

Omnis Command
Reference

TigerLogic Corporation

October 2016

The software this document describes is furnished under a license agreement. The software may be used or copied only in

accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials and examples of

this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a retrieval system or translated

into any language in any form by any means without the written permission of TigerLogic.

© TigerLogic Corporation, and its licensors 2016. All rights reserved.

Portions © Copyright Microsoft Corporation.

© 1999-2016 The Apache Software Foundation. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

OMNIS® and Omnis Studio® are registered trademarks of TigerLogic Corporation.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows 95, Win32, Win32s are registered trademarks, and Windows NT,

Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

SAP, R/3, mySAP, mySAP.com, xApps, xApp, and other SAP products and services mentioned herein as well as their

respective logos are trademarks or registered trademarks of SAP AG in Germany and in several other countries all over the

world.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2003 International Business Machines Corporation and others.

LINUX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Sun, Sun Microsystems, the Sun Logo, Solaris, Java, and Catalyst are trademarks or registered trademarks of Sun

Microsystems Inc.

J2SE is Copyright (c) 2003 Sun Microsystems Inc under a licence agreement to be found at:

http://java.sun.com/j2se/1.4.2/docs/relnotes/license.html

MySQL is a registered trademark of MySQL AB in the United States, the European Union and other countries

(www.mysql.com).

ORACLE is a registered trademark and SQL*NET is a trademark of Oracle Corporation.

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a trademark of Adobe Systems, Inc.

Apple, the Apple logo, AppleTalk, and Macintosh are registered trademarks and MacOS, Power Macintosh and PowerPC are

trademarks of Apple Computer, Inc.

HP-UX is a trademark of Hewlett Packard.

OSF/Motif is a trademark of the Open Software Foundation.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.

This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

 Client Commands

 3

About this Manual
This manual contains a complete list of 4GL commands available in Omnis Studio. The
commands are arranged in groups in the method editor in Omnis, but they are listed here in
alphabetical order for easy reference. See the Omnis Programming manual for further
information about using the Omnis commands.

Each command has the following information, as well as the syntax, description, and an
Omnis code example.

Command
group

Flag affected Reversible Execute on
Client

Platform(s)

The group
within the
Omnis method
editor.

Whether or not
(YES/NO) the
command sets the
flag when it
executes; if the
command executes
successfully the flag
is set to True, if it
fails the flag is set to
False.

Whether or not
(YES/NO) the
command is
reversed when it
is executed within
a reversible block;
see Begin
reversible block
command.

Whether or not
(YES/NO) the
command can be
executed in a
client method in
the JavaScript
Client

Which platform the
command is
available on,
including:
Windows, macOS,
Linux; All indicates
the command is
available on all
platforms

Client Commands
The following commands can be executed in a client method in the JavaScript Client.

; Comment Begin text block Break to end of switch Calculate

Case Default Do Do inherited

Do method Else Else If calculation Else If flag false

Else If flag true End For End If End Switch

End text block End While For field value Get text block

If calculation If flag false If flag true JavaScript:

Jump to start of loop OK message On On default

Quit event handler Quit method Repeat Send to trace log

Set reference Sound bell Switch Text:

Until calculation Until flag false Until flag true While calculation

While flag false While flag true

; Comment

4

Commands
; Comment

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

; message

Description

This command allows you to add comments to your code. You can type ñ;ò in the method
editor to select this command, tab to the text field and enter your comment. You can
ñcomment outò a line of code using the keypress Ctrl-; (semi-coloc), and you can
ñuncommentò a previously commented line using the keypress Ctrl-ó (apostrophe): the latter
will only work if the comment text is a valid line of code, i.e. if the text is a valid line of code
that has been commented out using Ctrl-;.

You can also add in-line comments to any line of code.

Example
; here are some comments

; variable delay set by lDelay

; adjust Until calculation to increase/decrease delay

Calculate lCount as 1

Repeat ;; this is an in - line comment

 Calculate lCount as lCount+1

Until lCount>=lDelay*10

Accept advise requests

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept advise requests ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command enables or disables responses to a
request Advise message from a client. With the Accept check box selected, Omnis will
respond to an Advise request message specifying a valid field name by repeatedly sending
the field value to the client at appropriate times. If the Accept option is unchecked, all
conversations with Advises in force will be terminated unless the command is part of a
reversible block.

