNO, MSGBOX_NOYES, MSGBOXICON_OK,

MSGBOXICON_YESNO, MSGBOXICON_NOYES, MSGBOXCANCEL_YESNO

or MSGBOXCANCEL_NOYES

¶ pBell ï If qtrue, indicates that the system bell should sound

¶ pMsg ï The text for the message

RESloadS tring(gInstLib, needInitialConversion ? 9000 : 9001, msg);

msg.insertStr(strPathName);

if (ECOmessageBox(MSGBOXICON_NOYES, qfalse, msg))

{

 //add conditional processing here

}

 General Functions

 151

ECOpaintGrayFrame() (v5.0)

void ECOpaintGrayFrame(HDC pHdc, qrect &pRect)

Draws a gray frame around the control in design mode, so that the control is visible on the

design window.

//Excerpt from the Accordion component paint() method

if (hwnd() == hWnd)

{

 qrect clientRect;

 WNDgetClientRect(hwnd(), &clientRect);

 qrect entryRect(cl ientRect);

 qdim clientWidth = clientRect.width();

 WNDpaintStruct paintStruct;

 WNDbeginPaint(mHWnd, &paintStruct);

 HDC hdc = paintStruct.hdc;

 qrect rcPaint = paintStruct.rcPaint;

 void *offscreenPaintInfo = GDIoffscreenPaintBegin(NULL, hdc,

clientR ect, rcPaint);

 if (offscreenPaintInfo)

 {

 WNDdefWindowProc(hwnd(), WM_ERASEBKGND, (WPARAM) hdc, 0, eci);

 qbool isDesign = ECOisDesign(mHWnd);

 if (isDesign)

 {

 // Draw design stuff

 ECOdrawDesignName(mHWnd, hdc);

 ECOdrawNumber(mHWnd, hd c);

 ECOdrawMultiKnobs(mHWnd, hdc);

 #ifndef isRCC

 // If there is no border, draw a gray frame so the object bounds are visible in

design mode

 WNDborderStruct bs;

 WNDgetBorderSpec(hwnd(), &bs);

 if (WND_BORD_NONE == bs.mBorderStyle)

 ECOpaintGrayFrame(hdc, clientRect);

 #endif

 }

 else

Chapter 2ðStructures, Messages & Functions

152

 {

 //...

 }

 GDIoffscreenPaintEnd(offscreenPaintInfo);

 }

 WNDendPaint(mHWnd, &paintStruct);

}

ECOreadLocalisationItem()

qbool ECOreadLocalisationItem(EXTCompInfo *pEci, qshort pLocItemXn, str255

&pLocItemData)

Returns the localised text from the localisation database.

¶ pEci - Pointer to EXTCompInfo structure.

¶ pLocItemXn - identifies the localized item. This can be one of the cLOCxn constants.

See source file LOCALISE.HE for a listing.

¶ pLocItemData - the localised text is returned in this parameter.

¶ returns - true if the item exists and text has been returned.

ECOreloadLibData() (v4.1)

qbool ECOreloadLibData(str80& pLibName)

Instructs the core to rebuild object lists, reloading icons, properties, events and constants for

the specified component. The componentôs window object is closed if open.

¶ pLibName ï object name, usually read from resource string 1000

ECOremoveObject()

void* ECOremoveObject(EXTCompInfo* pEci, HWND pHWnd, WPARAM pWParam)

Removes a pointer reference which had previously been stored via ECOinsertObject.

¶ pInstance - Specifies the Omnis instance which the pointer was originally inserted into.

¶ pHWnd - Specifies the HWND which is linked to the pointer.

¶ pWParam - Background components only. The WPARAM which was passed in from

Omnis, this should be passed for background components only.

¶ returns - Returns the pointer originally passed into the ECOinsertObject function.

 General Functions

 153

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_OBJDESTRUCT:

 {

 CObj* myObject = (CObj *)ECOremoveObject(eci, hwnd);

 if (NULL!= myObject)

 delete myObject;

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOinsertObject, ECM_OBJDESTRUCT

ECOremoveNVObject()

void* ECOremoveNVObject(HINSTANCE pInstance,LPARAM pInstPtr)

Removes a pointer reference which had previously been stored via ECOinsertNVObject.

¶ pInstance - Specifies the Omnis instance which the pointer was originally inserted into.

¶ pInstPtr ï Specifies the object instance pointer (as supplied by Omnis in LPARAM)

which was originally used during ECOinsertNVObject.

¶ returns - Returns the pointer originally passed into the ECOinsertNVObject function.

Chapter 2ðStructures, Messages & Functions

154

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 case ECM_OBJDESTRUCT:

 {

 CObj* myObject = (CObj *)ECOremoveNVObject(eci -

>mOmnisInstance,

 lParam

);

 if (NULL!= myObject)

 delete myObject;

 return 1L;

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

See also ECOinsertNVObject, Non-visual components

ECOresetObjDetails()

qbool ECOresetObjDetails(qobjinst pObjInst, EXTfldval& pProps, EXTfldval& pMethods)

The ECOresetObjDetails function provides a means for non-visual components to

dynamically alter the properties and methods which an object provides.

¶ pObjInst - Pointer which was originally generated by Omnis and passed to the external

during ECM_OBJCONSTRUCT.

¶ pProps - A list containing the new properties for the object. This list should be in the

format as returned by ECOreturnProperties. See the section on Control Handlers for

more information on the exact structure of this list.

¶ pMethods - A list containing the new methods for the object. This list should be in the

same format as returned by ECOreturnMethods. See the section on Control Handlers for

more information on the exact structure of this list.

¶ Returns - Returns true if successful, false otherwise.

See also Non-Visual components

 General Functions

 155

ECOreturnCompID()

qlong ECOreturnCompID(HINSTANCE pInstance, EXTCompInfo* pEci,

 qshort pCompResNameID, qshort pCompType)

The ECOreturnCompID function provides support for the ECM_GETCOMPID message.

¶ pInstance - The instance which contains the resources(component name) for the

component object. This would normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pCompResNameID - The resource id for the component name.

¶ pCompType - The component object base type. Of type cObjType_xxx and/or

cRepObjType_xxx.

¶ returns - Returns the pCompType value which should returned to Omnis.

See also ECM_GETCOMPID

ECOreturnCompInfo()

qlong ECOreturnCompInfo(HINSTANCE pInstance, EXTCompInfo* pEci,

 qshort pLibNameResID, qshort pCompCount)

The ECOreturnCompInfo function provides support for the ECM_GETCOMPLIBINFO

message.

¶ pInstance - The instance which contains the resources(library name) for the component

library. This would normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pLibNameResID - The resource id for the component library name.

¶ pCompCount - The number of objects within the componentsô library.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETCOMPLIBINFO

ECOreturnConstants()

qbool ECOreturnConstants(HINSTANCE pInstance, EXTCompInfo* pEci,

 qlong pResStart, qlong pResEnd)

Provides support for the ECM_GETCONSTNAME message.

¶ pInstance - The instance which contains the resources for the constants. This would

normally be gInstLib.

Chapter 2ðStructures, Messages & Functions

156

¶ pEci - The pointer to EXTCompInfo structure.

¶ pResStart - Resource identifier for the first constant.

¶ pResEnd - Resource identifier of the last constant.

¶ returns - Returns true if successful, false otherwise.

It should be noted that this function is successful even if not all the resource slots between

pResStart and pResEnd are populated. This would enable the component to easily modify

groups of constants.

See also ECM_GETCONSTNAME

ECOreturnCStoreGrpName()

qbool ECOreturnCStoreGrpName(HINSTANCE pInstance, EXTCompInfo* pEci,

 qlong pResID)

The ECOreturnCStoreGrpName function provides support for the

ECM_GETCOMPSTOREGROUP message.

¶ pInstance - The instance which contains the resources(custom component store group

name). This would normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pResID - The resource id for the custom component store group name.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETCOMPSTOREGROUP

ECOreturnEventMethod()

qbool ECOreturnEventMethod(HINSTANCE pInstance, EXTCompInfo* pEci,

 qlong pResStart)

The ECOreturnEventMethod function provides support for the

ECM_GETEVENTMETHOD message.

¶ pInstance - The instance which contains the resources(method lines). This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pResStart - The resource id for the start of the event method instructions. You should

note that this function continues to add method lines until an empty string is located in

the resources.

¶ returns - Returns true if successful, false otherwise.

 General Functions

 157

See also ECM_GETEVENTMETHOD

ECOreturnEventMethod()

qbool ECOreturnEventMethod(HINSTANCE pInstance, EXTCompInfo* pEci,

ECOmethodEvent* pTable, qshort pTableElements, qbool pIncDesc = qtrue)

The ECOreturnEventMethod function provides support for the

ECM_GETEVENTMETHOD message. This function generates an event method from the

event table rather than from sequence of event lines in resources [see

ECOreturnEventMethod(pInstance, pEci, pResStart) above]

¶ pInstance - The instance which contains the resources(method lines). This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pTable - The pointer to the ECOmethodEvent structure.

¶ pTableElements - Number of events in the ECOmethodEvent structure.

¶ pIncDesc - True if description should be included as a comment in the event method.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETEVENTMETHOD

ECOreturnEvents()

qbool ECOreturnEvents(HINSTANCE pInstance, EXTCompInfo* pEci,

 ECOmethodEvent* pTable, qshort pTableElements)

The ECOreturnEvents function provides support for the ECM_GETEVENTNAME

message.

¶ pInstance - The instance which contains the resources for the events. This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pTable - The pointer to the ECOmethodEvent structure.

¶ pTableElements - Number of events in the ECOmethodEvent structure.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETEVENTNAME, Component Events

Chapter 2ðStructures, Messages & Functions

158

ECOreturnIcon()

qbool ECOreturnIcon(HINSTANCE pInstance, EXTCompInfo* pEci, qshort pBitmapID)

The ECOreturnIcon function provides support for the ECM_GETCOMPICON message.

¶ pInstance - The instance which contains the resources(object icon) for the component

object. This would normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pBitmapID - The resource id for the componentsô object icon.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETCOMPICON

ECOreturnMethodEvents

ECOreturnMethodEvents simply calls ECOreturnMethods.

ECOreturnMethods()

qbool ECOreturnMethods(HINSTANCE pInstance, EXTCompInfo* pEci,

 ECOmethodEvent* pTable, qshort pTableElements)

The ECOreturnMethods function provides support for the ECM_GETMETHODNAME

message.

¶ pInstance - The instance which contains the resources for the methods. This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pTable - The pointer to the ECOmethodEvent structure.

¶ pTableElements - Number of functions or events in the ECOmethodEvent structure.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETMETHODNAME, Component Events

 General Functions

 159

ECOreturnObjects()

qbool ECOreturnObjects(HINSTANCE pInstance, EXTCompInfo* pEci,

 ECOobject* pTable, qshort pTableElements)

The ECOreturnObjects function provides support for the ECM_GETOBJECT message.

¶ pInstance - The instance which contains the resources for the objects. This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pTable - The pointer to the ECOobject structure.

¶ pTableElements - Number of objects in the ECOobject structure.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETOBJECT, Non-Visual components

ECOreturnProperties()

qbool ECOreturnProperties(HINSTANCE pInstance, EXTCompInfo* pEci,

 ECOproperty* pPropTable, qshort pTableElements)

The ECOreturnProperties function provides support for the ECM_GETPROPNAME

message.

¶ pInstance - The instance which contains the resources for the properties. This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pPropTable - The pointer to the ECOproperty structure.

¶ pTableElements - Number of properties in the ECOproperty structure.

¶ returns - Returns true if successful, false otherwise.

See also ECM_GETPROPNAME, and the Component Events section.

ECOreturnVersion()

qlong ECOreturnVersion(qshort pMajorNumber, qshort pMinorNumber)

The ECOreturnVersion function provides support for the ECM_GETVERSION message.

¶ pMajorNumber - The major part of the componentsô version number.

¶ pMinorNumber - The minor part of the componentsô version number.

See also ECM_GETVERSION, GDIreadVersion

Chapter 2ðStructures, Messages & Functions

160

ECOreturnVersion() (Web Client 1.2)

qlong ECOreturnVersion(HINSTANCE pInst)

Web client components must use this mechanism to return the components version number

from its resources. The component must have the following string resource

 31020 ñVER 1 5 %%ORFC_VER%%ò

Please note the spaces. These are important. The 1 specifies the major version, and the 5

specifies the minor version. Non-web client components can also use this new mechanism to

return the version number.

¶ pInstance - The instance which contains the string resources required. This would

normally be gInstLib.

See also ECM_GETVERSION, GDIreadVersion

ECOsaveFileDialog()

qbool ECOsaveFileDialog(HINSTANCE pInstance, HWND pOwner,

qlong pResTitle, qlong pResFilter, str255& pFileName,

str255* pInitDir = 0)

qbool ECOsaveFileDialog(HINSTANCE pInstance, HWND pOwner,

strxxx& pTitle, strxxx pFilter, str255& pFileName,

str255* pInitDir = 0)

The ECOsaveFileDialog function enables the component to invoke the operating system

save file dialog.

¶ pInstance - The instance which contains the string resources required. This would

normally be gInstLib.

¶ pOwner - The HWND of the owner.

¶ pResTitle or pTitle - The resource id or string for the title of the save file dialog.

¶ pResFilter or pFilter - The resource id or string for the filter string of the save file

dialog. Any platform dependent filters are removed if not required.

ç Note: ONLY used on WINDOWS.

¶ pFileName - The str255 object which contains the file name upon return, if successful.

¶ pInitDir - The pointer to the str255 object which specifies the initial folder. May be

NULL.

¶ returns - Returns true if a file has been selected, false otherwise.

 General Functions

 161

// Save file

str255 saveFile;

if (ECOsaveFileDialog(gInstLib,hwnd,myResTitle,myResFilter,

saveFile))

{

 sa veDataToFile(saveFile);

}

ECOsendCompEvent()

qbool ECOsendCompEvent(HWND pHwnd, EXTCompInfo* pEci, qlong pEventID,

 qbool pExecNow)

The ECOsendCompEvent function enables the component to send Omnis object events.

This function is useful for components which need to add the parameters manually to the

EXTCompInfo structure. Most components use ECOsendEvent in preference to this

function.

¶ pHwnd - The HWND of the object.

¶ pEci - The EXTCompInfo structure which contains the event parameters.

¶ pEventID - The id of the event.

¶ pExecNow - True if the event should be processed by Omnis immediately, false

otherwise.

¶ returns - Returns true if the event has been processed by Omnis, false if it has been

discarded. If pExecNow is false this function always returns true.

// Event myEvent1 occurred. Send event to OMNIS

EXTCompInfo* eci = new EXTCompInfo();

eci - >mParamFirst = 0;

// Add parameters to EXTCompInfo structure

EXTfldval myParam1;

myParam1.setlong(someData);

// Add parameter 1

ECOaddParam(eci,&myParam1,0,0,0,1,0);

// Send event to OMNIS

qbool eventOk = ECOsendCompEvent(hwnd, eci, myEventId, qtrue);

// Delete parameters from EXTCompInfo structure

ECOmemoryDeletion(eci);

// Delete eci structure

delete eci;

See also ECOsendEvent

Chapter 2ðStructures, Messages & Functions

162

ECOsendEvent()

qbool ECOsendEvent(HWND pHwnd, qlong pEventID, EXTfldval* pParams = 0,

qshort pParamCnt = 0, qbool pExecNow =

EEN_EXEC_IMMEDIATE)

The ECOsendEvent function enables the component to send Omnis object events. This

function is basically a wrapper for ECOsendCompEvent.

¶ pHwnd - The HWND of the object.

¶ pEventID - The id of the event.

¶ pParams - Pointer to an array of EXTfldval which contain the parameters for the event.

¶ pParamCnt - Number of parameters for the event.

¶ pExecNow - can be one of the following

EEN_EXEC_LATER - the event should be processed by OMNIS

later. The event is added to the end of the Omnis event queue

EEN_EXEC_IMMEDIATE - the event should be processed by

Omnis immediately

EEN_EXEC_PUSH (v3.1) - the event should be pushed on the

Omnis event queue in front off all existing events on the queue.

¶ returns - Returns true if the event has been processed by Omnis, false if it has been

discarded. If pExecNow is false this function always returns true. When calling

ECOsendEvent from Web Client components, ECOsendEvent will always return qtrue.

The correct result is send to the component once the server returns control to the client.

See ECM_EVENTRESULT.

// Send second event code to OMNIS (extract from CLOCK example)

EXTfldval newSeconds;

newSeconds.setLong(datetime - >tm_sec);

ECOsendEvent(mHWnd, cClockEvSecs, &newSeconds, 1);

See also ECOsendCompEvent

 General Functions

 163

ECOsetCustomTabName()

qbool ECOsetCustomTabName(HINSTANCE pInstance, EXTCompInfo* pEci,

 qlong pResID)

The ECOsetCustomTabName function provides support for the

ECM_CUSTOMTABNAME message.

¶ pInstance - The instance which contains the resources(custom tab name). This would

normally be gInstLib.

¶ pEci - The pointer to EXTCompInfo structure.

¶ pResID - The resource id for the custom tab name.

¶ returns - Returns true if successful, false otherwise.

See also ECM_CUSTOMTABNAME

ECOsetDTformat()

void ECOsetDTformat(str80& pFormat, qshort pFormatType)

The ECOsetDTformat function enables the component to set the Omnis internal variables

#FD, #FT, #FDT. This function is most useful in the Omnis Web Thin-Client so that

controls can localize their date/time routines.

¶ pFormat ï The new string format for the required format type. Please note that this

variable will contain the old string on return.

¶ pFormatType ï The required data type. This can be dpFdate1900, dpFdate1980,

dpFdate2000 for #FD (date formatting); or dpFtime for #FT (time formatting); others

types will be for #FDT (date and time formatting).

An example of use may be :-

// Set the date formatting (#FD for European or American formatting)

str80 s;

if (EuropeanDateSystem)

 s=str80(ñD m Yò);

else

 s=str80(ñm D Yò);

ECOsetDTformat(s, dpFdate2000);

// Get the date string (which will be formatted appropriately)

str255 displayString; myDate.getChar(displayString);

// Set #FD back to the old value

ECOsetDTformat(s, dpFdate2000);

Chapter 2ðStructures, Messages & Functions

164

ECOsetError()

void ECOsetError(qlong pErrNum, str255* pErrText)

The ECOsetError function enables the component to set the Omnis variables #ERRCODE

and #ERRTEXT.

¶ pErrNum - The error number stored in #ERRCODE.

¶ pErrText - The pointer to the str255 object stored in #ERRTEXT.

// Set OMNIS #ERRCODE & #ERRTEXT variables

// #ERRCODE

qlong errCode = 1;

// #ERRTEXT

str255 errText(ñSomething bad has happenedò);

ECOsetError(errCode, &errText);

ECOsetParameterChanged()

void ECOsetParameterChanged(EXTCompInfo* pEci, qshort pParamNum)

The ECOsetParameterChanged function should be called by the component when a method

parameter has been modified. Failure to call this function results in any modifications made

to a method parameter being lost on return to Omnis. The method parameter must

previously been defined with the EXTD_FLAG_PARAMALTER flag.

¶ pEci - The pointer to the EXTCompInfo structure containing the function parameters.

¶ pParamNum - The number of the parameter which has been modified.

See also ECM_METHODCALL, EXTD_FLAG_PARAMALTER

ECOsetProperty()

qbool ECOsetProperty(HWND pHwnd, qshort pAnum, EXTfldval &pFval)

The ECOsetProperty enables the component to set the Omnis standard object properties.

¶ pHwnd - The HWND of the object.

¶ pAnum - The anum of the property which is go to be set (See ANUMS.HE for the list

of possible anums).

¶ pFval - The EXTfldval object which contains the property, if successful.

¶ returns - Returns true if successful, false otherwise.

 General Functions

 165

// Set the name from the fldval

str255 str(ñ#S1ò);

fldname.setChar (str);

// Set $dataname property

EXTfldval fldname;

if (ECOsetProperty(mHwnd, anumFieldname, fldname))

{

 // Successfully set the attribute

}

ECOsetupCallbacks()

void ECOsetupCallbacks(HWND pHwnd, EXTCompInfo* pEci)

The ECOsetupCallbacks function initializes the global array of pointers which contain the

callback function pointers. This must be called upon entry to all window procedures that

Omnis invokes.

¶ pHwnd - The HWND that received the message.

¶ pEci - The pointer to EXTCompInfo structure which contains the callback pointers.

extern "C" qlong OMNISWNDPROC GenericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd, eci);

 switch (Msg)

 {

 }

 return WNDdefWindo wProc(hwnd,Msg,wParam,lParam,eci);

}

ECOupdatePropInsp()

void ECOupdatePropInsp(HWND pHOmnisCompHwnd, qlong pPropId = 0)

The ECOupdatePropInsp function can be called by the component to update the Property

Manager. This function may be called during either design or runtime.

¶ pHOmnisCompHwnd - The HWND of the object.

¶ pPropId - The property id which is updated. If the property id is not supplied all

properties are updated.

Chapter 2ðStructures, Messages & Functions

166

// Update all properties

ECOupdatePropInsp(mHwnd);

// Update myPropId

ECOupdatePropInsp(mHwnd, myPropId);

See also WM_CONTROL - UPDATE_PROPINSPECTOR

WNDdefWindowProc()

qbool WNDdefWindowProc(HWND pHwnd, LPARAM pMsg, WPARAM wParam,

 LPARAM lParam, EXTCompInfo* pEci)

The WNDdefWindowProc function calls the default window processing. All messages not

handled must be passed to this function.

¶ pHwnd - The HWND that received the message.

¶ pMsg - The window message.

¶ wParam - wParam of the message.

¶ lParam - lParam of the message.

¶ pEci - EXTCompInfo pointer that was passed into the window procedure.

¶ returns - The result of Omnis processing the message.

Memory Functions
When creating cross-platform external components, you may need to manipulate memory

manually. As some objects may need to use greater than 64K of memory, for example

imaging components, a set of memory functions are available to cope with the 16bit

problems encountered under 16 bit Windows.

The MEM functions are cross-platform allowing your code to remain independent of the

operating system in which you develop.

MEMcalloc()

qchar* MEMcalloc(qulong pSize)

Allocates a block of memory, and locks it in memory. The allocation can be greater than

64K. The memory allocated is initialized to 0.

¶ pSize - The amount of memory to allocate.

¶ returns - The locked memory address.

 Memory Functions

 167

MEMdataLen()

qulong MEMdataLen(void* pBuffer)

Returns the size of a buffer.

¶ pBuffer - The buffer to return a size for. This buffer must have previous been allocated

with MEMmalloc or MEMcalloc.

¶ returns - The length of the buffer.

MEMdecAddr()

qchar* MEMdecAddr(qchar* pAddress, qlong pOffset)

Decrements a memory address by an offset.

¶ pAddress - The address to decrement.

¶ pOffset - The amount to decrement by.

¶ returns - A new address.

Note: This function is very important under Windows 16bit due to 64K segments. When

handling large memory blocks, this function must be used to adjust pointers.

You can use MEMdecAddr() and MEMincAddr() with the result of MEMglobalLock.

MEMfree()

void MEMfree(void* pBuffer)

Reclaims the memory previous allocated from a MEMmalloc or MEMcalloc call.

¶ pBuffer - The buffer to destroy. This buffer must have previous been allocated with

MEMmalloc or MEMcalloc.

MEMglobalAlloc()

HGLOBAL MEMglobalAlloc (qlong pLength, qbool pZeroInited = qfalse)

Allocates a block of memory.

¶ pLength - The amount of memory to allocate.

¶ pZeroInited - qtrue if the memory should be cleared to 0.

¶ returns - A new HGLOBAL handle.

Chapter 2ðStructures, Messages & Functions

168

MEMglobalFree()

void MEMglobalFree (HGLOBAL pMemory)

Reclaims the memory previously allocated by a MEMglobalAlloc. The data must be in an

unlocked state.

¶ pMemory - The memory to be destroyed.

MEMglobalHandle()

HGLOBAL MEMglobalHandle (void* pAddress)

Returns a memory handle given an address.

¶ pAddress - An address to return the memory handle for.

¶ returns - A memory handle.

MEMglobalLock()

void* MEMglobalLock (HGLOBAL pMemory)

Locks a memory handle, increments the lock count and returns the address of the handles

first byte.

¶ pMemory - The memory handle to lock

¶ returns - The address of the first byte of memory associated with the memory handle.

MEMglobalReAlloc()

HGLOBAL MEMglobalReAlloc (HGLOBAL pMemory, qlong pNewLength)

Reallocates a block of memory.

¶ pMemory - The old memory handle.

¶ pNewLength - The new size of the memory block.

¶ returns - A new HGLOBAL handle.

MEMglobalSize()

qlong MEMglobalSize (HGLOBAL pMemory)

Returns the size of a memory handle.

¶ pMemory - The memory handle.

¶ returns - The length of the handles data.

 Memory Functions

 169

MEMglobalUnlock()

void MEMglobalUnlock (HGLOBAL pMemory)

Unlocks a memory handle and decrement the lock count.

¶ pMemory - The memory handle to unlock.

MEMincAddr()

qchar* MEMincAddr(qchar* pAddress, qlong pOffset)

Increments a memory address by an offset.

¶ pAddress - The address to be incremented.

¶ pOffset - The amount to increment by.

¶ returns - A new address.

Note: This function is very important under Windows 16bit due to 64K segments. When

handling large memory blocks, this function must be used to adjust pointers.

MEMmalloc()

qchar* MEMmalloc(qulong pSize)

Allocates a block of memory, and locks it in memory. The allocation can be greater than

64K.

¶ pSize - The amount of memory to allocate.

¶ returns - The locked memory address.

MEMmemcmp()

qint2 MEMmemcmp(void* pAddress1, void* pAddress2, qlong pTestLen)

Compares two blocks of memory

¶ pAddress1 - Points to the starting address of the first block of memory.

¶ pAddress2 - Points to the starting address of the second block of memory.

¶ pLen - The size of the memory blocks, in bytes, to compare.

¶ returns - 0, -1 or 1.

Returns 0 if both memory blocks match.

Returns -1 if memory block 1 is less than memory block 2.

Returns 1 if memory block 1 is greater than memory block 2.

Chapter 2ðStructures, Messages & Functions

170

MEMmemFill()

void MEMmemFill(void* pFillAddress, qint4 pFillLen, qchar pFillChar)

Fills memory with a specified character

¶ pFillAddress - The address in memory to fill.

¶ pFillLen - The number of bytes to fill.

¶ pLen - The character to be used to fill memory.

Example:

qchar stringOne[] = ñ????ò;

MEMmemFill(&stringOne[0],4,ô*ô);

// Would result in stringOne = ****

MEMmovel()

void MEMmovel(void* pSrc, void* pDst, qlong pLen)

Move memory from source to destination copying data from left to right (start to end)

¶ pSrc - The source address.

¶ pDst - The destination address.

¶ pLen - The number of bytes to copy.

Example:
qchar stringOne[] = ñ*OMNIS*ò;

MEMmovel(&stringOne[1],&stringOne[0],6);

// Would result in stringOne = OMNIS**

MEMmover()

void MEMmover(void* pSrc, void* pDst, qlong pLen)

Move memory from source to destination copying data from right to left (end to start)

¶ pSrc - The source address.

¶ pDst - The destination address.

¶ pLen - The number of bytes to copy.

Example:

qchar stringOne[] = ñ*OMNIS*ò;

MEMmoveR(&stringO ne[0],&stringOne[1],6);

// Would result in stringOne = **OMNIS

 Memory Functions

 171

MEMrealloc()

qchar* MEMrealloc(void* pBuffer, qulong pNewLen)

Alters the size of the buffer to a different size.

¶ pBuffer - The buffer to be re-allocated. This buffer must have previously been allocated

with MEMmalloc or MEMcalloc.

¶ pNewLen - The new size for the buffer.

¶ returns - A pointer to the reallocated buffer. The original pointer and new pointer may

be different.

MEMscanf()

qlong MEMscanf(qshort pDirection, qlong pLen, qchar pScanChar, const void *

pScanAddress)

Scans a memory location for a character

¶ pDirection - If positive, the scan is performed from the beginning to the end of memory

block, otherwise the scan is performed from the end to the beginning.

¶ pLen - The number of characters to scan. If this is positive the search is forward, if this

is negative the search is from the end of the buffer (the length is added to the buffer

before scan starts).

¶ pScanChar - The character to scan for.

¶ pScanAddress - The address to scan.

¶ returns - The index position from the start of the scan or pLen if failed to locate

character.

Example:

// Find character N in string

qchar stringOne[] = ñOMNISò;

qlong posOfN = MEMscanf(qtrue,5,ôNô,&stringOne[0]);

// Would result in posOfN = 2

qlong posOfA = MEMscanf(qtrue,5,ôAô,&stringOne[0]);

// Result in posOfA = 5 as MEMscanf failed to find A in memory

Chapter 2ðStructures, Messages & Functions

172

The following set of memory functions all support greater than 64K allocation blocks. The

memory is automatically locked and pointers to the memory are returned. For more control

when the memory is locked, use the memory handling functions.

HANglobalAlloc()

qHandle HANglobalAlloc (qlong pLength, qbool pZeroInited = qfalse);

Allocates a block of memory, from Omnis the internal memory cache.

¶ pLength - The amount of memory to allocate.

¶ pZeroInited - qtrue if the memory should be cleared to 0.

¶ returns - A new qHandle.

HANglobalReAlloc()

qHandle HANglobalReAlloc(qHandle pHandle, qlong pNewLen);

Reallocates a block of Omnis memory,.

¶ pMemory - The old memory handle.

¶ pNewLength - The new size of the memory block.

¶ returns - A new qHandle.

HANglobalSize()

qlong HANglobalSize (qHandle pGlobal, qlong pNewLen);

Returns the size of a memory handle.

Note: This could be bigger than the data length.

¶ pMemory - The memory handle.

¶ returns - The length of the handles data.

HANglobalFree()

void HANglobalFree (qHandle pHandle);

Reclaims the memory previously allocated by a HANglobalAlloc.

¶ pMemory - The memory to be handed back into the Omnis memory cache.

 qHandlePtr Class

 173

qHandlePtr Class
The qHandlePtr class gives your external components convenient ways to manipulate

Omnis cache memory easily.

qHandlePtr::qHandlePtr

qHandlePtr:: qHandlePtr()

Creates an empty qHandlePtr class.

qHandlePtr::qHandlePtr()

qHandlePtr(qHandle pHandle, qlong pOffset)

Constructs a qHandlePtr class.

¶ pHandle- The memory to be handed back into the Omnis memory cache.

¶ pOffset - The offset into the memory.

qHandlePtr::qHandlePtr()

qHandlePtr (const qHandlePtr& pHptr)

Constructs a qHandlePtr class from an existing qHandlePtr.

¶ pHptr - an Existing qHandlePtr class.

qHandlePtr::operator =()

void operator =(qniltype qnil1)

Assigns the handle of the qHandlePtr to zero.

qHandlePtr::operator =()

void qHandlePtr:: operator =(const qHandlePtr& pHptr)

Duplicates an existing qHandlePtr.

¶ pHptr - an Existing qHandlePtr class.

Chapter 2ðStructures, Messages & Functions

174

qHandlePtr::operator +=()

void operator +=(qlong pInc)

Increments the offset in to memory block.

¶ pInc- The amount to increment the offset.

qHandlePtr::operator -=()

void operator -=(qlong pDec)

Decrements the offset in to memory block.

¶ pDec- The amount to decrement the offset.

qHandlePtr::operator +()

qHandlePtr operator +(qlong pDel)

Makes a copy of itself and increments the copy specified by pDel.

¶ pInc- The amount to increment the offset in the copy.

qHandlePtr::operator -()

qHandlePtr operator +(qlong pDel)

Makes a copy of itself and decrements the copy specified by pDel.

¶ pDec- The amount to decrement the offset in the copy.

qHandlePtr::operator !()

qbool operator !()

Tests whether the handle is non-zero.

qHandlePtr::operator *()

qchar* operator *()

Return a qchar pointer which is calculated as :-

¶ returns - Memory block base + Offset.

 qHandlePtr Class

 175

qHandlePtr::operator *()

qchar* operator *(qlong pDel)

Return a qchar pointer which is calculated as :-

¶ returns - Memory block base + Offset + pDel.

qHandlePtr::operator []()

qchar& operator [](qlong pDel)

Return a qchar reference which is calculated as

¶ returns - Memory block base + Offset + pDel.

qHandlePtr::dataLen()

qulong dataLen()

Return the actual length of the data contained in the handle.

N.B. This might not be the same as the result of HANglobalSize, this is because the data

contained in this memory block might not occupy all of it.

¶ returns - Data Length of the Handle.

qHandlePtr::dataLen()

void dataLen(qulong pSize)

Sets the actual length of the data contain in the handle.

¶ pSize - Sets the Data Length of the handle.

qHandlePtr::getOffset()

qulong getOffset()

Returns the current offset into the memory block

¶ returns - offset into the memory block.

qHandlePtr::getHandle()

void getHandle(qHandle& pHandle)

Returns the handle of the qhandleptr

¶ pHan - a qHandle memory block.

Chapter 2ðStructures, Messages & Functions

176

qHandlePtr::set()

void set(qHandle pHandle, qlong pOffset)

Sets the qhandleptr from the provided parameters

¶ pHandle - a qHandle memory block.

¶ pOffset - Offset into the memory block.

qHandlePtr::setOffset()

void setOffset(qlong pOffset)

Set the Offset of the qhandleptr.

¶ pOffset- Offset into the memory block.

qHandlePtr::setNull()

void setNull()

Set the handle to zero.

Resource Functions
The following set of RES or Resource functions allow cross-platform access to your

external components resources.

REScloseLibrary()

void REScloseLibrary (HINSTANCE pInstance)

Closes an instance of a DLL previously opened with RESopenLibrary.

¶ pInstance - An instance of a library already opened with RESopenLibrary.

See also RESopenLibrary

REScloseResourceFork() (MacOS only)

void REScloseResourceFork(qshort pResFileNum)

Closes a Macintosh resource file.

¶ pResFileNum - The number returned from the RESopenResourceFork API.

See also RESopenResourceFork

 Resource Functions

 177

RESgetOmnisDAT()

HINSTANCE RESgetOmnisDAT(EXTCompInfo* pEci)

Returns an instance to the Omnis resources library (OMNISDAT.DLL on Windows).

¶ pEci - The pointer to the EXTCompInfo structure.

¶ returns - An instance to the Omnis resources.

Note: The instance returned must not be closed (i.e. via REScloseLibrary).

RESloadBitmap()

HBITMAP RESloadBitmap(HINSTANCE pLibrary, qlong pBmpID)

Retrieves a HBITMAP object from the resources.

¶ pLibrary - The library to extract a bitmap from.

¶ pBmpID - The resource id of the bitmap.

¶ returns - A bitmap object.

Note: The bitmap object must be deleted with GDIdeleteBitmap.

RESloadDialog()

qHandle RESloadDialog(HINSTANCE pInstance, qlong pResID)

Retrieves a dialog resource for use with custom output devices. RESloadDialog should be

called in response to a PM_OUT_GETPARMDLG message (see print manager reference).

¶ pInstance - The library to extract a bitmap from.

¶ pResID - The resource id of the dialog.

¶ returns - An Omnis handle.

Note: The bitmap object must be deleted with GDIdeleteBitmap.

RESloadString()

qlong RESloadString(HINSTANCE pInstance, qlong pResID, qchar* pBuffer, qlong

pBufferLen)

Retrieves a string from an open library resources.

¶ pInstance - The library to extract a string from.

¶ pResID - The resource id of the string.

¶ pBuffer - The address to receive the string

Chapter 2ðStructures, Messages & Functions

178

¶ pBufferLen - The maximum number of bytes allowed to copy into pBuffer

¶ returns - The actual number of bytes copied into pBuffer

RESloadString()

qlong RESloadString(HINSTANCE pInstance, qlong pResID, strxxx& pString)

Retrieves a string from an open library resources.

¶ pInstance - The library to extract a string from.

¶ pResID - The resource id of the string.

¶ pString - The string variable to receive the string.

¶ returns - The actual number of bytes copied into pString

RESopenLibrary()

HINSTANCE RESopenLibrary (strxxx& pLibraryPath)

Opens another library file. This can be used if, for example, you keep resources in another

file.

The component must call REScloseLibrary when it is finished with the library file.

¶ pInstance - The name of the library file to open

¶ returns - An instance to the opened library if successful, zero otherwise.

See also REScloseLibrary

RESopenResourceFork() (MacOS only)

qshort RESopenResourceFork(HINSTANCE pInstance)

This function should be used on the Macintosh if a Macintosh Resource Manager API needs

to be called, for example, GetResource. The HINSTANCE can be that normal global

component instance gInstLib, or another HINSTANCE that was returned from

RESopenLibrary.

 Bit Functions

 179

Example:

str255 path = str255(ñHD:Another Fileò);

HINSTANCE anotherInst = RESopenLibrary(path);

if (anotherInst)

{

 qshort resRefNum = RESopenResourceFork(anotherInst);

 Handle macHandle = GetResource(óTYPEô, id);

 REScloseResourceFork(resRefNum);

 REScloseLibrary(anotherInst);

}

else

{

 // Open library failed

}

¶ pInstance - The instance of the library.

¶ returns - Returns the number of the resource fork.

See also RESopenLibrary, REScloseResourceFork

Bit Functions
You can use the following functions for bit operations. The bit index range for all of the

functions is 0-31.

bitClear()

void bitClear(qint4& pValue, qshort pBit)

Clears a bit in a value.

¶ pValue - The value to clear a bit in

¶ pBit - The bit index to clear

bitSet()

void bitSet(qint4& pValue, qshort pBit)

Sets a bit in a value.

¶ pValue - The value to set a bit in

¶ pBit - The bit index to set

Chapter 2ðStructures, Messages & Functions

180

bitSet()

void bitset(qint4& pValue, qshort pBit, qbool pState)

Alters the state of a bit in a value.

¶ pValue - The value to set a bit in

¶ pBit - The bit index to set

¶ pState - The new state for the bit index

bitTest()

qbool bitTest(qint4 pValue, qshort pBit)

Tests a bit in a value.

¶ pValue - The value to use for bit testing.

¶ pBit - The bit index to test

¶ returns - qtrue if the bit is set and qfalse if the bit is clear

Example:

qlong newValue = 28, oldValue = 28;

if (bitTest(newValue,4))

{

 bitClear(newValue,4);

 if (newValue==12)

 {

 bitSet(newValue, 1);

 }

}

if (newValue==14)

{

 bitSet(newValue,1, qfalse);

 bitSet(new Value,4, qtrue);

}

if (newValue==oldValue)

{

 // all is OK.

}

 ObjInst Functions

 181

ObjInst Functions
You can use the following functions in order to construct new instances of Omnis objects.

EXTobjinst()

qobjinst EXTobjinst(EXTCompInfo* pEci)

EXTobjinst constructs a new qobjinst (for use with EXTfldval::setObjInst) from the

supplied EXTCompInfo structure. The new qobjinst is an empty external object which is

associated with the external library which created it but it has no subtype.

¶ pEci ï Pointer to an EXTCompInfo structure which Omnis uses to associate the object

with the appropriate external library. EXTCompInfo member mCompId will be used as

an identifier for that object.

¶ returns ï Returns a new qobjinst pointer if successful, zero otherwise.

ECOresetObjDetails can then be used to add properties and/or methods to this dynamic

object.

// Example of returning a dynamic object to OMNIS

// First setup mCompId so when we are required to do processing later,

// during WndProc, we know what the object is!

pEci - >mCompId = myObjectRef;

qobjinst myNewObj = EXTobjinst(pEci);

if (myNewObj)

{ // Succeeded, now pass the new object to OMNIS (transferring ownership)

 EXTfldval RtnVal;

 RtnVal.setObjInst(myNewObj, qtrue);

 ECOaddParam(pEci, &RtnVal);

}

else

{ // Failed (usually because of lack of memory)

}

See also ECOresetObjDetails,EXTfldval::setObjInst

Chapter 2ðStructures, Messages & Functions

182

EXTobjinst()

qobjinst EXTobjinst(qobjinst pObjInst)

This EXTobjinst function duplicates the supplied qobjinst to return a new qobjinst pointer.

¶ pObjInst ï qobjinst pointer to duplicate.

¶ Returns ï returns a new qobjinst if successful, zero otherwise.

// Example of new operator for the supplied objinst

qobjinst myNewObj = EXTobjinst(sourceObjInst);

if (myNewObj)

{ // Succeeded, now pass the new object to OMNIS (transferring ownership)

 EXTfldval RtnVal;

 RtnVal.setObjInst(myNewObj, qtrue);

 ECOaddParam(pEci, &RtnVal);

}

else

{ // Failed (usually because of lack of memory)

}

See also EXTfldval::setObjInst

 ObjInst Functions

 183

EXTobjinst()

qobjinst EXTobjinst(qapp pApp,str255* pClassName)

This EXTobjinst function creates a new instance of an object from the specified class name.

¶ pApp ï qapp pointer which is a unique pointer to the library in Omnis.

¶ pClassName ï str255 pointer which contains the class to create.

¶ Returns ï returns a new qobjinst if successful, zero otherwise.

// Example of constructing a new óoMy_OMNIS_Objectô

// Get qapp from locpinst held in EXTCompInfo structure

qapp myLibraryApp = ECOgetApp(pEci - >mInstLocp);

// Set up the classname from which to construct the new object

str255 myClassName(ñoMy_OMNIS_Objectò);

// Create the new object

qobjinst myNewObj = EXTobjinst(myLibraryApp, &myClassName);

if (myNewObj)

{ // Succeeded, now pass the new object to OMNIS (transferring ownership)

 EXTfldval RtnVal;

 RtnVal.setObjInst(myNewObj, qtrue);

 ECOaddParam(pEci, &RtnVal);

}

else

{ // Failed. Maybe due to lack of memory or that

 // oMy_OMNIS_Object doesnôt exist in the specified qapp

}

See also EXTfldval::setObjInst, ECOgetApp

Chapter 3ðstrxxx Class Reference

184

Chapter 3ðstrxxx Class
Reference

The strxxx class gives your external components convenient ways to manipulate strings.

Once your string is encapsulated inside the string class, it can be passed back and forth to

OMNIS or have various string operations performed on it.

The string class is split into three real classes, each derived from a base class strxxx. You

should not need to access the strxxx base class directly. Three classes are derived from

strxxx: str15, str80, and str255. Each can hold the maximum number of characters as

specified by the class name.

Characters in the string class are indexed using a range 1 to n. Index 0 is used to store the

real length of the string.

Member Functions strxxx Class

strxxx::strxxx()

The strxxx class has various constructors called from the three derived classes.

strxxx::assign()

void strxxx::assign(const strxxx& pAssignFrom)

Assigns one strxxx class to another.

¶ pAssignFrom - The string to be copied into this object.

strxxx::compare()

void strxxx::compare(const strxxx& pCompare)

Compares two strings, this string and the string passed.

¶ pCompare - This string to compare against.

return - This function returns:

 0 if the strings match.

 1 if this string is greater than pCompare.

 -1 if this string is less than pCompare.

 Member Functions strxxx Class

 185

strxxx::concat()

void strxxx::concat(const strxxx& pNewString)

Concatenates two strings together.

¶ pNewString - String to be concatenated on to this string.

strxxx::concat()

void strxxx::concat(qchar pChar)

Concatenates a single character on to this string.

¶ pChar - The character to be concatenated on to this string.

strxxx::concat()

void strxxx::concat(const strxxx& pString1, const strxxx& pString2)

Concatenates a group of strings together on to this string.

¶ pString1- String 1 to be concatenated.

¶ pString2- String 2 to be concatenated.

Other concatenation functions are:

void strxxx::concat(const strxxx& pString1, const strxxx& pString2,

 const strxxx& pString2)

void strxxx::concat(const strxxx& pString1, const strxxx& pString2,

 const strxxx& pString3, const strxxx& pString4)

strxxx::copy()

void strxxx::copy(const strxxx& pExtractFrom, qshort pStart, qshort pLen)

Copies a ranges of characters from the passed string, and uses them to set the contents of

this.

¶ pExtractFrom - The string to extract characters from.

¶ pStart - The starting index in pExtractFrom.

¶ pExtractFrom - The number of characters to copy from pExtractFrom.

Chapter 3ðstrxxx Class Reference

186

strxxx::cString()

qchar* strxxx::cString()

Returns the address of a c-style string. This function converts this string into a c-style string

first. A c-style string uses a null terminator, character 0x0 to represent the end of the strings

data.

¶ return - The address to a c-style string.

strxxx::deleet()

void strxxx::deleet(qshort pPos, qshort pLen)

Deletes a range of characters from a starting point in the string.

¶ pPos - The starting index to delete from.

¶ pLen - The number of characters to be deleted.

strxxx::insert()

void strxxx::insert(const strxxx& pInsertString ,qshort pPos)

Inserts a string at an index position.

¶ pInsertString - The string to be inserted.

¶ pPos - The index at which to insert the string.

strxxx::insert()

void strxxx::insert(qchar pInsertChar ,qshort pPos)

Inserts a single character at an index position.

¶ pInsertChar - The character to be inserted.

¶ pPos - The index at which to insert the character.

strxxx::insertStr()

void strxxx::insertStr(const strxxx& pInsertString)

Searches the string for a ó$ô and inserts a sub-string pInsertString replacing the ó$ô.

¶ pInsertString - The string to be inserted.

 Member Functions strxxx Class

 187

strxxx::insertStr0()

void strxxx::insertStr0(const strxxx& pInsertString)

Similar to strxxx::insertStr(), except that it searches for the character 0x0 instead of ó$ô.

pInsertString - The string to be inserted.

strxxx::length()

qshort strxxx::length()

Returns the length of the string stored in the object.

¶ returns - The length of the string.

strxxx::maxLength()

qshort strxxx::maxLength()

Returns the maximum length that can be stored in the string.

¶ returns - The maximum length of the string.

strxxx::operator !()

qbool strxxx::operator ! ()

Test is this string is not empty.

¶ return - Returns qtrue if the string contains some data.

strxxx::operator != ()

qbool strxxx::operator !=(const strxxx& pCompare)

Compares two strings.

¶ return - qtrue if the strings do not match and qtrue if the strings are the same.

strxxx::operator []()

qchar& strxxx::operator [] (qshort pIndex)

Returns the character from the string at the passed index.

¶ pIndex - The index to return a character from.

¶ return - The character from index [pIndex].

Chapter 3ðstrxxx Class Reference

188

strxxx::operator <()

qbool strxxx::operator < (const strxxx& pCompare)

Compares two strings.

¶ return - qtrue if this string is less than pCompare.

strxxx::operator <=()

qbool strxxx::operator <=(const strxxx& pCompare)

Compares two strings.

¶ return - qtrue if this string is less than or equal to pCompare.

strxxx::operator =()

void strxxx::operator = (const strxxx& pNewString)

Assigns a string.

¶ pNewString - Assigned pNewString to this string.

strxxx::operator =(qniltype qnil)

void strxxx::operator =(qniltype qnil1)

Sets the length of the string to 0.

strxxx::operator ==()

qbool strxxx::operator ==(const strxxx& pCompare)

Compares two strings.

¶ return - qtrue if the strings match and qfalse if the strings are different.

strxxx::operator >()

qbool strxxx::operator >(const strxxx& pCompare)

Compares two strings.

¶ return - qtrue if this string is greater than pCompare.

 Member Functions strxxx Class

 189

strxxx::operator >=()

qbool strxxx::operator >=(const strxxx& pCompare)

Compares two strings.

¶ return - qtrue if this string is greater than or equal to pCompare.

strxxx::pos()

qshort strxxx::pos(const strxxx& pFind)

Looks for the string pFind inside this.

¶ pFind - The string to search for.

¶ returns - The index if the string is found. 0 is returned if the string is not found.

strxxx::pos()

qshort strxxx::pos(qchar pFindChar)

Looks for the first occurrence of pFindChar inside this.

¶ pFindChar - The character to search for.

¶ returns - The index if the string is found. 0 is returned if the string is not found.

strxxx::pString()

qchar* strxxx::pString()

Returns the address of a Pascal-style string. This function converts this string into a Pascal

string first. A Pascal-style string uses the first byte of the string, index 0 as a length byte.

The following characters, index 1 to n, are string data.

¶ return - The address to a Pascal string.

strxxx::repWith0()

void strxxx::repWith0()

Replaces all ó$ô characters with a 0x0 character.

strxxx::upps()

void strxxx::upps()

Converts this to uppercase.

Chapter 3ðstrxxx Class Reference

190

strxxx::uprCmp()

void strxxx::uprCmp(const strxxx& pCompare)

Performs a case-insensitive comparison.

¶ pCompare - This string to compare against.

¶ return - This function returns:

 0 if the strings match.

 1 if this string is greater than pCompare.

 -1 if this string is less than pCompare.

Member Functions str15 Class

str15::str15()

str15::str15()

Constructor for an empty str15 string class.

str15::str15()

str15::str15(const str15& pCopyFrom)

Constructor for a new str15 object duplicating the contents of another str15 object.

pCopyFrom - The string to copy the initial value from.

str15::str15()

str15::str15(const strxxx& pCopyFrom)

Constructor for a new str15 object duplicating the contents of another strxxx object.

¶ pCopyFrom - The string to copy the initial value from to a maximum of 15 characters.

str15::str15()

str15::str15(const void* pData)

Constructor for a new str15 object setting an initial value.

¶ pData - This must be a null-terminated, c-style string. The new string has stores a

maximum of 15 characters.

 Member Functions str80 Class

 191

str15::str15()

str15::str15(qshort pLen, const void* pData)

Constructor for a new str15 object setting an initial value.

¶ pLen - The number of characters to copy from pData.

¶ pData - The source of the initial data for the new string.

str15::str15()

str15::str15(qchar pChar)

Constructor for a new str15 object setting an initial value.

¶ pChar - The initial value for the new string.

Member Functions str80 Class

str80::str80()

str80::str80()

Constructor for an empty str80 string class.

str80::str80()

str80::str80(const str80& pCopyFrom)

Constructor for a new str80 object duplicating the contents of another str80 object.

pCopyFrom - The string to copy the initial value from.

str80::str80()

str80::str80(const strxxx& pCopyFrom)

Constructor for a new str80 object duplicating the contents of another strxxx object.

¶ pCopyFrom - The string to copy the initial value from to a maximum of 80 characters.

Chapter 3ðstrxxx Class Reference

192

str80::str80()

str80::str80(const void* pData)

Constructor for a new str80 object setting an initial value.

¶ pData - This must be a null-terminated, c-style string. The new string has a maximum of

80 characters.

str80::str80()

str80::str80(qshort pLen, const void* pData)

Constructor for a new str80 object setting an initial value.

¶ pLen - The number of character to copy from pData.

¶ pData - The source of the initial data for the new string.

str80::str80()

str80::str80(qchar pChar)

Constructor for a new str80 object setting an initial value.

pChar - The initial value for the new string.

Member Functions str255 Class

str255::str255()

str255::str255()

Constructor for an empty str255 string class.

str255::str255()

str255::str255(const str255& pCopyFrom)

Constructor for a new str255 object duplicating the contents of another str255 object.

pCopyFrom - The string to copy the initial value from.

 Other Functions

 193

str255::str255()

str255::str255(const strxxx& pCopyFrom)

Constructor for a new str255 object duplicating the contents of another strxxx object.

¶ pCopyFrom - The string to copy the initial value from to a maximum of 255 characters.

str255::str255()

str255::str255(const void* pData)

Constructor for a new str255 object setting an initial value.

¶ pData - This must be a null-terminated, c-style string. The new string has a maximum of

255 characters.

str255::str255()

str255::str255(qshort pLen, const void* pData)

Constructor for a new str255 object setting an initial value.

¶ pLen - The number of character to copy from pData.

¶ pData - The source of the initial data for the new string.

str255::str255()

str255::str255(qchar pChar)

Constructor for a new str255 object setting an initial value.

¶ pChar - The initial value for the new string.

Other Functions

qlongToString()

void qlongToString(qlong pVal, strxxx& pString)

Converts a numeric value into a string value.

¶ pVal - The number to convert.

¶ pString - The string to receive the converted result.

Chapter 3ðstrxxx Class Reference

194

qrealToString()

void qrealToString(qreal pVal, qshort pDecimalPlace, strxxx& pString,

 qshort pSigDecimalPlace)

Converts a numeric value into a string value.

¶ pVal - The number to convert.

¶ pDecimalPlace - The number of decimal places to convert to.

¶ pString - The string to contain the converted result.

¶ pSigDecimalPlace - This is the number of significant digits the string is converted to if

the decimal places passed is larger than or equal to 24.

stringToQlong()

qbool stringToQlong(const strxxx& pString, qlong& pVal)

Converts a string into a numeric value.

¶ pString - The string to convert.

¶ pVal - The numeric result.

¶ returns - qtrue if the string could be converted, and qfalse if the string could not be

converted.

stringToQreal()

qbool stringToQreal(const strxxx& pString, qreal& pVal, qshort& pDecimalPlace)

Converts a string into a numeric value.

¶ pString - The string to convert.

¶ pVal - The numeric result.

¶ pDecimalPlace - Returns the number of decimal the converted value has.

¶ returns - qtrue if the string could be converted, and qfalse if the string could not be

converted.

 Other Functions

 195

lowC()

qchar lowC(qchar pChar)

Converts a single character to lowercase.

¶ pChar - The character to be converted.

¶ returns - The new lowercase character.

uppC()

qchar uppC(qchar pChar)

Converts a single character to uppercase.

¶ pString - The character to be converted.

¶ returns - The new uppercase character.

uppC()

void uppC(qchar* pAddress, qlong pLen)

Converts a range of characters to uppercase.

¶ pAddress - The address of a buffer of characters to be uppercased.

¶ pLen - The number of characters to uppercase.

uprCmp()

qshort uprCmp(qchar* pAddress, qchar* pAddress2, qlong pLen)

Performs a case insensitive comparison on two buffers for a specified length.

¶ pAddress1 - The address to a buffer of characters.

¶ pAddr ess2 - The address to a buffer of characters.

¶ pLen - The number of characters to uppercase in both strings.

¶ return - This function returns:

 0 if the strings match.

 1 if this string is greater than pCompare.

 -1 if this string is less than pCompare.

Chapter 4ðUnicode Character Conversion

196

Chapter 4ðUnicode
Character Conversion

Introduction
This section provides the reference information you need to convert your Omnis External

Components to Unicode so they will run in Omnis Studio 5.0, which is a Unicode-only

release. The information here is also useful for developers using Studio 4.x versions who

wish to create External Components for the Unicode version of Studio 4.x.

When building Unicode components for Omnis Studio, the following pre-processor

definitions should be added to the project settings: isunicode, UNICODE and _UNICODE.

These enable wide character versions of certain system functions and Omnis API calls.

To maintain backwards compatibility with the non-Unicode version of Omnis Studio, you

should create separate targets for the Unicode-Debug and Unicode-Release versions of your

components.

In this way, you can maintain a single set of source files for both Unicode and non-Unicode

targets by making use of conditional-compilation statements where necessary, i.e.

#ifdef isunicode

 // Unicode specific code here

#else

 // Non - Unicode specific code here

#endif

In the Unicode version of Omnis Studio, all character data exchanged with external

components should use the UTF-32 encoding (4 bytes per character).

There are a number of utility classes and helper functions provided by the component

library and these can be found in chrbasic.he, omstring.h & omstring.c.

 Unicode Data Types

 197

Unicode Data Types
The following data types are used by the component library for handling character data.

qchar

When isunicode is defined, the qchar data type is defined as unsigned long (4 bytes) and is

used to contain UTF-32 data. For non-Unicode targets, qchar defaults to unsigned char.

qoschar

When isunicode is defined, the qoschar data type is set to match the operating system API

encoding. For Windows and Mac OS X, this is UTF-16. For Linux this is UTF-8. Thus for

Windows and Mac OS X, qoschar is defined as unsigned short and for Linux, qoschar is

defined as char. When isunicode is not defined, qoschar is defined as char.

qbyte

The qbyte data type is always defined as unsigned char and is used for binary data and to

distinguish ASCII character data from Unicode data.

Utility Classes

CHRconvToOs

This class converts a string of qchar data to the operating system API encoding.

CHRconvToOs::CHRconvToOs()

CHRconvToOs::CHRconvToOs(strxxx &pString)

Creates a CHRconvToOs object from the supplied strxxx object.

CHRconvToOs::CHRconvToOs()

CHRconvToOs::CHRconvToOs(qchar *pAdd, qlong pLen)

Creates a CHRconvToOs object from the supplied qchar character buffer.

¶ pAdd point to the buffer containing UTF-32 data

¶ pLen is the length of the source data in characters

Chapter 4ðUnicode Character Conversion

198

CHRconvToOs::CHRconvToOs()

CHRconvToOs::CHRconvToOs(qchar *pAdd)

Creates a CHRconvToOs object from the supplied qchar buffer. The buffer must be null-

terminated.

CHRconvToOs::convToOs()

qlong CHRconvToOs::convToOs(qchar *pAdd, qlong pLen, qoschar *pDestBuffer)

Converts the supplied qchar buffer to qoschars, returning the result in pDestBuffer.

¶ pAdd is the source buffer containing UTF-32 data

¶ pLen is the length of the source data in characters

¶ pDestBuffer is a user-allocated destination buffer, which must be large enough to

accommodate the converted data.

CHRconvToOs::dataPtr()

qoschar* CHRconvToOs::dataPtr()

Returns a pointer to the converted data. The memory associated with this pointer is

managed by the object.

CHRconvToOs::len()

qlong CHRconvToOs::len()

Returns the length in bytes of the converted data contained inside the object.

CHRconvFromOs

This class converts a string of characters from the operating system encoding to the Omnis

internal encoding (qchars).

CHRconvFromOs::CHRconvFromOs()

CHRconvFromOs::CHRconvFromOs(qoschar *pAdd, qlong pLen)

Creates a CHRconvFromOs object from a buffer of qoschars.

¶ pLen is the length in characters of the source data

CHRconvFromOs::CHRconvFromOs()

CHRconvFromOs::CHRconvFromOs(qoschar *pAdd)

Creates a CHRconvFromOs object from a null-terminated string of qoschars, i.e. terminated

by two consecutive null bytes when qoschar is defined as unsigned short.

CHRconvFromOs::CHRconvFromOs() Mac OS X only

 Utility Classes

 199

CHRconvFromOs::CHRconvFromOs(CFStringRef pCFStringRef)

Creates a CHRconvFromOs object from the supplied CFStringRef parameter.

CHRconvFromOs::convFromOs()

qlong CHRconvFromOs::convFromOs(qoschar *pSrcAdd, qlong pSrcLen, qchar

*pDestAdd, qlong pDestMaxLen)

Converts the supplied source data, writing the converted data into pDestAdd. Returns the

number of characters converted.

¶ pSrcAdd points to the buffer containing the source data

¶ pSrcLen is the length of the source data in characters

¶ pDestAdd points to the user-allocated destination buffer which must be large enough to

contain the converted data

¶ pDestMaxLen is the maximum length of the destination buffer in characters

CHRconvFromOs::pascalStringFromOs()

void CHRconvFromOs::pascalStringFromOs(qoschar *pSrcAdd, qlong pSrcLen, qchar

*pDestStr, qlong pDestMaxLen)

Converts the supplied source data, writing the converted data into pDestStr. Character

position zero of the converted data contains the length in characters (0-255).

¶ pSrcAdd points to a buffer containing the source data

¶ pSrcLen is the length of the source data in characters

¶ pDestStr is a user allocated buffer which must be large enough to contain the converted

data

¶ pDestStr is the maximum size of the destination buffer in character units.

CHRconvFromOs::dataPtr()

qchar* CHRconvFromOs::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromOs::len()

qlong CHRconvFromOs::len()

Returns the length of the converted data in character units.

Chapter 4ðUnicode Character Conversion

200

CHRconvToAscii

This class converts a string of qchar data to ASCII bytes and assumes that the source data

contains 7-bit ASCII compatible characters.

CHRconvToAscii::CHRconvToAscii()

CHRconvToAscii::CHRconvToAscii(strxxx &pString)

Creates a CHRconvToAscii object from the supplied strxxx object.

CHRconvToAscii::dataPtr()

char* CHRconvToAscii::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToAscii::len()

qlong CHRconvToAscii::len()

Returns the length of the converted data.

CHRunicode

This class provides conversion functions between different Unicode encodings.

CHRunicode::utf8EncodeChar()

qlong CHRunicode::utf8EncodeChar(qulong pChar, qbyte *pOutUtf8, qbool pCanFatal)

Encodes a single character as UTF-8, and returns the encoded length in bytes.

¶ pChar is a single UTF-32 character value

¶ pOutUtf8 is a user-allocated destination buffer which must be at least 4 bytes in size

¶ pCanFatal allows the object to generate a fatal error on conversion failure

CHRunicode::getUtf8EncodedChar()

qulong CHRunicode::getUtf8EncodedChar(qbyte *pBuffer, qlong pInLen, qlong &pIndex,

qbool pAlwaysUTF8 = qfalse)

Gets a UTF-8 encoded character from the source buffer. Returns the converted character

value as UTF-32.

¶ pBuffer points to the address of a UTF-8 character string

¶ pInLen is the length in bytes of the entire UTF-8 string

¶ pIndex is the byte offset from pBuffer to the start of the UTF-8 character

 Utility Classes

 201

¶ pAlwaysUTF8 has no effect when isunicode is defined. Passing the value qfalse when

isunicode is not defined maps the UTF-32 character to the Omnis 8 bit character set (or

0xc0 (inverted question mark) if the UTF-32 is not in the Omnis 8 bit character set)

CHRunicode::charToUtf8()

qlong CHRunicode::charToUtf8(qchar *pInChar, qlong pInLen, qbyte *pOutUtf8)

Converts a string of Unicode characters to UTF-8. The output buffer length must be >=

UTF8_MAX_BYTES_PER_CHAR*pInLen bytes. Returns the encoded length.

¶ pInChar points to a buffer of UTF-32 characters

¶ pInLen is the size of the source buffer in character units

¶ pOutUtf8 points to a user-allocated destination buffer

CHRunicode::utf8ToChar()

qlong CHRunicode::utf8ToChar(qbyte *pInUtf8, qlong pInLen, qchar *pOutChar,

qlong pOutBufLen = 0)

Converts UTF-8 encoded data to Unicode (UTF-32). Returns the length of the converted

data in character units.

¶ pInUtf8 points to the source buffer

¶ pInLen is the length of the source data in bytes

¶ pOutChar points to a user-allocated destination buffer

¶ pOutBufLen is the maximum size of the destination buffer in characters

CHRunicode::convertOmnisToUnicode()

void CHRunicode::convertOmnisToUnicode(qbyte *pOmnisDataChars, qlong pLen, strxxx

&pDestStr)

Converts Omnis non-Unicode data, and stores the result in pDestStr.

¶ pOmnisDataChars points to a string of 8 bit data in the Omnis character set

¶ pLen is the length of the source data

¶ pDestStr is a strxxx object passed by reference

CHRunicode::convertOmnisToUnicode()

void CHRunicode::convertOmnisToUnicode(qbyte *pOmnisDataChars, qlong pLen, handle

&pDest)

Converts Omnis non-Unicode data, and stores result in handle memory.

¶ pOmnisDataChars points to a string of 8 bit data in the Omnis character set

Chapter 4ðUnicode Character Conversion

202

¶ pLen is the length of the source data

¶ pDestStr is a handle passed by reference

CHRunicode::convertOmnisToUnicode()

void CHRunicode::convertOmnisToUnicode(qbyte *pOmnisDataChars, qlong pLen, qchar

*pDest, qlong pDestBufLen = 0)

Converts Omnis non-Unicode data, and stores the result in pDest

¶ pOmnisDataChars points to a string of 8 bit data in the Omnis character set

¶ pLen is the length of the source data

¶ pDestStr points to a user-allocated buffer; large enough to contain the converted data

¶ If supplied, pDestBufLen specifies the maximum length of the destination buffer in

bytes

CHRunicode::encodedCharactersToChar()

qlong CHRunicode::encodedCharactersToChar(qbool pAlwaysUtf8, qbyte *pInEncChar,

qlong pInLen, qchar *pOutChar, qlong pOutBufLen = 0)

 Converts UTF-8/Omnis non-Unicode characters to UTF-32/qchar. Returns the length of the

converted data in character units.

¶ pAlwaysUtf8 specifies that the source data is UTF-8 encoded data. If qfalse, it is

assumed to be in the Omnis 8 bit character set

¶ pInEncChar points to a buffer containing the source data

¶ pInLen is the length in bytes of the source data

¶ pOutChar is a user-allocated destination buffer

¶ If supplied, pOutBufLen specifies the maximum length of the destination buffer in

bytes

CHRunicode::charToEncodedCharacters()

qlong CHRunicode::charToEncodedCharacters(qbool pAlwaysUtf8, qchar *pInChar, qlong

pInLen, qbyte *pOutEncChar)

Converts qchar characters to UTF-8/Omnis characters. Returns the length in bytes of the

converted data.

¶ pAlwaysUtf8 specifies that UTF-8 should be generated as the output; otherwise, the

data is converted to the Omnis 8 bit character set

¶ pInChar points to a buffer containing the source data

¶ pInLen is the length of the source data in character units

 Utility Classes

 203

¶ pOutEncChar is a user-allocated buffer large enough to contain the converted data

CHRunicode::setEncodingMode()

void CHRunicode::setEncodingMode(qbool pUtf8)

Sets the encoding mode for encodedCharactersToChar and charToEncodedCharacters

(UTF-8 or Omnis).

If qtrue, this setting overrides pAlwaysUtf8 and specifies that conversion to/from UTF-8 is

required.

CHRunicode::isBigEndian()

qbool CHRunicode::isBigEndian()

Returns qtrue if the ordermsb preprocessor definition was used (i.e. if multi-byte characters

are stored with the most significant byte first), qfalse otherwise.

CHRunicode::is7Bit()

qbool CHRunicode::is7Bit(qchar *pAdd, qlong pLen)

Returns qtrue if the source data contains entirely 7-bit data (such that UTF-8 and Omnis

encodings are identical), qfalse otherwise.

¶ pAdd points to a buffer containing UTF-32 data

¶ pLen is the length of the source data in character units

CHRunicode::isUtf8Data()

qbool CHRunicode::isUtf8Data(qbyte *pAdd, qlong pLen)

Returns qtrue if the data satisfies the UTF-8 encoding rules. Note that this does not preclude

the possibility that a non-UTF-8 string may pass this check where the source string contains

extended ASCII characters and these coincide with UTF-8 encoding bytes.

¶ pAdd points to a buffer containing 8 bit/UTF-8 data

¶ pLen is the length of the source data in bytes

CHRconvToUtf16

This class converts a string of UTF-8 data to the UTF-16 encoding.

CHRconvToUtf16:: CHRconvToUtf16()

CHRconvToUtf16::CHRconvToUtf16(qbyte *pAdd, qlong pLen, qbool pSwap = qfalse,

qbool pAddBom = qfalse)

Creates a CHRconvToUtf16 object from the supplied source data.

¶ pAdd points to a buffer containing UTF-8 data

Chapter 4ðUnicode Character Conversion

204

¶ pLen is the length of the source data in bytes

¶ pSwap specifies that the output byte ordering should be reversed (See

CHRunicode::isBigEndian())

¶ pAddBom specifies that an additional Byte-Order-Marker should be placed at element

zero of the converted data

CHRconvToUtf16::dataPtr()

UChar * CHRconvToUtf16::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToUtf16::len()

qlong CHRconvToUtf16::len()

Returns the length of the converted data in bytes.

CHRconvFromUtf16

This class converts a string of UTF-16 encoded data to UTF-8

CHRconvFromUtf16:: CHRconvFromUtf16()

CHRconvFromUtf16::CHRconvFromUtf16(UChar *pAdd, qlong pLen, qbool pSwap =

qfalse)

Creates a CHRconvFromUtf16 object from the supplied source data.

¶ pAdd points to a buffer containing UTF-16 encoded data

¶ pLen is the length of the source data in bytes

¶ pSwap specifies that the byte ordering of the source data is opposite to the platform

default

CHRconvFromUtf16::dataPtr()

qbyte* CHRconvFromUtf16::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromUtf16::len()

qlong CHRconvFromUtf16::len()

Returns the length of the converted data in bytes.

 Utility Classes

 205

CHRconvToBytes

This class converts a character buffer to a stream of bytes. For Unicode targets, the

characters are encoded using UTF-8; in the non-Unicode version, the characters are

unchanged.

CHRconvToBytes::CHRconvToBytes()

CHRconvToBytes::CHRconvToBytes (qchar *pAdd, qlong pLen)

Creates a CHRconvToBytes object from the supplied source data.

¶ pLen is the length of the data pointed to by pAdd in character units

CHRconvToBytes::CHRconvToBytes()

CHRconvToBytes::CHRconvToBytes (qchar *pAdd)

Creates a CHRconvToBytes object from the supplied source data.

¶ pAdd points to a null -terminated string of qchars

CHRconvToBytes::dataPtr()

qbyte * CHRconvToBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToBytes::len()

qlong CHRconvToBytes::len()

Returns the length of the converted data in bytes.

CHRconvToBytes::makeCanonical() Mac OS X only

void CHRconvToBytes::makeCanonical();

Makes the UTF-8 representation canonical, which is the required representation for Mac OS

X file system calls. The canonical representation decomposes all composed characters (e.g.

e+acute accent) into their components (e.g. the letter e, followed by acute accent symbol).

CHRconvToBytes::makeUtf8PascalString()

void CHRconvToBytes::makeUtf8PascalString(qchar *pAdd, qlong pLen, qbyte

*pPascalString, qlong pPascalStringBufferLength);

Converts the supplied source data to UTF-8 with a length byte at element zero , hence the

length of the source data is limited to 255 characters.

¶ pAdd points to a buffer containing the source data

¶ pLen is the length of the source data in characters. 255 maximum

¶ pPascalString points to a user-allocated destination buffer

Chapter 4ðUnicode Character Conversion

206

¶ pPascalStringBufferLength is the maximum size of the destination buffer in bytes

CHRconvFromBytes

This class converts a buffer of 8 bit/UTF-8 encoded characters to qchars . For Unicode

targets, the source data can be UTF-8. For non-Unicode targets, the characters are

unchanged.

CHRconvFromBytes::CHRconvFromBytes()

CHRconvFromBytes::CHRconvFromBytes (qbyte *pAdd, qlong pLen)

Creates a CHRconvFromBytes object from the supplied source data.

¶ pAdd points to a buffer containing the 8 bit/UTF-8 data

¶ pLen is the length of the source data in bytes

CHRconvFromBytes::CHRconvFromBytes()

CHRconvFromBytes::CHRconvFromBytes (qbyte *pAdd)

Creates a CHRconvFromBytes object from the supplied source data.

¶ pAdd points to a null-terminated string of 8 bit/UTF-8 data

CHRconvFromBytes::dataPtr()

qchar * CHRconvFromBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromBytes::len()

qlong CHRconvFromBytes::len()

Returns the length of the converted data in character units.

CHRconvFromLatin1ApiBytes

This class converts a string of Windows Latin 1 bytes to qchars.

CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes()

CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes(qbyte *pAdd, qlong pLen)

Creates a CHRconvFromLatin1ApiBytes object from the supplied source data.

¶ pAdd points to a buffer containing the Windows Latin 1 encoded data

¶ pLen is the length of the source data in bytes

 Utility Classes

 207

CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes()

CHRconvFromLatin1ApiBytes::CHRconvFromLatin1ApiBytes(qbyte *pAdd)

Creates a CHRconvFromLatin1ApiBytes object from the supplied source data.

¶ pAdd points to a null terminated string of Windows Latin 1 encoded data

CHRconvFromLatin1ApiBytes::dataPtr()

qchar * CHRconvFromLatin1ApiBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromLatin1ApiBytes::len()

qlong CHRconvFromLatin1ApiBytes::len()

Returns the length of the converted data in character units.

CHRconvToLatin1ApiBytes

This class converts a string of qchar data to the Windows/Latin1 code page.

CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes()

CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes(qchar *pAdd, qlong pLen)

Creates a CHRconvToLatin1ApiBytes object from the supplied source data.

¶ pAdd points to the source buffer containing qchar data

¶ pLen is the length of the source data in character units

CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes()

CHRconvToLatin1ApiBytes::CHRconvToLatin1ApiBytes(qchar *pAdd)

Creates a CHRconvToLatin1ApiBytes object from the supplied source data.

¶ pAdd points to a null terminated string of qchar data

CHRconvToLatin1ApiBytes::dataPtr()

qbyte * CHRconvToLatin1ApiBytes::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToLatin1ApiBytes::len()

qlong CHRconvToLatin1ApiBytes::len()

Returns the length of the converted data in bytes.

Chapter 4ðUnicode Character Conversion

208

CHRconvToEncodedCharacters

This class converts a string of qchar data to UTF-8 or Omnis 8 bit data.

CHRconvToEncodedCharacters::CHRconvToEncodedCharacters()

CHRconvToEncodedCharacters::CHRconvToEncodedCharacters(qbool pAlwaysUtf8,

qchar *pAdd, qlong pLen, csettype pSrcCset = csetOdata)

Creates a CHRconvToEncodedCharacters object from the supplied source data.

¶ pAlwaysUtf8 specifies that the source data always contains Unicode characters

¶ pAdd points to a buffer containing rthe source data

¶ pLen is the length of the source data in character units

¶ For non-Unicode data, pSrcCset specifies the Omnis character set used for the source

data. Character set constants are defined in basics.h

CHRconvToEncodedCharacters::dataPtr()

qbyte * CHRconvToEncodedCharacters::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToEncodedCharacters::len()

qlong CHRconvToEncodedCharacters::len()

Returns the length of the converted data in bytes.

CHRconvToEncodedCharacters::makeCanonical() Mac OS X only

void CHRconvToEncodedCharacters ::makeCanonical();

Makes the UTF-8 representation canonical, for MacOSX file system calls. Assumes that the

buffer contains UTF-8 data.

CHRconvFromEncodedCharacters

This class converts a string of Omnis 8 bit or UTF-8 encoded data to qchars.

CHRconvFromEncodedCharacters::CHRconvFromEncodedCharacters()

CHRconvFromEncodedCharacters ::CHRconvFromEncodedCharacters(qbool

pAlwaysUtf8, qbyte *pAdd, qlong pLen, csettype pDestCset = csetOdata)

Creates a CHRconvFromEncodedCharacters from the supplied source data.

¶ pAlwaysUtf8 specifies that conversion from UTF-8 will definitely be required

¶ pAdd points to a buffer containing the source data

¶ pLen contains the length of the source data in bytes

 Utility Classes

 209

¶ pDestCset specifies the Omnis character set to be assumed when handling ASCII data.

Omnis character set constants are defined in basics.h

CHRconvFromEncodedCharacters::CHRconvFromEncodedCharacters()

CHRconvFromEncodedCharacters ::CHRconvFromEncodedCharacters(qbool

pAlwaysUtf8, qbyte *pAdd)

Creates a CHRconvFromEncodedCharacters from the supplied source data.

¶ pAdd points to a null terminated string of UTF-8 characters

CHRconvFromEncodedCharacters::dataPtr()

qchar * CHRconvFromEncodedCharacters ::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromEncodedCharacters::len()

qlong CHRconvFromEncodedCharacters::len()

Returns the length of the converted data in character units.

CHRconvToOmnis

This class converts a string of qchar data to the 8 bit Omnis character set (csetOdata). No

conversion is performed for non-Unicode targets.

CHRconvToOmnis:: CHRconvToOmnis()

CHRconvToOmnis::CHRconvToOmnis(qchar *pAdd, qlong pLen)

Creates a CHRconvToOmnis object from the supplied source data.

¶ pAdd points to a buffer containing the source data

¶ pLen contains the length of the source data in character units

CHRconvToOmnis::dataPtr()

qbyte * CHRconvToOmnis::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToOmnis::len()

qlong CHRconvToOmnis::len()

Returns the length of the converted data in bytes.

Chapter 4ðUnicode Character Conversion

210

CHRconvFromOmnis

This class converts a string of 8 bit Omnis character set data to qchars. The source data is

assumed to be from the Omnis character set (csetOdata). No conversion is performed for

non-Unicode targets.

CHRconvFromOmnis::CHRconvFromOmnis()

CHRconvFromOmnis::CHRconvFromOmnis(qbyte *pAdd, qlong pLen)

Creates a CHRconvFromOmnis object from the supplied source data.

¶ pAdd points to a buffer containing the source data

¶ pLen contains the length of the source data in bytes

CHRconvFromOmnis::dataPtr()

qchar * CHRconvFromOmnis ::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromOmnis::len()

qlong CHRconvFromOmnis::len()

Returns the length of the converted data in character units.

CHRconvToUniChar

This class converts from qchar to UniChar (16 bit Unicode).

CHRconvToUniChar::CHRconvToUniChar() Mac OS X only

Creates an empty CHRconvToUniChar object for subsequent initialisation.

CHRconvToUniChar::set() Mac OS X only

void CHRconvToUniChar::set(qchar *pAdd, qlong pLen)

Initialises the CHRconvToUniChar object from the supplied source data.

¶ pAdd points to a buffer containing the source data (qchars)

¶ pLen contains the length of the source data in character units

 Utility Classes

 211

CHRconvToUniChar::CHRconvToUniChar()

CHRconvToUniChar::CHRconvToUniChar(qchar *pAdd, qlong pLen)

Creates a CHRconvToUniChar using the supplied source data. The source data must

contain characters in the csetApi character set.

¶ pAdd points to a buffer containing the source data

¶ pLen contains the length of the source data in character units

CHRconvToUniChar::dataPtr()

UniChar * CHRconvToUniChar ::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToUniChar::len()

qlong CHRconvToUniChar::len()

Returns the length of the converted data in UniChar units.

CHRconvFromCodePage

This class converts a string of 8 bit encoded character data in the specified code page to

qchars. Code page constants (preUniType é) can be found in dmconst.he

CHRconvFromCodePage::CHRconvFromCodePage()

CHRconvFromCodePage::CHRconvFromCodePage(preconst pCodePage, qbyte *pAdd,

qlong pLen)

Creates a CHRconvFromCodePage object from the supplied source data.

¶ pCodePage specifies the code page used by the source data

¶ pAdd points to a buffer containing rthe source data

¶ pLen contains the length of the source data in bytes

CHRconvFromCodePage::dataPtr()

qchar * CHRconvFromCodePage::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromCodePage::len()

qlong CHRconvFromCodePage::len()

Returns the length of the converted data in character units.

CHRconvFromCodePage::codePageOk()

qbool CHRconvFromCodePage::codePageOk()

Chapter 4ðUnicode Character Conversion

212

Returns qtrue if the object successfully retrieved the specified code page information, qfalse

if the specified code page is not supported.

CHRconvFromCodePage::getCodePage()

qushort * CHRconvFromCodePage::getCodePage(preconst pCodePage)

Returns a code page array of 256 unsigned shorts that are used to provide the mapping from

the code page to UTF-32. Each code page has its own mapping indexed by the 8 bit data

values for the code page.

CHRconvToCodePage

This class converts a string of qchars the specified 8 bit code page. Source characters are

assumed to be from the specified code page and are mapped accordingly. Any characters

not present in the specified code page are mapped to ó.ô.

CHRconvToCodePage::CHRconvToCodePage()

CHRconvToCodePage::CHRconvToCodePage(preconst pCodePage, qchar *pAdd, qlong

pLen)

Creates a CHRconvToCodePage object from the supplied source data.

¶ pCodePage specifies the destination code page to be assumed. See dmconst.he for a list

of preUniTypeé constants.

¶ pAdd points to a buffer containing the source data

¶ pLen contains the length of the source data in character units

CHRconvToCodePage::dataPtr()

qbyte * CHRconvToCodePage::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToCodePage::len()

qlong CHRconvToCodePage::len()

Returns the length of the converted ASCII data in bytes.

CHRconvToCodePage::codePageOk()

qbool CHRconvToCodePage::codePageOk()

Returns qtrue if the object successfully retrieved the specified code page information, qfalse

if the specified code page is not supported.

 Utility Classes

 213

CHRconvToCodePage::getCodePage()

qbyte * CHRconvToCodePage::getCodePage(preconst pCodePage)

Returns the reverse code page mapping table; an array which is indexed by Unicode

character values. The first 4 bytes of the array (cast to a long) indicate the number of

significant bytes in the array. Unicode characters past the end of the array do not exist in the

code page, and are mapped as a dot.

CHRconvFromUnicodeEncoding

This class converts a string of data from the specified encoding to the Omnis internal

encoding. The encoding is specified using one of the preUniTypeé constants defined in

dmconst.he

CHRconvFromUnicodeEncoding::CHRconvFromUnicodeEncoding()

CHRconvFromUnicodeEncoding::CHRconvFromUnicodeEncoding(preconst

pReadEncoding, qbyte *pData, qlong pByteLen)

Creates a CHRconvFromUnicodeEncoding object from the supplied source data.

¶ pReadEncoding specifies the encoding of the source data, for example;

preUniTypeNativeCharacters

¶ pData points to a buffer containing the source data (cast as qbyte *)

¶ pLen specifies the length of the source data in bytes

CHRconvFromUnicodeEncoding::isChar()

qbool CHRconvFromUnicodeEncoding::isChar()

Returns qtrue if the data after conversion is character data as opposed to binary data.

CHRconvFromUnicodeEncoding::charDataPtr()

qchar * CHRconvFromUnicodeEncoding::charDataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromUnicodeEncoding::charLen()

qlong CHRconvFromUnicodeEncoding::charLen()

Returns the length of the converted data in character units.

CHRconvFromUnicodeEncoding::dataPtr()

qbyte * CHRconvFromUnicodeEncoding::dataPtr()

Returns a pointer to the raw converted data (cast as qbytes), the memory for which is

managed by the object.

Chapter 4ðUnicode Character Conversion

214

CHRconvFromUnicodeEncoding::len()

qlong CHRconvFromUnicodeEncoding::len()

Returns the length of the converted data in bytes.

CHRconvFromUnicodeEncoding::getCset()

csettype CHRconvFromUnicodeEncoding::getCset()

Returns a preUniTypeé constant representing the character set used to perform the

conversion.

CHRconvToUnicodeEncoding

This class converts a string of qchars to the specified Unicode encoding. The encoding is

specified using one of the preUniType constants defined by dmconst.he. Character data for

the non-Unicode version must be in the Omnis character set (except when writing native

characters or binary data).