Example
Accept advise requests (Accept)

 Accept commands

 5

Accept commands

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept commands ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines whether Omnis will accept
commands from the client program. When Accept commands is in force, Omnis will
respond to a DDE EXECUTE message by attempting to execute a command string sent by
the client program. All conversations are terminated when you close your Omnis library.

Example
Accept advise r equests (Accept)

Accept commands (Accept)

Accept field requests

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept field requests ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command enables or disables responses to a
request for field values issued by a client application. With the Accept option selected,
Omnis will respond to a Request message specifying a valid field name by sending the field
value to the client program. Values are taken from the current record buffer. Values are only
sent when Omnis is in enter data mode or when no methods are running.

Example
Accept advise requests (Accept)

Accept commands (Accept)

Accept field requests (Accept)

Accept field values

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept field values ([Accept])

Add line to list

6

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines whether Omnis is able to
receive data from a client via a DDE POKE message. With the Accept option selected,
Omnis will respond to a Poke message specifying a valid field or variable name, by setting
the value of that field to the value transmitted by the client program. Values are stored in the
current record buffer and, if the relevant field is on the top window, that window is redrawn.

Field values are only accepted when Omnis is in enter data mode, Prompted find, or when
no methods are running. All conversations are terminated when you close your Omnis
library.

Example
Accept advise requests (Accept)

Accept field values (Accept)

Add line to list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Add line to list {line-number (values) {default is end of list}}

Description

This command adds a new line to the current list using the current field values in the CRB or
values you specify in the list of values. Any conversions required between data types are
carried out automatically. The flag is cleared if the line cannot be added, either because the
maximum number of lines in the list or the memory limits have been exceeded.

You can specify the line number at which the new line is inserted, otherwise the line is added
to the end of the list. If the line number you specify in the command line is empty or
evaluates to zero, the new line is added to the end of the list. If too few values are specified,
the other columns are left empty; if too many values are specified, the extra values are
ignored. When you supply a comma-separated list of values, the values in the CRB are
ignored.

Example
; Create a fixed list of string and numeric data

Set current list lMyList

Define list {lName,lAge}

Add line to list {('Fred',10)}

Add line to list {('George',20)}

; Insert the values of the variables lName and lAge to lMyList at line 1

Calculate lName as 'Harry'

Calculate lAg e as 22

Add line to list {1 (lName,lAge)}

; If no values are defiened, the current values of the variables

; used in the Define List are added

Add line to list

; Alternatively, you can use the $add() method to add lines to your list

Do lMyList.$define(l Name,lAge)

Do lMyList.$add('Fred',10)

Do lMyList.$add('George',20)

 Advise on find/next/previous

 7

; You can also use the $addbefore() and $addafter() methods to add

; lines at a specific position in the list

Do lMyList.$addbefore(1,'Harry',22)

Advise on find/next/previous

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Advise on find/next/previous ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, the Set server mode command determines when Omnis is permitted
to send field values that have changed. In addition to the Set server mode options, the three
commands Advise on Find/next/previous, Advise on OK, and Advise on Redraw let you
toggle individual options on or off. Advise on Find/next/previous lets you control this
particular option without affecting the other two.

Example
Advise on find/next/previous (Accept)

Advise on OK

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Advise on OK ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, the Set server mode command determines when Omnis is permitted
to send field values that have changed. In addition to the Set server mode options, the three
commands Advise on Find/next/previous, Advise on OK, and Advise on Redraw let you
toggle individual options on or off. The Advise on OK command lets you control this
particular option without affecting the other two.

Example
Advise on OK (Accept) ;; enable advise on OK

Advise on OK ;; disable advise on OK

Advise on redraw

8

Advise on redraw

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Advise on redraw ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to
send requested Advise messages to the client program. When Advise requests have been
received from a client, the Set server mode command determines when Omnis is permitted
to send field values that have changed. In addition to the Set server mode options, the three
commands Advise on Find/next/previous, Advise on OK, and Advise on redraw let you
toggle individual options on or off. The Advise on redraw command lets you control this
particular option without affecting the other two.

Example
Advise on redraw (Accept) ;; enable advise on redraw

Advise on redraw ;; disable advise on redraw

AND selected and saved

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

AND selected and saved ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Description

This command performs a logical AND of the Saved selection with the Current selection.
You can specify a particular line in the list by entering either a number or a calculation.
The All lines option performs the AND for all lines of the current list.

To allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

The list data structure contains the column definitions, the field values for each line of the
list, the current selected status and saved selected status for each
line, LIST.$line, LIST.$linecount and LIST.linemax.