CHRconvToUnicodeEncoding::CHRconvToUnicodeEncoding()

CHRconvToUnicodeEncoding::CHRconvToUnicodeEncoding(preconst pWriteEncoding,

qbyte *pData, qlong pByteLen, qbool pAddBom = qtrue)

Creates a CHRconvToUnicodeEncoding object from the supplied source data.

¶ pWriteEncoding specifies the target encoding

¶ pData is a pointer to the source data (cast as qbyte *)

¶ pByteLen specifies the length of the source data in bytes.

¶ pAddBom specifies that element zero of the output should contain a Byte-Order-

Marker, used for example when writing Unicode data to external files.

CHRconvToUnicodeEncoding::dataPtr()

qbyte * CHRconvToUnicodeEncoding::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvToUnicodeEncoding::len()

qlong CHRconvToUnicodeEncoding::len()

Returns the length of the converted data in bytes.

CHRconvToUtf32FromChar

Intended for use with non-Unicode targets, this class operates on a string of qchar data,

converting it to the UTF-32 encoding.

 Utility Classes

 215

CHRconvToUtf32FromChar::CHRconvToUtf32FromChar()

CHRconvToUtf32FromChar::CHRconvToUtf32FromChar(qchar *pData, qlong pLen,

qbool pOppositeEndian, qbool pAddBom = qfalse)

Creates a CHRconvToUtf32FromChar object from the supplied source data.

¶ pData is a pointer to the source data

¶ pLen specifies the length of the source data in character units

¶ pOppositeEndian specifies that the byte-endian order of the output characters should be

the opposite of the platform default

¶ pAddBom specifies that a Byte-Order-Marker should be placed at element zero of the

converted data, used for example when writing Unicode data to external files

CHRconvToUtf32FromChar::dataPtr()

U32Char * CHRconvToUtf32FromChar::dataPtr()

Returns a pointer to the converted UTF-32 data, the memory for which is managed by the

object.

CHRconvToUtf32FromChar::len()

qlong CHRconvToUtf32FromChar::len()

Returns the length of the converted data in charcter units.

CHRconvFromUtf32ToChar

This class operates on a string of encoded UTF-32 data, stripping out any Byte-Order-

Marker and optionally reversing the byte-endian order. Intended for use with non-Unicode

targets.

CHRconvFromUtf32ToChar::CHRconvFromUtf32ToChar()

CHRconvFromUtf32ToChar ::CHRconvFromUtf32ToChar(U32Char *pData, qlong pLen,

qbool pOppositeEndian)

Creates a CHRconvFromUtf32ToChar object for the supplied source data.

¶ pData specifies a pointer to the source data

¶ pLen specifies the length of the source data in charcter units

¶ pOppositeEndian specifies that the byte-order of the source data should be read in the

opposite order to the platform default

Chapter 4ðUnicode Character Conversion

216

CHRconvFromUtf32ToChar::dataPtr()

qchar * CHRconvFromUtf32ToChar::dataPtr()

Returns a pointer to the converted data, the memory for which is managed by the object.

CHRconvFromUtf32ToChar::len()

qlong CHRconvFromUtf32ToChar::len()

Returns the length of the converted data in character units.

Other Functions
The following functions are found in omstring.h and provide additional support for Unicode

(UTF-32) character strings.

OMstré Functions

There are a number of Omnis string functions to mirror the standard C string functions.

These operate on null-terminated strings of qchars and are prefixed to distinguish them from

their ASCII counterparts. Functions include:

qulong OMstrlen(const qchar *pString)

qchar* OMstrcpy(qchar *pDest, const qchar *pSource)

qchar* OMstrncpy(qchar *pDest, const qchar *pSource, qlong pCount)

qchar* OMstrcat(qchar *pDest, const qchar *pSource)

qchar* OMstrncat(qchar *pDest, const qchar *pSource, qlong pCount)

qbool OMstrequal(const qchar *pString1, const qchar *pString2)

qchar* OMstrstr(const qchar *pString, const qchar *pStrCharSet)

qchar* OMstrchr(const qchar *pString, qchar pChar)

qchar* OMstrrchr(const qchar *pString, qchar pChar)

qlong OMstrcspn(const qchar *pString, const qchar *pStrCharSet)

qlong OMstrcmp(const qchar *pString1, const qchar *pString2)

qlong OMstrncmp(const qchar *pString1, const qchar *pString2, qlong pCount)

qlong OMstrspn(const qchar *pString, const qchar *pStrCharSet)

qchar* OMstrpbrk(const qchar *pString, const qchar *pStrCharSet)

qchar* OMstrtok(qchar *pStrToken, const qchar *pStrDelimit)

There are also functions to convert between character strings and integers:

 Other Functions

 217

qchar* OMlongToString(qchar *pDest, qlong pLong)

qulong OMstrtoul(qchar *pText, qchar **pTextEnd, qlong pBase)

QTEXT() Macro

This is useful for creating and supplying literal string values inside components. When

_UNICODE is defined, QTEXT() appends the L ## escape sequence onto the supplied text.

This instructs the compiler to treat the resulting text as a string of qoschars. QTEXT() can

be used anywhere where a qoschar* argument is required, for example:

str255 myString(QTEXT("Default Value")); //call the qoschar*

constructor

QCHARLEN() and QOSCHARLEN() Macros

These provide a simple conversion from a supplied byte length to the corresponding qchar

or qoschar character length respectively. It should be noted that they do not operate on

strings or arrays of characters directly. They simply divide the supplied parameter by 4 in

the case of QCHARLEN() or 2 (or 1) in the case of QOSCHARLEN().

QBYTELEN() and QOSBYTELEN() Macros

These provide a simple conversion from a supplied character length to the corresponding

UTF-32 or UTF-16/UTF-8 byte length respectively. It should be noted that they do not

operate on strings or arrays of characters directly. They simply multiply the supplied

parameter by 4 in the case of QCHARLEN() or 2 (or 1) in the case of QOSCHARLEN().

Chapter 5ðEXTBMPref & EXTCURref

218

Chapter 5ðEXTBMPref &
EXTCURref

Introdcution
The EXTBMPref class gives your external components access to the OMNISPIC.DF1 and

USERPIC.DF1 data files handled by Omnis. These data files normally reside in the ICONS

subdirectory of your Omnis installation. All icons in Omnis are referenced by an icon

identifier, or $iconid, which can be modified in the Omnis icon editor.

With the exception of custom cursors and full page bitmaps, each icon in Omnis can have

three drawing sizes, 16x16, 32x32 and 48x48. Each icon has a pre-set default size that it

uses unless another size is specified. This default size can also be modified using the Omnis

icon editor. Some icons also have drawing modes. For example, checkbox icons have

various modes, normal, checked, highlighted etc.

Enumerations

ePicModes (EXTBMPref only)

An enum defining the drawing modes supported by the icon-drawing function in this class.

picNormal

The icon is drawn in its normal state.

picChecked

The icon is drawn in its checked state.

picHilited

The icon is drawn in its hilited state.

picCheckedHilited

The icon is drawn in its checked and hilited state.

 EXTBMPref Class Reference

 219

ePicSize (EXTBMPref only)

An enum defining the drawing size supported by the icon drawing function in this class.

ePicDef

The size of the icon depends on the default size set in the Omnis icon editor.

ePic16

The 16x16 version of the icon is drawn.

ePic32

The 32x32 version of the icon is drawn.

ePic48

The 48x48 version of the icon is drawn.

EXTBMPref Class Reference

EXTBMPref::EXTBMPref()

EXTBMPref::EXTBMPref(qlong pIconID, qlong pDefault = 0, qapp pApp = 0)

The constructor for the external bitmap class. After construction, the class can be used to

interrogate the icon or draw the icon. When you have finished manipulating the icon, the

class should be destructed.

¶ pIconID - the icon associated with this class.

¶ pDefault - the default icon id is used when pIconID is zero.

¶ pApp - this parameter must be specified for web client components. See ECOgetApp.

EXTBMPref::~EXTBMPref()

EXTBMPref::~EXTBMPref()

The destructor for the external bitmap class. The destruction of the class informs Omnis that

you have finished with the icon.

EXTBMPref::addBmpSize()

qlong EXTBMPref::addBmpSize(qlong pIconID, ePicSize pSize)

Returns a new icon id with the specified pSize added.

¶ pIconId - The icon id to add a size to.

¶ pSize - The size to be added to the icon id.

Chapter 5ðEXTBMPref & EXTCURref

220

¶ return - A new icon id with the icon size pSize embedded.

Note: This is a static member function.

EXTBMPref::copyImage()

HBITMAP EXTBMPref::copyImage(ePicSize pSize = ePicDef)

HBITMAP EXTBMPref::copyImage(qcol pFillColor, ePicSize pSize = ePicDef)

Returns a bitmap for the icon this class refers.

¶ pFillColor - When calling copyImage specifying a fill color, the transparent pixels of

the image are replaced with the given color.

¶ pSize - The icon size to return.

¶ return - Returns a new HBITMAP object if successful.

Note: The returned HBITMAP must be destroyed with GDIdeleteBitmap.

EXTBMPref::copyImage()

HBITMAP EXTBMPref::copyImage(qcol pFillColor, ePicSize pSize = ePicDef)

Returns a bitmap for the icon this class references. The transparent color of the bitmap is

replaced with the given color.

¶ pFillColor - The replacement color for the transparent color of the bitmap.

¶ pSize - The icon size to return.

¶ return - Returns a new HBITMAP object if successful.

Note: The returned HBITMAP must be destroyed with GDIdeleteBitmap.

EXTBMPref::copyMask()

HBITMAPMASK EXTBMPref::copyMask(ePicSize pSize = ePicDef)

Returns a bitmap mask for the icon this class refers.

¶ pSize - The icon size to return a mask for.

¶ return - Returns a new HBITMAPMASK object if successful.

Note: The returned HBITMAPMASK must be destroyed with GDIdeleteBitmap.

EXTBMPref::draw()

void EXTBMPref::draw(HDC pHdc, qrect* pRect, ePicSize pSize = ePicDef,

 ePicModes pWhich = picNormal, qbool pDisabled = qfalse,

 EXTBMPref Class Reference

 221

 qcol pHilited = colNone, qbool pScale = qfalse,

 qjst pJstHoriz = jstLeft, qjst pJstVert = jstLeft)

Draws the iconôs image into a device context.

¶ pHdc - The drawing device to draw into.

¶ pRect - The destination drawing rectangle.

¶ pSize - The icon size to draw.

¶ pWhich - The icon drawing mode to use.

¶ pDisabled - If qtrue the image is drawn in a disabled state.

¶ pHilited - Controls how the icon is highlighted.

¶ pScale - If qtrue the icon is scaled to the full size of pRect.

¶ pJstHoriz - The horizontal drawing justification. This is ignored if pScale is qtrue.

¶ pJstVert - The horizontal drawing justification. This is ignored if pScale is qtrue.

EXTBMPref::drawMask()

void EXTBMPref::drawMask(HDC pHdc, qrect* pRect, ePicSize pSize = ePicDef,

 ePicModes pWhich = picNormal, qbool pScale = qfalse,

 qjst pJstHoriz = jstLeft, qjst pJstVert = jstLeft)

Draws the icons mask image into a device context.

¶ pHdc - The drawing device to draw into.

¶ pRect - The destination drawing rectangle.

¶ pSize - The icon size to draw.

¶ pWhich - The icon drawing mode to use.

¶ pScale - If qtrue the icon is scaled to the full size of pRect.

¶ pJstHoriz - The horizontal drawing justification. This is ignored if pScale is qtrue.

¶ pJstVert - The horizontal drawing justification. This is ignored if pScale is qtrue.

EXTBMPref::getBmpSize()

ePicSize EXTBMPref::getBmpSize(qlong pIconID)

Returns the icon size extracted from the icon id passed.

¶ pIconId - The icon id to extract an icon size from.

¶ return - The iconôs size.

Chapter 5ðEXTBMPref & EXTCURref

222

Note: This is a static member function.

EXTBMPref::getIconId()

qlong EXTBMPref::getIconId()

Returns the icon id that was associated with this class at construction.

¶ return - Returns the icon id.

EXTBMPref::getRect()

void EXTBMPref::getRect(qrect* pRect, ePicSize pSize = ePic16)

Returns a bounding rectangle for the icon. The resulting size depends on the passed size

parameter.

¶ pRect - set to the correct bounding rectangle size.

¶ pSize - Controls the returned size. This parameter defaults to the 16x16 size.

EXTBMPref::hasMode()

qbool EXTBMPref::hasMode(ePicModes pMode = picNormal)

Used to determine if the icon this class refers to supports a particular drawing mode.

¶ pMode - The icon drawing mode to test against. This parameter defaults to the normal

drawing mode.

¶ return - Returns qtrue if the icon does support pMode, and return qfalse if it does not.

EXTBMPref::hasSize()

qbool EXTBMPref::hasSize(ePicSize pSize = ePic16)

Used to determine if the icon this class refers to has a particular icon size.

¶ pSize - The icon size to test against. This parameter defaults to the 16x16 size.

return - Returns qtrue if the icon does support pSize, and return qfalse it does not.

 EXTCURref Class Reference (v2.2)

 223

Example:

// This example gets a bitmap from Omnis using icon reference number 1000.

// The icon reference is asked how big it should draw by default. The draw

// method is called to draw the icon in a rectangle. The icon is centered

// both vertically and horizontally in the rect. NOTE: it is not clipped to

// the rectangle. It is very important to delete the bitmap reference

// when you are finished.

WNDpaintStruct paintStruct;

WNDbeginPaint(mHWnd, &paintStruct);

EXTBMPref bmpRef(1000);

ePicSize defaultSize = EXTBMPref::getBmpSize(1000);

bmpRef.draw(paintStruct.hdc, &drawRect , defaultSize, picNormal,

qfalse, colNone, qfalse, jstCenter, jstCenter);

WNDendPaint(mHWnd, &paintStruct);

EXTBMPref::transparentColor()

qcol EXTBMPref::transparentColor()

Used to get the transparent color of the bitmap image.

EXTCURref Class Reference (v2.2)
The EXTCURref class gives your external components access to custom cursors in the

OMNISPIC.DF1 and USERPIC.DF1. It allows you to create and set custom mouse cursors

by specifying the custom cursor ID.

EXTCURref::EXTCURref()

EXTCURref::EXTCURref(qlong pCursorID, qlong pDefault = 0, qapp pApp = 0)

The constructor for the external cursor class. After construction, the class can be used to

create a HCURSOR. When you have finished with the cursor reference, the class should be

destructed. Destructing the class will not destroy the HCURSOR which was created from it.

¶ pCursorID - the cursor associated with this class.

¶ pDefault - the default cursor id is used when pCursorID is zero.

¶ pApp - this parameter must be specified for web client components. See ECOgetApp.

Chapter 5ðEXTBMPref & EXTCURref

224

EXTCURref::~EXTCURref()

EXTBMPref::~EXTBMPref()

The destructor for the external cursor class. The destruction of the class informs Omnis that

you have finished with the cursor.

EXTCURref::getCursor()

HCURSOR EXTCURref::getCursor()

The getCursor function creates and returns a HCURSOR. You can effect the screen cursor

by calling WNDsetCursor or WNDsetWindowCursor.

EXTCURref::getCursorId()

qlong EXTCURref::getCursorId()

Returns the cursor ID.

 Introduction

 225

Chapter 6ðqkey
Reference

Introduction
The QKEY class gives your external component access to keyboard messages and some

keyboard checking functions. It refers to two kinds of key, a VCHAR and a PCHAR. A

VCHAR is a virtual key code for special keys such as the PageUp key. PCHAR refers to

printable characters.

Keyboard messages WM_KEYDOWN and WM_KEYUP pass a pointer to a qkey object.

Enumerations
vChar

An enum defining some virtual keyboard values.

vcF1

The F1 key on the keyboard

vcUp

The up arrow key on the keyboard

vcDown

The down arrow key on the keyboard

vcLeft

The left arrow key on the keyboard

vcRight

The right arrow key on the keyboard

vcPup

The page up key on the keyboard

vcPdown

The page down key on the keyboard

vcPleft

The page left key on the keyboard

Chapter 6ðqkey Reference

226

vcPright

The page right key on the keyboard

vcHome

The home key on the keyboard

vcEnd

The end key on the keyboard

vcTab

The tab key on the keyboard

vcReturn

The return key on the keyboard

vcEnter

The enter key on the keyboard

vcBack

The backspace key on the keyboard

vcClear

The clear key on the keyboard

vcCancel

The escape key on the keyboard

vcDel

The forward delete key on the keyboard

vcIns

The insert key on the keyboard

qkey Class Reference

qkey::qkey()

qkey::qkey(LPARAM pKeyValue)

The constructor for the external keyboard class. After construction, the class can be used to

interrogate the keyboard message.

¶ pKeyValue - This is the keyboard scan value passed in LPARAM on a

WM_KEYDOWN, WM_KEYUP message.

 qkey Class Reference

 227

qkey::qkey()

qkey::qkey(pchar pPchar, qbool pShift, qbool pOption, qbool pControl)

Creates a qkey object from the printable character and key states passed.

¶ pPchar - The printable character to be added into the new qkey.

¶ pShift - The state of the shift key for the new qkey object.

¶ pOption - The state of the option key for the new qkey object.

¶ pControl - The state of the control key for the new qkey object.

¶ return - Returns a new qkey object.

See also qkey::getPChar()

qkey::qkey()

qkey::qkey(vchar pVchar, qbool pShift, qbool pOption, qbool pControl)

Creates a qkey object from the virtual key code and key states passed.

¶ pVchar - The virtual keyboard value to be added into the new qkey.

¶ pShift - The state of the shift key for the new qkey object.

¶ pOption - The state of the option key for the new qkey object.

¶ pControl - The state of the control key for the new qkey object.

¶ return - Returns a new qkey object.

qkey::qkey()

qkey::qkey()

Creates a qkey object with only the modifier states (SHIFT, CONTROL and OPTION) set.

¶ return - Returns a new qkey object.

qkey::getPChar()

pchar qkey::getPChar()

Returns the printable character from the key message.

¶ returns - Returns the character.

Chapter 6ðqkey Reference

228

qkey::getVChar()

vchar qkey::getVChar()

Returns the virtual key code from the key message.

¶ returns - Returns the key code.

qkey::isAlt()

qbool qkey::isAlt()

Returns the state of the ALT key for this keyboard message.

¶ returns - Returns qtrue if the ALT key is down.

qkey::isControl()

qbool qkey::isControl()

Returns the state of the CONTROL key for this keyboard message.

returns - Returns qtrue if the CONTROL key is down.

qkey::isShift()

qbool qkey::isShift()

Returns the state of the SHIFT key for this keyboard message.

¶ returns - Returns qtrue if the SHIFT key is down.

qkey::operator !()

qbool qkey::operator ! ()

Tests if the qkey object is invalid.

¶ return - qtrue if the qkey object is invalid and qfalse if the object is valid.

qkey::operator !=()

qbool qkey::operator != (const qkey& pTestKey)

Compares the key message stored in this qkey object with the key message passed in.

¶ pTestKey - The qkey object to compare against.

¶ return - qtrue if the qkey key messages are not the same.

 Other Functions

 229

qkey::operator ==()

qbool qkey::operator == (const qkey& pTestKey)

Compares the key message stored in this qkey object with the key message passed in.

¶ pTestKey - The qkey object to compare against.

¶ return - qtrue if the qkey key messages match and qfalse if the objects are different.

qkey::uppc()

void qkey::uppc()

Uppercases the printable character stored in the qkey object.

See also qkey::getPChar()

Other Functions

isShift()

qbool isShift()

Returns the current state of the SHIFT key.

¶ returns - Returns qtrue if the SHIFT key is down and qfalse if up.

isAlt()

qbool isAlt()

Returns the current state of the ALT key.

¶ returns - Returns qtrue if the ALT key is down and qfalse if up.

Chapter 6ðqkey Reference

230

Example:

extern "C" qlong OMNISWNDPROC Ge nericWndProc(HWND hwnd, LPARAM Msg,

 WPARAM wParam, LPARAM lParam, EXTCompInfo* eci)

{

 ECOsetupCallbacks(hwnd,eci);

 switch (Msg)

 {

 case WM_KEYDOWN:

 case WM_KEYUP:

 {

 qkey* keyMessage = (qkey*)lParam;

 if (keyMessage - >getPChar()==ôPô)

 {

 // The óPô key was pressed.

 return 0L; // tell Omnis we have processed the key

 }

 else if (keyMessage - >isShift() && keyMessage -

>getPChar()==ôLô)

 {

 // The óLô key and óSHIFTô keys were pressed.

 return 0L; /// tell Omnis we have processed the key

 }

 return 1L; // let Omnis process the key

 }

 }

 return WNDdefWindowProc(hwnd,Msg,wParam,lParam,eci);

}

 Introduction

 231

Chapter 7ðEXTfile
Reference

Introduction
The FILE API functions give your external components general file handling functionality.

The EXTfile class is a wrapper for the FILExxx functions. It is generally safer to use the

class, but sometimes it can be more convenient to call the API functions directly.

API Functions
These functions are defined in EXTFILE.HE

FILEclose()

void FILEclose(qfileptr pFileInstance)

Closes the file.

¶ pFileInstance ï The file instance which contains the file handle to close.

FILEcreate()

qret FILEcreate(qfileptr pFileInstance, strxxx& pName, qbool pExclusive)

Creates a new file and then opens it.

¶ pFileInstance ï The file instance used to create the file and hold the file handle.

¶ pName ï strxxx reference which contains the name of the file to create.

¶ pExclusive ï True if the file should be opened in exclusive mode after it is created.

¶ returns ï qret error code.

Chapter 7ðEXTfile Reference

232

FILEcreateInst()

qfileptr FILEcreateInst()

Constructs a new file instance.

¶ returns ï A new file instance. This must be deleted by FILEdestroyInst.

See also FILEdestroyInst

FILEcreateTemp()

qret FILEcreateTemp(qfileptr pFileInstance)

Constructs a new temporary file and then opens it (in exclusive mode).

¶ pFileInstance ï The file instance used to create the file and hold the file handle.

¶ returns ï qret error code.

FILEdelete()

qret FILEdelete(strxxx& pName)

Deletes the specified file.

¶ pName ï A strxxx reference which contains the name of the file to delete.

¶ returns ï qret error code.

FILEdestroyInst()

void FILEdestroyInst(qfileptr pFileInstance)

Destroys a file instance.

¶ pFileInstance ï The file instance. This was previously created by FILEcreateInst.

See also FILEcreateInst

FILEexists()

qbool FILEexists(strxxx& pName, qbool pIsFolder = qfalse)

Tests whether the specified file (or folder) exists or not.

¶ pName ï strxxx reference which contains the name of the file (or folder).

¶ pIsFolder ï True if the pName is a folder, false if it is a file name.

returns ï True if the file (or folder) exists, false otherwise.

 API Functions

 233

FILEfullName()

void FILEfullName(strxxx& pName, filevref pMacVolRef = 0)

Obtains the full name of the file.

¶ pName ï The filename to obtain the full name for.

¶ pMacVolRef ï The Macintosh volume reference. Not required for Windows..

FILEgetLength()

qlong FILEgetLength(qfileptr pFileInstance)

Obtains the length of the file.

¶ pFileInstance ï The file instance which contains the file handle.

¶ returns ï The length of the file.

FILEgetName()

void FILEgetName(qfileptr pFileInstance, strxxx& pName, qbool pIncPath = qtrue)

Obtains the name of the file.

¶ pFileInstance ï The file instance which contains the file handle.

¶ pName ï strxxx reference which will contain the name of the file after the function call.

¶ pIncPath ï True if the pName should also contain the path of the file.

FILEgetOmnisFolder() (v3.1)

void FILEgetOmnisFolder(qfileptr pFilePtr, str255& pFilename)

Returns the path to the Omnis folder; the folder which usually contains the main executable

and support folders. FILEgetOmnisFolder is passed a pointer to a qfile class object.

¶ pFilePtr ï Pointer to a qfile class object.

¶ pFilename ï (output) The folder name containing the Omnis support files.

Chapter 7ðEXTfile Reference

234

FILEgetOmnisProgramFolder() (v4.3)

void doQfile_getOmnisProgramFolder(qfile *pFile, str255 &pFilename)

Returns the path to the Omnis executable; the folder containing the main executable.

FILEgetOmnisProgramFolder is passed a pointer to a qfile class object.

¶ pFilePtr ï Pointer to a qfile class object.

¶ pFilename ï (output) The folder name containing the Omnis executable.

FILEgetPosition()

qlong FILEgetPosition(qfileptr pFileInstance)

Constructs a new file instance.

¶ pFileInstance ï The file instance which contains the file handle.

¶ returns ï The current position in the file.

FILEopen()

qret FILEopen(qfileptr pFileInstance, strxxx& pName, qbool pReadOnly, qbool

pExclusive)

Opens the specified file.

¶ pFileInstance ï The file instance which will contain the opened file handle.

¶ pName ï strxxx reference which contains the file to open.

¶ pReadOnly ï True if the file should be opened in read-only mode.

¶ pExclusive ï True if the file should be opened in exclusive mode.

¶ returns ï qret error code.

FILEopenResources() (v3.1)

qret FILEopenResources(qfileptr pFileInstance, strxxx& pName, qbool pReadOnly, qbool

pExclusive)

Opens the Macintosh resources fork of the specified file as a data file.

¶ pFileInstance ï The file instance which will contain the opened file handle.

¶ pName ï strxxx reference which contains the file to open.

¶ pReadOnly ï True if the file should be opened in read-only mode.

¶ pExclusive ï True if the file should be opened in exclusive mode.

 API Functions

 235

¶ returns ï qret error code. If 1 is returned, the function is not implemented.

FILEread()

qret FILEread(qfileptr pFileInstance, void* pData, qlong pOffset, qlong pLength)

Reads from the file.

¶ pFileInstance ï The file instance which contains the file handle.

¶ pData ï Pointer to read into.

¶ pOffset ï Offset into the file to use.

¶ pLength ï Amount of bytes to read.

¶ returns ï qret error code.

FILEread()

qret FILEread(qfileptr pFileInstance, void* pData, qlong pOffset, qlong pMaxLength,

qlong& pActLength)

Reads from the file.

¶ pFileInstance ï The file instance which contains the file handle.

¶ pData ï Pointer to read into.

¶ pOffset ï Offset into the file to use.

¶ pMaxLength ï Number of bytes to read.

¶ pActLength ï Actual number of bytes read.

¶ returns ï qret error code.

FILEsetEmpty()

qret FILEsetEmpty(qfileptr pFileInstance)

FILEsetEmpty sets the length of the file to zero bytes.

¶ pFileInstance ï The file instance which contains the file handle.

¶ returns ï qret error code.

Chapter 7ðEXTfile Reference

236

FILEsetLength()

qret FILEsetLength(qfileptr pFileInstance, qlong pLength)

FILEsetLength sets the length of the file to the specified length.

¶ pFileInstance ï The file instance which contains the file handle.

¶ pLength ï The new length of the file.

¶ returns ï qret error code.

FILEsetMacTypeCreator()

void FILEsetMacTypeCreator(qfileptr pFileInstance, qint4 pMacType, qint4 pMacCreator)

Sets the Macintosh file-systemsô creator information.

¶ pFileInstance ï The file instance which contains the file handle.

¶ pMacType ï The new Mac type info.

¶ pMacCreator ï The new Mac creator info.

FILEsetMacTypeCreator()

void FILEsetMacTypeCreator(strxxx& pName,qint4 pMacType,qint4 pMacCreator)

Sets the Macintosh file-systemsô creator information.

¶ pName ï The file name.

¶ pMacType ï The new Mac type info.

¶ pMacCreator ï The new Mac creator info.

FILEsetPosition()

qret FILEsetPosition(qfileptr pFileInstance, qlong pPosition)

Sets the current position of the file.

¶ pFileInstance - The file instance which contains the file handle.

¶ pPosition ï The new position.

¶ returns ï A qret error code.

 EXTfile Class Reference

 237

FILEwrite()

qret FILEwrite(qfileptr pFileInstance, void* pData, qlong pOffset, qlong pLength)

Writes data to the file.

¶ pFileInstance - The file instance which contains the file handle.

¶ pData ï The address of the data to write.

¶ pOffset ï The offset into the file of where to write from.

¶ pLength ï The number of bytes to write.

¶ returns ï A qret error code.

EXTfile Class Reference

EXTfile::EXTfile()

EXTfile::EXTfile()

The constructor for a file object.

EXTfile::~EXTfile()

EXTfile::~EXTfile()

The destructor for an EXTfile object.

EXTfile::close()

void EXTfile::close()

Closes the file.

EXTfile::create()

qret EXTfile::create(strxxx& pName, qbool pExclusive)

Creates and then opens the specified file.

¶ pName ï The file to create.

¶ pExclusive ï True if the file should be opened in exclusive mode.

¶ Returns ï qret error code.

Chapter 7ðEXTfile Reference

238

EXTfile::createTemp()

qret EXTfile::createTemp()

Creates and then opens, in exclusive mode, a temporary file.

¶ returns ï qret error code.

EXTfile::deleet()

static qret EXTfile::deleet(strxxx& pName)

Deletes the specified file.

¶ pName - The file to delete

¶ returns ï qret error code.

EXTfile::exists()

static qbool EXTfile::exists(strxxx& pName, qbool pIsFolder)

Tests whether the specified file (or folder) exists or not.

¶ pName ï strxxx reference which contains the name of the file (or folder).

¶ pIsFolder ï True if the pName is a folder, false if it is a file name.

¶ returns ï True if the file (or folder) exists, false otherwise.

EXTfile::fullName()

static EXTfile::fullName(strxxx& pName, filevref pMacVolRef=0)

Obtains the full name of the file.

¶ pName ï The filename to obtain the full name for.

¶ pMacVolRef ï The Macintosh volume reference. Not required for Windows.

EXTfile::getLength()

qlong EXTfile::getLength()

Obtains the length (in bytes) of the file.

¶ returns ï The length, in bytes, of the file.

 EXTfile Class Reference

 239

EXTfile::getName()

void EXTfile::getName(strxxx& pFilename, qbool pInclPath = qtrue)

Obtains the name of the file.

¶ pName ï strxxx reference which will contain the name of the file after the function call.

¶ pInclPath ï True if the pName should also contain the path of the file.

EXTfile::getOmnisFolder()

void EXTfile::getOmnisFolder(str255& pFilename)

Returns the path to the Omnis folder; the folder which usually contains the main executable

and support folders.

¶ pFilename ï (output) The folder name containing the Omnis support files.

EXTfile::getOmnisProgramFolder() (v4.3)

void EXTfile::getOmnisProgramFolder(str255& pFilename)

Returns the path to the Omnis executable; the folder containing the main executable.

¶ pFilename ï (output) The folder name containing the Omnis executable.

EXTfile::getPosition()

qlong EXTfile::getPosition()

Obtains the current position in the file.

¶ returns ï Returns the current position in the file.

EXTfile::open()

qret EXTfile::open(strxxx& pName, qbool pReadOnly, qbool pExclusive)

Opens the specified file.

¶ pName ï The file to open.

¶ pReadOnly ï True if the file should be opened in read-only mode.

¶ pExclusive ï True if the file should be opened in exclusive mode.

¶ returns ï qret error code.

Chapter 7ðEXTfile Reference

240

EXTfile::openResources() (v3.1)

qret EXTfile::openResources(strxxx& pName, qbool pReadOnly, qbool pExclusive)

Opens the Macintosh resources fork of the specified file as a data file.

¶ pName ï The file to open.

¶ pReadOnly ï True if the file should be opened in read-only mode.

¶ pExclusive ï True if the file should be opened in exclusive mode.

¶ returns ï qret error code.

EXTfile::read()

qret EXTfile::read(void* pData, qlong pOffset, qlong pLength)

Reads from the file.

¶ pData ï Pointer to read into.

¶ pOffset ï Offset into the file to use.

¶ pLength ï Amount of bytes to read.

EXTfile::read()

qret EXTfile::read(void* pData, qlong pOffset, qlong pMaxLength, qlong& pActLength)

Reads from the file.

¶ pData ï Pointer to read into.

¶ pOffset ï Offset into the file to use.

¶ pMaxLength ï Number of bytes to read.

¶ pActLength ï Actual number of bytes read.

EXTfile::readCharacterData() (v4.0)

qret EXTfile::readCharacterData(qHandle &pHan, FILEconversionType pConvType)

Reads file containing character data into a handle which becomes an array of qchars.

¶ pHan - Handle to read file into.

¶ pConvType - An EXTfile constant specifying the conversion required.

 EXTfile Class Reference

 241

EXTfile file; qret e = file.open(document, qtrue, qfalse);

if (e == e_ok)

{

 mDocHan = 0;

 e = file.readCharacterData(mDocHan, EXTfile::eFILEconvertFromLatin1Api);

 if (e == e_ok)

 {

 mDocPtr = qHandleTextPtr(mDocHan, 0);

 parse(pSrchWords);

 }

 else mDocPtr.setNull();

 file.close();

}

EXTfile::readIntoHandle() (v4.0)

qret EXTfile::readIntoHandle(qHandle &pHan)

Reads the raw contents of a file into a handle.

¶ pHan ï Handle to read file into.

EXTfile::setEmpty()

qret EXTfile::setEmpty()

setEmpty sets the length of the file to zero bytes.

¶ returns ï qret error code.

EXTfile::setLength()

qret EXTfile::setLength(qlong pLength)

setLength sets the length of the file to the specified length.

¶ pLength ï The new length of the file.

¶ returns ï qret error code.

EXTfile::setMacTypeCreator()

void EXTfile::setMacTypeCreator(qint4 pMacType,qint4 pMacCreator)

Sets the Macintosh file-systemsô creator information.

¶ pMacType ï The new Mac type info.

¶ pMacCreator ï The new Mac creator info.

Chapter 7ðEXTfile Reference

242

EXTfile::setMacTypeCreator()

static void EXTfile::setMacTypeCreator(strxxx& pName,qint4 pMacType,qint4

pMacCreator)

Sets the Macintosh file-systemsô creator information.

¶ pName ï The file name.

¶ pMacType ï The new Mac type info.

¶ pMacCreator ï The new Mac creator info.

EXTfile::setPosition()

qret EXTfile::setPosition(qlong pPosition)

Sets the current position of the file.

¶ pPosition ï The new position.

¶ returns ï A qret error code.

EXTfile::write()

qret EXTfile::write(void* pData, qlong pOffset, qlong pLength)

Writes data to the file.

¶ pData ï The address of the data to write.

¶ pOffset ï The offset into the file of where to write from.

¶ pLength ï The number of bytes to write.

¶ returns ï A qret error code.

 Introduction

 243

Chapter 8ðCRB
Reference

Introduction
The CRB API functions are a set of functions which allow you to create and manage Omnis

data collections. An Omnis data collection is a block of data with a variable number of data

items. A CRB can store number data, list data, text data, etc, in any order and combination.

A CRB is self extending. In other words you can simply set the data for a given index, and

the CRB is extended to store the given data at the specified index position. The collection of

data in a CRB can be converted to and from disk-based format for storing on and retrieving

from disk. You can also assign CRB data to and retrieve from an EXTfldval, see

EXTfldval::getCrbRef and EXTfldval::setCrbRef. This is useful if you want to exchange

CRB data with the Omnis 4GL.

The EXTcrb class is a wrapper for the CRBxxx functions. It is generally safer to use the

class, but sometimes it can be more convenient to call the API functions directly.

API Functions
These functions are defined in EXTCRB.HE

CRBcreate()

qcrb CRBcreate()

Creates a new empty CRB instance. When you have finished with the instance you must

destroy it, unless you have transferred ownership when calling EXTfldval::setCrbRef.

¶ returns - The pointer to the CRB instance.

See also CRBdestroy

Chapter 8ðCRB Reference

244

CRBdestroy()

void CRBdestroy(qcrb pCrb)

Destroys the given CRB instance. The instance must have been created with CRBcreate.

¶ pCrb - pointer to the CRB instance to be destroyed.

See also CRBcreate

CRBduplicate()

qcrb CRBduplicate(qcrb pCrb)

Makes a copy of the given CRB instance. When you have finished with the copy, you must

destroy it, unless you have transferred ownership when calling EXTfldval::setCrbRef.

¶ pCrb - pointer to the CRB instance to be duplicated.

¶ returns - new pointer to a CRB instance.

See also CRBcreate, CRBdestroy

CRBflatten()

qlong CRBflatten(qcrb pCrb, qchar* pBuffer, qlong pBufferLen)

Converts the data in a CRB instance into a cross-platform flat format which is suitable for

storing on disk. You must allocate a sufficiently large buffer to receive the data. You can

call CRBgetFlatSize prior to calling CRBflatten, to tell you the size of the required buffer.

¶ pCrb - pointer to the CRB instance to be flattened.

¶ pBuffer - pointer to the buffer which is to receive the flattened data.

¶ pBufferLen - buffer size in bytes.

¶ returns - length of the flattened data.

Example:

// *** store some cross platform data on disk ***

// create the crb instance

qcrb crb = CRBcreate();

// store some text at index 1

EXTfldval f valp(CRBgetDataRef(crb, 1, qtrue));

fvalp.setChar(ñSome text to be stored on diskò)

// store some numbers at the next 3 index positions

CRBsetReal(crb, 2, 4.999);

CRBsetLong(crb, 3, 255);

 API Functions

 245

CRBsetLong(crb, 4, 1000);

// allocate the buffer which will receive the flattened data

qlong bufferLen = CRBgetFlatSize(crb);

qchar* buffer = new qchar[bufferLen];

// flatten the data.

// Note: in our case dataLen should be identical to bufferLen

qlong dataLen = CRBflatten(crb, buffer, bufferLen);

 // now we can write the data to disk

 EXTfile file; file.create(str255(ñFileNameò), qtrue);

 file.write(buffer, 0, dataLen);

 file.close();

// destroy the buffer and the crb

delete [] buffer;

CRBdestroy(crb);

// *** end ***

See also CRBgetFlatSize, CRBunflatten

CRBgetCrbRef()

qcrb CRBgetCrbRef(qcrb pCrb, qcrb pTmpCrb, qcrbindex pIndex, qbool pWillAlter)

It is possible to store data collections within data collections. You can do this by calling this

function. If required, when calling this function, the data at the given index is converted to

an Omnis data collection. If you have several data collections stored in a CRB, you can

optimize performance by creating your own temp CRB for manipulating the nested data

collections, which you can specify for the pTmpCrb parameter. If you do not specify your

own temp CRB, Omnis will create a CRB instance for each data collection stored in the

parent CRB. Specifying your own temp CRB works, because Omnis only stores the data

collection as a handle inside another CRB, and not the CRB instance itself, which is only

used for manipulating the data. If you want to change the contents of the data collection,

specify qtrue for pWillAlter.

¶ pCrb - pointer to the CRB instance.

¶ pTmpCrb - temp CRB instance to be used for managing the data collection.

¶ pIndex - index into CRB starting from 1.

¶ pWillAlter - if qtrue, you can change the data collection at the index by assigning new

data to index positions of the returned CRB.

Chapter 8ðCRB Reference

246

¶ returns - pointer to a CRB instance. The CRB instance belongs to the parent CRB and

there is no need to destroy it. If you have passed a temp crb in the pTmpCrb parameter,

your temp CRB instance is returned instead.

Example:

// ** store two data collections in our CRB **

// create our parent CRB

qcrb crb = CRBcreate ();

// create out temp crb for manipulating our child data collections

qcrb tempCrb = CRBcreate();

// fetch our first data collection and set some data in it

// Note: in our case childCrb will be identical to tempCrb

qcrb childCrb = CRBgetCrbRef(crb, temp Crb, 1, qtrue);

CRBsetLong(childCrb, 1, 15);

CRBsetLong(childCrb, 2, 120);

CRBsetReal(childCrb, 3, 1.5234);

// fetch our second data collection and set some data in it

// in our first column we will store some text

childCrb = CRBgetCrbRef(crb, temp Crb, 2, qtrue);

EXTfldval fvalp(CRBgetDataRef(childCrb, 1, qtrue));

fvalp.setChar(ñHello Worldò);

CRBsetLong(childCrb, 2, 1024);

// We must remember to destroy our tempCrb

CRBdestroy(tempCrb);

Note: You can nest data collections many levels deep.

See also CRBgetDataRef

CRBgetData()

void CRBgetData(qcrb pCrb, qcrbindex pIndex,

qshort pFft, qshort pFdp, qfldval pCrbVal)

Retrieves a copy of the data stored at the specified index position in the CRB. You must

specify the data type and sub type of the data to be returned as. If the data in the CRB is of a

different type, Omnis will convert the data to the specified type.

¶ pCrb - pointer to the CRB instance.

¶ pIndex - index into CRB starting from 1.

¶ pFft - the data type to return the data as.

¶ pFdp - the sub data type to return the data as.

 API Functions

 247

¶ pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an

EXTfldval by calling EXTfldval::getFldVal.

Example:

EXTfldval fval;

CRBgetData(crb, 2, fftCharacter, dpDefault, fval.getFldVal());

See also EXTfldval::getFldVal, CRBsetData, CRBgetDataRef

CRBgetDataRef()

qfldval CRBgetDataRef(qcrb pCrb, qcrbindex pIndex, qbool pWillAlter)

Returns a reference to the index in the CRB. This is more efficient than calling

CRBgetData, since the data is not copied. You can construct a EXTfldval from the returned

Omnis data pointer. You can use CRBgetDataRef to change the data at the given index, if

you specify qtrue for pWillAlter.

¶ pCrb - pointer to the CRB instance.

¶ pIndex - index into CRB starting from 1.

¶ pWil lAlter - if qtrue, you can change the data at the index by assigning new data to the

EXTfldval.

¶ returns - pointer to an Omnis data item.

Example:

// change the data at index 2 using CRBgetDataRef

qcrb crb = CRBcreate();

EXTfldval fvalp(CRBgetDataRef(crb, 2, qtrue));

fvalp.setChar(ñHello Worldò);

See also CRBgetData, CRBsetData, CRBgetCrbRef

CRBgetFlatSize()

qlong CRBgetFlatSize(qcrb pCrb)

Calculates the flattened size of the data in the given CRB instance. You will need to allocate

a buffer of the returned size before you can flatten the data.

¶ pCrb - pointer to the CRB instance.

¶ returns - required size of the buffer for flattening the CRB data.

See also CRBflatten, CRBunflatten

Chapter 8ðCRB Reference

248

CRBgetIndexCount()

qshort CRBgetIndexCount(qcrb pCrb)

Returns the number of data items in the CRB. The index count will usually be in multiples

of 10. CRBgetIndexCount does not return a count of the entries which have been used, it

returns the count of allocated indexes.

Note: Indexing starts from 1.

¶ pCrb - pointer to the CRB instance.

¶ returns - the index count.

CRBgetLong()

qlong CRBgetLong(qcrb pCrb, qcrbindex pIndex)

Returns the data stored at specified index as a long integer value. If the data stored at the

index is of a different type, the data is converted to a long integer.

¶ pCrb - pointer to the CRB instance.

¶ pIndex - index into CRB starting from 1.

¶ returns - the data as a long value.

See also CRBsetLong

CRBgetReal()

qreal CRBgetReal(qcrb pCrb, qcrbindex pIndex)

Returns the data stored at specified index as a floating point number. If the data stored at the

index is of a different type, the data is converted to a floating point number.

¶ pCrb - pointer to the CRB instance.

¶ pIndex - index into CRB starting from 1.

¶ returns - the data as a floating point number.

See also CRBsetReal

CRBsetData()

void CRBsetData(qcrb pCrb, qcrbindex pIndex, qfldval pCrbVal)

Sets the data in the CRB at the specified index position.

¶ pCrb - pointer to the CRB instance.

 API Functions

 249

¶ pIndex - index into CRB starting from 1.

¶ pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an

EXTfldval by calling EXTfldval::getFldVal.

Example:

// the following example stores text at index 1

// and a list with two rows at index 2

EXTfldval fval;

qcrb crb = CRBcreate();

fval.setChar(ñHello Worldò);

CRBsetData(crb, 1, fval.getFldVal());

EXTqlist lst(listScol);

lst.insertRow(0, str255(ñRow oneò), 1);

lst.insertRow(0, str255(ñRow twoò), 2);

fval.setList(&lst, qtrue);

CRBsetData(crb, 2, fval.getFldVal());

See also CRBgetData, CRBgetDataRef

CRBsetLong()

void CRBsetLong(qcrb pCrb, qcrbindex pIndex, qlong pLongValue)

Sets the data at the specified index to the given long integer value.

¶ pCrb - pointer to the CRB instance.

¶ pIndex - index into CRB starting from 1.

¶ pLongValue - the long integer value to store.

See also CRBgetLong

CRBsetReal()

void CRBsetReal(qcrb pCrb, qcrbindex pIndex, qreal pRealValue)

Sets the data at the specified index to the given floating point number.

¶ pCrb - pointer to the CRB instance.

¶ pIndex - index into CRB starting from 1.

¶ pRealValue - the floating point value to store.

See also CRBgetReal

Chapter 8ðCRB Reference

250

CRBunflatten()

qbool CRBunflatten(qcrb pCrb, qchar* pBuffer, qlong pBufferLen)

Converts flattened block of data back into a form suitable for a CRB instance to manage.

The block of data must have been flattened previously by a call to CRBflatten.

¶ pCrb - pointer to the CRB instance which is to receive the new data.

¶ pBuffer - pointer to the flattened data.

¶ pBufferLen - length of the flattened data.

¶ returns - if the data was successfully converted, qtrue is returned.

Example:

// *** load some data we previously written to disk. ***

// *** See CRBflatten example ***

// read the data from disk into our buffer

EXTfile file(); file.open(str255(ñfileNameò), qtrue, qtrue);

qlong dataLen = f ile.getLength();

qchar* buffer = new qchar[dataLen];

file.read(buffer, 0, dataLen);

file.close();

// create our CRB instance and unflatten the data

qcrb crb = CRBcreate();

if (CRBunflatten(crb, buffer, dataLen))

 // success

else

 // failure

// when we have finished with the crb and buffer, destroy them

delete [] buffer;

CRBdestroy(crb);

// *** end ***

See also CRBflatten

 EXTcrb Class Reference

 251

EXTcrb Class Reference

EXTcrb::EXTcrb()

EXTcrb::EXTcrb()

The constructor for an EXTcrb object. It constructs an empty Omnis CRB and data

collection.

EXTcrb::EXTcrb()

EXTcrb::EXTcrb(qcrb pCrb)

Constructs a EXTcrb object, from an existing CRB instance. You may already have a data

collection in a EXTfldval for example. You can use EXTfldval::getCrbRef to retrieve the

CRB instance from the EXTfldval and construct a EXTcrb object from it. The EXTcrb

object makes the assumption that it does not own the CRB instance, and will not destroy it

when the EXTcrb object is destructed. You can always call EXTcrb::makeMine later, if you

wish to work with a copy of the CRB instance.

¶ pCrb - pointer to a CRB instance.

Example:

// get existing CRB instance from EXTfldval. Do not make a copy

EXTcrb crb(fval.getCrbRef(qfalse));

// if we want a copy call makeMine

crb.makeMine();

See also EXTfldval::getCrbRef, EXTcrb::makeMine

EXTcrb()::~EXTcrb()

EXTcrb()::~EXTcrb()

The destructor for an EXTcrb object.

EXTcrb::copy()

void EXTcrb::copy(EXTcrb& pCrb)

Copies the CRB instance and data from the given EXTcrb object to this EXTcrb object.

¶ pCrb - the EXTcrb object from which to copy the CRB instance and data.

Chapter 8ðCRB Reference

252

EXTcrb::crb()

qcrb EXTcrb::crb()

Returns the pointer to the CRB instance. You will need this function when you want to store

a data collection in an EXTfldval.

¶ returns - pointer to the CRB instance.

Example:

EXTcrb crb;

EXTfldval fval;

fval.setCrbRef(crb.crb(), qfalse);

EXTcrb::flatten()

qlong EXTcrb::flatten(qchar* pBuffer, qlong pBufferLen)

Converts the data in a CRB instance into a cross-platform flat format which is suitable for

storing on disk. You must allocate a sufficiently large buffer to receive the data. You can

call EXTcrb::getFlatSize prior to calling EXTcrb::flatten, to tell you the size of the required

buffer.

¶ pBuffer - pointer to the buffer which is to receive the flattened data.

¶ pBufferLen - buffer size in bytes.

¶ returns - length of the flattened data.

Example:

 EXTcrb Class Reference

 253

// *** store some cross platform data on disk ***

// create the crb instance

EXTcrb crb;

// store some text at index 1

EXTfldval fvalp(crb.getDataRef(1, qtrue));

fvalp.setC har(str255(ñSome text to be stored on diskò))

// store some numbers at the next 3 index positions

crb.setReal(2, 4.999);

crb.setLong(3, 255);

crb.setLong(4, 1000);

// allocate the buffer which will receive the flattened data

qlong bufferLen = crb.get FlatSize();

qchar* buffer = new qchar[bufferLen];

// flatten the data.

// Note: in our case dataLen should be identical to bufferLen

qlong dataLen = crb.flatten(buffer, bufferLen);

 // now we can write the data to disk

 EXTfile file; file.create(str2 55(ñFileNameò), qtrue);

 file.write(buffer, 0, dataLen);

 file.close();

// delete the buffer

delete [] buffer;

// *** end ***

See also EXTcrb::unflatten, EXTcrb::getFlatSize

EXTcrb::getCrbRef()

qcrb EXTcrb::getCrbRef(EXTcrb& pTmpCrb, qcrbindex pIndex, qbool pWillAlter)

It is possible to store data collections within data collections. You can do this by calling this

function. If required, when calling this function, the data at the given index is converted to

an Omnis data collection. If you have several data collections stored in a CRB, you can

optimize performance by creating your own temp EXTcrb object for manipulating the

nested data collections, which you can specify for the pTmpCrb parameter. If you do not

specify your own temp CRB, Omnis will create a CRB instance for each data collection

stored in the parent CRB. Specifying your own temp CRB works, because Omnis only

stores the data collection as a handle inside another CRB, and not the CRB instance itself

which is only used for manipulating the data. If you want to change the contents of the data

collection, specify qtrue for pWillAlter.

Chapter 8ðCRB Reference

254

¶ pTmpCrb - temp EXTcrb object to be used for managing the data collection.

¶ pIndex - index into CRB starting from 1.

¶ pWillAlter - if qtrue, you can change the data collection at the index by assigning new

data to index positions of the returned CRB.

¶ returns - pointer to a CRB instance. The CRB instance belongs to the parent CRB and

there is no need to destroy it. If you have passed a temp crb in the pTmpCrb parameter,

your temp CRB instance is returned instead.

Example:

// ** store two data collections in our CRB **

// create our parent CRB and

// temp CRB for manipulating our child data collections

EXTcrb crb; EXTcrb tempCrb;

// fetch our first data collection and set some data in it

// Note: we ignore the return value since it will point to the

// CRB of our temp CRB object

crb.getCrbRef(tempCrb, 1, qtrue);

tempCrb.setLong(childCrb, 1, 15);

tempCrb.setLong(childCrb, 2, 120);

tempCrb.setReal(childCrb, 3, 1.523 4);

// fetch our second data collection and set some data in it

// in our first column we will store some text

CRBgetCrbRef(tempCrb, 2, qtrue);

EXTfldval fvalp(tempCrb.getDataRef(1, qtrue));

fvalp.setChar(str15(ñHello Worldò));

tempCrb.setLong(2, 1 024);

Note: You can nest data collections many levels deep.

See also EXTcrb::getDataRef

EXTcrb::getData()

void EXTcrb::getData(qcrbindex pIndex, qshort pFft, qshort pFdp, qfldval pCrbVal)

Retrieves a copy of the data stored at the specified index position in the EXTcrb object.

You must specify the data type and sub type of the data to be returned as. If the data in the

CRB is of a different type, Omnis will convert the data to the specified type.

¶ pIndex - index into CRB starting from 1.

¶ pFft - the data type to return the data as.

¶ pFdp - the sub data type to return the data as.

 EXTcrb Class Reference

 255

¶ pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an

EXTfldval by calling EXTfldval::getFldVal.

Example:

EXTfldval fval;

crb.getData(2, fftCharacter, dpD efault, fval.getFldVal());

See also EXTfldval::getFldVal, EXTcrb::setData, EXTcrb::getDataRef

EXTcrb::getDataRef()

qfldval EXTcrb::getDataRef(qcrb pCrb, qcrbindex pIndex, qbool pWillAlter)

Returns a reference to the index in the EXTcrb. This is more efficient than calling

EXTcrb::getData, since the data is not copied. You can construct a EXTfldval from the

returned Omnis data pointer. You can use EXTcrb::getDataRef to change the data at the

given index, if you specify qtrue for pWillAlter.

¶ pIndex - index into CRB starting from 1.

¶ pWillAlter - if qtrue, you can change the data at the index by assigning new data to the

EXTfldval.

¶ returns - pointer to an Omnis data item.

Example:

// change the data at index 2 using EXTcrb::getDataRef

EXTcrb crb;

EXTfldval f valp(crb.getDataRef(2, qtrue));

fvalp.setChar(str15(ñHello Worldò));

See also EXTcrb::getData, EXTcrb::setData, EXTcrb::getCrbRef

EXTcrb::getFlatSize()

qlong EXTcrb::getFlatSize()

Calculates the flattened size of the data in the EXTcrb object. You will need to allocate a

buffer of the returned size before you can flatten the data.

¶ returns - required size of the buffer for flattening the CRB data.

See also EXTcrb::flatten, EXTcrb::unflatten

Chapter 8ðCRB Reference

256

EXTcrb::getIndexCount()

qshort EXTcrb::getIndexCount()

Returns the number of data items in the EXTcrb object. The index count will usually be in

multiples of 10. EXTcrb::getIndexCount does not return a count of the entries which have

been used, it returns the count of allocated indexes.

Note: Indexing starts from 1.

¶ returns - the index count.

EXTcrb::getLong()

qlong EXTcrb::getLong(qcrbindex pIndex)

Returns the data stored at specified index as a long integer value. If the data stored at the

index is of a different type, the data is converted to a long integer.

¶ pIndex - index into CRB starting from 1.

¶ returns - the data as a long value.

See also EXTcrb::setLong

EXTcrb::getReal()

qreal EXTcrb::getReal(qcrbindex pIndex)

Returns the data stored at specified index as a floating point number. If the data stored at the

index is of a different type, the data is converted to a floating point number.

¶ pIndex - index into CRB starting from 1.

¶ returns - the data as a floating point number.

See also EXTcrb::setReal

EXTcrb::makeMine()

void EXTcrb::makeMine()

If the EXTcrb object does not own the CRB instance, calling this function will make a copy

of the CRB instance and set the ownership flag to true. If the EXTcrb object already owns

the CRB instance, this function does nothing.

 EXTcrb Class Reference

 257

EXTcrb::setData()

void EXTcrb::setData(qcrbindex pIndex, qfldval pCrbVal)

Sets the data in the EXTcrb object at the specified index position.

¶ pIndex - index into CRB starting from 1.

¶ pCrbVal - pointer to an Omnis data item. You can retrieve this pointer from an

EXTfldval by calling EXTfldval::getFldVal.

Example:

// the following example stores text at index 1

// and a list with two rows at index 2

EXTfldval fval;

EXTcrb crb;

fval.setChar(str255(ñHello Worldò));

crb.setData(1, fval.getFldVal());

EXTqlist lst(listScol);

lst.insertRow(0, str255(ñRow oneò), 1);

lst.insertRow(0, str255(ñRow twoò), 2);

fval.setList(&lst, qtrue);

crb.setData(2, fval.getFldVal());

See also EXTcrb::getData, EXTcrb::getDataRef

EXTcrb::setLong()

void EXTcrb::setLong(qcrbindex pIndex, qlong pLongValue)

Sets the data at the specified index to the given long integer value.

¶ pIndex - index into CRB starting from 1.

¶ pLongValue - the long integer value to store.

See also EXTcrb::getLong

EXTcrb::setReal()

void EXTcrb::setReal(qcrbindex pIndex, qreal pRealValue)

Sets the data at the specified index to the given floating point number.

¶ pIndex - index into CRB starting from 1.

¶ pRealValue - the floating point value to store.

See also EXTcrb::getReal

Chapter 8ðCRB Reference

258

EXTcrb::unflatten()

qbool EXTcrb::unflatten(qchar* pBuffer, qlong pBufferLen)

Converts flattened block of data back into a form suitable for a CRB instance to manage.

The block of data must have been flattened previously by a call to EXTcrb::flatten.

¶ pBuffer - pointer to the flattened data.

¶ pBufferLen - length of the flattened data.

¶ returns - if the data was successfully converted, qtrue is returned.

Example:

// *** load some data we previously written to disk. ***

// *** See EXTcrb::flatten example ***

// read the data from disk into our buffer

EXTfile file(); file.open(str255(ñfileNameò), qtrue, qtrue);

qlong dataLen = file.getLength();

qchar* buffer = new qchar[dataLen];

file.read(buffer, 0, dataLen);

file.close();

// create our CRB instance and unflatten the data

EXTcrb crb;

if (crb.unflatten(crb, buffer, dataLen))

 // success

else

 // failure

// delete the buffer

delete [] buffer;

// *** end ***

See also EXTcrb::flatten

 Introduction

 259

Chapter 9ðEXTqlist
Reference

Introduction
The EXTqlist class gives your external components access to the Omnis list data object.

The list object handles all of the memory management for columns and rows of data. You

can create lists in your components, or you can receive/send the list to/from Omnis. The list

object is a very powerful object in Omnis, but gives you even more power when included in

external components. General purpose lists do not need to be defined when writing a

component as they do within Omnis using the Define list command. The list object adjusts

column information as you add it. Normal list objects have to store the same type of data in

each column. Omnis lists support this, but can also support different data types in the same

column in every row added.

Each Omnis list has its own current row, maximum number of rows and a set of selected

rows, that can all be inspected or altered using various member functions.

EXTqlist Memory Issues

The EXTqlist class can be constructed in two ways, one as a reference to another EXTqlist,

the other as an individual list. You should think of the class as a container, which has some

data representing list rows and columns, or as a pointer to another EXTqlist object.

Depending on the type of list you create and what you do with it during its life, what you do

during destruction of the EXTlist object is very important.

Creating a standalone list

If you want your component to store some private items in a list (such as the calendar

example), the component first needs to declare an EXTqlist* member. At some point in

your component, you need to create a new instance of a EXTqlist object. Use the ónewô

operator and specify the lists data type during construction. For example:

Chapter 9ðEXTqlist Reference

260

// Example using a EXTqlist* as a class member

class sampleClass

{

 private:

 EXTqlist* mMyList;

 public:

 sampleClass();

 ~ sampleClass();

 void doSomet hing();

};

sampleClass::sampleClass()

{

 mMyList = new EXTqlist(listScol);

}

Now you have an EXTqlist object, you can use the various member function to add rows,

delete rows or manipulate column data.

void sampleClass::doSomething()

{

 for (qlong i =1 ; i<=10; i++)

 {

 str255 textForRow;

 qlongToString(i, textForRow);

 textForRow.insert(str80(ñThis is row ñ), i);

 mMyList - >insertRow(0, &textForRow, i);

 }

}

When you have finished with the list, you must delete the contents of the list, then the list

container. To delete the contents of the EXTqlist, you can assign the list object qnil . When

the contents of the list have been emptied, you can delete the EXTqlist object.

void sampleClass::~sampleClass()

{

 // first clear the contents of the list object

 *mMyList = qnil;

 delete mMyList;

}

REMEMBER : When the EXTqlist object is destructed, the contents are not automatically

deleted. You must at some point clear the contents by assigning the object qnil .

 Introduction

 261

Creating a reference to another list

Sometimes you will need or be given a reference to another EXTqlist. Maybe Omnis is

calling you to paint a line in a derived list control, or a parameter is being passed to you

which is a list variable. In both cases, the EXTqlist object you have will be a reference to

another list object. This is very important, especially during destruction of the EXTlist

object.

Above you created a standalone list. Here you create a reference to a list object and add a

new row.

// Example if you used ónewô during construction

void sampleClass::makeAReference()

{

 EXTqlist* myRef = 0;

 myRef = new EXTqlist(mMyList);

 str255 textForRow(ñAdded by the referenceò);

 myRef- >insertRow(0, &textForRow, 999);

 delete myRef;

}

or

void sampleClass::makeAReference()

{

 EXTqlis t* myRef(mMyList);

 str255 textForRow(ñAdded by the referenceò);

 myRef- >insertRow(0, &textForRow, 999);

}

In the above examples, the EXTqlist reference was deleted by using ódeleteô operator or the

scope ending. As the EXTqlist was only used as a reference, that is all you need to do.

Chapter 9ðEXTqlist Reference

262

If you had done:

void sampleClass::makeAReference()

{

 EXTqlist* myRef(mMyList);

 str255 textForRow(ñAdded by the referenceò);

 myRef- >insertRow(0, &textForRow, 999);

 *myRef = qnil;

}

the original list ómMyListô would no longer have any contents as you have deleted it.

Note: If you intend to use the EXTfldval class with your EXTqlist objects, see the

EXTfldval section on memory issues.

Structures and Enumerations

listtype

An enum defining the data storage method used by the list object.

listVlen

Variable length data will be stored.

listScol

Simple text list storage with support for a qlong value ómarkô on each row. This list

ONLY supports one column.

EXTsortItem

A structure that defines sorting information for a single column. It has the following

members.

typedef struct

{

 qshort mSortColumn;

 qbool mUpperCase;

 qbool mDescending;

} EXTsortItem;

¶ mSortColumn - The column number to be sorted. Columns number start from 1.

¶ mUpperCase - qtrue if the column values should be treated as uppercase during sort.

¶ mDescending - qtrue if the column values should be sorted in descending order.

 EXTqlist Class Reference

 263

EXTsortStruct

A structure that defines a group of sort fields (a group of EXTsortItem objects)

typedef struct

{

 qshort mSortCount;

 EXTsortItem mSortLines[cMaxSortItems];

} EXTsortStruct;

¶ mSortCount - The number of sort items to use from this structure.

¶ mSortLines[cMaxSortItems] - An array of sort items.

cMaxSortItems is the maximum number of columns that can be used on a sort.

EXTqlist Class Reference

EXTqlist::EXTqlist()

EXTqlist::EXTqlist()

The constructor for an empty EXTqlist object. The EXTqlist will not contain any valid data

and can not be used until EXTqlist::clear has been called.

EXTqlist::EXTqlist()

EXTqlist::EXTqlist(listtype pListType)

The constructor for an empty EXTqlist object.

¶ pListType - The type of list to initialize the new list object as.

EXTqlist::EXTqlist()

EXTqlist::EXTqlist(lsttype* pList)

The constructor for an Omnis list. This constructor does not make a copy of the list data, so

there is no need to destroy the list data by assigning qnil.

¶ pList - Points to the internal Omnis list.

See also EXTqlist::getLstPtr

Chapter 9ðEXTqlist Reference

264

EXTqlist::EXTqlist()

EXTqlist::EXTqlist(EXTqlist* pListData)

The constructor for a new EXTqlist object based on existing list data. EXTqlist *

information can be retrieved from EXTfldval objects.

¶ pListData - The list data to build a list object from.

EXTqlist::EXTqlist() (v3.0)

EXTqlist::EXTqlist(qbyte* pAdd, qlong pLen, qret* pErr = NULL)

The constructor for a new EXTqlist object based on existing list data in disk format. The

disk format list data must have been created previously by calling EXTqlist::getBinLen and

EXTqlist::getBinary.

¶ pAdd ï Address of the list data in binary form.

¶ pLen ï Length in bytes of the list data.

¶ pErr ï Optional error return. Returns e_ok if the list was constructed successfully.

See also EXTqlist::getBinLen, EXTqlist::getBinary

EXTqlist::~EXTqlist()

EXTqlist::~EXTqlist()

The destructor for an EXTqlist object.

EXTqlist::addCol()

qshort EXTqlist::addCol(qshort pCol, ffttype pFft, qshort pFdp, qlong pFldLen, strxxx*

pClassname = NULL, strxxx* pColumnname = NULL)

Adds a new column to the list.

¶ pCol - The column number to insert at.

¶ pFft - The data type for the new column.

¶ pFdp - The sub-data type for the new column - see EXTfldval.

¶ pFldLen - The data length for the new column.

¶ pClassname - Specifies the optional class name.

¶ pColumnname - Specifies the optional column name.

Note: If you do not specify column types you may encounter problems sorting lists

columns.

 EXTqlist Class Reference

 265

EXTqlist::addCol()

qshort EXTqlist::addCol(ffttype pFft, qshort pFdp, qlong pFldLen=0, strxxx* pClassname)

Adds a new column to the list.

¶ pFft - The data type for the new column.

¶ pFdp - The sub-data type for the new column - see EXTfldval.

¶ pFldLen - The data length for the new column.

¶ pClassname - Specifies the optional class name.

¶ returns ï The new column in the list, zero if unsuccessful.

Note: If you do not specify column types you may encounter problems sorting lists

columns.

EXTqlist::addColEx() (v5.0)

qshort EXTqlist::addColEx(qshort col, ffttype fft, qshort fdp, qlong fln, strxxx* classname,

strxxx* columnname, qbool noclear)

Adds a new column to the list with support for additional attributes.

¶ col ï 1-based column number of the new column.

¶ fft ï Omnis data type of the new column.

¶ fdp ï Omnis sub-type of the new column.

¶ classname ï Stores an optional classname with the column definition.

¶ columname ï The name of the new column.

¶ noclear ï If qtrue, the contents of the list are left intact after the new column is added,

otherwise the list contents are cleared.

EXTqlist::clear()

void EXTqlist::clear(listtype pListType)

Clears the listôs contents, definition, and resets its type.

pListType - The new type for a list.

Chapter 9ðEXTqlist Reference

266

EXTqlist::clearRow()

qret EXTqlist::clearRow(qlong pRow)

Clears the contents from a row in the list.

¶ pRow - The row number to be cleared

¶ returns - e_ok if the row was cleared successfully.

EXTqlist::colCnt()

qshort EXTqlist::colCnt()

Returns the number of columns used in this list.

¶ returns - Returns the column count.

EXTqlist::convertEncoding() (v4.2)

void EXTqlist::convertEncoding(qbool pSrcIsUnicode, qbool pDestIsUnicode)

Converts the encoding of character data stored in the list - only suitable for lists with a

definition that is allowed for a web service parameter or return value.

convertToEncoding(qtrue,qfalse) causes all character data stored in the list to be converted

to non-Unicode Omnis character set data. convertToEncoding(qfalse,qtrue) causes character

data stored in the list to be converted to Unicode data.

¶ pSrcIsUnicode ï If qtrue, indicates that text written to the list is Unicode data.

¶ pDestIsUnicode - If qtrue, indicates that text read from the list should be returned as

Unicode data.

EXTqlist::copyDef()

qbool EXTqlist::copyDef(EXTqlist pList, qbool pRedefine)

Copies the list definition from the passed list object to this list object.

¶ pList - The list to take the definition from.

¶ pRedefine - qtrue if this list is defined from empty, or columns are redefined.

¶ returns - qtrue if the definition copy was successful.

 EXTqlist Class Reference

 267

EXTqlist::defineFromSQLClass() (v4.2)

qbool EXTqlist::defineFromSQLClass(strxxx &pSQLClassName, strxxx &pErrorText)

Defines the list object from the specified Omnis schema class returning qtrue on success,

qfalse otherwise.

¶ pSQLClassName - The name of an Omnis schema class to use.

¶ pErrorText ï An error message returned in the event that the list could not be defined.

EXTqlist::deleteRow()

qret EXTqlist::deleteRow(qlong pRow)

Deletes a row from the list.

¶ pRow - The row number to be deleted.

¶ returns - e_ok if the row was deleted successful.

EXTqlist::dup()

qbool EXTqlist::dup(EXTqlist * pList)

Duplicates the contents of pList in to this list.

¶ pList - The lists containing the data to be duplicated.

¶ returns - Returns qtrue if the data was duplicated successfully.

Note: The contents of the list may have to be cleared using the qnil assignment.

 See EXTqlist Memory Issuesô above.

EXTqlist::empty()

qret EXTqlist::empty()

Clears the listôs contents, leaving the list definition and column types unchanged.

EXTqlist::getBinary()

void EXTqlist::getBinary(qchar* pDiskAddress)

Copies the contents of the list object to the address supplied, storing it as a simple flat

buffer. The list can be reconstructed with the correct EXTqlist constructor.

¶ pDiskAddress - The address to save the list contents to.

See also EXTqlist::getBinLen, EXTqlist::EXTqlist(qbyte*, qlong, qret*)

Chapter 9ðEXTqlist Reference

268

EXTqlist::getBinLen()

qlong EXTqlist::getBinLen()

Returns the size needed to store the contents of the list object as a simple flat buffer.

¶ returns - The length needed to store to disk.

See also EXTqlist::getBinary

EXTqlist::getCol()

void EXTqlist::getCol(qshort pCol, qbool pInclfilename, strxxx& pName)

Retrieves the column name for the column specified.

¶ pCol - The column number to retrieve the name.

¶ pInclfilename - qtrue if the filename should be included.

¶ pName - The string variable populated with the column name after the call.

Note: The name of a column corresponds to the name used when the list was defined using

the óDefine listô Omnis command, or using Omnis list notation.

EXTqlist::getCol()

void EXTqlist::getCol(qshort pCol, strxxx& pName)

Retrieves the column name for the column specified.

¶ pCol - The column number to retrieve the name.

¶ pName - The string variable populated with the column name after the call.

Note: The name of a column corresponds to the name used when the list was defined using

the óDefine listô Omnis command, or using Omnis list notation.

EXTqlist::getColType()

void EXTqlist::getColType(qshort pCol, ffttype& pFft, qshort & pFdp)

void EXTqlist::getColType(qshort pCol, ffttype& pFft, qshort & pFdp, qlong & pLen)

Retrieves data type information from a column number.

¶ pCol - The column number for which to retrieve data type information.

¶ pFft - The data type for the column is returned here.

¶ pFdp - The sub-data type for the column is returned here.

¶ pLen - The maximum data length of the column.

 EXTqlist Class Reference

 269

EXTqlist::getColVal()

void EXTqlist::getColVal(qlong pRow, qshort pCol, ffttype pFft, qshort pFdp,

EXTfldval& pFval)

Returns the contents from a row and column in the form of a EXTfldval object. The data

can be optionally converted.

¶ pRow - The list row to access.

¶ pCol - The list column to access.

¶ pFft - The type the returning data should be converted to.

¶ pFdp - The type the returning data should be converted to (sub type) see EXTfldval.

¶ pFval - The EXTfldval object modified to hold the contents of the row/column.

Note: The ópFvalô parameter is a copy of the columns contents. The memory associated

with the copy is deleted when the ópFvalô parameter is deleted.

EXTqlist::getColVal()

qbool EXTqlist::getColVal(qlong pRow, qshort pCol, EXTfldval& pFvalp)

Populates a read-only EXTfldval object with the data for row/column.

¶ pRow - The list row to access.

¶ pCol - The list column to access.

¶ pFvalp - An EXTfldval modified to allow access to row/column.

Returns qtrue if successful, qfalse otherwise. Developers should note that if qfalse is

returned (e.g. when requesting a row greater than the row count) the contents of pFvalp

remain unchanged.

Note: As the EXTfldval object is marked as read-only, any calls to modify the EXTfldvalsô

data (e.g. via setChar, setLong etc..) will fail. If you wish to modify the lists data you must

use EXTqlist::getColValRef with pWillAlter set to qtrue.

EXTqlist::getColValRef()

qbool EXTqlist::getColVal(qlong pRow, qshort pCol, EXTfldval& pFvalp, qbool

pWillAlter)

Populates a EXTfldval object with the data for row/column.

¶ pRow - The list row to access.

¶ pCol - The list column to access.

Chapter 9ðEXTqlist Reference

270

¶ pFvalp - An EXTfldval modified to allow access to row/column.

¶ pWillAlter - qtrue if you want to modify the contents of pFvalp.

Returns qtrue if successful, qfalse otherwise. Developers should note that if qfalse is

returned (e.g. when requesting a row greater than the row count) the contents of pFvalp

remain unchanged.

Note: If pWillAlter if false (i.e. equivalent to calling EXTqlist::getColVal(qlong, qshort,

EXTfldval&) then the EXTfldval object is marked as read-only. Consequently any calls to

modify the EXTfldvalsô data (e.g. via setChar, setLong etc..) will fail.

EXTqlist::getCurRow()

qlong EXTqlist::getCurRow()

Returns the current row number.

returns - Returns the current row number associated with this list.

EXTqlist::getLstPtr()

lsttype* EXTqlist::getLstPtr()

Returns the pointer to the Omnis list data.

EXTqlist::getColFlags() (v4.1)

qlong EXTqlist::getColFlags(qshort col)

Returns the flags describing an individual column of the list. Flag values are listed in

EXTDAM.HE and include the following: cTABflagIsPrimaryKey,

cTABflagExcludeFromInsert, cTABflagExcludeFromUpdate, cTABflagCalculated,

cTABflagSequenceType & cTABflagExcludeFromWhere

¶ col ï 1 based column number to inspect.

EXTqlist::getColNullInfo() (v4.1)

qbool EXTqlist::getColNullInfo(qshort col)

Returns qtrue if the list column supports NULL values, qfalse otherwise.

¶ col ï 1 based column number to inspect.

 EXTqlist Class Reference

 271

EXTqlist::getRow()

void EXTqlist::getRow(qlong pRow, str255* pString)

Retrieves the string value added with either ::insertRow or ::putRow function.

¶ pRow - The row to extract the string from.

¶ pString - The string to copy the list sting into.

Note: listScol only.

EXTqlist::getRow()

void EXTqlist::getRow(qlong pRow, qlong& pMark)

Retrieve the long ómarkô value added with either ::insertRow or ::putRow function.

¶ pRow - The row to extract the ómarkô value from.

¶ pMark - The mark value stored in the list is returned here.

Note: listScol only.

EXTqlist::getRowCrb()

qcrb EXTqlist::getRowCrb(qlong pRow, qbool pWillAlter = qfalse)

Returns a pointer to the Omnis data collection of a list.

¶ pRow - specifies the row of the list the data collection will reference.

¶ pWillAlter - specify qtrue if you want to make changes to the data of the row.

Returns the pointer to the listôs data collection.

Warning: Once you have retrieved the pointer to the data collection, changing the current

row of the list will change the data in the collection to that of the new current row. But the

new row will not be marked as changed until you execute another getRowCrb(rowNumber,

qtrue). If you do not mark a row as changed, any changes you make to the data will be lost

when the current row is changed.

// example changing the data of column 3 in row 2 of a list

EXTqlist lst(listVlen);

lst.setFinalRow(5);

qcrb crb = lst.getRowCrb(2, qtrue);

CRBsetLong(crb, 3, 255);

// no further action needs to be taken.

// column 3 of row 2 will now contain the value 255

Chapter 9ðEXTqlist Reference

272

EXTqlist::getRowMax()

qlong EXTqlist::getRowMax()

Returns the maximum number of rows this list can have.

¶ returns - Returns the maximum row count.

EXTqlist::insertRow()

qlong EXTqlist::insertRow(qlong pBefore = 0, str255* pText = NULL, qlong pMark = 0)

Inserts a new row into the list.

¶ pBefore - The row number to insert the new row before. 0 indicates the end of the list.

¶ pText - The text to be inserted in to the list for the new row. ç Note: listScol only.

¶ pMark - A long value that can be added to identify the new row. ç Note: listScol only.

¶ returns - The new line number is returned if the insert was successful.

EXTqlist::isRowSelected()

qret EXTqlist::isRowSelected(qlong pRow, qbool pIsSaved = qfalse)

Returns the selected state of a row.

¶ pRow - The row to test.

¶ pIsSaved - qtrue if the check is to be made on the saved selected states.

¶ returns - qtrue if the row is selected, and qfalse if the row is not selected.

EXTqlist::loadRows()

void EXTqlist::loadRows(qchar* pRowData)

Takes a ó+ô separated string and converts it into rows in the list, for example,

ñRow1+Row2+Row3ò.

¶ pRowData - A pointer to a c-style string to be converted into rows for the list.

The list is redefined as listScol type.

EXTqlist::operator = (qniltype qnil)

void EXTqlist::operator =(qniltype qnil1)

Frees the memory used by the list.

 EXTqlist Class Reference

 273

EXTqlist::putColVal()

void EXTqlist::putColVal(qlong pRow, qshort pCol, EXTfldval& pFval)

Sets the contents of a column value from the passed EXTfldval object.

¶ pRow - The list row to access.

¶ pCol - The list column to access.

¶ pFval - The EXTfldval object whoôs data should be stored in the column.

Note: The ópFvalô parameterôs contents are duplicated and stored in the list. The memory

for the duplicated contents is owned by the list object, and the memory used by the ópFvalô

parameter is deleted when the parameter is deleted.

EXTqlist::putRow()

qret EXTqlist::putRow(qlong pRow, str255* pText = NULL, qlong pMark = 0)

Replaces the contents for a particular row.

¶ pRow - The row number to be modified.

¶ pText - The text to be stored in the list for the new row. ç Note: listScol only.

¶ pMark - A long value that can be added to the new row. ç Note: listScol only.

¶ returns - e_ok if the contents were replaced successfully.

EXTqlist::rowCnt()

qlong EXTqlist::rowCnt()

Returns the number of rows in this list.

¶ returns - Returns the row count.

EXTqlist::selectRow()

qret EXTqlist::selectRow(qlong pRow, qbool pSelect, qbool pIsSaved = qfalse)

Selects or deselects a row in the list.

¶ pRow - The row to select or deselect.

¶ pSelect - qtrue if the row is to be selected.

¶ pIsSaved - qtrue if the change of state is to happen to the lists saved selection buffer.

¶ returns - e_ok if the lines state changed.

Chapter 9ðEXTqlist Reference

274

Note: Control over the list selections is handled in the Omnis environment via command

such as Swap selected and saved.

EXTqlist::setCol() (v5.0)

void EXTqlist::setCol(qshort col, strxxx* name)

Changes the name of an existing list column.

¶ col - 1-based column number.

¶ name - New column name.

EXTqlist::setCurRow()

qret EXTqlist::setCurRow(qlong pCurrentRow)

Sets the current row number for this list object.

¶ pCurrentRow - The new current row for this list.

¶ returns - e_ok if the current row changed.

EXTqlist::setFinalRow()

qret EXTqlist::setFinalRow(qlong pLastRow)

Modifies the list to contain the number of rows as specified by pLastRow. If necessary

rows are deleted or empty rows are added.

¶ pLastRow - The new final row number of the list.

¶ returns - e_ok if the final row was set.

EXTqlist::setRowMax()

qret EXTqlist::setRowMax(qlong pLastMaxValue)

Prevents the list from extending beyond the value passed.

¶ pLastMaxValue - The new last row for the list.

¶ returns - e_ok if the lists max line is changed.

Note: If ópLastMaxValueô is less than the number of rows the list already has, the number

of rows the list currently has becomes the new maximum, not ópLastMaxRowô.

 EXTqlist Class Reference

 275

EXTqlist::sort()

qbool EXTqlist::sort(EXTsortStruct* pSortItems)

Sorts the list object according to the sort options set in the passed sorting structure.

¶ pSortItems - The sorting options for columns in the list.

¶ returns - Returns qtrue if the list was sorted, and qfalse if the sort failed.

Example:

EXTqlist* paramlist = new EXTqlist (listVlen);

for (qshort rows = 1; rows<=10; rows++)

{

 qlong paramrow = paramlist - >insertRow();

 // Parameter name

 paramlist - >getColValRef(paramrow, 1, cva l, qtrue);

 cval.setChar(newCharValue);

 // fft Data type

 paramlist - >getColValRef(paramrow, 2, cval, qtrue);

 cval.setLong(newLongValue2);

 // EXTD_ flags

 paramlist - >getColValRef(paramrow, 3, cval, qtrue);

 cval.setLong(newLongV alue3);

}

paramlist = qnil;

delete paramlist;

Chapter 10ðEXTfldval Reference

276

Chapter 10ðEXTfldval
Reference

Introduction
The EXTfldval class gives your external components a generic data storage object. All data

passed to and from Omnis and your component is in the form of a EXTfldval object. This

object can store a variety of data-types, offering some basic conversion between various

data formats. For example, you can put a long numeric value into the EXTfldval class and

retrieve it in string or data form.

EXTfldval Memory Issues

The EXTfldval class can be constructed in two ways, one as a reference to a known Omnis

field such as #S1, or as an individual object. You should think of the class as a container,

which either has some data stored within it, or as a reference to another data value. The

container can store a range of data-types from pictures and lists to simple data types such as

numbers and strings. The memory associated with the EXTfldval class is always owned by

Omnis, with the possible exception when the container is storing a list (see below). If the

EXTfldval object is being used to store data as opposed to being used as a reference, the

memory is deleted when the object is deleted, either by the ódeleteô operator or as a result of

the EXTfldval object going out of scope. Some API calls such as ECOaddParam cause the

memory used by the EXTfldval object to be disassociated, thus Omnis takes ownership of

the memory from the EXTfldval and uses it elsewhere. When this happens, the EXTfldval

object does not delete the memory on destruction. These APIs will be marked in this

document.

// Storing a string and getting a number

void myMethod()

{

 EXTfldval myFldval;

 str255 stringWithNumber(ñ100ò);

 myFldval.setChar(stringWithNumber);

 qlong number = myFldval.getLong();

 if (number==100)

 {

 Introduction

 277

 // string was converted to a number ok.

 }

}

In the above example, an EXTfldval object is storing a string. When the object goes out of

scope, Omnis will delete the memory used to store the string. Below is another example

where the data being stored is unknown (binary), but again Omnis will delete the memory

when the object goes out of scope or is deleted. All the example has to do is take care of

deleting the memory it used to assign the EXTfldval object.