The AND selected and saved command performs a logical AND on the saved and current
state, and puts the result into the Current selection. Hence, for a particular line, if both the
Current and Saved states are selected, the Current state remains selected, but if either or
both states are deselected, the resulting Current state will become deselected.

 Begin critical block

 9

Saved State Current State Resulting Current State

Selected Selected Selected

Deselected Selected Deselected

Selected Deselected Deselected

Deselected Deselected Deselected

Example
; Line 3 remains selected as it is the only line selected

; when both the 'Save selection for line(s)' and

; 'AND sele cted and saved' commands are used

Set current list lMyList

Define list {lCol1}

For lCol1 from 1 to 6 step 1

 Add line to list {lCol1}

End For

Select list line(s) (All lines)

Save selection for line(s) (All lines)

Deselect list line(s) (All lines)

Select l ist line(s) {3}

AND selected and saved (All lines)

Begin critical block

Command group Flag affected Reversible Execute on client Platform(s)

Threads NO NO NO All

Syntax

Begin critical block

Description

Begin critical block is only applicable to the multithreaded server. It marks the start of
a critical block, namely a section of code which needs to execute in single threaded mode
without allowing other client methods to execute. You use End critical block to mark the end
of a critical block.

One example of when you should use a critical block is as follows. Class variables are
shared by all clients. Simple atomic operations, such as the direct assignment of a value to a
class variable are safe. Other operations, such as when a method call is involved, could
cause problems, because the method call might be interrupted by another thread. To avoid
this, use a critical block.

Example
Begin critical block

 Calculate cClassVar as $cinst.$getvalue()

End critical block

Begin print job

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Begin reversible block

10

Syntax

Begin print job ([Send to PDF])

Options

Send to PDF
If specified, the print job sends its reports to a single PDF file rather than a
printer document

Description

This command defines the beginning of an Omnis print job which is ended by the
command End print job. Only one print job can be started at any time: you cannot
nest Begin print job commands.

If printing is already in progress, Begin print job returns an error and sets the flag to false. It
also returns an error if it cannot set up the printer, or open the printer document; again, it
sets the flag to false in this case.

Begin print job sets the flag to true if it succeeds. It automatically sets the report destination
to the printer and closes the report destination selection window if it is open.

Each report is printed in the same way as if it were in an individual document. If you print two
reports in a job, then page numbering starts at 1 for each report.

You cannot change the page setup while a print job is in progress, although Omnis does not
try to enforce this, as it will probably cause an OS error (and abnormal termination of
printing) if you do.

The Begin print job and End print job commands only apply to reports sent to a printer, via
the printer report destination.

Example
; Create a print job and send 2 reports to the printer

Begin print job

Set report name rMyReport

Print report

Set report name rMyReport2

Print report

End print job

Begin reversible block

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

Begin reversible block

Description

This command begins a reversible block of commands. All reversible commands enclosed
within the commands Begin reversible block/End reversible block are reversed when the

method containing this block finishes. However, a reversible block in the $construct() method
of a window class reverses when the window is closed not when the method is terminated as
is normally the case. Omnis always steps backwards through a reversible block of
commands, thus the first command is reversed last.

Reversible blocks let you create subroutines that restore the values of variables, the current
record buffer, and so on, to their previous state when the method terminates. Most
commands are reversible: those that are not usually involve an irreversible action such as
changing the data in an Omnis data file or running another program. Methods called from
within a reversible block are not reversed.

 Begin statement

 11

Example
; A method can contain more than one block of reversible commands. In this case,

; commands contained within all the blocks are reversed when the method

terminates.

; All the commands in the following example are reversed when the method

conta ining

; the block is finished

Begin reversible block

 Disable menu line mMyMenu/5

 Set current list iMyList

 Build open window list (Clear list)

 Calculate iVar as 0

 Open window instance wMyWindow

End reversible block

; When this block is reversed:

; The window instance wMyWindow is closed

; iVar returns to its former value

; iMyList is restored to its former contents and definition

; The current list is set to the former value

; Menu line 5 is enabled

; The following method hides fields Entry 1 and Entry2 and installs the menu

mCustomers

Begin reversible block

 Hide fields {Entry1,Entry2}

 Install menu mCustomers

End reversible block

OK message (Icon) {MCUSTOMERS is now visible}

; When this method ends, first MCUSTOMERS is removed, then the fields are shown.