// Storing some binary information in an EXTfldval

void myMethod()

{

 EXTfldval myFldval;

 HGLOBAL someBinary = NULL;

 // Allocates some memory and returns it.

 someBinary = getSomeBinaryData();

 if (someBinary)

 {

 myFldval.setHandle(so meBinary, fftBinary);

 MEMglobalFree(someBinary);

 }

}

EXTfldvals and EXTqlists

Generally, all EXTfldval objects have their own memory to store the data contents. The one

exception to this rule can be the storage of the list object, EXTqlist. EXTqlist objects can

have their own data storage (see EXTqlist object). Some lists can become very large, such

as lists of rows received from a SQL database. When Omnis needs to pass lists objects

around, it uses the EXTfldval object. For the sake of memory and speed, the EXTfldval

object can carry a reference to a list object, rather than a copy of the object. When you

assign a list to an EXTfldval object, you have to specify if the data to be stored will be a

reference to a list object, or if it will store the contents of a list object. If you want to store a

reference, the reference is only valid while the EXTqlist is valid. That is, if you delete the

EXTqlist, the reference stored is no longer valid, and when used will cause a crash. If you

decide to store the contents of a list object, the EXTfldval takes ownership of the memory

used to store the content of the list from EXTqlist object, and as such the EXTqlist contents

should not be cleared by using the qnil assignment as it no longer owns the memory.

Chapter 10ðEXTfldval Reference

278

Here is an example of using an EXTfldval object to store the contents of a EXTqlist.

// Using a EXTfldval to store an EXTqlist

void myMethod(EXTfldval& pFldval)

{

 EXTqlist* tempList = new EXTqlist(listVlen);

 for (qshort i = 0; i<10; i++)

 {

 EXTfldval cval;

 qlong newRow = tempList - >insertRow();

 tempList - >getColValRef(newRow, 1, cval, qtrue);

 cval.setLong(i);

 }

 pFldval.setList(&tempList, qtrue);

 delete tempList;

}

In the above example, an EXTfldval object passed in to the function will be given a list to

store. The temporary EXTqlist object is first filled with some new rows, then the contents of

the list are transferred to the EXTfldval object. At the end of the function, the list is deleted.

Getting a list from an EXTfldval

Once you have been given an extfldval object with a list in it, you can retrieve it in two

ways, as a complete list object, or as a reference. Remember in the EXTqlist section you

specified the EXTqlist object can be a reference to a list, or an individual object. When you

ask the EXTfldval object for a list, you can choose what sort of list is returned. If you

choose a complete object, a new EXTqlist is created with a duplicate of the list contents

associated with the EXTfldval object. The memory for this object needs to be emptied using

the qnil assignment operator before the object is deleted. If you choose the reference, a new

EXTqlist is created, but as a reference to another EXTqlist object. This also needs to be

deleted.

 Introduction

 279

Here is an example building on from the previous example. It uses the EXTfldval object

that was passed in to the function above to extract a list from.

// Using a EXTfldval to store an EXTqlist

void myMethod(EXTfldval& pFldval)

{

é(see above)

}

// Takes a complete copy of the list, adds a row and frees the list

void alterList()

{

 EXTfldval myFldval;

 EXTqlist* myQlist;

 // call to fill a list

 myMethod(myFldval);

 // now get a duplicate of the list stored

 myQlist = myFldval.getList(qtrue);

 // add another row

 EXTfldval cval;

 qlong newRow = myQlist.insertRow();

 myQlist - >getColValRefPtr(newRow, 1, cval, qtrue);

 cval.setLong(999);

 // do something else

 callAnotherFunction(myQlist);

 // free duplicated list

 *myQlist = qnil;

 delete myQlis t;

 // real list stored in myFldval is deleted as scope ends.

}

Chapter 10ðEXTfldval Reference

280

Here is another example, but this does not take a copy and operates on a reference to the

list.

Note: If you get a EXTqlist as a reference from an EXTfldval, you MUST delete the object,

but do not use the qnil assignment operator because that clears the original.

// Gets a reference to a list, adds a row and frees reference.

void alterAnotherList()

{

 EXTfldval myFldval;

 EXTqlist* myQlist;

 // call to fill a list

 myMethod(myFldval);

 // now get a reference to the list

 myQlist = myFldval.getList(qfalse);

 // add another row

 EXTfldval cval;

 qlong newRow = myQlist.insertRow();

 myQlist - >getColValRef(newRow, 1, cval, qtrue);

 cval.setLong(999);

 // do something else

 callAnothe rFunction(myQlist);

 // free reference list

 delete myQlist;

}

 Introduction

 281

The next example demonstrates a crash, as an EXTqlist reference is used after the

EXTfldval has been deleted.

// Gets a reference to a list, and uses it after the original

// has been deleted.

void doNotDoThis()

{

 EXTqlist* myQlist;

 // extra scope added for example

 {

 EXTfldval myFldval;

 // call to fill a list

 myMethod(myFldval);

 // now get a reference to the list

 myQlist = myFldval.getList(qfalse);

 }

 // at this point, the EXTfldval has been deleted, so the list

 // reference no longer points to a good list

 // Any call below that uses ómyQlistô causes a crash.

 // add another row

 EXTfldval cval;

 qlong newRow = myQlist.insertRow();

 myQlist.getColValRef(newRow, 1, cval, qtrue);

 cval.setLong(999);

 // do something else

 callAnotherFunction(myQlist);

 // free reference list

 delete myQlist;

}

If the above example had taken a copy of the list as shown below, the crash would not

occur.

Chapter 10ðEXTfldval Reference

282

 // extra scope added for example

 {

 EXTfldval myFldval;

 // call to fill a list

 myMethod(myFldval);

 // take a copy

 myQlist = myFldval.getList(qtrue);

 }

As it is a complete copy, deleting the EXTqlist* at the end of the function also needs to

delete the contents like this.

 // free reference list

 *myQlist = qnil;

 delete myQlist;

Enumerations and Structures

ffttype

An enum defining the data storage types that the EXTfldval supports.

fftNone

No valid object is stored

fftCharacter

Character or national character storage

fftBoolean

Simple Boolean storage.

fftDate

Date, Time and DateTime storage

fftNumber

Real number storage

fftInteger

4 or 2 byte integer storage

fftPicture

Picture image storage

fftBinary

Binary storage

 Enumerations and Structures

 283

fftList

List storage

fftRow

Row storage

fftObject

Object storage

fftCrb

Omnis data collection (see EXTqcrb)

fftCalc

Tokenised calculation

fftConstant

Omnis constant

In addition to the major data types, some data types such as fftDate, fftNumber need to

know exactly what sort of date or number to store. This is accomplished using a subtype.

The subtypes for fftCharacter are:

dpFcharacter

Character data storage

dpFnational

National character data storage

The subtypes for fftDate are:

dpFdate1900

Short date field 1900-1999

dpFdate1980

Short date field 1980-2079

dpFdate2000

Short date field 2000-2099

dpFdtime1900

Date and time as above

dpFdtime1980

Date and time as above

dpFdtime2000

Date and time as above

dpFtime

Short time field

Chapter 10ðEXTfldval Reference

284

dpFdtimeC

Date and time including century

The subtypes for fftNumber are:

dpFmask

a mask for accessing the number field decimal places.

dpFsnumber

Short number fields. Allows 0 and 2 decimal places.

dpFloat

Floating number

The subtypes for fftInteger are:

0

4 byte integer

dpFsinteger

2 byte integer

The subtype for fftList are:

0

Normal list

dpFrow

Row variable

Subtype that can be used for all ffttypes for default settings is

dpDefault

Default subtype. This varies depending on the fft.

fftCharacter - dpDefault results in a dpFcharacter subtype.

fftBoolean - dpDefault is ignored.

fftDate - dpDefault results in a dpFdtime1980 subtype.

fftNumber - dpDefault results in a zero decimal place number.

fftInteger - dpDefault results in a short integer.

For all other types dpDefault is ignored.

 Enumerations and Structures

 285

crbFieldInfo (V2.2)

This structure is used with ECOgetCrbFieldInfo to get format information of an Omnis

variable. The members are:

struct crbFieldInfo

{

 ffttype fft;

 qshort fdp;

 qlong fln;

 qbool fdx;

 qshort iln;

};

fft

the data type

fdp

the data sub type. See ffttype description for more information

fln

for character data it specifies the maximum length of the field

fdx

if true, the field is indexed.

iln

if the field is indexed, it specifies the index length

Chapter 10ðEXTfldval Reference

286

datestamptype

Structure used for passing date and time information in and out of the EXTfldval object.

The members are:

typedef struct

{

 qshort mYear;

 qchar mMonth;

 qchar mDay;

 qchar mHour;

 qchar mMin;

 qchar mSec;

 qchar mHun;

 qchar mDateOk;

 qchar mTimeOk;

 qcha r mSecOk;

 qchar mHunOk;

} datestamptype;

mYear

Year values. e.g. 1900.

mMonth

Month values. 1-12

mDay

Day values. 1-31

mHour

Hour values. 1-12

mMin

Minute values. 0-59

mSec

Second values. 0-59

mHun

Hundredth of second values

mDateOk

qtrue if the date is valid

mTimeOk

qtrue if the time is valid

mSecOk

qtrue if the seconds are valid

 EXTfldval Class Reference

 287

mHunOk

qtrue if the hundredth of seconds are valid

EXTfldval Class Reference

EXTfldval::EXTfldval()

EXTfldval::EXTfldval()

The constructor for an empty EXTfldval container.

EXTfldval::EXTfldval()

EXTfldval::EXTfldval(qfldval pData=0)

The constructor for a EXTfldval container which will refer to the defined pData.

EXTfldval::EXTfldval()

EXTfldval::EXTfldval(strxxx& pVariableName, qbool pWillAlter =qfalse, locptype*

pLocp = NULL)

The constructor for an EXTfldval container that sets itself up to refer to a pre-defined

named field. e.g. #S1

¶ pVariableName - The field to associate the new EXTfldval object with.

¶ pWillAlter - qtrue if you want to alter the data.

¶ pLocp - points to the context. The EXTCompInfo structure which is passed to external

components contains two context pointers. The context pointer mInstLocp points to the

context of the class instance which contains the component. The context pointer

mLocLocp points to the context of the calling method.

EXTfldval::~EXTfldval()

EXTfldval::~EXTfldval()

The destructor for the EXTfldval object.

Chapter 10ðEXTfldval Reference

288

EXTfldval::operator =()

void EXTfldval::operator =(EXTfldval& pFval)

Assigns (copies) the contents of pFval to the object.

Example:

EXTfval myFldVal = pFldVal;

EXTfldval::compare()

qshort EXTfldval::compare(EXTfldval& pFldval)

Compares the contents of two EXTfldval objects.

¶ pFldVal - The EXTfldval object to compare against.

¶ returns - Returns 0 if both objects match.

 Returns -1 if pFldval is less than this.

 Returns 1 if pFldval is greater than this.

EXTfldval::compare()

qshort EXTfldval::compare(EXTfldval& pFldval, qbool pIgnoreCase)

Compares the character contents of two EXTfldval objects.

¶ pFldVal - The EXTfldval object to compare against.

¶ pIgnoreCase - qtrue if the case of the characters is ignored.

¶ returns - Returns 0 if both objects match.

 Returns -1 if pFldval is less than this.

 Returns 1 if pFldval is greater than this.

EXTfldval::compare()

qshort EXTfldval::compare(strxxxx& pString, qbool pIgnoreCase)

Compares the character contents of the EXTfldval object and pString.

¶ pString ï A string object to compare against.

¶ pIgnoreCase - qtrue if the case of the characters is ignored.

¶ return s - Returns 0 if both the string in the EXTfldval and pString match.

 Returns -1 if pString is less than this.

 Returns 1 if pString is greater than this.

 EXTfldval Class Reference

 289

EXTfldval::concat()

void EXTfldval::concat(qchar pChar)

Concatenates a character on to the end of the existing stored data. If the data is not in

character form, it is converted first.

¶ pChar - The character to concatenate.

EXTfldval::concat()

void EXTfldval::concat(qchar* pAddress, qlong pDataLen)

Concatenates a range of characters on to the end of the existing stored data. If the data is not

in character form, it is converted first.

¶ pAddress - A buffer to some data.

¶ pDataLen - The number of characters to concatenate.

EXTfldval::concat()

void EXTfldval::concat(EXTfldval* pFldval)

Concatenates characters from another EXTfldval object on to the end of the existing stored

data. If the data is not in character form, it is converted first.

¶ pFldval - The EXTfldval objects whoôs data is concatenated.

EXTfldval::concat()

void EXTfldval::concat(strxxx& pString)

Concatenates a string on to the end of the existing stored data. If the data is not in character

form, it is converted first.

¶ pString - The string to be concatenated.

EXTfldval::conv()

qbool EXTfldval::conv(ffttype pDataType, qshort pSubDataType)

Tries to convert to another data type.

¶ pDataType - The data type to try to convert to.

¶ pSubDataType - The sub data type to try to convert to.

returns - Returns qtrue if the conversion was successful.

Chapter 10ðEXTfldval Reference

290

EXTfldval::evalCalculation() (Studio 2.0)

qbool EXTfldval::evalCalculation(EXTfldval& pResult, locptype* pLocp,

EXTqlist* pList = NULL, qbool pUseCache = qtrue)

Evaluates the calculation stored in the EXTfldval.

¶ pResult - The result of the calculation is returned in this parameter.

¶ pLocp - The EXTCompInfo structure which is passed to external components contains

two context pointers. The context pointer mInstLocp points to the context of the class

instance which contains the component. The context pointer mLocLocp points to the

context of the calling method.

¶ pList - If a list is specified, the calculation is evaluated against the list. If the calculation

refers to field names which exist as columns within the list, the data in the current row of

that column is used.

¶ pUseCache - If true, Omnis will use a global cache for storing the result. This increases

efficiency when dealing with large amounts of data, but it is potentially dangerous, since

the there is only one cache, which is reused when another calculation is evaluated.

Unless performance is an issue, always pass qfalse.

See also EXTfldval::getCalculation, EXTfldval::setCalculation

EXTfldval::getBinary()

void EXTfldval::getBinary(qlong pBufferLen, qchar* pBuffer, qlong& pRealLen)

Retrieves the objectôs data as binary.

¶ pBufferLen - The maximum size of the buffer.

¶ pBuffer - The buffer to receive a copy of the data.

¶ pRealLen - Returned is the real length of the data copied.

EXTfldval::getBinLen()

qlong EXTfldval::getBinLen()

Returns the size of the object stored, in bytes.

See also EXTfldval::getCharLen()

 EXTfldval Class Reference

 291

EXTfldval::getBool()

qshort EXTfldval::getBool(qbool* pBool = 0)

Retrieves a boolean value.

¶ pBool - Returns qtrue if the EXTfldval object result can be used.

¶ returns - If supplied, returns 0, 1 or 2.

Note: Boolean values have the following values:

Return (0) - value is not set (fldval is empty or null).

Return (1) - value is qfalse.

Return (2) - value is qtrue.

EXTfldval::getCalculation() (Studio 2.0)

void EXTfldval::getCalculation(locptype* pLocp, qshort &pCalculationType,

EXTfldval &pText)

Returns the calculation type and text representation of a tokenized calculation.

¶ pLocp - The EXTCompInfo structure which is passed to external components contains

two context pointers. The context pointer mInstLocp points to the context of the class

instance which contains the component. The context pointer mLocLocp points to the

context of the calling method.

¶ pCalculationType - The calculation type ctySquare or ctyCalculation is returned in

this parameter.

¶ pText - The textual representation of the calculation is returned in the given

EXTfldval.

See also EXTfldval::setCalculation, EXTfldval::evalCalculation

EXTfldval::getChar()

void EXTfldval::getChar(strxxx& pString, qbool pZeroEmpty = qfalse)

Returns a string version of the data stored.

¶ pString - The string to copy the data into.

¶ pZeroEmpty - if true and EXTfldval stores a number, the pString will be empty if that

number is zero.

Chapter 10ðEXTfldval Reference

292

EXTfldval::getChar()

strxxx& EXTfldval::getChar(qbool pZeroEmpty = qfalse)

Returns a reference to the string version of the data stored.

¶ pZeroEmpty - if true and EXTfldval stores a number, the returned string reference will

be empty if that number is zero.

¶ Returns ï A string reference to the string version of the data stored.

EXTfldval::getChar()

void EXTfldval::getChar(qlong pMaxLen, qchar* pAddress, qlong& pRealLen,

 qbool pZeroEmpty = qfalse)

Returns a string version of the data stored.

¶ pMaxLen - The maximum number of bytes allowed to copy into pAddress.

¶ pAddress - The buffer to copy the string into.

¶ pRealLen - The returned real length that was copied into pAddress.

¶ pZeroEmpty - if true and EXTfldval stores a number, the pString will be empty if that

number is zero.

EXTfldval::getCharLen() (v4.1)

qlong EXTfldval::getCharLen()

When the fldval contains character data, getCharLen() returns the length of the data in

characters.

See also EXTfldval::getBinLen()

EXTfldval::getConstant()

preconst EXTfldval::getConstant(preconst pMin, preconst pMax, qbool *pRet=0)

Returns the constant ID of the value stored with the fldval. The constant must be in the

range specified by pMin and pMax.

¶ pMin ï The constant range start ID. Please see the source file dmconst.he for valid

values.

¶ pMax ï The constant range end ID. Please see the source file dmconst.he for valid

values.

¶ pRet ï Optional pointer to a boolean result. If qfalse is returned, the value of the fldval

did not conform to the given constant range.

 EXTfldval Class Reference

 293

¶ Returns ï the constant ID of the value.

Example:

qbool ok;

preconst cid = fval.getConstant(preButtmodeF,preButtmodeL,&ok);

if (ok)

{

 // cid will be in the range preButtmodeF to preButtmodeL

}

See also EXTfldval::setConstant, EXTfldval::getLong(preconst,preconst,qbool*)

EXTfldval::getCrbRef()

qcrb EXTfldval::getCrbRef(qbool pDuplicate)

Returns an Omnis data collection.

¶ pDuplicate - If true, a copy is returned, which must be disposed of by calling

CRBdestroy

EXTfldval::getDate()

void EXTfldval::getDate (datestamptype& pDateTime,

 qshort pSubDataType = dpDefault, qbool* pError = 0)

Retrieves the data stored as datetime information.

¶ pDateTime - The datetime structure to modify.

¶ pSubDataType - Defines what type of datetime is retrieved. See dpDefault above.

¶ pError - If supplied, returns qtrue of the date could be retrieved.

EXTfldval::getFldVal()

qfldval EXTfldval::getFldVal()

Returns the pointer to the Omnis data. Some print manager functions and structures require

these data pointers instead of EXTfldval pointers.

¶ returns - An Omnis data pointer.

See also EXTfldval::setFldVal, EXTfldval::setOmnisData

Chapter 10ðEXTfldval Reference

294

EXTfldval::getHandle()

HGLOBAL EXTfldval::getHandle()

Returns a moveable block of memory which is a copy of the data stored in the EXTfldval.

¶ returns - A moveable block of memory.

EXTfldval::getHandle()

qHandle EXTfldval::getHandle(qbool pMakeCopy)

Returns an Omnis handle containing the data.

¶ pMakeCopy- If true, getHandle will make a copy of the data. You will be responsible

for disposing of the handle by calling HANglobalFree()

¶ returns - An Omnis handle.

EXTfldval::getList()

EXTqlist* EXTfldval::getList(qbool pDuplicate)

Retrieves a list value.

¶ pDuplicate - qtrue if the returned object is a duplicate of the list in the EXTfldval

object.

¶ returns - A new EXTqlist object. This must be deleted. NULL is returned if the

EXTfldval object cannot return an EXTqlist object.

EXTfldval::getList()

void EXTfldval::getList(EXTqlist* pList, qbool pDuplicate)

Populates the supplied list with the list in the EXTfldval object.

¶ pList ï A EXTqlist object which will be populated upon return. This value cannot be

NULL.

¶ pDuplicate - qtrue if the EXTqlist object is a duplicate of the list in the EXTfldval

object.

 EXTfldval Class Reference

 295

EXTfldval::getLong()

qlong EXTfldval::getLong(preconst pMin, preconst pMax, qbool *pRet=0)

Returns the long value of the constant stored with the fldval. The value must be in the range

of values specified by the pMin and pMax constant IDs.

¶ pMin ï The constant range start ID. Please see the source file dmconst.he for valid

values.

¶ pMax ï The constant range end ID. Please see the source file dmconst.he for valid

values.

¶ pRet ï Optional pointer to a boolean result. If qfalse is returned, the value of the fldval

did not conform to the given constant range.

¶ Returns ï the long value of the constant.

Example:

qbool ok;

qlong value = fval.getLong(preButtmodeF,preButtmodeL,&ok);

if (ok)

{

 // value will be in the range of values as specified by

 // constants preButtmodeF to preButtmodeL

}

See also EXTfldval::getConstant(), EXTfldval::setConstant

EXTfldval::getLong()

qlong EXTfldval::getLong()

Retrieves the value in the EXTfldval object as a qlong value.

¶ returns - A qlong value.

EXTfldval::getNum()

void EXTfldval::getNum(qreal& pNumValue, qshort& pSubDataType, qbool* pError=0)

Returns a number value.

¶ pNumValue - Variable to receive the numeric value.

¶ pSubDataType- The required decimal places. dpDefault does not convert.

¶ pError - If an error parameter is supplied, qtrue if the number could be converted.

Chapter 10ðEXTfldval Reference

296

EXTfldval::getObjInst()

qobjinst EXTfldval::getObjInst(qbool pDuplicate)

Retrieves a qobjinst pointer.

¶ pDuplicate - qtrue if the returned object is a duplicate of the qobjinst in the EXTfldval

object.

¶ returns ï A qobjinst pointer. NULL is returned if the EXTfldval object cannot return

an qobjinst object.

EXTfldval::getOmnisField()

qbool EXTfldval::getOmnisField(strxxx& pVariableName, qbool pWillAlter)

Sets the EXTfldval object to refer to a pre-defined Omnis variable. e.g. #S1.

¶ pVariableName - The field to associate the new EXTfldval object to.

¶ pWillAlter - qtrue if you want to alter the data.

¶ returns - qtrue if the variable name was found and the EXTfldval object can be used.

EXTfldval::getType()

void EXTfldval::getType(ffttype& pDataType, qshort* pSubDataType = 0)

Retrieves the data type information from the EXTfldval object

¶ pDataType- Receives the data type.

¶ pSubDataType- Receives the sub data type if supplied.

EXTfldval::insertStr

void EXTfldval::insertStr(qlong pPos, const strxxx& pString)

Inserts a sub-string at a given index position.

¶ pPos- The index location at which to insert at. Index starts from 1.

¶ pString- The string to insert.

EXTfldval::isEmpty()

qbool EXTfldval::isEmpty()

Tests if the EXTfldval object contains no data.

¶ returns - Returns qtrue if the object is empty and qfalse if the object contains data.

 EXTfldval Class Reference

 297

EXTfldval::isList()

qbool EXTfldval::isList()

Tests if the EXTfldval object contains list data.

¶ returns - Returns qtrue if the object contains a list (fftList) as its data.

EXTfldval::isLongChar()

qbool EXTfldval::isLongChar()

Tests if the EXTfldval object contains character data and that the length is less than 256

characters.

¶ returns - Returns qtrue if the object contains character (fftCharacter) as its data and

that the length is less than 256 characters.

EXTfldval::isNull()

qbool EXTfldval::isNull()

Tests if the EXTfldval object contains null data.

¶ returns - Returns qtrue if the object contains null (#NULL) data.

EXTfldval::isOmnisData()

qbool EXTfldval::isOmnisData()

Tests if the Omnis data pointer in the EXTfldval belongs to the EXTfldval.

¶ returns - Returns qtrue if the object contains null (#NULL) data.

See also EXTfldval::setOmnisData

EXTfldval::isReadOnly()

qbool EXTfldval::isReadOnly()

¶ returns - Returns qtrue if the data can not be altered.

Chapter 10ðEXTfldval Reference

298

EXTfldval::pos()

qlong EXTfldval::pos(EXTfldval& pFldval)

Returns the position of a sub-string from pFldval in this EXTfldval object.

¶ pFldval - The EXTfldval to search for. (in character form)

¶ returns - 0 if the string in pFldval could not be found in this object. Returns a positive

value to indicate the sub-string index location.

EXTfldval::pos()

qlong EXTfldval::pos(qchar* pAddreess, qlong pDataLen)

Returns the position of the sub-string pAddress in this EXTfldval object.

¶ pAddress - The address of a sub-string to search for.

¶ pDataLen - The length of the sub-string in bytes.

¶ returns - 0 if the data from pAddress could not be found in this object. Returns a

positive value to indicate the sub-string index location.

EXTfldval::pos()

qlong EXTfldval::pos(qchar pChar)

Returns the position of a character in this EXTfldval object.

¶ pChar- The character to search for.

¶ returns - 0 if the character could not be found in this object. Returns a positive value to

indicate the characterôs index location.

EXTfldval::pos()

qlong EXTfldval::pos(const strxxx& pString)

Returns the position of a string in this EXTfldval object.

¶ pString- The string to search for.

¶ returns - 0 if the string could not be found in this object. Returns a positive value to

indicate the stringôs index location.

 EXTfldval Class Reference

 299

EXTfldval::replaceStr()

qbool EXTfldval::replaceStr(strxxx& pFindStr, const strxxx& pReplaceStr,

 qbool pIgnoreCase = qfalse)

Searches for a sub-string and if found, replaces with another string.

¶ pFindStr - The string to search for.

¶ pReplaceStr - The replacement string.

¶ pIgnoreCase - qtrue if the case during find can be ignored.

¶ returns - qtrue if the string was found and replaced successfully.

EXTfldval::replaceStr()

void EXTfldval::replaceStr(EXTfldval & pFindObject, EXTfldval& pReplaceObject,

 qbool pAll)

Searches for a sub-string extracted from pFindObject and if found, replaces with another

string extracted from pReplaceObject.

¶ pFindObject- The EXTfldval object containing the string to search for.

¶ pReplaceObject- The EXTfldval object containing the string to replace with.

¶ pAll - qtrue if the call replaces all occurrences of the find string.

EXTfldval::setBinary()

void EXTfldval::setBinary(ffttype pDataType, qchar* pAddress, qlong pDataLen, qshort

 pSubDataType = dpDefault)

Stores data in binary form.

¶ pDataType - The type of data being stored.

¶ pAddress - The buffer to read data from and store.

¶ pDataLen - The length of the data to store.

¶ pSubDataType - The sub data type. This depends on the pDataType parameter.

Chapter 10ðEXTfldval Reference

300

EXTfldval::setBool()

void EXTfldval::setBool(qshort pValue)

Stores a boolean value.

¶ pValue - The boolean value to be stored.

Note: Boolean values has the following values:

pValue(0) - value is not set (to store empty or NULL)

pValue(1) - value is qfalse

pValue(2) - value is qtrue

EXTfldval::setCalculation() (Studio 2.0)

qret EXTfldval::setCalculation(locptype* pLocp, qshort pCalculationType, qchar* pBuffer,

qlong pLen, qlong* pError1=NULL,

qlong* pError2=NULL)

Tokenizes the specified calculation and stores it in the EXTfldval. If the calculation was not

valid, the function returns an error code, and the starting and end positions of the offending

part of the calculation.

¶ pLocp - The EXTCompInfo structure which is passed to external components contains

two context pointers. The context pointer mInstLocp points to the context of the class

instance which contains the component. The context pointer mLocLocp points to the

context of the calling method.

¶ pCalculationType - The calculation type ctySquare or ctyCalculation.

¶ pBuffer - Address of the calculation in text form.

¶ pLen - The length of the calculation in text form.

¶ pError1 - First character of offending text in calculation.

¶ pError2 - Last character of offending text in calculation.

See also EXTfldval::getCalculation, EXTfldval::evalCalculation

EXTfldval::setChar()

void EXTfldval::setChar(const strxxx& pString, qshort pSubDataType = dpDefault)

Stores a string in the EXTfldval object.

¶ pString - The string to be stored.

¶ pSubDataType - The sub data type to convert to. See dpDefault above.

 EXTfldval Class Reference

 301

EXTfldval::setChar()

void EXTfldval::setChar(qchar* pAddress, qlong pLen)

Stores a string in the EXTfldval object.

¶ pAddress - The address of some data to be stored as a string value.

¶ pLen - The number of bytes to copy from pAddress.

EXTfldval::setConstant()

void EXTfldval::setConstant(preconst pX)

Sets the value of the fldval the specified constant.

¶ pX ï The ID of the constant. Please see the source file dmconst.he for valid values.

Example:

fval.setConstant(preButtmodeOk);

See also EXTfldval::getConstant, EXTfldval::getLong(preconst,preconst,qbool*)

EXTfldval::setConstant()

void EXTfldval::setConstant(preconst pMin, preconst pMax, qlong pVal)

Sets the value of the fldval to the constant ID of the given value. Omnis will find the

constant ID, using the range of Ids specified by pMin and pMax.

¶ pMin ï The constant range start ID. Please see the source file dmconst.he for valid

values.

¶ pMax ï The constant range end ID. Please see the source file dmconst.he for valid

values.

¶ pVal ï The value to search for.

Example:

fval.setConstant(preButtmodeF,preButtmodeL,1);

// this will set the fldval to preButtmodeOk

See also EXTfldval::getConstant, EXTfldval::getLong(preconst,preconst,qbool*)

Chapter 10ðEXTfldval Reference

302

EXTfldval::setConstant() (v4.1)

qbool EXTfldval::setConstant(strxxx& pX)

Sets the fldval to a constant value directly from the supplied string.

¶ pX ï String containing the constant value.

Example:

EXTfldval fldval;

str255 colorStr(QTEXT(ñkDarkMagentaò));

fldval.setConstant(colorStr);

EXTfldval::setCrbRef()

void EXTfldval::setCrbRef(qcrb pCrb, qbool pTransferOwnership)

Stores an Omnis data collection.

¶ pCrb - Points to the data collection to be stored.

¶ pTransferOwnership - If true, the data collection will belong to the EXTfldval, and

must NOT be destroyed. If false, Omnis will store a copy of the data.

EXTfldval::setDate()

void EXTfldval::setDate (const datestamptype& pDateTime,

 qshort pSubDataType = dpDefault)

Stores a datetime value.

¶ pDateTime - The datetime structure to store.

¶ pSubDataType - Defines what type of datetime is stored.

EXTfldval::setEmpty() (v3.1)

void EXTfldval::setEmpty(ffttype fft1, qshort fdp1);

Sets the data to empty and sets it to the specified data type.

¶ fft1 - The data type

¶ fdp1 - The sub data type. This depends on the fft1 parameter.

See also EXTfldval::setNull

 EXTfldval Class Reference

 303

EXTfldval::setFldVal()

void EXTfldval::setFldVal(qfldval pData)

Sets the Omnis data pointer in the EXTfldval to the given pointer. Any data belonging to

the EXTfldval is destroyed prior to the pointer being changed.

Note: The data is not duplicated, and will not belong to the EXTfldval.

¶ qfldval - The new Omnis data pointer.

See also EXTfldval::getFldVal, EXTfldval::setOmnisData

EXTfldval::setHandle()

void EXTfldval::setHandle (ffttype pDataType, HGLOBAL pHandle,

 pSubDataType = dpDefault)

Stores data in binary form.

¶ pDataType - The type of data that is assumed to have been stored.

¶ pHandle - The buffer to read the data from and store.

¶ pSubDataType - The sub data type. This depends on the pDataType parameter.

EXTfldval::setHandle()

void EXTfldval::setHandle (ffttype pDataType, qHandle pHandle,

qbool pTakeACopy, pSubDataType = dpDefault)

Stores data in binary form.

¶ pDataType - The type of data that is assumed to have been stored.

¶ pHandle - The buffer to read the data from and store.

¶ pTakeACopy- Should Omnis take a copy of the given qHandle

¶ pSubDataType - The sub data type. This depends on the pDataType parameter.

Chapter 10ðEXTfldval Reference

304

EXTfldval::setList()

void EXTfldval::setList(EXTqlist* pList, qbool pTransferOwnership)

Stores a list in the EXTfldval object

¶ pList - The list to store.

¶ pTransferOwnership - qtrue if the EXTfldval should take ownership of the listôs

contents. If this is qtrue, you should NOT assign qnil to the EXTqlist object as it

causes a crash. If this parameter is qfalse, the EXTfldval contains a reference to the

EXTqlist being passed in, and as such will only be valid while the EXTqlist is valid.

EXTfldval::setLong()

void EXTfldval::setLong(qlong pValue)

Stores a qlong numeric value.

¶ pValue - The value to store.

EXTfldval::setNull() (v3.1)

void EXTfldval::setNull(ffttype fft1, qshort fdp1=(qshort)dpDefault);

Sets the data to NULL and sets it to the specified data type.

¶ fft1 - The data type

¶ fdp1 - The sub data type. This depends on the fft1 parameter.

See also EXTfldval::setEmpty

EXTfldval::setNum()

void EXTfldval::setNum(qreal pNumValue, qshort& pSubDataType = dpDefault)

Stores a number value.

¶ pNumValue - The numeric value to be stored.

¶ pSubDataType- The decimal places to store the number as. dpDefault does not

convert.

 EXTfldval Class Reference

 305

Example:

// sending an event parameter

EXTfldval evPar am;

evParam.setLong(10);

ECOsendEvent(mHWnd, myEvent, &evParam, 1);

// converting a number to a string.

EXTfldval general;

str255 s;

general.setLong(10);

general.getChar(s);

s.concat(str255(ñ errors were foundò);

// s now contains ô10 errors were foundô

EXTfldval::setObjInst()

void EXTfldval::setObjInst(qobjinst pObjInst, qbool pTransferOwnership)

Stores an objinst in the EXTfldval object.

¶ pObjInst - The object to store.

¶ pTransferOwnership - qtrue if the EXTfldval should take ownership of the object

instance.

EXTfldval::setOmnisData()

void EXTfldval::setOmnisData(qbool pIsOmnisData)

Sets the ownership of the Omnis data pointer in the EXTfldval.

¶ pIsOmnisData - If true, the Omnis data pointer will belong to the EXTfldval, and will

be destroyed when the EXTfldval is destroyed.

See also EXTfldval::isOmnisData, EXTfldval::setFldVal, EXTfldval::getFldVal

EXTfldval::setReadOnly()

Internal use only.

Chapter 11ðHWND Reference

306

Chapter 11ðHWND
Reference

This chapter describes the public interface of the HWND module, which is the Omnis cross-

platform window manager. This chapter includes a description of the Structures, Data types,

and Defines required by some HWND functions, Style flags for the Omnis window, the

Messages sent to a windowôs message procedure, and HWND Functions.

The HWND
The HWND is a child window, the graphical container for an Omnis window control. It is

split into two areas, the client area and the non-client area. The non-client area contains the

border (there are a number of border styles available) and scrollbars of the window. The

client area (the area which remains after subtracting the border and scrollbars) can be used

to display the controlôs interface. The client area can also contain further child windows

which are part of the controlôs interface, or are complete controls in themselves.

The Z-order

The Z-order is the order in which windows appear on the screen. When thinking in terms of

a chain of sibling windows, or child windows belonging to the same parent window, the Z-

order is like a deck of cards. The top most card can always be seen in its entirety, and how

much can be seen of all remaining cards, depends on how they are laid out on the table.

When thinking in terms of parent and child windows, the Z-order becomes more complex.

Parent windows can be thought of as boxes with a rectangular opening in the lid, through

which the child windows can be viewed. The size and location of the opening depends on

the windowôs coordinates. How much of a child can be seen through the opening depends

on the childôs coordinates in relation to that opening. Child windows are always considered

to be below their parent window in terms of Z-order, but are considered to be above all

sibling windows of their parent if these sibling windows are positioned below that parent

(just as if you were to stack a number of parent boxes containing child cards). Changing the

parent of a child (see WNDsetParent) alters its position in the Z-order.

When enumerating windows (see WNDenumChildWindows) it is the Z-order which

determines the order of the enumerated windows, their child windows, and the childrenôs

children, and so on.

When system updates occur, windows are painted starting at the top of the Z-order.

 The HWND

 307

HWND Components

Given that the client area of a window can contain any number of child windows, these

child windows normally have a location and size within their parent window which is

specified at the time they are created, and altered later on. If the parent window has been

given scrollbars, the child window can be moved by scrolling the parentôs client area.

Child windows can also be created as specific components in a parentôs client area (in this

case the parent should have no scrollbars). A component window has a fixed location within

its parent, and usually only the width or height of a component can be specified, if at all.

When the parentôs client area height or width changes, all components resize accordingly.

Any window can contain one of each component type. Any component in turn can contain a

further full set of components. There is no specific limit to the number of nested windows or

component windows. The following diagram shows all component types in their correct

position.

WND_WC_MENUBAR

WND_WC_TOOLBAR_TOP

WND_WC_MAIN_HEADER

WND_WC_HORZ_HEADER

WND_WC_HEADER_BUTTON

WND_WC_TOOLBAR_LEFT

WND_WC_VERT_HEADER

WND_WC_CLIENT

WND_WC_TOOLBAR_RIGHT

WND_WC_TOOLBAR_BOTTOM

WND_WC_STATUSBAR

= Dead areas

= Scrollbars

In this diagram only the client component is displayed with scrollbars, but any other

component could have scrollbars, if appropriate.

Chapter 11ðHWND Reference

308

Note: The names of the components bear no relationship to objects generally described by

these names; a componentôs name gives you an idea of its position in the window. For

example, Menubar tells you that the component is at the top of the window where you

would expect to find a menu bar.

The following is a listing of all the components and their special function.

Name Special function Sizeability

WND_WC_FRAME This is the default component ID of a

window. A frame window has no special

functionality.

all

WND_WC_MENUBAR Width is dependent on parentôs width height

WND_WC_TOOLBAR_TOP Width is dependent on parentôs width height

WND_WC_TOOLBAR_LEFT Height is dependent on parentôs height

minus the height of MENUBAR,

TOOLBAR_TOP,

TOOLBAR_BOTTOM and

STATUSBAR components

width

WND_WC_TOOLBAR_RIGHT Height is dependent on parentôs height

minus the height of the MENUBAR,

TOOLBAR_TOP,

TOOLBAR_BOTTOM and

STATUSBAR components

width

WND_WC_TOOLBAR_BOTTOM Width is dependent on parentôs width height

WND_WC_STATUSBAR Width is dependent on parentôs width height

WND_WC_MAIN_HEADER Width is dependent on parentôs width

minus the width of the left and right

toolbar components

height

WND_WC_HORZ_HEADER Width is dependent on parentôs width

minus the width of the left toolbar, right

toolbar, and vertical header components.

This componentôs horizontal scroll range

and position is linked to that of the client

componentôs horizontal scroll range and

position. When the client component is

scrolled horizontally, this component

receives a duplicate of all scroll

messages.

height

WND_WC_VERT_HEADER Height is dependent on parentôs height

minus the height of the MENUBAR,

TOOLBAR_TOP, MAIN_HEADER,

width

 Structures, Data types, and Defines

 309

Name Special function Sizeability

HORZ_HEADER,

TOOLBAR_BOTTOM and

STATUSBAR components.

This componentôs vertical scroll range

and position is linked to that of the client

componentôs vertical scroll range and

position. When the client component is

scrolled vertically, this component

receives a duplicate of all scroll

messages.

WND_WC_HEADER_BUTTON Height and width are dependent on the

horizontal and vertical headersô height

and width.

none

WND_WC_CLIENT Height and width are dependent on the

remainder of the parentôs client area

after subtracting all other components.

none

Structures, Data types, and Defines

GW_xxx

These flags are used with the function WNDgetWindow:

GW_CHILD

Identifies the window's first child window.

GW_HWNDFIRST

Returns the first sibling window for a child window.

GW_HWNDLAST

Returns the last sibling window for a child window.

GW_HWNDNEXT

Returns the sibling window that follows the given window in the window

manager's list.

GW_HWNDPREV

Returns the previous sibling window in the window manager's list.

Chapter 11ðHWND Reference

310

GWL_xxx

These flags are used with the functions WNDgetWindowLong and WNDsetWindowLong:

GWL_STYLE

Returns the windowôs basic window style.

GWL_EXSTYLE

Returns the windowôs extended window styles. (Omnis additional window styles)

GWL_EXCOMPONENTID

Returns the windowôs component id (one of the WND_WC_xxx styles). This flag

cannot be used with WNDsetWindowLong.

GWL_BKTHEME

Stores the window theme background. See WNDdrawThemeBackground for full

details. Setting this value will invalidate the HWND area.

GWL_BKTHEME_NOINVAL

Same as GWL_BKTHEME, but does not invalidate the HWND area when setting

this value.

GWL_INFLATE_ALL (Mac OSX only)

Allows you to set an area around the HWNDs visual area for drawing by this

HWND. In other words during painting to this HWND, you may paint outside the

HWNDS bounding area. This is useful if you need to paint drop shadows around

your control. To specify the inflate values you can set-up a qrect and use the

function WNDmakeLong to convert the qrect to a long value.

Example:

 // inflate the paint area on the left and right by 2 pixels, and 4

 // pixels to the bottom

 qrect inflateRect(- 2, 0, 2, 4);

 WNDsetWindowLong(theHwnd,GWL_INFLATE_ALL,

 WNDmakeLong(&inflateRect));

GWL_INFLATE_FRAME (Mac OSX only)

Same as GWL_INFLATE_ALL but only effects the non-client painting.

HDC

The HDC is a graphical device context and is fully documented in the GDI Reference

chapter.

 Structures, Data types, and Defines

 311

HTxxx

These defines are used by some mouse related message, for example, WM_SETCURSOR,

to specify the part of a window, the mouse is currently over.

HTNOWHERE

The mouse is not over the window.

HTCLIENT

The mouse is over the client area.

HTHSCROLL

The mouse is over the horizontal scroll bar.

HTVSCROLL

The mouse is over the vertical scroll bar.

HTGROWBOX

The mouse is over the grow box (WIN95 and MacOS only).

HTBORDER

The mouse is over the border of the window.

HWND

A handle or reference to a child window.

HWND_xxx

You can use the following defines instead of a valid HWND with some of the functions in

the API:

HWND_DESKTOP

Refers to the desktop window. HWND_DESKTOP can be used with various

functions including WNDstartDraw and WNDendDraw, if unclipped drawing to

anywhere on the screen is required. Under MacOS it is the sum of all connected

monitors.

HWND_MAI NWINDOW

Under Windows it refers to the Omnis Program window. Under MacOS it is the

main monitor (the one with the menu bar).

HWND_TOP

Can be used with WNDsetWindowPos to move the window to the top of the z-

order (Top of its sibling chain).

HWND_BOTTOM

Can be used with WNDsetWindowPos to move the window to the bottom of the z-

order (Bottom of its sibling chain).

Chapter 11ðHWND Reference

312

LPARAM

LPARAM is a typedef and is of type unsigned long. The lParam and uParam parameters of

the WndProc function are of this type.

SW_xxx

These flags are used with the function WNDshowWindow:

SW_HIDE

Hides the window.

SW_SHOW

Shows the window.

SWP_xxx

These flags are used with the functions WNDsetWindowPos and WNDsetWindowPosEx:

SWP_NOSIZE

If specified no sizing of the window takes place.

SWP_NOMOVE

If specified no moving of the window takes place.

SWP_NOZORDER

If specified the position in the z-order of the window is not altered.

SWP_NOREDRAW

If specified no invalidating takes place. Any changes to the visibility, z-order or

position and size is not reflected on screen.

SWP_SHOWWINDOW

If specified the window is made visible.

SWP_HIDEWINDOW

If specified the window is hidden.

UINT

The UINT is defined as an unsigned integer. The message parameter of the WndProc

function is of this type.

 Structures, Data types, and Defines

 313

WM_EXUSER

WM_EXUSER is the base define for all user defined messages for the external components.

External components which use the HWND module can create their own message by

defining a WM_your_constant as WM_EXUSER + n, where n can be in the range HEX 0 to

HEX 1FFF.

Example:

 #define WM_MY_MESSAGE1 WM_EXUSER+1

 #define WM_MY_MESSAGE2 WM_EXUSER+2

WND_CAPTURE_xxx

These flags are used with the functions WNDsetCapture and WNDreleaseCapture to specify

the capture for mouse or key events:

WND_CAPTURE_KEY

Captures all keyboard events. It is not necessary for external components to

capture the key events. Omnis sets the key capture for a window when it receives

the input focus.

WND_CAPTURE_MOUSE

Captures all mouse events.

WND_BORD_xxx

These are the flags for the various border styles of a window. They are used to set the

mBorderStyle member of the WNDborderStruct. WNDborderStruct is used with the

functions WNDcreateWindow, WNDgetBorderSpec, WNDsetBorderSpec,

WNDinsetBorderRect, WNDinflateBorderRect, WNDaddWindowComponent and

WNDpaintBorder.

WND_BORD_NONE

No border.

WND_BORD_PLAIN

Draws a plain border using the qpen specified by the mLineStyle member of the

WNDborderStruct. For a complete description of a qpen refer to the GDI

documentation.

WND_BORD_INSET

Draws a 3D inset border. Standard 3D system colors are used to draw the effect.

WND_BORD_EMBOSSED

Draws a 3D embossed border. Standard 3D system colors are used to draw the

effect.

Chapter 11ðHWND Reference

314

WND_BORD_BEVEL

Combination of the embossed and inset border styles, with the inset frame being

drawn inside the embossed frame and a flat area in between. The mSize1, mSize2

and mSize3 members of the WNDborderStruct specify the sizes of the three bevel

parts (embossed, flat and inset). Standard 3D system colors are used to draw the

effect.

WND_BORD_INSETBEVEL

Same as WND_BORD_BEVEL, except that the three bevel parts are reversed,

making the bevel appear inset.

WND_BORD_CHISEL

Draws a two pixel wide chiseled border. Standard 3D system colors are used to

draw the effect.

WND_BORD_EMBOSSEDCHISEL

Same as WND_BORD_CHISEL, except that it appears embossed.

WND_BORD_SHADOW

Gives client area the appearance of having a shadow. The two members mSize1

and mSize2 are used to specify the horizontal and vertical shadow size (offset) and

the mColor specifies the shadows color. mLineStyle is used to give the client area

an additional simple frame. A shadow border has two areas called dead area. These

are areas that are not covered by the border effect itself, but nevertheless need to

be erased. The HWND module queries the erase colors by sending a

WM_GETERASEINFO message to the WndProc function.

WND_BORD_SINGLE_INSET

Draws a 3D single pixel width inset border. Standard 3D system colors are used to

draw the effect.

WND_BORD_SINGLE_EMBOSSED

Draws a 3D single pixel width embossed border. Standard 3D system colors are

used to draw the effect.

WND_BORD_3DFACE

Same as WND_BORD_INSET, but uses 3DFACE color and no black.

WND_BORD_3DHILITE

Same as WND_BORD_INSET, but uses 3DHILITE color and no black.

WND_BORD_CTRL_EDIT (v3.1)

Draws the correct border for a edit control. Platform dependent.

WND_BORD_CTRL_LIST (v3.1)

Draws the correct border for a list control. Platform dependent.

WND_BORD_CTRL_LISTCELL (v3.1)

Draws the correct border for a list cell control. Platform dependent.

 Structures, Data types, and Defines

 315

WND_BORD_CTRL_TABPANE (v3.1)

Draws the correct border for a tab pane control. Platform dependent. Generates a

WM_GETSHADOWRECT message to allow caller to manipulate the border rect

prior to drawing.

WND_BORD_CTRL_SHADOW (v3.1)

Draws a system shadow border. Platform dependent.

WND_BORD_CTRL_SHADOW_EX (v3.1)

Same as WND_BORD_CTRL_SHADOW, but generates a

WM_GETSHADOWRECT message to allow caller to manipulate the border rect

prior to drawing.

WND_BORD_CUSTOM

When specified, custom borders can be drawn in the windows non-client area

(frame). The messages WM_BORDCALCRECT and WM_BORDPAINT are send

to the WndProc function when the non-client area needs to be calculated or the

border needs painting.

WND_CURS_xxx

These flags are used with the WNDsetWindowCursor and WNDgetWindowCursor

functions to specify the cursor type associated with a window, and the functions

WNDsetCursor and WNDgetCursor, to instantly change the cursor on screen.

WND_CURS_DEFAULT

Cursor does not change when moving over the window. Control over the cursor is

passed to the parent window.

WND_CURS_ARROW

Standard cursor.

WND_CURS_IBEAM

Standard edit text cursor.

WND_CURS_WATCH

Standard time/watch cursor.

WND_CURS_LOCK

Record locked cursor.

WND_CURS_MOVE

Cursor for moving objects.

WND_CURS_SIZE_VERT

Cursor for sizing object vertically only. (Center top/bottom size knobs)

WND_CURS_SIZE_HORZ

Cursor for sizing objects horizontally only. (Center left/right size knobs)

Chapter 11ðHWND Reference

316

WND_CURS_SIZE_LTRB

Cursor for sizing objects diagonally left.top to right.bottom. (Left.Top and

Right.Bottom size knobs)

WND_CURS_SIZE_LBRT

Cursor for sizing objects diagonally left.bottom to right.top. (Left.Bottom and

Right.Top size knobs)

WND_CURS_INSERT

Cursor for inserting rows between rows etc.

WND_CURS_COPY_SINGLE

Cursor for copying a single object or data item.

WND_CURS_COPY_MULTI

Cursor for copying multiple objects or data items.

WND_CURS_DRAG_OBJECT

Cursor for dragging objects.

WND_CURS_DRAG_DATA

Cursor for dragging data.

WND_CURS_SPLITTER_VERT

Cursor for moving vertical splitter bars.

WND_CURS_SPLITTER_HORZ

Cursor for moving horizontal splitter bars.

WND_CURS_NOGO

Nogo cursor used for letting user know that you cannot put something here. (Drag

or copy)

WND_CURS_HELP

Help cursor, when used to click on an objects, should bring up context sensitive

help.

WND_CURS_EXAMINE

Examine cursor used for expanding data etc.

WND_CURS_TRASH

Trash cursor.

WND_CURS_ARROW_WATCH

Cursor displaying an arrow and watch.

WND_CURS_CROSS

Area selection tool.

WND_CURS_DROPPER

Color suction tool.

 Structures, Data types, and Defines

 317

WND_CURS_BUCKET

Area fill tool.

WND_CURS_PENCIL

Drawing tool.

WND_RW_xxx

Used with WNDredrawWindow to redraw/invalidate or update the non-client and/or client

area of a window:

WND_RW_NCPAINT

Redraws all of the non-client area.

WND_RW_PAINT

Redraws the specified area within the client area of the window.

WND_RW_ERASE

If specified, erase background messages are generated.

WND_RW_ALLCHILDREN

If specified, all children are included in the redraw operation.

WND_RW_INVALIDATE

If specified, the specified area is invalidated only, and repainted during the normal

update process.

WND_RW_UPDATE

If specified, any invalid area of the window is immediately updated. The qrgn and

qrect parameters are ignored. Only the WND_RW_ALLCHILDREN and

WND_RW_ERASE flags can be specified in combination with this flag.

WND_SCROLLBAR_WIDTH (v3.1)

Returns the width in pixels of a standard scrollbar.

WND_TIMER_xxx

These constants are used with the WNDsetTimer and WNDkillTimer functions:

WND_TIMER_NULL

Internal use only.

WND_TIMER_TOOLTIP

Internal use only.

WND_TIMER_FIRST

Base constant for all timer ids which are used by external components.

Chapter 11ðHWND Reference

318

WNDborderStruct

The border struct contains information for the border style of a window. It is used with the

functions WNDcreateWindow, WNDaddWindowComponent, WNDsetBorderSpec, and

WNDgetBorderSpec.

struct WNDborderStruct

{

 qsho rt mBorderStyle;

 qpen mLineStyle;

 qdim mSize1;

 qdim mSize2;

 qdim mSize3;

 qcol mColor;

 WNDborderStruct();

 WNDborderStruct(qshort pBorderStyle);

 WNDborderStruct(qshort pBorderStyle, qpen pLineStyle);

 WNDborderStruct(qshort pBorderStyle, qdim p Size1, qdim pSize2,

 qdim pSize3);

 WNDborderStruct(qshort pBorderStyle, qpen pLineStyle, qdim

pSize1,

 qdim pSize2, qcol pColor);

};

¶ mBorderStyle specifies one of the WND_BORD_xxx constants.

¶ mLineStyle is used by WND_BORD_PLAIN border styles.

¶ mSize1 is used by WND_BORD_BEVEL, WND_BORD_INSETBEVEL and

WND_BORD_SHADOW.

¶ mSize2 is used by WND_BORD_BEVEL, WND_BORD_INSETBEVEL and

WND_BORD_SHADOW.

¶ mSize3 is used by WND_BORD_BEVEL and WND_BORD_INSETBEVEL.

¶ mColor is used by WND_BORD_SHADOW.

The WNDborderStruct has various default constructors for the border styles. Simply specify

the border style in the first parameter of the constructor, followed by parameters of the

relevant information for the specified style, for example, the constructor call for bevel

border would be WNDborderStruct(WND_BORD_BEVEL, mySize1, mySize2, mySize3).

 Structures, Data types, and Defines

 319

WNDenumProc

32-bit pointer to a callback function.

typedef qbool (*WNDenumProc)(HWND hwnd, LPARAM lParam);

WNDenumProc is used with the function WNDenumChildWindows.

WNDeraseInfoStruct

This structure must be filled in response to a WM_GETERASEINFO in. This message is

generated during non-client painting of a window, when the non-client area contains dead

areas which need to be erased. Dead areas occur when a window has both horizontal and

vertical scrollbars, or has a shadow border style. It may also be generated by windows

which paint their own custom border.

struct WNDeraseInfoStruct

{

 qcol mBackColor;

 qcol mForeColor;

 qcol mFil lPat;

 qulong mBKTheme;

}

¶ mBackColor - specifies the color for all clear pixels in the fill pattern.

¶ mForeColor - specifies the color for all set pixels in the fill pattern.

¶ mFillPat - specifies the fill pattern.

¶ mBKTheme ï specifies the background theme (see GWL_BKTHEME)

WNDminMaxInfo

The WNDminMaxInfo structure contains information about a windowôs minimum and

maximum tracking size. This structure must be filled in response to a

WM_GETMINMAXINFO message.

struct WNDminMaxInfo

{

 qpoint ptReserved;

 qpoint ptMaxSize;

 qpoint ptMaxPosition;

 qpoint ptMinTrackSize;

 qpoint ptMaxTrackSize;

};

¶ ptReserved - Reserved for internal use.

Chapter 11ðHWND Reference

320

¶ ptMaxSize - Currently NOT used for child windows.

¶ ptMaxPosition - Currently NOT used for child windows.

¶ ptMinTr ackSize - Specifies the minimum tracking width (point.h) and the minimum

tracking height (point.v) of the window.

¶ ptMaxTrackSize - Specifies the maximum tracking width (point.h) and the maximum

tracking height (point.v) of the window.

WNDmultiKey (v4.1)

WNDmultiKey is a class used to pass multiple keypress information via event parameters

and is used in conjunction with WM_MULTIKEYxxx events. WNDmultiKey is defined in

hwnd.he and contains the following public members:

¶ WNDmultiKey() ï Default constructor.

¶ WNDmultiKey(qchar *pData, qlong pLen) ï Initializes the class using the supplied

keys (one per qchar position). The number of keys is specified via pLen.

¶ WNDmultiKey(WNDmultiKey &pMultiKey) ï Initializes the class copying data

from an existing WNDmultiKey instance.

¶ ~WNDmultiKey() ï Default destructor.

¶ void set(qchar *pData, qlong pLen) ï Assigns the key-combination held in pData to

the class. pLen contains the number of keys being pressed.

¶ qlong len() ï Returns the number of key presses stored by the class.

¶ qchar *dataPtr() ï Returns a pointer to the keys stored by the class.

WNDpaintStruct

The WNDpaintStruct structure contains information for painting the client area of a

window.

struct WNDpaintStruct

{

 HDC hdc;

 qbool fErase;

 qrec t rcPaint;

 HDC fRestore;

};

¶ hdc - Identifies the display context to be used for painting.

¶ fErase - Specifies whether the background needs to be redrawn.

 Structures, Data types, and Defines

 321

¶ rcPaint - Specifies the upper-left and lower-right corners of the rectangle in which the

painting is requested.

¶ fRestore - Reserved; internal use.

WNDprocClass

The WNDprocClass class is the base class for all control classes that wish to receive

messages via the virtual function WndProc. Prior to creating a window, an instance of this

class must have been created, of which a pointer is passed to WNDcreateWindow or

WNDaddWindowComponent functions. You can create more than one window with the

same instance of the WndProc class.

class WNDprocClass

{

public:

 virtual qlong WndProc(HWND hWnd, UINT message, WPARAM wParam,

 LPARAM lParam, LPARAM uParam) = 0;

};

WNDwindowPosStruct

The WNDwindowPosStruct structure contains information about the size and position of a

window. It is sent along on to WM_WINDOWPOSCHANGING and

WM_WINDOWPOSCHANGED messages, and can be used with the function

WNDsetWindowPosEx.

struct WNDwindowPosStruct

{

 HWND hwnd;

 HWND hwndInsertAfter;

 qdim x;

 qdim y;

 qdim cx;

 qdim cy;

 qulong flags;

};

¶ hwnd - Identifies the window.

¶ hwndInsertAfter - Identifies the window behind which this window is placed.

¶ x - Specifies the position of the left edge of the window.

¶ y - Specifies the position of the right edge of the window.

¶ cx - Specifies the window width.

Chapter 11ðHWND Reference

322

¶ cy - Specifies the window height.

¶ flags - Specifies window positioning options. This member is one or more of the

SWP_xxx flags.

WPARAM

Under MacOS and WIN32 the WPARAM is defined as an unsigned long value, and on

WIN16 it is defined as an unsigned short value. The wParam parameter of the WndProc

function is of this type.

Styles

WND_DRAGBORDER (extended style)

If this extended style is specified for a component other than WND_WC_FRAME and

WND_WC_CLIENT, the user can size the window at runtime. When the cursor moves over

the correct border edge (which edge can be dragged depends on the component type) the

cursor changes to WND_CURS_SPLITTER_VERT or WND_CURS_SPLITTER_HORZ.

Sizing a component effects the size of other sibling components.

WND_FLOAT_xxx (extended style)

These are the floating styles for a window. Floating takes place if the parent of a floating

window is sized. The window is sized or moved, horizontally or vertically by the same

amount the parent has grown or shrunk by. The floating style can only be specified for

windows of type WND_WC_FRAME. The following styles are defined:

WND_FLOAT_NONE

No floating.

WND_FLOAT_LEFT

If set, the window grows or shrinks horizontally by floating the left edge of the

window.

WND_FLOAT_RIGHT

If set, the window grows or shrinks horizontally by floating the right edge of the

window.

WND_FLOAT_LEFT_RIGHT

If set, the window moves horizontally. (WND_FLOAT_LEFT |

WND_FLOAT_RIGHT)

WND_FLOAT_TOP

If set, the window grows or shrinks vertically by floating the top edge of the

window.

 Styles

 323

WND_FLOAT_BOTTOM

If set, the window grows or shrinks vertically by floating the bottom edge of the

window.

WND_FLOAT_TOP_BOTTOM

If set, the window moves vertically.

WND_FLOAT_MASK

Masking bits for masking out floating styles in the extended style window long.

WND_KEYPREVIEW (extended style)

If specified, WM_KEYDOWNPREVIEW and WM_KEYUPPREVIEW messages are

generated and sent to all parents of the window for which the actual key message was

intended. The parameters are identical to WM_KEYDOWN and WM_KEYUP. If a parent

deals with a key and returns 0, no further messages are sent relating to the key.

WND_NOADJUSTCOMPONENTS (extended

style)

If this style is specified, the component windows of the window are not sized when the

windowôs size changes. The window component type of all child windows is ignored.

WND_NOFLOATCHILDREN (extended style)

If this style is specified, no child windows of the window are floated when the window size

changes. All floating styles of all child windows are ignored.

WND_OSMESSAGES (extended style)

If this style is specified, the window can receive additional non-cross-platform messages,

messages which are not normally supported by the hwnd module. Under Windows 95

platform this may be messages like WM_DROPFILES, etc. This style is currently not

supported under MacOS.

WND_REDRAWONSIZE (extended style)

If this style is specified, all of the client area of the window is invalidated when the width or

height of the window changes. By default only the uncovered areas are invalidated.

Chapter 11ðHWND Reference

324

WND_TRANSPARENT (extended style)

If this style is specified, the window becomes transparent. Transparent windows do not

receive erase background messages and are painted last (after all non-transparent windows

have been painted) and in reverse order. They do not clip the visual region of sibling

windows which they cover, nor do they clip their parent. If areas within a transparent

window are invalidated, all intersecting sibling windows are effected as well as the area

within the parent.

Note: Transparent windows are less efficient, and may not always yield the desired results.

Omnis uses transparent windows only for background objects in window and report classes.

WND_WC_xxx (extended style)

The WND_WC_xxx styles are used with the functions WNDaddWindowComponent,

WNDremoveWindowComponent, WNDgetWindowComponent, and

WNDnextWindowComponent. These flags specify the component type of a window.

WND_WC_FRAME

the default type for all windows created by WNDcreateWindow. It is ignored by

the component functions.

WND_WC_MENUBAR

the menu bar component. A window of this type is always positioned in the

topmost area of the parent window.

WND_WC_TOOLBAR_TOP

the top toolbar component. A window of this type is always positioned in the

topmost area of the parent window just below the menu bar component.

WND_WC_TOOLBAR_BOTTOM

the bottom toolbar component. A window of this type is always positioned in the

bottom-most area of the parent window just above the status bar component.

WND_WC_TOOLBAR_LEFT

the left toolbar component. A window of this type is always positioned in the

leftmost area of the parent window.

WND_WC_TOOLBAR_RIGHT

the right toolbar component. A window of this type is always positioned in the

rightmost area of the parent window.

WND_WC_HEADER_BUTTON

can be created in conjunction with the WND_WC_HORZ_HEADER and

WND_WC_VERT_HEADER components both of which must exist. Its position

and size depends entirely on these two components being positioned in the top-left

corner between the two header components.

 Styles

 325

WND_WC_MAIN_HEADER

the main header component. A window of this type is always positioned in the

topmost area of the parent window just below the top toolbar.

WND_WC_HORZ_HEADER

horizontally scrolling header component which works in conjunction with the

WND_WC_CLIENT component. It sits just above the client component, and

scrolls horizontally in the same direction by the same amount, when the client

component is scrolled horizontally.

WND_WC_VERT_HEADER

vertically scrolling header component which works in conjunction with the

WND_WC_CLIENT component. It sits just to the left of the client component,

and scrolls vertically in the same direction by the same amount, when the client

component is scrolled vertically.

WND_WC_CLIENT

the client component. It is positioned to fill in any space not used by any of the

other components within the same parent window. If components are used, this is

the component which should receive the scrollbars, if scrollbars are required.

WND_WC_STATUSBAR

the status bar component. A window of this type is always positioned in the

bottom-most area of the parent window.

WND_WC_MASK

define which can be used to specify all component types.

WS_xxx

These are the windows basic styles.

WS_CHILD

Must always be specified.

WS_CLIPSIBLINGS

Clips child windows relative to each other; that is, when a particular child window

receives a WM_PAINT message, this style clips all other top-level child windows

out of the region of the child window to be updated. (If the WS_CLIPSIBLINGS

style is not given and child windows overlap, it is possible, when drawing in the

client area of a child window, to draw in the client area of a neighboring child

window.)

WS_CLIPCHILDREN

Excludes the area occupied by child windows when drawing within the parent

window. Used when creating the parent window.

WS_DISABLED

If specified, the window is disabled and receives no mouse events. All mouse

Chapter 11ðHWND Reference

326

events which would normally be received by this window, are sent to the parent

window.

WS_HSCROLL and WS_VSCROLL

Creates a window that has a horizontal or vertical scroll bar.

WS_VISIBLE

Creates a window that is initially visible.

Messages
When users interact with a window, or a windowôs properties change, appropriate messages

are generated. These messages can be received by sub-classing the WNDprocClass and

overloading the virtual function WndProc. An instance of that class must be specified when

creating a window. More than one window can be associated with the same instance in this

way. The correct HWND is sent to the WndProc function along with its message.

Example of a WndProc function:

qlong MyWndProc::WndProc(HWND hWnd, UINT message, WPARAM wParam,

 LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_GETMINMAXINFO:

 {

 // calculate the minimum tracking size

 WNDminMaxInfo* info = (WNDmi nMaxInfo*)lParam;

 // first get minimum tracking size for child windows from HWND

 WNDgetMinMaxInfo(hWnd, info);

 if (info - >ptMinTrackSize.h < 300)

 {

 // do not allow size less than 300 pixels horizontally

 info - >ptMinTrackSize.h = 300;

 }

 return 0L;

 }

 case WM_WINDOWPOSCHANGED:

 {

 // reset the scroll range

 qdim hRange = 200;

 qdim vRange = 400;

 qrect cRect;

 Messages

 327

 WNDgetClientRect(hWnd, &cRect);

 WNDsetScrollRange(hWnd, SB_HORZ, 1, hRange,

 cRect.width() , qtrue);

 WNDsetScrollRange(hWnd, SB_VERT, 1, vRange,

 cRect.height(), qtrue);

 break;

 }

 }

 return DefWindowProc(hwnd, message, wparam, lparam);

}

Note: All message examples are assumed to have the following pieces of code surrounding

them:

qlong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM

wParam,

 LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_xxx:

 {

 // example

 }

 }

 return DefWindowProc(hwnd, message, wparam, lparam);

}

WM_BORDCALCRECT

The WM_BORDCALCRECT message is sent when the client area of window needs to be

calculated and the border style of the window is WND_BORD_CUSTOM.

Parameters:

¶ inflate - Boolean value of wParam. If qtrue, the supplied rectangle is to be inflated,

otherwise it is to be inset.

¶ rect - Value of lParam. Points to the qrect to be inflated or inset.

Returns:

Always return 1.

The amount by which the rectangle is inflated or inset depends on how much space the

custom border requires. It directly effects the size of the client area of the window.

Chapter 11ðHWND Reference

328

Example:

// this example custom border has a single pixel line at the top and bottom

qrect* pRect = (qrect*)lParam;

if (wParam)

{

 // inflate

 pRect - >top++;

 pRect - >bottom++;

}

else

{

 // inset

 pRect - >top -- ;

 pRect - >bottom -- ;

}

return 1L;

WM_BORDERCHANGED (v3.1)

The WM_BORDERCHANGED message is send when WNDsetBorderSpec is called, and

after the border has been changed in the HWND.

Parameters:

¶ borderSpec - Value of lParam. Points to the border spec structure.

Returns:

Always return 1L.

See also WM_BORDERCHANGING, WNDsetBorderSpec

WM_BORDERCHANGING (v3.1)

The WM_BORDERCHANGING message is send when WNDsetBorderSpec is called,

prior to the border being changed.

Parameters:

¶ redraw - Value of wParam. If 1, the caller called WNDsetBorderSpec with the redraw

flag set.

¶ borderSpec - Value of lParam. Points to the border spec structure.

Returns:

Return 1 if WNDsetBorderSpec is to go ahead. Return 0 to prevent the border from

changing.

 Messages

 329

Example:

// this example makes a copy of the border spec and prevents WNDsetBorderSpec from changing

// the border in the HWND (the control draws and manages the border it self)

qbool redraw = (qbool)wParam;

WNDborderStruct* borderSpec = (WNDborderStruct*)lParam;

mBorderSpec = *borderSpec;

if (redraw)

{

 // invalidate our control

}

See also WM_BORDERCHANGED, WNDsetBorderSpec

WM_BORDERASEBACKGROUND (v4.0)

The WM_BORDERERASEBACKGROUND message is sent when painting a

WND_BORD_CTRL_GROUPBOX on Windows XP. The message informs the control that

two 3-pixel strips immediately above and below the control should be erased.

¶ dc - Value of wParam. Points to the device in which the border is to be painted.

¶ rect - Value of lParam. Points to the qrect which forms the outside edge of the border

rect. The coordinates are local to the device.

Example: (excerpt from WndProc)

//..

 case WM_BORDERASEBACKGROUND:

 {

 if (isSetup()) eraseBorderBackground(hWnd, (HDC) wParam, (qrect

*) lParam);

 return 1L;

 }

WM_BORDPAINT

The WM_BORDPAINT message is sent when the border of a window needs painting and

the border style of the window is WND_BORD_CUSTOM.

Parameters:

¶ dc - Value of wParam. Points to the device in which the border is to be painted.

¶ rect - Value of lParam. Points to the qrect which forms the outside edge of the border

rect. The coordinates are local to the device.

Chapter 11ðHWND Reference

330

Returns:

Always return 1.

Example:

// this example custom border has a single pixel line at the top and bottom

HDC dc = (HDC)wParam;

qrect* pRect = (qrect*)lParam;

HPEN oldPen = GDIselectObject(dc, GDIgetStockPen(BLACK_PEN));

GDIsetTextColor(GDI_COLOR_QBLACK);

GDImoveTo(dc, pRect - >left, pRect - >top);

GDIlineTo(dc, pRect - >right, pRect - >top);

GDImoveTo(dc, pRect - >left, pRect - >bottom);

GDIlineTo(dc, pRect - >right, pRect - >bottom);

GDIselectObject(dc, oldPen);

return 1L;

WM_CAPTUREABORT

This message is sent by WNDabortMouseCapture() before it releases capture of the mouse

pointer (WNDreleaseCapture()). Return type is void.

Parameters: None.

Example:

//will be followed immediately by WM_CAPTURECHANGED

case WM_CAPTUREABORT:

{

 tqfFishEyeObject *object = (tqfFishEyeObject *)ECOfindObject(eci, hwnd);

 if (object)

 {

 object - >trackingEnabled(qtrue);

 object - >mDestr oyOnCaptureChange = qtrue;

 }

 break;

}

 Messages

 331

WM_CHILDPAINT

The WM_CHILDPAINT message is sent for every child window when a window requests

its children to be painted by calling the WNDredrawChildren function.

Parameters:

¶ hWnd - is the window handle of the child window.

¶ flags - value of lParam. This is WND_RW_NCPAINT or WND_RW_NCPAINT and

WND_RW_PAINT. If WND_RW_PAINT is specified, the client area needs painting. If

WND_RW_NCPAINT is specified the non-client area needs painting.

Returns:

An external component should return zero if it processes this message. If non-zero is

returned, a WM_PAINT message is sent to the child window.

Example:

See WNDredrawChildren.

WM_COREPATTERNGRADIENTSUPPORT (v5.0)

This message returns qtrue if the object wants gradients to be shown in the pattern palette in

the property inspector, i.e. for $backpattern. Return qfalse to disable gradient back patterns.

Parameters: None.

WM_CREATE

The WM_CREATE message is sent when an external component requests that a window be

created by calling the WNDcreateWindow or WNDaddWindowComponent function. The

WndProc function for the new window receives this message after the window is created

but before the window becomes visible. The message is sent to the window before the

WNDcreateWindow or WNDaddWindowComponent function returns.

Parameters:

None.

Returns:

Must always return 0.

Chapter 11ðHWND Reference

332

WM_DESTROY

The WM_DESTROY message is sent when a window is being destroyed. It is sent to the

WndProc function of the window being destroyed after the window is removed from the

screen.

This message is sent first to the window being destroyed and then to the child windows as

they are destroyed. During the processing of the WM_DESTROY message, you can assume

that all child windows still exist.

Parameters:

None.

Returns:

Must always return 0.

WM_DRAGBORDER

WM_DRAGBORDER is sent during border dragging every time the size of the component

is changed, after all children and sibling components have been sized.

Parameters:

¶ isVert - value of wParam. If qtrue we are dragging a vertical border.

Returns:

Must always return 0.

 Messages

 333

WM_DRAGDROP

WM_DRAGDROP message is sent during drag & drop operations. Care should be taken

not to process these messages during design mode. Most of these messages can be ignored

and simply passed into WNDdefWindowProc or returned with a status of -1 for WebClient.

Parameters:

¶ lParam - Value of lParam depends on wDragDropCode, refer to the individual

messages.

¶ wDragDropCode - Value of wParam. Specifies a drag drop code that indicates the

request. This parameter can be one of the following values:

DD_STARTDRAG

Indicates that the drag process is starting. Normally this message is ignored.

LParam will contain a pointer to the FLDdragDrop structure.

DD_ENDDRAG

Indicates that the drag process is finishing. Normally this message is ignored.

LParam will contain a pointer to the FLDdragDrop structure.

DD_CHILD_STARTDRAG

Indicates that the drag process is starting. Sent to the parent of the dragging

window. LParam will contain a pointer to the FLDdragDrop structure.

DD_CHILD_ENDDRAG

Indicates that the drag process is finishing. Sent to the parent of the dragging

window. LParam will contain a pointer to the FLDdragDrop structure.

DD_CANDRAG_ON_DOWN

Enquiry on whether dragging can be started by a mouse button down action.

Return true or false, or simply ignore the message. LParam will contain a pointer

to a qpoint structure which will contain the mouse position. The point is local to

the client area of the window which receives these messages.

DD_CANDRAG_ON_MOVE

Enquiry on whether dragging can be started by a mouse move action. Return true

or false, or simply ignore the message. LParam will contain a pointer to a qpoint

structure which will contain the mouse position. The point is local to the client area

of the window which receives these messages.

DD_CANDROP

Sent to the drop control and it can return qtrue if drop action is allowed. LParam

will contain a pointer to the FLDdragDrop structure and member mDropPoint may

be used to establish drop position.

DD_CANDROP_OVER

Sent to the drop control and it can return qtrue if dropping is allowed. LParam will

contain a pointer to the FLDdragDrop structure and member mDropPoint may be

used to establish mouse position.

Chapter 11ðHWND Reference

334

DD_CANDROPPARENT

Sent to the parent of the drop control and it can return qtrue if dropping is allowed.

LParam will contain a pointer to the FLDdragDrop structure and member

mDropPoint may be used to establish mouse position.

DD_HILITE

Request to the current dropping control to hilite its acceptance to allow dropping.

LParam will contain a pointer to the FLDdragDrop structure.

DD_UNHILITE

Request to the current dropping control to unhilite itself. LParam will contain a

pointer to the FLDdragDrop structure.

DD_ALWAYS_HILITE

Request to the current dropping control to establish whether highlighting is

required. Return qtrue or qfalse. LParam will contain a pointer to the

FLDdragDrop structure

DD_SHOWDRAGSHAPE

Message to show the drag shape. Normally this is ignored. LParam will contain a

pointer to the FLDdragDrop structure.

DD_HIDEDRAGSHAPE

Message to hide the drag shape. Normally this is ignored. LParam will contain a

pointer to the FLDdragDrop structure.

DD_MOVEDRAGSHAPE

Message to move the drag shape. Normally this is ignored. LParam will contain a

pointer to the FLDdragDrop structure.

DD_CANSCROLL

Request to the current dropping control to establish whether scroll is required.

Return qtrue or qfalse. If qtrue is returned then DD_DRAGDROPSCROLL will be

sent. LParam will contain a pointer to the FLDdragDrop structure.

DD_GETSCROLLRECT

Request to the current dropping control for it to adjust the scrolling rectangle, if

required. Return qtrue if processed. lParam will contain a pointer to the qrect

which can be adjusted.

DD_DRAGDROPSCROLL

Request to the current dropping control for it to scroll, if required. Return qtrue if

processed. lParam will contain a pointer to the qpoint which can be used to ensure

that the point is inside the control.

DD_SETDRAGVALUE

Request for control to set the drag value and can be used, for example, to set the

drag value to a selection of text. LParam will contain a pointer to the

FLDdragDrop structure.

 Messages

 335

DD_GETDRAGCONTAINER

Request for control to set the drag source HWND (FLDdragDrop member

mDragSourceHwnd). Normally this is ignored but can be useful for complex

controls that allow dragging of multiple HWNDs. LParam will contain a pointer to

the FLDdragDrop structure.

DD_BUTTONDOWN

Message that the button is down during drag move. Normally this is ignored but it

can be used to change drop tabs on a tabbed pane control, for example. LParam

will contain a pointer to the FLDdragDrop structure.

DD_BUTTONUP

Message that the button is up during drag move. Normally this is ignored but it can

be used to change drop tabs on a tabbed pane control, for example. LParam will

contain a pointer to the FLDdragDrop structure.

Returns:

Depends on the value of wDragDropCode, but most of these messages can be ignored and

simply passed into WNDdefWindowProc or returned with a status of -1 for WebClient.

Example:

// #1: this example is taken from the list control

case WM_DRAGDROP:

{

 switch (wParam)

 {

 case DD_CANDRAG_ON_DOWN: return qfalse;

 case DD_CANDRAG_ON_MOVE: {

 qlong lin eNumber = lineNumberFromPoint((qpoint*)lParam);

 return lineNumber!=0; } // Start drag if the mouse is over a line

 case DD_SETDRAGVALUE: {

 FLDdragDrop* dragDrop = (FLDdragDrop*)lParam;

 EXTfldval dtype(dragDrop - >mDragType);

 dtype.setLong(c FLDdragDrop_dragData); // We are dragging data

 EXTfldval dval(dragDrop - >mDragValue);

 dval.setList(mLocalList, qfalse); // Set data to our list

 return qtrue; }

 default: // Not processed

 #ifdef isRCC

 return 0xffffffffL; // Web component

 #endif

 return DefWindowProc(hWnd,pMsg,wParam,lParam);

 }

}

//#2: this example is taken from the droplist control

Chapter 11ðHWND Reference

336

qbool tqfDroplist::dragDrop(HWND hWnd, UINT message, WPARAM wParam, LPARAM

lParam, qbool pDoEdwc)

{

 switch(message) {

 case WM_DRAGDROP: {

 switch (wParam) {

 case DD_CANDRAG_ON_DOWN:

 case DD_CANDRAG_ON_MOVE: {

 if (mIsDropped) return qfalse;

 if (!isDesign() && !readOnly() &&

udDragMode()==cFLDdragDrop_dragData) {

 qpoint pt = *((qp oint*)lParam);

 qrect r; WNDgetClientRect(hwnd(), &r);

 r.left = r.right - mButtonWidth;

 if (GDIptInRect(&r, &pt)) return qfalse; //don't allow

data dragging from the button

 }

 break;

 }

 case DD_SETDRAGVALUE:

 {

 if (!isDesign() && udDragMode()==cFLDdragDrop_dragData &&

!!mList) {

 FLDdragDrop *dragDrop = (FLDdragDrop *) lParam;

 dragDrop - >setDragType(cFLDdragDrop_dragData);

 fldval* dval = dragDrop - >getDragValue(qtrue);

 dval - >setlist (mList.getlstptr(), qfalse); //don't make

copy of list

 return qtrue;

 }

 break;

 }

 }

 }

 }

 return tqfld::dragDrop(hWnd, message, wParam, lParam, pDoEdwc);

}

See also FLDdragDrop

 Messages

 337

WM_ERASEBKGND

The WM_ERASEBKGND message is sent when the window background needs to be

erased (for example, when a window is sized). It is sent to prepare an invalidated region for

painting. From v3.1 onwards you should always call WNDdrawThemeBackground and only

erase the area manually if the function returns qfalse. See example below.

Parameters:

¶ hdc - Value of wParam. Identifies the device context.

Returns:

An external component should return non-zero if it erases the background; otherwise, it

should return zero.

Example:

HDC dc = (HDC)wParam;

qrect cRect; WNDgetClientRect(hWnd, &cRect);

if (!WNDdrawThemeBackground(hWnd,dc,&cRect,WND_BK_DEFAULT))

{

 GDIsetTextColor(dc, GDI_COLOR_WINDOW);

 GDIfillRect(dc, &cRect, GDIgetStockBrush(BLACK_BRUSH));

}

return 1L;

See also WNDdrawThemeBackground

WM_FOCUSCHANGED

This message is generated when the input focus has been changed by Omnis. If a window

displays an input caret, this is the time when the caret should be created or destroyed.

Parameters:

¶ focus - Value of wParam. If zero, the window looses the input focus. If 1 the window

receives the input focus.

Returns:

An external component should return non-zero if it creates or destroys the caret; otherwise,

it should return zero.

Chapter 11ðHWND Reference

338

Example:

// this example creates a text input cursor at character position 7

// of some text the control is displaying

switch (message)

{

 case WM_FOCUSCHANGED:

 {

 if (wParam)

 {

 // create the caret, if ovrTypeOn is qtrue, we in over type mode

 // and the caret is displayed as a block, otherwise we are in

 // insert mode, and the caret is displayed as a vertical line.

 GDItextSpecStruct

 tSpec(fntEdit,styPlain,GDI_COLOR_WINDOWTEXT,jstLeft);

 str255 text(ñThis is an example for WNDcreateCaretò)

 qdim caretHeight = G DIfontPart(&tSpec.mFnt, tSpec.mSty,

 eFontHeight);

 qdim caretWidth = (ovrTypeOn ? GDIcharWidth(text[8],

 &tSpec) : 1);

 qdim caretLeft = GDItextWidth(&text[1], 7, &tSpec);

 qrect cRect;

 qpoint pt;

 WNDgetClient Rect(hWnd, &cRect);

 pt.h = cRect.left + caretLeft;

 pt.v = cRect.top + 1;

 WNDcreateCaret(hWnd, caretWidth, caretHeight);

 WNDsetCaretPos(&pt);

 WNDshowCaret();

 }

 else

 {

 // destroy the caret

 WNDdestroyCaret(hWnd);

 }

 retur n 1L;

 }

}

 Messages

 339

WM_GETERASEINFO

This message is generated during non-client painting of a window, when the non-client area

contains dead areas which need to be erased. Dead areas occur when a window has both

horizontal and vertical scrollbars, or has a shadow border style. In response to this message

the WNDeraseInfoStruct must be filled in. A pointer to this structure is supplied in lParam.

Parameters:

¶ eraseInfo - Value of lParam. Pointer to the WNDeraseInfoStruct .

Returns:

Always return 0.

Example:

WNDeraseInfoStruct *eraseInfo = (WNDeraseInfoStruct*)lParam;

eraseInfo - >mBackColor = colWhite;

eraseInfo - >mForeColor = colBlack;

eraseInfo - >mFillPattern = patFill;

return 0L;

WM_GETMINMAXINFO

The WM_GETMINMAXINFO message is sent to a window whenever Omnis needs the

maximum or minimum tracking size of the window. The maximum tracking size of a

window is the largest window size that can be achieved by using the borders to size the

window. The minimum tracking size of a window is the smallest window size that can be

achieved by using the borders to size the window. This message is not usually generated by

the HWND module (except during border dragging, see WM_DRAGBORDER), but by

other parts of Omnis, for example, window design. However, the function

WNDgetMinMaxInfo can be used to assist in calculating the minMaxInfo of a component

window when this message is received. When components are used this function should

always be called. It is recursive in that it generates further WM_GETMINMAXINFO

messages for all child windows. After calling this function, any further restrictions can be

applied to the minMaxInfo it calculated.