; In the following example, the current list is iMyList

Begin reversible block

 Set current list iMyList2

 Define list {fAccounts.Code,fAccounts.Surname,fAccounts.Balance}

 Set main file {fAccounts}

 Build list from select table

 Enter data

End reversible block

; When this method terminates and the command block is reversed, the Main file is

reset,

; the former list definition is restored and the current list is restored to

iMyList.

Begin statement

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

Begin statement ([Carriage return][,Linefeed])

Options

Carriage return
If specified, the command appends a carriage return, after it appends each
line of the statement

Linefeed
If specified, the command appends a line feed, after it appends each line of
the statement

Begin text block

12

Description

This command defines the start of a block of SQL statements and text to be stored in the
SQL buffer for the current method stack. The current content of the SQL buffer is cleared
when you execute this command. The End statement command defines the end of the block.
The lines are not checked by Omnis in any way and must be valid SQL in order for the
server to be able to use them. To use the SQL buffer, you call
the $prepare or $execdirect method of a SQL statement object, passing no parameters.

The Carriage return option causes Omnis to insert a carriage return character between each
line of the SQL statement. The Linefeed option causes Omnis to insert a linefeed character
between each line of the SQL statement. If you select both Carriage return and Linefeed,
then Omnis inserts a carriage return followed by a linefeed. If you select neither option,
Omnis separates the statement lines with a space. One example of when you would use
these options, is when you use Begin statement, Sta:, End statement, and $execdirect, to
add a stored procedure to the database. This makes the procedure more readable when you
view it.

Example
; Open a multi - threaded omnis s ql connection to

; the datafile mydatafile and create a statement to

; select rows from the table Customers

Calculate lHostname as con (sys (115),'mydatafile.df1')

Do iSessObj.$logon(lHostname,'','','MYSESSION')

Do iSessObj.$newstatement('MyStatement') Ret urns lStatObj

Begin statement

Sta: Select * From Customers

Sta: Where Cust_ID > 100

End statement

Do lStatObj.$execdirect()

Do lStatObj.$fetch(lMyList, kFetchAll)

Begin text block

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

Begin text block ([Keep current contents])

Options

Keep current contents
If specified, the command keeps the current contents of the text block
rather than setting it to empty

Description

This command defines the start of a block of text to be stored in the text buffer for the current
method stack. The Begin text block command clears the text buffer by default, and adds
the text in subsequent Text: commands to the text buffer. However, you can keep the current
contents of the buffer by checking the Keep current contents option, in which case text is
appended to current text in the buffer. You build the text block using the Text: command,
which supports leading and trailing spaces and can contain square bracket notation.
The End text block command defines the end of the text block, and you can return the
contents of the text buffer using the Get text block command.

Example
Begin text block

Text: Thought for the day: (Carriage return)

 Break to end of loop

 13

Text: If a train station is where the train

Text: sto ps, what is a work station?

End text block

Get text block lTextString

OK message {[lTextString]}

Break to end of loop

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Break to end of loop

Description

This command terminates a Repeat, While or For loop, passing control to the command
following the Until, End While or End For command. An If command is usually placed before
the Break to end of loop to determine the condition under which a break occurs.

Example
; loop until user replies yes to yes/no message or lCount=100

While lCount< - 100

 Yes/No message {Break to end of loop ?}

 If flag true

 Break to end of loop

 End If

 Calculate lCount as lCount+1

End While

Break to end of switch

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Break to end of switch

Description

This command causes Omnis to jump out of the current Case statement (i.e. terminate the
Case before the end of Case is reached), and resume method execution after the End
Switch command. You use it in conjunction with the Switch and Case commands.

Example
; If lCount equals 1 or 2 the ok message following the Break to end of switch

never gets shown

Switch lCount

 Case 1

 OK message {lCount equals 1}

 Break to end of switch

 OK message {I never run}

 Case 2

 OK message {lCount equals 2}

 Break to end of switch

 OK message {I never run}

 Default

 OK message {lCount not equal to 1 or 2}

End Switch

Breakpoint

14

Breakpoint

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Breakpoint {message}

Description

This command places a breakpoint at a command line in a method where you want to stop
execution, to check your coding for example. You can include a message with the command
which is displayed in the debug window when the break occurs. The command does nothing
at runtime.

When Omnis encounters a breakpoint the debugger is opened with the current method
loaded and the Breakpoint command line highlighted. You can examine the value of fields
and variables by right button/Ctrl-clicking on the field or variable name.

Following a breakpoint you can continue method execution by clicking the Go button or by
using Step or Trace mode.