Parameters:

¶ minMaxInfo - Value of lParam. Pointer to the WNDminMaxInfo struct .

Returns:

Always return 1.

Chapter 11ðHWND Reference

340

Example:

WNDminMaxInfo* minMaxInfo = (WNDminMaxInfo*)lParam;

WNDgetMinMaxInfo(hWnd, minMaxInfo);

if (minMaxInfo - >ptMinTrackSize < 100) minMaxInfo - >ptMinTrackSize =

100;

if (minMaxInfo - >ptMaxTrackSize > 400) minMaxInfo - >ptMinTrackSize =

400;

return 1L;

WM_GETSHADOWRECT (Mac OSX only)

The WM_GETSHADOWRECT message is send when the HWND manager needs to paint

a WND_BORD_CTRL_TABPANE or WND_BORD_CTRL_SHADOW_EX border on

Mac OSX. This allows the control to manipulate the rect prior to it being drawn. If the

border is to be drawn as is, you do not need to respond to this message.

Parameters:

¶ theRectPtr - Value of lParam. Contains pointer to the qrect at which the border will be

painted. The rect will be local to the client area of the given HWND.

Example:

qrect* theRectPtr = (qrect*)lParam;

theRectPtr - >top += 10;

return 1L;

WM_HSCROLL and WM_VSCROLL

The WM_HSCROLL message is sent to a window when the user clicks the window's

horizontal scroll bar (WM_VSCROLL if the user clicks the vertical scrollbar).

Parameters:

¶ wScrollCode - Value of wParam. Specifies a scroll bar code that indicates the user's

scrolling request. This parameter can be one of the following values:

SB_ENDSCROLL

End scroll.

SB_LEFT or SB_TOP

Scroll to far left or top.

SB_LINELEFT or SB_LINEUP

Scroll one line left or up.

SB_LINERIGHT or SB_LINEDOWN

Scroll one line right or down.

 Messages

 341

SB_PAGELEFT or SB_PAGEUP

Scroll one page left or up.

SB_PAGERIGHT or SB_PAGEDOWN

Scroll one page right or down.

SB_RIGHT or SB_BOTTOM

Scroll to far right or bottom.

SB_THUMBPOSITION

Scroll to absolute position. The current position is specified by the LOWORD of

lParam.

SB_THUMBTRACK

Drag scroll box (thumb) to specified position. The current position is specified by

the LOWORD of lParam.

¶ nPos - Value of the low-order word of lParam. Specifies the current position of the

scroll box if the wScrollCode parameter is SB_THUMBPOSITION or

SB_THUMBTRACK; otherwise, the nPos parameter is not used.

Returns:

An external component should return zero if it processes this message.

The SB_THUMBTRACK scroll bar code is typically used by external components that give

some feedback while the scroll box is being dragged.

If an external component scrolls the contents of the window (see WNDscrollWindow), it

must also reset the position of the scroll box by using the WNDsetScrollPos function.

Chapter 11ðHWND Reference

342

Example:

qdim min, max, page, oldPos, newPos;

qshort sbar = (message == WM_HSCROLL ? SB_HORZ : SB_VERT);

// get current scrollbar settings

WNDgetScrollPos(hWnd, sbar, &oldPos);

WNDgetScrollRange(hWnd, sbar, &min, &max, &page);

// calculate newPos appropriately

switch (wParam)

{

 // in this example 1 scroll unit equals 8 pixels

 case SB_LINEDOWN: newPos = oldPos + 8; break;

 case SB_LIENUP: newPos = oldPos - 8; break;

 case SB_PAGEDOWN: newPos = oldPos + page; break;

 case SB_PAGEUP: newPos = oldPos - page; break;

 case SB_TOP: newPos = min; break;

 case SB_BOTTOM: newPos = max; break;

 case SB_THUMBPOSITION:

 case SB_THUMBTRACK:

 {

 // handle sign extension correctly

 qshort shortNewPos = LOWORD(lParam);

 newPos = shortNewPos;

 break;

 }

 case SB_ENDSCROLL: return 1L;

 default: newPos = oldPos; break;

}

if (newPos != oldPos)

{

 qdim hOff = (sbar == SB_HORZ ? oldPos - newPos : 0);

 qdim vOff = (sbar == SB_VERT ? oldPos - newPos : 0);

 WNDsetScrollPos(hWnd, sbar, newPos, qtrue);

 WNDscrollWindow(hWnd, hOff, vOff);

}

 Messages

 343

WM_IPHONE_ROUNDRECT_TEXTFIELDSTYLE

This message should return qtrue if the iPhone rounded rectangle border is the same as the

UITextField border, qfalse otherwise. This message applies only to iPhone client

component development (Studio v5.0).

Parameters:

None.

WM_KEYxxx

The WM_KEYDOWN message is sent when a key is pressed and the window has the key

capture (See function WNDsetCapture). If a parent window has the WND_KEYPREVIEW

style, the WM_KEYDOWNPREVIEW message is sent to that parent prior to the child

receiving the WM_KEYDOWN message. WM_KEYUP and WM_KEYUPPREVIEW

messages are generated when the key is released.

WM_KEYDOWN

sent to the window who has the key capture.

WM_KEYUP

sent to the window who has the key capture.

WM_KEYDOWNPREVIEW

sent to all parents of the window who has the key capture, and the parents specify

WND_KEYPREVIEW in their extended styles.

WM_KEYUPPREVIEW

sent to all parents of the window who has the key capture, and the parents specify

WND_KEYPREVIEW in their extended styles.

Parameters:

¶ key - Value of lParam. Specifies a pointer to a qkey.

Returns:

An external component should return zero if it processes this message. Otherwise it must

return 1, so Omnis can continue processing the key.

Chapter 11ðHWND Reference

344

Example:

// in this example we are only interested in movement keys to scroll

// the window vertically on a WM_KEYDOWN message

qkey* key = (qkey*)lParam;

vchar vch = key - >getVChar();

if (vch) switch (vch)

{

 case vcUp: wParam = SB_LINEUP; break;

 case vcDown: wParam = SB_LIENDOWN; break;

 case vcPup: wParam = SB_PAGEUP; break;

 case vcDown : wParam = SB_PAGEDOWN; break;

 case vcHome: wParam = SB_TOP; break;

 case vcEnd: wParam = SB_BOTTOM; break;

 default: return 1L;

}

else

{

 return 1L;

}

WNDsendMessage(hWnd, WM_VSCROLL, wParam, 0);

return 0L;

WM_LBUTTONxxx and WM_RBUTTONxxx

The WM_LBUTTONxxx and WM_RBUTTONxxx messages are generated when the user

operates the left or right mouse button.

WM_LBUTTONDOWN or WM_RBUTTONDOWN

The WM_LBUTTONDOWN or WM_RBUTTONDOWN message is sent when

the user presses the left or right mouse button.

WM_LBUTTONUP or WM_R BUTTONUP

The WM_LBUTTONUP or WM_RBUTTONUP message is sent when the user

releases the left or right mouse button.

WM_LBUTTONDBLCLK or WM_RBUTTONDBLCLK

The WM_LBUTTONDBLCLK or WM_RBUTTONDBLCLK message is sent

when the user double clicks the left or right mouse button.

Note: Under MacOS right button clicks are generated by holding down the option key while

operating the mouse button.

 Messages

 345

Parameters:

¶ point - Value of lParam. Specifies the point as a long value (use WNDmakePoint to

retrieve the point). The point is local to the client area of the window which receives

these messages.

Returns:

An external component should return zero if it processes this message.

Example:

// This is an example for a simple pushbutton dealing with mouse tracking

// when the user clicks on the button.

switch (message)

{

 case WM_LBUTTONDOWN:

 {

 if (! WNDhasCapture(hWnd, WND_CAPTURE_MOUSE))

 {

 // set the capture for mouse tracking

 WNDsetCapture(hWnd, WND_CAPTURE_MOUSE);

 // paint the button in the down position

 // remember the position in a member

 mDown = qtrue;

 }

 return 0L;

 }

 case WM_MOUSEMOVE:

 {

 if (WNDhasCapture(hWnd, WND_CAPTURE_MOUSE))

 {

 qpoint pt; WNDmakePoint(lParam, &pt);

 qrect cRect; WNDgetClientRect(hWnd, &cRect);

 if (mDown != GDIptInRect(&cRect, &pt))

 {

 // the user has moved the mouse out of the button,

 // or into the button.

 // paint the button up or down

 mDown = !mDown;

 }

 }

 return 0L;

 }

Chapter 11ðHWND Reference

346

 case WM_LBUTTONUP:

 {

 if (WNDhasCapture(hWnd, WND_CAPT URE_MOUSE))

 {

 // tracking has finished, release the mouse capture

 WNDreleaseCapture(hWnd, WND_CAPTURE_MOUSE);

 // was the mouse button released inside the client area

 if (mDown)

 {

 // do something

 // paint the button in the up position

 mDown = qfalse;

 }

 }

 return 0L;

 }

}

WM_MULTIKEYDOWNPREVIEW

Sent to parent window on a WM_MULTIKEYDOWN event if parent has

WND_KEYPREVIEW set (currently WM_MULTIKEYDOWN only applies to Mac OSX).

Parameters:

¶ Keys ï Value of lParam. This is a pointer to WNDmultiKey class instance (defined in

hwnd.he) and contains the key combination being held down.

Returns:

An external component should return zero if it processes this message.

WM_MOUSEMOVE

The WM_MOUSEMOVE message is sent to a window when the mouse cursor moves. If

the mouse is not captured, the message goes to the window beneath the cursor. Otherwise,

the message goes to the window that has captured the mouse.

Parameters:

¶ point - Value of lParam. Specifies the point as a long (use WNDmakePoint to retrieve

the point). The point is local to the client area of the window which receives these

messages.

Returns:

An external component should return zero if it processes this message.

 Messages

 347

Example:

See WM_LBUTTONDOWN

WM_NCACTIVATE

The WM_NCACTIVATE message is sent when a window is activated or deactivated. A

window becomes active when it becomes the topmost window (ignoring all floating palette

windows).

Parameters:

¶ active - Value of wParam. This is a boolean value. If qtrue, the window has become

active, otherwise the window has become inactive.

Returns:

Always return zero.

Example:

// in this example the control needs to draw its control items disabled

// when a window is not active.

qbool active = (qbool)wParam ;

if (active)

{

 // paint control enabled

}

else

{

 // paint control disabled

}

WM_NCLBUTTONDOWN

The WM_NCLBUTTONDOWN message is sent when the left mouse button has been held

down over the non-client area of a window.

Parameters:

¶ hittest - Value of wParam. Specifies the hit-test area code. This parameter is one of the

Htxxx defines.

¶ point - Value of lParam. Specifies the point as a long (use WNDmakePoint to retrieve

the point). The point is local to the desktop.

Returns:

An external component should return zero if it processes this message.

Chapter 11ðHWND Reference

348

Example:

// this example lets the user drag the window via the top area of the

// border restricting the movements to the client area of the parent window

if (wParam == HTBORDER)

{

 // test if the mouse is in the top part of the border

 qpoint pt; WNDmakePoint(lParam, &pt);

 qrect cRect; WNDgetClientRect(hWnd, &cRect);

 // map client rect to desktop

 WNDmapWindowRect(hWnd, HWND_DESKTOP, &cRect);

 if (pt - >v <= cRect.top)

 {

 // restrict movement of mouse to parentôs client area

 HWND parentHwnd = WNDgetParent(hWnd);

 WNDgetClientRect(parentHwnd, &cRect);

 WNDmapWindowRect(parentHwnd, HWND_DESKTOP, &cRect);

 WNDclipCursor(&cRect);

 // loop following the mouse movements while the button is held down

 qpoint lastPt = pt;

 qpoint curPt;

 while (WNDmouseLeftButtonDown())

 {

 WNDgetCursorPos(&curPt);

 qdim hDiff = curPt.h - lastPt.h;

 qdim vDiff = curPt.v - lastPt.v;

 if (hDiff || vDiff)

 {

 // move the window

 qrect wRect; WNDgetWindowRect(hWnd, &wRect);

 // WNDmoveWindow expects coordinates for the window local to

 // the parentôs client area

 WNDmapWindowRect(HWND_DESKTOP, parentHwnd, &wRect);

 WNDmoveWindow(hWnd, wRect.left + hDiff, wRe ct.top +

vDiff,

 wRect.width(), wRect.height(), qtrue);

 // update parent and all children to give immediate feedback

 // to the user

 WNDredrawWindow(parentHwnd, NULL, NULL, WND_RW_UPDATE |

 WND_RW_ALLCHILDREN | WND_RW_ERASE);

 Messages

 349

 lastPt = curPt;

 }

 }

 // must clear cursor clipping before returning

 WNDclipCursor(NULL);

 return 0L;

 }

}

return 1L;

WM_NULL

This message is generated while the computer is idle, that is, no other messages are

pending, and the mouse capture is set (see WNDsetCapture).

Parameters:

None.

Returns:

Always return 1.

WM_PAINT

The WM_PAINT message is sent when a portion of a window needs repainting. To repaint

a window the function WNDbeginPaint must be called, followed by a call to WNDendPaint

after all painting has been done.

Note: Nested calls to WNDbeginPaint or WNDstartDraw are not supported and result in a

runtime error.

Parameters:

None.

Returns:

An external component should return zero if it processes this message.

Example:

WNDpaintStruct paintInfo;

WNDbeginPaint(hWnd, &paintInfo);

 // paint the control

WNDendPaint(hWnd, &paintInfo);

return 0L;

Chapter 11ðHWND Reference

350

WM_PRI_INSTALL

The WM_PRI_INSTALL message is sent when the print manager opens the page preview

or screen report, and an alternative hwnd has been specified in PRIdestParmStruct when

calling PRIstartJob or PRIredirectJob. For more information about printing refer to the print

manager documentation.

It is possible to write external components which will display screen or preview reports.

When a report is about to be displayed in the given HWND, WM_PRI_INSTALL is sent to

the HWND. When the report is closed, WM_PRI_REMOVE is sent.

The component will be responsible for killing an active print job when a new job is about to

use the HWND. The component must store the pointer to the job which currently occupies

the HWND.

Parameters:

¶ job - Value of lParam. Specifies the pointer to the print job, PRIjob.

¶ device - Value of uParam. Specifies the pointer to the output device.

Returns:

An external component should return 1L if it processes this message.

Example:

// if there is an existing job occupying the hwnd, kill the job

if (mJob) PRIdefOutputProc(mJob, mOutput, PM_OUT_KILL, 0, 0, 0);

// remember the new job and device

mJob = (PRIjob)lParam;

mOutput = (void*)uParam;

return 1L;

WM_PRI_REMOVE

The WM_PRI_REMOVE message is sent when the print manager closes the page preview

or screen report, and an alternative hwnd has been specified in PRIdestParmStruct when

calling PRIstartJob or PRIredirectJob. See WM_PRI_INSTALL.

The component will be responsible for killing an active print job when a new job is about to

use the HWND. The component must store the pointer to the job which currently occupies

the HWND.

Parameters:

None.

Returns:

An external component should return 1L if it processes this message.

 Messages

 351

Example:

// clear the job and device

mJob = 0;

mOutput = 0;

return 1L;

WM_RBUTTONxxx

See WM_LBUTTONxxx.

WM_OSXREPAINTPLUGIN (v5.0)

This message informs an OSX browser plugin that it needs to repaint. It is issued by

WNDabortMouseCapture()

Parameters:

None.

Example:

case WM_OSXREPAINTPLUGIN:

{

 mThis - >mNeedPaint = qtrue;

 break;

}

WM_SETCURSOR

WM_SETCURSOR is generated every time the mouse moves across a window and the

mouse capture has not been set. If WM_SETCURSOR is passed on to the DefWindowProc

the cursor is set to the arrow cursor if the mouse is over the non-client area of the window.

If the function WNDcheckCursor is called in response to this message, the HWND module

sets the cursor to the appropriate cursor depending on the cursor associated with the

window or the windows parents (see WNDsetWindowCursor).

Parameters:

¶ hwndCursor - Value of wParam. Specifies the HWND that contains the cursor.

¶ hittest - Value of the low-order word of lParam. Specifies the hit-test area code. This

parameter can be one of the Htxxx defines.

¶ mouseMsg - Value of the high-order word of lParam. Specifies the number of the

mouse message.

If nHittest is set to HTCLIENT, the window procedure should call WNDcheckCursor.

Note: While the mouse capture is on, no WM_SETCURSOR messages are generated.

Chapter 11ðHWND Reference

352

Example:

// in this example the cursor is set to a drag cursor when the mouse is over

// the top part of the border

qword2 hittest = LOWORD(lParam);

if (hittest == HTBORDER)

{

 // test if we are in the top part of the windows border

 qpoint pt; WNDgetCursorPos(&pt);

 qrect cRect; WNDgetClientRect(hWnd, &cRect);

 // map client rect to desktop

 WNDmapWindowRect(hWnd, HWND_DESKTOP, &cRect);

 if (pt.v <= cRect.top)

 {

 WNDsetCursor(WND_CURS_DRAG_OBJECT);

 return 1L;

 }

}

WNDcheckCursor(hWnd, hittest);

return 1L;

WM_SHOWSIZEGRIP

The WM_SHOWSIZEGRIP message is sent when the HWND module needs to query the

window as regards to properties of the grow box within the client area of the window. If a

window has both horizontal and vertical scrollbars, the grow box is displayed in the non-

client area, and no WM_SHOWSIZEGRIP message is generated.

Parameters:

¶ submerge - value of wParam. This parameter is one of the following values:

WND_GRIP_ALLOWED

Is the grow box allowed to be in the client area. Return one of the following:

WND_GRIP_ALLOW_NO No grow box is allowed.

WND_GRIP_ALLOW_YES The grow box is allowed.

WND_GRIP_ALLOW_STOP The grow box is allowed but not visible.

Note: Under MacOS, the return value is ignored. A grow box is always enforced,

if the MacOS window has been given the grow box property.

WND_GRIP_GET_RECT

Position the supplied grow box rect. lParam points to a qrect which is already

positioned for the bottom right corner of the client area. The window can adjust

this rectangle, so the grow box is painted in the correct location within the client

area of the window (DO NOT alter the width or height of the rect).

 Messages

 353

WND_GRIP_GET_RECT should return the same value which was returned by

WND_GRIP_ALLOWED.

WND_GRIP_CHANGED

The grow box is removed or added to the window.

¶ growboxrect - value of lParam. A pointer to the grow boxôs rectangle is supplied in this

parameter, if the sub-message is WND_GRIP_GET_RECT.

Returns:

For WND_GRIP_ALLOWED return one of the WND_GRIP_ALLOW_xxx flags.

For WND_GRIP_GET_RECT return the same value which is returned by

WND_GRIP_ALLOWED.

For WND_GRIP_CHANGED always return 0.

Example:

// this window has no scrollbars, so it needs to implement the WM_SHOWSIZEGRIP

// messages if it wants to allow a growbox in its client area

switch (wParam)

{

 case WND_GRIP_ALLOWED:

 {

 return WND_GRIP_ALLOW_YES;

 }

 case WND_GRIP_GET_RECT:

 {

 // rect is already positioned for bottom right corner of the client

 // area, but you want to bring it in an additional 2 pixels to give

 // as room for our special border

 qrect* theRect = (qrect*)lParam;

 GDIoffsetRect(the Rect, - 2, - 2);

 return WND_GRIP_ALLOW_YES;

 }

 case WND_GRIP_CHANGED:

 {

 // get the growbox rect so we can invalidate it. Note:

 // WNDgetGrowBoxRect generates a WND_GRIP_GET_RECT message.

 qrect theRect; WNDgetGrowBoxRect(hWnd, &theRect);

 WNDinvalidateRect(hWnd, &theRect);

 }

}

Chapter 11ðHWND Reference

354

WM_SHOWWINDOW

The WM_SHOWWINDOW message is sent when the function WNDshowWindow is

called to show or hide a window.

Parameters:

¶ show - Value of wParam. If window is shown, this value is one, otherwise it is zero.

Returns:

An external component should return zero if it processes this message.

Example:

// this example only allows the window to be shown if the member mVisible is qtrue.

if (wParam && !mVisible) return 0L;

return 1L;

WM_TIMER

The WM_TIMER message is sent to the WndProc function of a window after each interval

which was specified when the WNDsetTimer function was called to install the timer.

Note: Because WM_TIMER messages are only generated if no other messages are on the

message queue, the accuracy of the intervals at which they are generated cannot be

guaranteed, that is, while Omnis is busy, no WM_TIMER messages are generated.

Parameters:

¶ timerID - Value of wParam. The timer id which was specified when the timer was

installed.

Returns:

Always return zero.

 Messages

 355

Example:

// this example implements a typical about box behavior by destroying the window

// after it has been around for 5 seconds or on a mouse button up. While the mouse

// button is held down, the window stays around.

switch (message)

{

 case WM_PAINT:

 {

 // leave the window around for 5 seconds after the first paint

 static qbool sTimerSet = qfalse;

 WNDpaintStruct paintInfo;

 WNDbeginPaint(hWnd, &paintInfo);

 // paint the window

 WNDendPaint(hWnd, &paint Info);

 if (! sTimerSet)

 {

 WNDsetTimer(hWnd, 1, 5000);

 sTimerSet = qtrue;

 }

 return 0L;

 }

 case WM_TIMER:

 {

 // 5 seconds later destroy the window if the mouse button

 // is not held down

 WNDkillTimer(hWnd, 1);

 if (!WNDmouseLef tButtonDown())

 {

 WNDdestroyWindow(hWnd);

 }

 return 0L;

 }

 case WM_LBUTTONDOWN:

 {

 return 0L;

 }

 case WM_LBUTTONUP:

 {

 // always destroy the window on a button up

Chapter 11ðHWND Reference

356

 WNDdestroyWindow(hWnd);

 return 0L;

 }

}

WM_VSCROLL

See WM_HSCROLL.

WM_WINDOWPOSCHANGED

The WM_WINDOWPOSCHANGED message is sent to a window whose size, position,

visibility, or z-order has changed as a result of a call to WNDsetWindowPos or another

window-management function.

Parameters:

¶ wpos - Value of lParam. Points to a WNDwindowPosStruct data structure that contains

information about the window's new size and position.

Returns:

Always return 1.

Example:

// this example resets the scroll ranges if the width or height of the window has been changed

WNDwindowPosStruct* windowPosInfo = (WNDwindowPosStruct*)lParam;

if ((windowPosInfo - >flags & SWP_NOSIZE) == 0)

{

 qdim min, max, page;

 WNDgetScrollRange(windowPosInfo - >hwnd, SB_HORZ, &min, &max,

&page);

 page = windowPosInfo - >cx;

 WNDsetScrollRange(windowPosInfo - >hwnd, SB_HORZ, min, max, page

);

 WNDgetScrollRange(windowPosInfo - >hwnd, SB_VERT, &min, &max,

&page);

 page = windowPosInfo - >cy;

 WNDsetScrollRange(windowPosInfo - >hwnd, SB_HORZ, min, max, page

);

}

return 1L;

 Messages

 357

WM_WINDOWPOSCHANGING

The WM_WINDOWPOSCHANGING message is sent to a window whose size, position,

visibility, or z-order is about to be changed as a result of a call to WNDsetWindowPos or

another window-management function.

Parameters:

¶ wpos - Value of lParam. Points to a WNDwindowPosStruct data structure that contains

information about the window's new size and position.

Returns:

An external component should return zero if it processes this message.

During this message, modifying any of the values in the WNDwindowPosStruct structure

affects the new size, position, or z-order. An external component can prevent changes to the

window by setting or clearing the appropriate bits in the flags member of the

WNDwindowPosStruct structure.

Example:

// this example prevents the window being sized outside a specific size range

WNDwindowPosStruct* windowPosInfo = (WNDwindowPosStruct*)lParam;

if ((windowPosInfo - >flags & SWP_NOSIZE) == 0)

{

 if (windowPosInfo - >cx < 100)

 windowPosInfo - >cx = 100;

 else if (windowPosInfo - >cx > 400)

 windowPosInfo - >cx = 400;

 if (windowPosInfo - >cy < 80)

 windowPosInfo - >cy = 80;

 else if (windowPosInfo - >cy > 200)

 windowPosInfo - >cy = 200;

}

return 1L;

Chapter 11ðHWND Reference

358

Functions

HIWORD()

qword2 HIWORD(qword4 pVal)

Returns the high order word of the given long value.

LOWORD()

qword2 LOWORD(qword4 pVal)

Returns the low order word of the given long value.

WNDabortMouseCapture()

void WNDabortMouseCapture()

Aborts mouse capture as a result of some user action elsewhere in the process, e.g.

CMND+N to open a new window in a web browser. Sends WM_CAPTUREABORT to the

hwnd with the mouse capture, and then releases the mouse capture.

WNDaddWindowComponent()

HWND WNDaddWindowComponent(HWND pHwnd, qulong pComponent,

 qulong pStyle, qulong pExStyle,

 WNDprocClass* pObject,

 qdim pSize OR qrect pRect,

 WNDborderSpec* pBorderSpec)

Adds a new window component to the specified parent. Adding components may cause the

position of other components to be altered, and generates WM_PAINT messages if these

components are visible.

¶ pHwnd - identifies the window to which to add the component.

¶ pComponent - specifies one of the following component types:

WND_WC_MENUBAR

WND_WC_TOOLBAR_TOP

WND_WC_TOOLBAR_LEFT

WND_WC_TOOLBAR_BOTTOM

WND_WC_TOOLBAR_RIGHT

WND_WC_HEADER_BUTTON

WND_WC_MAIN_HEADER

WND_WC_HORZ_HEADER

WND_WC_VERT_HEADER

 Functions

 359

WND_WC_CLIENT

WND_WC_STATUSBAR

¶ pStyle - specifies the styles for the window. Same as for WNDcreateWindow.

¶ pExStyle - specifies the extended styles for the window. Same as for

WNDcreateWindow.

¶ pObject - specifies the WNDprocClass instance which is to be associated with the new

component.

¶ pSize or pRect - pSize specifies the height or width of the component (if pRect is

specified only the height or width of the rectangle is used), depending on whether it is a

horizontal or vertical component. If zero is passed, the default size applies. pSize is

ignored for WND_WC_CLIENT and WND_WC_HEADER_BUTTON components.

¶ pBorderSpec - specifies the border style of the component.

¶ return - returns the new HWND of the component.

Chapter 11ðHWND Reference

360

Example:

// in this example a window adds a menu and client component to it self

// when it is first created

qlong cMyWndProcClass: :WndProc(HWND hWnd, UINT message, WPARAM

wParam,

 LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_CREATE:

 {

 qulong style = WS_CHILD | WS_CLIPSIBLINGS |

 WS_CLIPCHILDREN | WS_VISIBLE;

 WNDborderStruct border(WND_B ORD_EMBOSSED);

 mMenuHwnd = WNDaddWindowComponent(hWnd,

 WND_WC_MENUBAR,

 style,

 WND_DRAGBORDER,

 this,

 20,

 &border);

 style |= WS_HSCROLL | WS_VSCROLL;

 mClientHwnd = WN DaddWindowComponent(hWnd,

 WND_WC_CLIENT,

 style,

 WND_DRAGBORDER,

 this,

 0,

 &border);

 return 0L;

 }

 }

 return DefWindowProc(hwnd, message, wparam, lparam);

}

See also WNDcreateWindow, WNDgetWindowComponent,

WNDnextWindowComponent, WNDremoveWindowComponent,

WNDborderSpec

 Functions

 361

WNDbeginPaint()

WNDprocClass* WNDbeginPaint(HWND pHwnd, WNDpaintStruct* pPaintStruct)

Prepares the given window for painting and fills a WNDpaintStruct structure with

information about the painting. The WNDbeginPaint function automatically sets the visual

region of the device context to exclude any area outside the update region. The update

region is set by the WNDinvalidateRect or WNDinvalidateRgn function and by the HWND

module after sizing, moving, creating, scrolling, or any other operation that affects the client

area. If the update region is marked for erasing, WNDbeginPaint sends a

WM_ERASEBKGND message to the window.

If the caret is in the area to be painted, WNDbeginPaint automatically hides the caret to

prevent it from being erased.

Warning : This function must only be called in response to a WM_PAINT or

WM_CHILDPAINT message, and must always be followed by a call to WNDendPaint

before the next call to WNDbeginPaint (must NOT be nested).

¶ pHwnd - identifies the window to be repainted.

¶ pPaintStruct - points to the WNDpaintStruct structure that receives the painting

information.

¶ return - returns a pointer to the WNDprocClass instance which is associated with this

window. WARNING: the pointer is NULL if the window has no associated instance.

Example:

See WM_PAINT, WM_TIMER, WNDredrawChildren.

See also WNDendPaint, WNDstartDraw, WNDendDraw, WM_PAINT,

WM_NCPAINT, WM_ERASEBKGND, WM_CHILDPAINT,

WNDpaintStruct, HDC

WNDbringWindowToTop()

qbool WNDbringWindowToTop(HWND pHwnd)

Brings the given child window to the top of a stack of overlapping windows. The

WNDbringWindowToTop function should be used to uncover any window that is partially

or completely obscured by any overlapping windows.

Calling this function is similar to calling the WNDsetWindowPos function to change a

window's position in the Z-order.

¶ pHwnd - identifies the window to bring to the top.

¶ return - returns qtrue if successful. Otherwise, it is qfalse.

Chapter 11ðHWND Reference

362

Example:

// in this example a window brings itself to the top when it is being clicked on

qlong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM

wParam,

 LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_LBUTTONDOWN:

 {

 WNDbringWindowToTop(hWnd);

 return 0L;

 }

 }

 return DefWindowProc(hwnd, message, wparam, lparam);

}

See also WNDsetWindowPos

WNDchangeComponentId()

qbool WNDchangeComponentId(HWND pHwnd, qulong pComponent)

Changes the component type of the given window. All the usual restrictions apply, that is,

only one of each component type can be present in the same parent window at any one time.

¶ pHwnd - identifies the window whoôs component type is to change.

¶ pComponent - specifies the new component type.

¶ return - returns qtrue if successful.

Example:

WNDchangeComponentId(myComponentHwnd, WND_WC_CLIENT);

See also WNDaddWindowComponent, WNDremoveWindowComponent

WNDcheckCursor()

void WNDcheckCursor(HWND pHwnd, qword2 pHittest)

Checks the window to see if the cursor needs changing and changes it if necessary. This

function should be called when a WM_SETCURSOR message is received.

¶ pHwnd - identifies the window to check.

¶ pHittest - specifies the hit test area code. If pHittest is set to HTCLIENT and the

windowôs cursor is anything other than WND_CURS_DEFAULT, the cursor is

 Functions

 363

changed. If pHittest is set to HTCLIENT and the windowôs cursor is set to

WND_CURS_DEFAULT, the parentôs window cursor is applied. If that parentôs cursor

is also WND_CURS_DEFAULT, the parentôs parent is checked, etc. If none of the

parents have a cursor set, the cursor is set to WND_CURS_ARROW. If pHittest is

anything other than HTCLIENT, the cursor is set to WND_CURS_ARROW.

Example:

See WM_SETCURSOR.

See also WNDsetCursor, WNDgetCursor, WNDsetWindowCursor,

WNDgetWindowCursor, WNDclipCursor, WNDgetCursorPos,

WNDsetCursorPos, WM_SETCURSOR

WNDchildPaintBegin() (v3.1)

void* WNDchildPaintBegin(void* pChildPaintInfo, HWND pParentHwnd, HDC

pParentHdc, HWND pChildHwnd, qrect* pChildRect, qrect* pClipRect)

This function allows you to paint child windows inside the parent DC during the parents

paint at a location specified by the parent. This is useful for complex lists which use

embedded controls to paint the list data (i.e. Omnis Complex Grid). Such a list will need to

paint the same child multiply times, once for every visible row of the list.

You call WNDchildPaintBegin repeatedly for each child which requires painting. When the

last child has been painted you must call WNDchildPaintEnd. You would repeat this for

every row.

The children must be painted starting with the bottom most child, since visual regions of the

children are ignored.

You should use GDIoffscreenPaintBegin and GDIoffscreenPaintEnd when painting each

row, to avoid unwanted flicker while painting the children.

¶ pChildPaintInfo ï the paint info returned by a previous call to WNDchildPaintBegin.

¶ pParentHwnd ï identifies the parents HWND.

¶ pParentHdc ï identifies the parents DC.

¶ pChildHwnd ï identifies the HWND of the child to be painted.

¶ pChildRect ï specifies the coordinates at which to paint the child.

¶ pClipRect ï identifies the area in the parent which requires painting.

Chapter 11ðHWND Reference

364

Example:

// start the parent update

WNDpaintStruct ps;

WNDbeginPaint(parentHwnd, &ps);

// prepare painting of rows

// for the benefit of the example we hard code the row height,

// and assume that the top of each child within each row is zero,

// and the left, right and bottom are correct

qlong rowHeight = 50;

qrect clientRect; WNDgetClientRect(parentHwnd, &clientRect);

qlong fstVisRow = 1;

qlong lstVisRow = (clientRect.height() + rowHeight ï1) /

rowHeight;

qrect rowRect = cli entRect; rowRect.bottom = rowHeight ï 1;

void* offscreenInfo = 0;

HDC paintDC = ps.hdc;

// paint the rows

for (qlong row = fstVisRow ; row<=lstVisRow ; row++)

{

 // prepare the offscreen paint

 qrect paintRect = rowRect;

 qrect updRect = ps.rcPaint;

 voi d* offscreenInfo2 = GDIoffscreenPaintBegin(offscreenInfo,

paintDC,

 paintRect, updRect);

 // if offscreenInfo2 == NULL this row doesnôt intersect the update rect

 // so we donôt need to paint anything

 if (offscreenInfo2)

 {

 offscreenInf o = offscreenInfo2;

 void* childInfo = 0;

 // erase the background prior to painting the children

 WNDdrawThemeBackground(parentHwnd, paintDC, &paintRect,

 WND_BK_CONTAINER);

 // get the bottom most child window

 HWND childHwnd = WNDgetWind ow(parentHwnd, GW_CHILD);

 if (childHwnd) childHwnd = WNDgetWindow(parentHwnd,

GW_HWNDLAST);

 // next through the children and paint them

 while (childHwnd)

 {

 Functions

 365

 // calculate the childs rects

 qrect childUpdRect = updRect;

 qrect childRect ; WNDgetWindowRect(childHwnd, &childRect);

 WNDmapWindowRect(HWND_DESKTOP, parentHwnd, &childRect);

 GDIoffsetRect(&childRect, - paintRect.left,

 paintRect.top - childRect.top);

 // prepare painting of child

 void* childInfo2 = WNDchil dPaintBegin(childInfo,

parentHwnd,

 paintDC, childHwnd,

 &childRect, &childUpdRect);

 // if childInfo2==NULL the child does not intersect the

 // childUpdRect and there is nothing to paint

 if (childInfo2)

 {

 childIn fo = childInfo2;

 // paint the child

 WNDsendMessage(childHwnd, WM_PAINT, WPARAM(paintDC), 0

);

 }

 // get the next child, making the assumption that we only have

 // one level of children

 childHwnd = WNDgetWindow(childHwnd, GW_HWNDPREV) ;

 }

 // we have painted all children for this row, so we must finish off

 if (childInfo) WNDchildPaintEnd(childInfo);

 }

 // prepare for next row

 GDIoffsetRect(&rowRect, 0, rowHeight);

}

// we have painted all rows, so finish off offscreen paint

GDIoffscreenPaintEnd(offscreenInfo);

// finish the parent update

WNDendPaint(parentHwnd, &ps);

See also WNDchildPaintEnd, GDIoffscreenPaintBegin, GDIoffscreenPaintEnd

Chapter 11ðHWND Reference

366

WNDchildPaintEnd() (v3.1)

void WNDchildPaintEnd(void* pChildPaintInfo)

This function completes the painting of child windows inside the parents DC. For a full

description of WNDchildPaintBegin and WNDchildPaintEnd see WNDchildPaintBegin

above.

See also WNDchildPaintBegin

WNDclipCursor()

void WNDclipCursor(qrect* pRect)

Clips the screen cursor to the specified rect, that is, the movement of the cursor is restricted

to within the bounds of the rectangle.

¶ pRect - points to the rectangle which must be in screen coordinates. If this parameter is

NULL, any clipping previously set by this function is cleared.

Example:

See WM_NCLBUTTONDOWN.

See also WNDsetCursor, WNDgetCursor, WNDsetWindowCursor,

WNDgetWindowCursor, WNDgetCursorPos, WNDsetCursorPos

WNDcreateCaret()

void WNDcreateCaret(HWND pHwnd, qdim pWidth, qdim pHeight)

Creates a new shape for the system caret and assigns ownership of the caret to the given

window. The WNDcreateCaret function destroys the previous caret automatically, if any,

regardless of which child window owns the caret. Once created, the caret is initially hidden.

To show the caret, use the WNDshowCaret function. A child window should create a caret

only when it has the input focus (see WM_FOCUSCHANGED).

¶ pHwnd - identifies the window that owns the new caret.

¶ pWidth - specifies the width of the caret in pixels.

¶ pHeight - specifies the height of the caret in pixels.

Example:

See WM_FOCUSCHANGED.

See also WNDdestroyCaret, WNDgetCaretPos, WNDsetCaretPos,

WNDhideCaret, WNDshowCaret, WM_FOCUSCHANGED

 Functions

 367

WNDcreateWindow()

HWND WNDcreateWindow(HWND pParentHwnd, qulong pStyle, qulong pExStyle,

 WNDprocClass* pObject, qrect* pRect,

 WNDborderStruct* pBorderSpec)

Creates a window of type WND_WC_FRAME. The new window becomes the top most

window in its parent.

¶ pParentHwnd - identifies the parent of the window being created.

¶ pStyle - specifies the styles for the window. The following styles can be passed in the

pStyle parameter:

WS_CHILD

WS_CLIPSIBLINGS

WS_CLIPCHILDREN

WS_HSCROLL

WS_VSCROLL

WS_VISIBLE

Note: For Omnis child windows to work correctly, WS_CHILD, WS_CLIPSIBLINGS, and

WS_CLIPCHILDREN must always be specified. If WS_VISIBLE is specified, the window

is made visible.

¶ pExStyle - specifies special Omnis extended styles for the window. The following styles

can be passed in the pExStyle parameter:

WND_FLOAT_xxx

WND_KEYPREVIEW

WND_REDRAWONSIZE

WND_TRANSPARENT

WND_DRAGBORDER

WND_NOFLOATCHILDREN

WND_NOADJUSTCOMPONENTS

WND_OSMESSAGES

¶ pObject - specifies the WNDprocClass instance which is to be associated with the new

window.

¶ pRect - specifies the initial window rectangle local to the parent windowôs client area.

¶ pBorderSpec - specifies the border information for the window.

¶ return - returns the new HWND, or NULL if the module fails to create the window.

Chapter 11ðHWND Reference

368

Example:

// this example subclasses the WNDprocClass for receiving messages for its

// windows and creates a window with an inset border, scrollbars and bottom

// and right floating properties so when the parent sizes, the new window

// sizes by the same amount

// the cMyWndProcClass declaration

class cMyWndProcClass : public WNDprocClass

{

 cMyWndProcClass() {} // default constructor

 ~cMyWndProcClass() {} // default destructor

 virtual qlong WndProc(HWND hWnd, UINT message, WPARAM wPar am,

 LPARAM lParam, LPARAM uParam);

};

// first instantiate the WNDprocClass

cMyWndProcClass myWndProc = new cMyWndProcClass();

// prepare for window creation

qrect myWRect(10, 10, 100, 20);

WNDborderStruct myBorder(WND_BORD_INSET);

// now create the window invisibly

HWND myHwnd = WNDcreateWindow

 (

 myParentHwnd,

 WS_CHILD | WS_CLIPSIBLINGS | WS_CLIPCHILDREN | WS_HSCROLL |

WS_VSCROLL,

 WND_FLOAT_RIGHT | WND_FLOAT_BOTTOM,

 myWndProc,

 &myWRect,

 &myBorder

);

// WM_CREATE will h ave been sent by now, make the window visible

WNDshowWindow(myHwnd, SW_SHOW);

See also WNDaddWindowComponent, WNDdestroyWindow,

WNDgetWindowComponent, WNDnextWindowComponent,

WNDremoveWindowComponent, WM_CREATE

 Functions

 369

WNDdelay()

void WNDdelay(qlong pMilliSecs)

Delays program execution by the specified number of milliseconds.

¶ pMilliSecs - specifies the delay in milliseconds.

Example:

See WNDgetCursor.

WNDdestroyCaret()

void WNDdestroyCaret()

void WNDdestroyCaret(HWND pHwnd)

Destroys the system caret. A child window should destroy the caret if it loses the input

focus.

¶ pHwnd - if this parameter is specified, the caret is only destroyed if it belongs to the

given window. If the window is NOT specified, the caret is destroyed regardless.

Note: External components should always specify the window parameter, to prevent

destroying the caret if it is owned by another window.

Example:

See WM_FOCUSCHANGED.

See also WNDcreateCaret, WNDgetCaretPos, WNDsetCaretPos, WNDhideCaret,

WNDshowCaret, WM_FOCUSCHANGED

WNDdestroyWindow()

qbool WNDdestroyWindow(HWND pHwnd)

Destroys the given window and all its children. When a window is destroyed, a

WM_DESTROY message is sent to the window and all of its child windows. The window

procedure can NOT prevent the windows from being destroyed.

¶ pHwnd - identifies the window to be destroyed.

¶ return - returns qtrue if successful. Otherwise, it is qfalse.

Chapter 11ðHWND Reference

370

Example:

if (WNDdestroyWindow(myHwnd))

{

 // window has been destroyed

}

else

{

 // window has NOT been destroyed

}

See WM_TIMER.

See also WNDaddWindowComponent, WNDcreateWindow,

WNDgetWindowComponent, WNDnextWindowComponent,

WNDremoveWindowComponent, WM_DESTROY

WNDdragAcceptFiles()

void WNDdragAcceptFiles(HWND pHwnd, qbool pAccept)

Registers whether a window accepts dropped files.

¶ pHwnd - identifies the window that is registering whether it will accept dropped files.

¶ pAccept ï A value that indicates if the window identified by the hWnd parameter

accepts dropped files. This value is qtrue to accept dropped files or qfalse to

discontinue accepting dropped files.

WNDdrawThemeBackground() (v3.1)

qbool WNDdrawThemeBackground(HWND pHwnd, HDC pHdc, qrect* pRect, qulong

pBKTheme)

Calling this function will erase the rectangle with the specified theme background.

¶ pHwnd - identifies the window to be erased.

¶ pHdc - identifies the device context for drawing.

¶ pRect - specifies the area to be erased.

¶ pBKTheme - specifies the theme for the erase. This can be one of the following

WND_BK_TEST

This will simply test if the window has a theme background specified (see

GWL_BKTHEME). No drawing takes place. If the window has a theme the

function returns qtrue.

 Functions

 371

WND_BK_DEFAULT

The function will use the background theme as set by GWL_BKTHEME for

drawing. If the window has no theme, no drawing takes place and the function

returns qfalse.

WND_BK_PARENT

Fill the area using the parents theme or erase colors. This will send a

WM_GETERASEINFO message to the parent if the parent has no theme. Function

returns qtrue.

WND_BK_HILITE

The area is filled with the standard hilite colors. Function returns qtrue.

WND_BK_NONE

No painting takes place, function returns qfalse.

WND_BK_WINDOW

Area is filled with the standard window background theme. Function returns qtrue.

WND_BK_CONTAINER

Area is filled with the standard container background theme. Function returns

qtrue.

WND_BK_TABPANE

Area is filled with the standard tab pane background theme. Function returns qtrue.

WND_BK_TABSTRIP

Area is filled with the standard tab strip background theme. Function returns qtrue.

WND_BK_CONTROL

Area is filled with the standard control background theme. Function returns qtrue.

WND_BK_MENUBAR

Area is filled with the standard menu bar background theme. Function returns

qtrue.

WND_BK_MENU

Area is filled with the standard menu background theme. Function returns qtrue.

¶ returns ï qtrue if painting has taken place, otherwise returns qfalse.

Example:

See WM_ERASEBKGND

See also GWL_BKTHEME, WM_ERASEBKGND, WNDdrawThemeControl

Chapter 11ðHWND Reference

372

WNDdrawThemeControl()

qbool WNDdrawThemeControl(HWND hWnd, HDC pHdc, qulong pType,

qulong pFlags, qrect* pRect)

Draws the specified control using the systems current theme.

¶ pHwnd - identifies the controls window.

¶ pHdc - identifies the device context for painting.

¶ pType ï identifies the control type. Please note that not all control types are supported

on all platforms. The function will return false if a control can not be drawn. The control

type can be one of the following:

THEME_PUSHBUTTON

Draws a standard system button. The following flags can be used with this control:

THEME_CONTROL_DISABLED, THEME_CONTROL_PRESSED,

THEME_CONTROL_HOT, THEME_CONTROL_DEFAULT.

THEME_CHECKBOX

Draws a standard system checkbox. The following flags can be used with this

control: THEME_CONTROL_DISABLED, THEME_CONTROL_ACTIVE,

THEME_CONTROL_PRESSED, THEME_CONTROL_HOT

THEME_RADIOBUTTON

Draws a standard system radio button. The following flags can be used with this

control: see THEME_CHECKBOX

THEME_TABPANE

Draws a standard system tab pane control. The following flags can be used with

this control: THEME_CONTROL_FRAME, THEME_CONTROL_CLIENT,

THEME_CONTROL_HOT, THEME_CONTROL_DISABLED,

THEME_CONTROL_ACTIVE, THEME_CONTROL_POS_TOP,

THEME_CONTROL_POS_BOTTOM.

THEME_COMBOBOX

Draws a standard system combo box. The following flags can be used with this

control: THEME_CONTROL_PRESSED, THEME_CONTROL_HOT.

THEME_SCROLLBAR

Draws a standard scrollbar.

THEME_HEADER

Draws a standard header. The following flags can be used with this control:

THEME_CONTROL_PRESSED, THEME_CONTROL_HOT.

THEME_TOOLBAR

Draws a standard toolbar. The following flags can be used with this control:

 Functions

 373

THEME_CONTROL_POS_TOP, THEME_CONTROL_POS_BOTTOM,

THEME_CONTROL_POS_LEFT, THEME_CONTROL_POS_RIGHT.

¶ pFlags ï additional drawing flags. See control types for flags which can be used. Please

note that some flags may only apply to some platforms. The function will return false if

a control can not be drawn using the given flags.

¶ pRect ï points to the qrect structure specifying the co-ordinates for drawing the control.

¶ returns ï qtrue if painting has taken place, otherwise returns qfalse and the control

needs to be painted manually.

See also WNDdrawThemeBackground

WNDendDraw()

void WNDendDraw(HWND pHwnd, HDC pHdc)

Marks the end of painting in the given window. This function is required for each call to the

WNDstartDraw function, but only after painting is complete.

WNDstartdraw and WNDendDraw can be used to paint a window without having received

a WM_PAINT message.

¶ pHwnd - identifies the window that has been repainted.

¶ pHdc - identifies the device context to be released.

Example:

See WNDredrawChildren, WNDgetWindowFromPt, WNDpaintBorder.

See also WNDstartDraw, WNDbeginPaint, , HDC (GDI document)

WNDendPaint()

void WNDendPaint(HWND pHwnd, WNDpaintStruct* pPaintStruct)

Marks the end of painting in the given window. This function is required for each call to the

WNDbeginPaint function, but only after painting is complete.

Warning : WNDbeginPaint and WNDendPaint must only be ever used in response to a

WM_PAINT message.

¶ pHwnd - identifies the window that has been repainted.

¶ pPaintStruct - points to a WNDpaintStruct structure that contains the painting

information retrieved by the WNDbeginPaint function.

Chapter 11ðHWND Reference

374

Example:

See WM_PAINT, WM_TIMER, WNDredrawChildren.

See also WNDbeginPaint, WNDstartDraw, WNDendDraw, WNDpaintStruct

WNDenumChildWindows()

qbool WNDenumChildWindows(HWND pParentHwnd, WNDenumProc pEnumProc,

 LPARAM lParam)

Enumerates all child windows of the given window and calls the specified WNDenumProc

function with the given lParam for each child.

Warning : Destroying the window which is currently being processed causes the system to

crash. Changing the parent of a child window during the enumeration process may cause the

child window not to be enumerated.

¶ pParentHwnd - identifies the parent window.

¶ pEnumProc - identifies the user WNDenumProc which is to be called for each

enumerated child window. If this function wants the enumeration process to continue,

qtrue must be returned, otherwise the enumeration process is halted.

¶ lParam - specifies the lParam value to be passed to pEnumProc.

¶ return - returns qtrue if all windows have been successfully enumerated. Returning

qfalse from pEnumProc stops enumeration, and returns qfalse to the calling function. If

the given window has no child windows, qtrue is returned.

 Functions

 375

Example:

// this example sends a key message to all child windows of a window and

// stops the enumeration process once a window has accepted the key

// enumeration methods which are called for every child window

static qbool sSendKeyDown(HWND hWnd, LPARAM lParam)

{

 return (qbool) (WNDsendMessage(hWnd, WM_KEYDOWN, 0, lParam) !=

0);

 // note: returning qfalse stops enumeration

}

static qbool sSendKeyUp(HWND hWnd, LPARAM lParam)

{

 return (qbool) (WNDsendMessage(hWnd, WM_KEYUP, 0, lParam) != 0

);

 // note: returning qfalse stops enumeration

}

// the parent window receiving a key message

qlong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM

wParam,

 LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_KEYDOWN:

 case WM_KEYUP:

 {

 qbool result;

 if (message == WM_KEYDOWN)

 result = WNDenumChildWindows(h Wnd, sSendKeyDown, lParam

);

 else

 result = WNDenumChildWindows(hWnd, sSendKeyUp, lParam);

 // check if a child accepted the key message

 if (result)

 {

 // NO child accepted the key

 return 1L;

 }

Chapter 11ðHWND Reference

376

 else

 {

 // the key was accepted by one of the child windows

 return 0L;

 }

 }

 }

 return DefWindowProc(hwnd, message, wparam, lparam);

}

See also WNDgetWindow

WNDfloatChildren()

void WNDfloatChildren(HWND pHwnd, qdim pXOffset, qdim pYOffset)

Sizes or moves all floating child windows of the given parent window by the specified

amounts. A child window is sized or moved only if it has the appropriate floating styles.

Note: Their should be no need to call this function from outside the HWND module. The

HWND module calls this function automatically when a window sizes.

¶ pHwnd - identifies the window whose children are to be floated.

¶ pXOffset - specifies the amount by which the parent window has altered in size

horizontally.

¶ pYOffset - specifies the amount by which the parent window has altered in size

vertically.

See also WNDsetWindowPos, WNDwindowPosStruct., WND_FLOAT_xxx,

WND_NOFLOATCHILDREN, WM_WINDOWPOSCHANGING,

WM_WINDOWPOSCHANGED

WNDgetBorderSpec()

void WNDgetBorderSpec(HWND pHwnd, WNDborderSpec* pBorderSpec)

Returns the windows border information.

¶ pHwnd - identifies the window.

¶ pBorderSpec - the windows border information is returned in this structure.

 Functions

 377

Example:

// this example gets the border spec and changes the border color if it has a plain border

WNDborderSpec border;

WNDgetBorderSpec(myHwnd, &border);

if (border.mBorderStyle == WND_BORD_PLAIN)

{

 border.mLineStyle.setColor(GDI_COLOR_QRED);

 WNDsetBorderSpec(myHwnd, &border, qtrue);

}

See also WNDsetBorderSpec, WNDborderSpec

WNDgetCapture()

HWND WNDgetCapture(qulong pFlags)

Returns the window which has the specified capture.

¶ pFlags - specifies the capture for which to return the window. This parameter can be

WND_CAPTURE_MOUSE or WND_CAPTURE_KEY. Only one of the two flags

must be specified.

¶ return - returns the window that has the specified capture. NULL is returned if no

window has the capture.

Example:

HWND keyCapture = WNDgetCapture(WND_CAPTURE_KEY);

HWND mouseCapture = WNDgetCaptu re(WND_CAPTURE_MOUSE);

qbool haveBothCaptures = qbool(myHwnd == keyCapture

 &&

 myHwnd == mouseCapture);

// is the same as

qbool haveBothCaptures = qbool(WNDhasCapture(myHwnd,

WND_CAPTURE_KEY)

 &&

 WNDhasCapture(myHwnd, WND_CAPTURE_MOUSE));

See also WNDsetCapture, WNDhasCapture, WNDreleaseCapture,

WND_CAPTURE_xxx

Chapter 11ðHWND Reference

378

WNDgetCaretPos()

void WNDgetCaretPos(qpoint* pPos)

Retrieves the system caret position in client coordinates of the associated window.

¶ pPos - points to the qpoint structure which is to receive the coordinates.

Example:

// this example makes sure the caret position is within the client area of the window

qpoint pt; WNDgetCaretPos(&pt);

qrect cRect; WNDgetClientRect(myHwnd, &c Rect);

// the assumed width of the caret is 1.

cRect.right - = 1;

// the assumed height of the caret is 8

cRect.bottom - = 8;

if (!GDIptInRect(&cRect, &pt))

{

 if (pt.h < cRect.left) pt.h = cRect.left;

 else if (pt.h > cRect.right) pt.h = cRect.righ t;

 if (pt.v < cRect.top) pt.v = cRect.top;

 else if (pt.v > cRect.bottom) pt.v = cRect.bottom;

 WNDsetCaretPos(&pt);

}

See also WNDcreateCaret, WNDdestroyCaret, WNDsetCaretPos, WNDhideCaret,

WNDshowCaret, WM_FOCUSCHANGED

WNDgetClientRect()

void WNDgetClientRect(HWND pHwnd, qrect* pRect)

Retrieves the coordinates of the windows client area.

¶ pHwnd - identifies the window for which to return the client rect.

¶ pRect - points to the qrect structure which is to receive the coordinates local to the

client area. Left and top are always zero.

Example:

See WM_NCLBUTTONDOWN, WM_SETCURSOR, WNDgetCaretPos,

WNDgetWindowFromPt, WNDpaintBorder, WNDsetCursorPos.

See also WNDgetWindowRect

 Functions

 379

WNDgetCursor()

qshort WNDgetCursor()

Returns the id of the currently displayed screen cursor.

¶ return - returns one of the WND_CURS_xxx cursor ids.

Example:

// this example changes the screen cursor for a number of

// seconds and restores it

qshort oldCursor = WNDgetCursor();

WNDsetCursor(WND_CURS_WATCH);

WNDdelay(5000); // wait 5 seconds

WNDsetCursor(oldCursor);

See also WNDsetCursor, WNDgetCursorPos, WNDsetCursorPos,

WNDclipCursor, WNDgetWindowCursor, WNDsetWindowCursor

WNDgetCursorPos()

void WNDgetCursorPos(qpoint* pPoint)

Returns the location of the cursors Hotpoint in screen coordinates.

¶ pPoint - points to the qpoint structure which is to receive the cursorôs screen position.

Example:

See WM_NCLBUTTONDOWN.

See also WNDsetCursorPos, WNDclipCursor, , WNDsetCursor,

WNDgetWindowCursor, WNDsetWindowCursor

WNDgetFloat()

qulong WNDgetFloat(HWND pHwnd)

Returns the floating properties of the given window.

¶ pHwnd - identifies the window for which to return the floating properties.

¶ return - returns the WND_FLOAT_xxx flags of the window.

Chapter 11ðHWND Reference

380

Example:

// this example retrieves the floating properties of a window and switches off the bottom edge

floating.

qulong float = WNDgetFloat(myHwnd);

float &= ~WND_FLOAT_BOTTOM;

WNDsetFloat(myHwnd, float);

See also WNDsetFloat, WNDcreateWindow, WND_FLOAT_xxx

WNDgetGrowBoxRect()

qbool WNDgetGrowBoxRect(HWND pHwnd, qrect* pRect)

Returns the rectangle of the grow box, if the given window owns the grow box, and the

grow box is located within the client area of the window. The grow box only appears in the

client area of a window if it owns the grow box and the window has no scrollbars. This

function is useful if a control wants to take into account the position of a possible grow box

within the client area, for example, in the case of a status bar control, the panes sizes are

restricted. Calling this function generates a WM_SHOWSIZEGRIP message for the given

window.

¶ pHwnd - identifies the window for which to return the coordinates of the grow box.

¶ pRect - points to the qrect which is to receive the grow boxôs coordinates.

¶ return - returns qtrue if the given window has a grow box in its client area.

Example:

See WM_SHOWSIZEGRIP

See also WM_SHOWSIZEGRIP

WNDgetMinMaxInfo()

void WNDgetMinMaxInfo(HWND pHwnd, WNDminMaxInfo* pMinMaxInfo)

Calculates the basic minimum tracking sizes of the given window by querying all child

windows and adding their minimum tracking sizes depending on the childôs component

type. WM_GETMINMAXINFO messages are generated for all child windows, and if these

child windows call WNDgetMinMaxInfo, further WM_GETMINMAXINFO messages are

generated for their children, and so on. All windows which are known to possibly contain

child windows must implement the WM_GETMINMAXINFO message and must call this

function prior to applying any additional restrictions to the minimum or maximum tracking

sizes.

¶ pHwnd - identifies the window for which to calculate the minimum tracking sizes.

¶ pMinMaxInfo - points to the WNDminMaxInfo struct which is to receive the results.

 Functions

 381

Example:

See WM_GETMINMAXINFO.

See also WM_GETMINMAXINFO

WNDgetOS()

qbool WNDgetOS(HWND pHwnd, qlong pSelector, qlong pLngValue)

Returns or manipulates platform specific information about a window. What information is

returned depends on the selector. All information is written to the given buffer.

¶ pHwnd - identifies the window for which to return the platform specific information.

¶ pSelector - platform specific selector. Different platforms have different selectors.

This can be one of the following:

GOS_WINDOW (Mac OS only)

Retrieves the MacOS window port of the given HWND.

Example:

 CGrafPtr macGrafPtr;

 WNDgetOS(myHwnd, GOS_WINDOW, (qlong)&macGrafPtr);

GOS_EVENT (Mac OS only)

Retrieves the MacOS event record for the currently executing window message.

Example:

 EventRecord ev;

 WNDgetOS(NULL, GOS_EVENT, &ev);

GOS_REGION (Mac OS only)

Retrieves the given windowôs requested visual region. There are additional

modifiers which can be added to the selector. These are:

WND_CLIENT - returns the visual region of the client area.

WND_FRAME - returns the visual region of the non-client and client area.

WND_EXCLUDE_CLIENT - can be used together with WND_FRAME to get the

visual region of the non-client area only.

WND_EXCLUDE_SIBLINGS - if specified, all overlapping sibling windows are

subtracted from the visual region.

WND_EXCLUDE_CHILDREN - if specified, all child window regions are

subtracted from the visual region.

WND_LOCAL - if specified, the region is local to the non-client or client area

depending on which was requested. If not specified the region is local to the

MacOS windowôs port.

WND_INTERSECT_MAC_VISUAL - if specified, the visual region is intersected

Chapter 11ðHWND Reference

382

with the visual region of the HWNDôs MacOS window.

WND_EXCLUDE_FOCUS (V3.2) ï if specified, the visual region does not

include the area covered by the Mac OS focus rectangle.

Example:

 // the region handle must be allocated by the caller

 RgnHandle rgn = NewRgn();

 // the next line returns the true visual region of the non-client

 // and client area as the window can be seen on screen.

 // The region is local to the MacOS windowôs port.

 WNDgetOS(myHwnd, GOS_REGION | WND_FRAME |

WND_EXCLUDE_SIBLINGS |

 WND_EXCLUDE_CHILDREN | WND_INTERSECT_MAC_VISUAL,

 (qlong)rgn);

 // the next line returns the true visual region of the client

 // area as can be seen on screen, but includes all areas occupied

 // by the windows children. The region is local to the MacOS

 // windowôs port.

 WNDgetOS(myHwnd, GOS_REGION | WND_CLIENT |

WND_EXCLUDE_SIBLINGS |

 WND_INTERSECT_MAC_VISUAL, (qlong)rgn);

 // do NOT forget to dispose of the region when finished

 DisposeRgn(rgn);

GOS_MACOS8 (Mac OS only)

Returns 1 if system is version 8 or above.

GOS_OFFSETHWNDS (Mac OS only)

This will offset the given HWND and its children by the qpoint pointed to by

pLngValue. No painting takes place. This is useful for 3
rd
 part plug-ins or

applications which use our GDI and HWND dll to implement HWNDs. This

selector should be called when the Macintosh window has been scrolled, and the

HWND containers need to be repositioned in the port without causing any

invalidation.

Example:

 qpoint pt(0,20);

 WNDgetOS(theTopHwnd, GOS_OFFSETHWNDS, (qlong)&pt);

GOS_CLIPHWNDS (Mac OS only)

This will clip the given HWND and its children to the given rectangle which must

be local to the Macintosh port to which the HWND belongs. This is useful for 3
rd

part plug-ins or applications which use our GDI and HWND dll to implement

HWNDs. The selector should be called to prevent HWNDs painting over areas in

the Mac port which they are not to paint in.

 Functions

 383

Example:

 qrect r(0,0,400,300);

 WNDgetOS(theTopHwnd, GOS_CLIPHWNDS, (qlong)&r);

¶ pLngValue - this should point to the buffer which receives/gives the information. The

buffer size and type depends on the selector.

¶ return - returns qfalse if an invalid selector was specified.

WNDgetParent()

HWND WNDgetParent(HWND pHwnd)

Returns the parent window of the given window.

Note: WNDgetParent does NOT return parent windows if their parent window is

HWND_MAINWINDOW. These windows are instantiated from Omnis window classes and

are private to Omnis, no direct support is given to access these windows (see WNDgetOS).

NULL is returned instead.

¶ pHwnd - identifies the window for which to return the parent window.

¶ return - returns the parent window.

Example:

See WM_NCLBUTTONDOWN, WNDupdateWindow.

See also WNDsetParent

WNDgetScrollPos()

void WNDgetScrollPos(HWND pHwnd, qshort pWhich, qdim* pPos)

Retrieves the current scroll position of the given window and scrollbar.

ç Note: Querying a vertical or horizontal header component returns the appropriate scroll

position from the client component.

¶ pHwnd - identifies the window for which to return the scroll position.

¶ pWhich - identifies the scrollbar SB_VERT or SB_HORZ.

¶ pPos - points to the qdim which is to receive the scroll position.

Example:

See WM_HSCROLL.

See also WNDsetScrollPos, WNDsetScrollRange, WNDgetScrollRange

Chapter 11ðHWND Reference

384

WNDgetScrollRange()

void WNDgetScrollRange(HWND pHwnd, qshort pWhich, qdim* pMin,

 qdim* pMax, qdim* pPage)

Retrieves the scroll range and page size of the given window and scrollbar.

Note: Querying a vertical or horizontal header component returns the appropriate scroll

range and page size from the client component. The maximum range includes the page size

as specified by WNDsetScrollRange. In order to find the true range of scroll positions you

must subtract pPage from the pMax value.

¶ pHwnd - identifies the window for which to return the scroll range.

¶ pWhich - identifies the scrollbar SB_VERT or SB_HORZ.

¶ pMin - points to the qdim which is to receive the minimum scroll range.

¶ pMax - points to the qdim which is to receive the maximum scroll range (includes page

size).

¶ pPage - points to the qdim which is to receive the page size.

Example:

See WM_HSCROLL, WM_WINDOWPOSCHANGED.

See also WNDsetScrollPos, WNDgetScrollPos, WNDsetScrollRange

WNDgetThemeColor()

qcol WNDgetThemeColor(qulong pType, qulong pFlags, qulong pPropId)

Returns the color of the specified attribute when using the specified theme and state

information. Constants are defined in hwnd.he.

¶ pType ï Type constant corresponding to the theme type required.

¶ pFlags ï Flags representing state information about the control.

¶ pPropId ï Constant representing the type of attribute required.

 Functions

 385

Example:

qcol textColor = textSpec().mTextColor;

if (WND_BORD_CTRL_GROUPBOX == border.mBorde rStyle && gmain.isXP() &&

GDI_COLOR_WINDOWTEXT == textColor && !gmain.isVista())

{

 textColor = WNDgetThemeColor(THEME_GROUPBOX,

THEME_CONTROL_NORMAL, THEME_COLOR_TEXTCOLOR);

 if (GDI_COLOR_QDEFAULT == textColor)

 textColor = GDI_COLOR_ACTIVECAPTION;

}

WNDgetThemeState()

qulong WNDgetThemeState(HWND hWnd)

Returns flags describing state information about the windowôs theme. State flags are defined

in hwnd.he.

¶ hWnd ï identifies the window. If NULL is passed, the main HWND is assumed.

WNDgetThemeControlSize()

qbool WNDgetThemeControlSize(HWND hWnd,HDC pHdc,qulong pType,qulong

pFlags,qpoint* pSize)

Returns the size coordinates of the specified themed control. Types and flags are defined in

hwnd.he

¶ hWnd ï identifies the window on which the control resides. If NULL is passed, the

main HWND is assumed.

¶ pHdc - identifies the drawing device.

¶ pType ï Type constant corresponding to the theme type required.

¶ pFlags ï Flags representing state information about the control.

¶ pSize - (output). A qpoint structure containing the size coordinates.

Example:

qpoint size;

if (WNDgetThemeControlSize(0, pHdc, THEME_STATUS,

THEME_CONTROL_DEFAULT, &size))

{ //..}

Chapter 11ðHWND Reference

386

WNDgetUpdateRgn()

void WNDgetUpdateRgn(HWND pHwnd, qrgn* pRgn)

Returns the update region of the given window. This function should only be called during

WM_PAINT and WM_CHILDPAINT messages prior to calling WNDbeginPaint (calling

WNDbeginPaint clears the update region of the window). Calling it at any other time may

not return the correct region.

¶ pHwnd - identifies the window whoôs update region is to be retrieved.

¶ pRgn - points to the qrgn which is to receive the update region.

Example:

See WNDredrawChildren.

See also WNDbeginPaint, WM_PAINT, WM_CHILDPAINT

WNDgetWindow()

HWND WNDgetWindow(HWND pHwnd, UINT pRelationFlag)

Retrieves the related window of the given window.

¶ pHwnd - identifies the window for which to return the related window.

¶ pRelationFlag - identifies the relation. One of the following flags can be specified:

GW_CHILD - returns the top most child window

GW_HWNDFIRST - returns the top most sibling window

GW_HWNDLAST - returns the bottom most sibling window

GW_HWNDNEXT - returns the sibling window just below the given window

GW_HWNDPREV - returns the sibling window just above the given window

Example:

// this example steps through all immediate children of the window.

HWND curChild = WNDgetWindow(myHwnd, GW_CHILD);

while (curChild)

{

 curChild = WNDgetWindow(curChild, GW_HWNDNEXT);

}

See also WNDenumChildWindows, WNDgetWindowComponent,

WNDnextWindowComponent, GW_xxx

 Functions

 387

WNDgetWindowComponent()

HWND WNDgetWindowComponent(HWND pHwnd, qulong pComponent)

Returns the specified component of the given window.

¶ pHwnd - identifies the window for which to return the component.

¶ pComponent - identifies the component to be returned. One of the WND_WC_xxx

flags must be specified here.

¶ return - the HWND of the component.

Example:

// this example retrieves the client component of a window

HWND client Comp = WNDgetWindowComponent(myHwnd, WND_WC_CLIENT);

See also WNDgetWindow

WNDgetWindowCursor()

qshort WNDgetWindowCursor(HWND pHwnd)

Returns the cursor id which is associated with the given window.

¶ pHwnd - identifies the window for which to return the cursor id.

¶ return - the cursor id.

Example:

// this example changes the windowôs cursor if the current cursor

// is not set, that is, is equal to WND_CURS_DEFAULT.

if (WNDgetWindowCursor(myHwnd) == WND_CURS_DEFAULT)

{

 WNDsetWindowCursor(myHwnd, WND_CURS_NOGO);

}

See also WNDsetWindowCursor, WNDcheckCursor, WM_SETCURSOR

WNDgetWindowFromPt()

qbool WNDgetWindowFromPt(HWND* pHwnd, qword2* pHitTest, qpoint* pPoint)

Takes a global point local to HWND_DESKTOP and locates the window that is underneath

the point.

¶ pHwnd - points to the HWND variable which is to contain the window which was found

underneath the point.

Chapter 11ðHWND Reference

388

¶ pHitTest - points to the variable which is to contain the window part which is

underneath the point. The value is one of the HTxxx values.

¶ pPoint - points to the qpoint.

¶ return - returns qtrue if a window was found. Otherwise qfalse is returned.

Example:

// this example displays info about the hwnd the mouse is over if the user

// clicks in the client area of this window and than drags around the screen

// while holding down the mouse button

static HWND lastHwndUnder = NULL;

qlong cMyWndProcClass::WndProc(HWND hWnd, UINT message, WPARAM

wParam,

 LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_LBUTTONDOWN:

 {

 WNDsetCapture(hWnd, WND_CAPTURE_MOUSE);

 return 0L;

 }

 case WM_MOUSEMOVE:

 {

 if (WNDhasCapture(hWnd, WND_CAPTURE_MOUSE))

 {

 qpoint pt; WNDmakePoint(lParam, &pt);

 HWND hwndUnder = NULL;

 qword2 hittest;

 str255 txt;

 WNDmapWindowPoint(hWnd, HWND_DESKTOP, pt);

 if (WNDgetWindowFromPt(&hwndUnder, &hittest, pt))

 {

 qrect wRect; WNDgetWindowRect(hwndUnder, &wRect);

 str15 num;

 txt = str2 55(ñLeft=$; Top=$; Right=$; Bottom=$ò);

 stri(wRect.left, num); txt.insertStr(num);

 stri(wRect.top, num); txt.insertStr(num);

 stri(wRect.right, num); txt.insertStr(num);

 Functions

 389

 stri(wRect.bottom, num); txt.insertStr(num);

 }

 if (hwndUnder != sLastHwndUnder)

 {

 sLastHwndUnder = hwndUnder;

 HDC dc = WNDstartDraw(hWnd);

 qrect cRect; WNDgetClientRect(hWnd, &cRect);

 GDIsetTextColor(dc, GDI_COLOR_WINDOW);

 GDIfillRect(dc, &cRect,

 GDIgetStockBrush(BLACK_BRUSH));

 GDIsetTextColor(dc, GDI_COLOR_WINDOWTEXT);

 GDIdrawText(dc, 0, 0, &txt[1], txt[0], jstLeft);

 WNDendDraw(hWnd, dc);

 }

 }

 return 0L;

 }

 case WM_LBUTTONUP:

 {

 if (WNDhasCapture(hWnd, WND_CAPTURE_MOUSE))

 {

 WNDreleaseCapture(WND_CAPTURE_MOUSE);

 }

 return 0L;

 }

 }

 return DefWindowProc(hwnd, message, wparam, lparam);

}

WNDgetWindowLong()

qulong WNDgetWindowLong(HWND pHwnd, qlong pOffset)

Retrieves style and type information about a window.

¶ pHwnd - identifies the window for which to return the information.

¶ pOffset - identifies the information to be returned. One of the following flags can be

specified:

GWL_STYLE - returns the windows style flags

GWL_EXSTYLE - returns the windows extended style flags

GWL_EXCOMPONENTID - returns the windows component id.

Chapter 11ðHWND Reference

390

¶ return - the requested information.

Example:

// this example switches of the scrollbars of the window

qulong style = WNDgetWindowLong(myH wnd, GWL_STYLE);

style &= ~(WS_HSCROLL | WS_VSCROLL);

WNDsetWindowLong(myHwnd, GWL_STYLE, style);

See also WNDsetWindowLong, WNDcreateWindow, WS_xxx (styles),

WND_xxx (extended styles), WND_WC_xxx (component ids)

WNDgetProcInst()

WNDprocClass* WNDgetProcInst(HWND pHwnd)

Returns a pointer to the WNDprocClass instance which is associated with the given

window.

¶ pHwnd - identifies the window for which to return the associated WNDprocClass

instance.

¶ return - returns a pointer to the WNDprocClass instance. WARNING : returns NULL if

the window has no associated WNDprocClass instance.

Example:

// this example creates a number of child windows which have their own

// WNDprocClass instance. On a delete key message the parent window

// destroys all child windows.

class cChildWndProcClass: public WNDprocClass

{

 cChildWndProcClass() {}

 ~ cChildWndProcClass() {}

 virtual qlong WndProc(HWND hWnd, UINT message, WPARAM wParam,

 LPARAM lParam, LPARAM uParam);

}

qlong cParentWn dProcClass::WndProc(HWND hWnd, UINT message,

 WPARAM wParam, LPARAM lParam, LPARAM uParam)

{

 switch (message)

 {

 case WM_CREATE:

 {

 Functions

 391

 // ** create the child windows **

 // first instantiate the WNDprocClass

 cChildWndProcClass* childWnd Proc = new cChildWndProcClass();

 // prepare for first child creation

 qrect childWRect(10, 10, 100, 20);

 WNDborderStruct childBorder(WND_BORD_INSET);

 // now create the first child window (we do not need to

 // remember the HWND)

 WNDcreateWindow

 (

 hWnd,

 WS_CHILD | WS_CLIPSIBLINGS | WS_CLIPCHILDREN,

 0,

 childWndProc,

 &childWRect,

 &childBorder

);

 // prepare for second child creation

 childWRect.top += 40;

 // now create the second child window

 WNDcreateWindow

 (

 hWnd,

 WS_CHILD | WS_CLIPSIBLINGS | WS_CLIPCHILDREN,

 0,

 childWndProc,

 &childWRect,

 &childBorder

);

 return 0L;

 }

 case WM_KEY:

 {

 qkey* key = (qkey*)lParam;

 vchar vch = key - >getVChar();

 if (vch = = vcBack || vch == vcClear)

 {

 // ** delete the child windows **

 HWND curChild = WNDgetWindow(hWnd, GW_CHILD);

 while (curChild)

 {

Chapter 11ðHWND Reference

392

 // first get the WNDprocClass of the child

 cChildWndProcClass* childWndProc =

 (cChild WndProcClass*) WNDgetProcInst(curChild);

 // delete the childWndProc, but set the WNDprocClass in

 // the window to NULL first

 WNDsetProcInst(curChild, NULL);

 delete childWndProc;

 // destroy the window

 WNDdestroyWindow(curC hild);

 // get the next child, always start at the top again

 curChild = WNDgetWindow(hWnd, GW_CHILD);

 }

 return 0L;

 }

 return 1L;

 }

 }

 return (DefWindowProc(hWnd, message, wParam, lParam));

}

See also WNDprocClass, WNDsetProcInst, WNDcreateWindow,

WNDaddWindowComponent

WNDgetWindowRect()

void WNDgetWindowRect(HWND pHwnd, qrect* pRect)

Retrieves the global coordinates (local to HWND_DESKTOP) of the window.

¶ pHwnd - identifies the window for which to return the rect.

¶ pRect - points to the qrect structure which is to receive the coordinates.

Example:

See WNDredrawChildren.

See also WNDgetClientRect

WNDhasCapture()

qbool WNDhasCapture(HWND pHwnd, qulong pFlags)

Returns qtrue if the given window has the specified capture.

¶ pHwnd - identifies the window to test for the specified capture.

 Functions

 393

¶ pFlags - specifies the capture for which to test the given window. This parameter can be

WND_CAPTURE_MOUSE or WND_CAPTURE_KEY. Only one of the two flags

must be specified.

¶ return - returns qtrue if the given window has the specified capture.

Example:

See WM_LBUTTONxxx, WNDgetCapture, WNDgetWindowFromPt.

See also WNDgetCapture, WNDsetCapture, WNDreleaseCapture,

WND_CAPTURE_xxx

WNDhideCaret()

void WNDhideCaret()

Hides the system caret if it is currently visible, and increments the caretôs hidden count. If

this function is called more than once before calling WNDshowCaret, it takes the same

number of calls to WNDshowCaret, to make the caret visible again.

Example:

WNDhideCaret();

See also WNDcreateCaret, WNDdestroyCaret, WNDgetCaretPos,

WNDsetCaretPos, WNDshowCaret, WM_FOCUSCHANGED

WNDinflateBorderRect()

void WNDinflateBorderRect(HWND pHwnd, qrect* pRect,

 WNDborderStruct* pBorderSpec)

This function is the reverse of WNDinsetBorderRect. Inflates the supplied rectangle by the

left, top, right, and bottom by the amount which is required for the specified border

information (the amount which the border requires to paint). For example, if the border

was of type WND_BORD_INSET the rectangle would be inflated by two pixels on all

sides.

For custom borders (WND_BORD_CUSTOM) the HWND module sends a

WM_BORDCALCRECT message to the WndProc function of the given window.

¶ pHwnd - identifies the window to be called for custom borders.

¶ pRect - points to the qrect to be inflated.

¶ pBorderSpec - points to the border information.

Chapter 11ðHWND Reference

394

Example:

See WNDpaintBorder.

See also WNDborderStruct, WNDdrawBorder, WNDinsetBorderRect

WNDinsetBorderRect()

void WNDinsetBorderRect(HWND pHwnd, qrect* pRect,

 WNDborderStruct* pBorderSpec)

Reverse of WNDinflateBorderRect.

Insets the supplied rectangle by the left, top, right, and bottom by the amount which is

required for the specified border information (the amount which the border requires to

paint). For example, if the border was of type WND_BORD_INSET the rectangle would

be inset by two pixels on all sides.

For custom borders (WND_BORD_CUSTOM) the HWND module sends a

WM_BORDCALCRECT message to the WndProc function of the given window.

¶ pHwnd - identifies the window to be called for custom borders.

¶ pRect - points to the qrect to be inset.

¶ pBorderSpec - points to the border information.

Example

See WNDpaintBorder.

See also WNDborderStruct, WNDdrawBorder, WNDinflateBorderRect

WNDinvalidateFrame()

void WNDinvalidateFrame(HWND pHwnd)

Adds the non-client area of the given window to the windows update region.

WM_NCPAINT messages are generated as a result of this call.

¶ pHwnd - identifies the window to be invalidated.

Example:

WNDinvalidateFrame(myHwnd);

See also WNDinvalidateRect, WNDinvalidateRgn

 Functions

 395

WNDinvalidateRect()

void WNDinvalidateRect(HWND pHwnd, qrect *pRect)

Adds the given rectangular area within the client area of the given window to the windows

update region. WM_PAINT messages are generated as a result of this call.

¶ pHwnd - identifies the window to be invalidated.

¶ pRect - points to the qrect to be invalidated inside the client area. If this parameter is

NULL, the whole client area is invalidated.

Example:

See WM_SHOWSIZEGRIP.

See also WNDinvalidateRgn, WNDinvalidateFrame

WNDinvalidateRgn()

void WNDinvalidateRgn(HWND pHwnd, qrgn *pRgn)

Adds the given region within the client area of the given window to the windows update

region. WM_PAINT messages are generated as a result of this call.

¶ pHwnd - identifies the window to be invalidated.

¶ pRgn - points to the qrgn to be invalidated inside the client area. If this parameter is

NULL, the whole client area is invalidated.

Example:

// this example invalidates to rectangular areas in the client area of the

// window in one call to WNDinvalidateRgn

qrgn rgn1, rgn2;

GDIsetRectRgn(&rgn1, 10, 10, 50, 20);

GDIsetRectRgn(&rgn2, 10, 50, 80, 60);

GDIrgnOr(&rgn1, &rgn1, &rgn2);

WNDinvalidateRgn(myHwnd, &rgn1);

See also WNDinvalidateRect, WNDinvalidateFrame

WNDisBorderExternal() (v3.1)

qbool WNDisBorderExternal(HWND pHwnd, qshort pBorderStyle)

This function checks if the given border style will be drawn outside the HWNDs frame.

This is only true for some borders on Mac OSX.

¶ pHwnd - identifies the window.

Chapter 11ðHWND Reference

396

¶ pBorderStyle - identifies the border style to test

¶ retur ns - true if the border will be drawn outside the windows frame.

WNDisPaintInProgress()

qbool WNDisPaintInProgress()

Returns qtrue if a paint is currently in progress, qfalse otherwise.

Example:

if (mHWnd)

{

 setPicturesScrollRange();

 if (!WNDisPaintInPr ogress())

 {

 WNDinvalidateRect(mHWnd,NULL);

 WNDupdateWindow(mHWnd);

 }

}

WNDisVistaTheme()

qulong WNDisVistaTheme()

Returns THEME_STATE_xxx flags describing the Windows Vista theme being used by the

operating system. This depends whether the component is running under Vista and whether

Vista is running in Classic mode or not. Currently, if Windows Vista is using themes,

WNDisVistaTheme() returns the THEME_STATE_ACTIVE and

THEME_STATE_HOTACTIVE flags. Otherwise, THEME_STATE_NOTACTIVE is

returned.

Example:

mIsVista = (qbool) (WNDisVistaTheme() != 0);

 Functions

 397

WNDisWindowVisible()

qbool WNDisWindowVisible(HWND pHwnd)

Returns the current visibility state of the given window. It only returns qtrue if the window

is visible on screen (the WS_VISIBLE flag is set for it self and all of the windows parents)

although it may be hidden by overlapping sibling windows. If it is required to test the

WS_VISIBLE style of a window, use the WNDgetWindowLong function.

¶ pHwnd - identifies the window to be tested.

¶ return - returns qtrue if the window is visible.

Example:

// in this example, the window redraws itself if it is truly visible, that is, all of its

// parents are also visible.

if (WNDisWindowVisible(myHwnd))

{

 WNDredrawWindow(myHwnd, NULL, NUL L,

 WND_RW_NCPAINT | WND_RW_PAINT | WND_RW_ERASE);

}

See also WS_VISIBLE, WNDgetWindowLong

WNDkillTimer()

qbool WNDkillTimer(HWND pHwnd, qushort pTimerId)

Removes the timer of the specified id from the given window.

¶ pHwnd - identifies the window who owns the timer.

¶ pTimerId - specifies the id of the timer to be removed.

¶ return - returns qtrue if the timer was removed successfully. If a timer of the given id

could not be found, qfalse is returned.

Example:

See WM_TIMER.

See also WNDsetTimer, WM_TIMER