The Breakpoint command is ignored if executed on a thread running on a multi-threaded
Omnis Server.

Example
; hit breakpoint when line 5 is processed so we can check the values of lMyList

columns

For lMyList.$line from 1 to lMyList.$linecount step 1

 If lMyList.$line=5

 Do lMyList.$loadcols()

 Breakpoint {check lMyList columns}

 End If

End For

Bring window instance to front

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Bring window instance to front window-instance-name

Description

Brings the specified window instance to the front; does not work for remote form instances,
only window class instances.

Example
; Bring the window instance wMyWindow

; to the front if it is already open

Test for window open {wMyWindow}

If flag true

 Bring window instance to front wMyWindow

Else

 Open window instance wMyWindow

End I f

 Build export format list

 15

Build export format list

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES YES NO All

Syntax

Build export format list ([Clear list])

Options

Clear list
If specified, the command empties the current list, and defines it to have a single
hash variable column, before executing

Description

This command builds a list containing the name of each export format. The list is built in the
current list for which you must define a single column to contain the export format.

The Clear list option clears the current list and redefines it to include only the #S4 field. With
this option, the command becomes reversible.

Example
Set current list lExportFormatList

; clear list option defines the list as a single column #S4

Build export format list (Clear list)

Build externals list

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES YES NO All

Syntax

Build externals list ([Clear list])

Options

Clear list
If specified, the command empties the current list, and defines it to have a single
hash variable column, before executing

Description

This command builds a list of the external routines in the external folder. The list is placed in
the current list for which you must define the following columns

Col 1 (Character) Col 2 (Character) Col 3 (Number) Col 4 (Character)

File name Routine name Routine index or ID Routine type

The Clear list option clears the current list. The command becomes reversible with this
option.

Example
Begin reversible blo ck

 Set current list iExtList

End reversible block

Define list {iExtName,iExtRoutine,iExtRoutineIndex,iExtRoutineType}

Build externals list

Build field names list

16

Build field names list

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Build field names list ([Clear list][,Full names]) {file-name}

Options

Clear list
If specified, the command empties the current list, and defines it to have a single
hash variable column, before executing

Full names If specified, names in the list are prefixed with their file class name

Description

This command builds a list of field names for the specified file class in the current list. You
must specify the following columns in the current list.

Column 1 (Character) Column 2 (Character) Column 3 (Character)

Field name Field type and length Description; for index
fields only

When you use the Clear list option you get column 1 only defined as #S5. With this option
the command becomes reversible. The flag is cleared if the value of LIST.$linemax prevents
a complete list from being built.

The Full names option creates a list in which the fields are prefixed with the file class name,
for example, PO_DATE becomes FPORDERS.PO_DATE.

Example
; Build a list of the field names in the file class fAccounts

Set current list lFieldList

Build field names list (Clear list,Full names) {fAccounts}

; alternatively $makelist can be used

Do $files.fAccounts.$objs.$makelist($ref.$name) Returns lFieldList

Build file list

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Build file list ([Clear list])

Options

Clear list
If specified, the command empties the current list, and defines it to have a single
hash variable column, before executing

Description

This command builds a list containing the name of each file class in the current library. The
list is built in the current list for which you must specify the following columns.

 Build indexes

 17

Column 1 (Character) Column 2 (Character)

File name
Description for file (if you have
entered one)

When you use the Clear list option you get column 1 only defined as #S5. With this option
the command becomes reversible, that is, the original contents of the list are restored. The
flag is cleared if the number of lines in the list exceeds LIST.$linemax.

Example
; Build a list of file classes in the current library

Set current list lFileList

Build file list (Clear list)

; alternatively $makelist can be used

Do $files.$makelist($ref.$name) Returns lFileList

Build indexes

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Build indexes {file-name}

Description

This command rebuilds all the indexes for the specified file which have been dropped with
the Drop indexes command. Drop indexes deletes all the indexes for the specified file apart
from the sequence number index. Build indexes checks that all the indexes defined in the
file class actually exist in the data file and builds those which are not there. This command
does not build any indexes which already exist even if they are in a damaged state.

If the specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns flag false.

If you are not running in single user mode, this command automatically tests that only one
user is using the data file (the command fails with the flag false if this is not true), and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be
incremented at regular intervals. The command may take a long time to execute, and it is not
possible to cancel execution even if a working message with cancel box is open.

The flag is set if at least one index is successfully rebuilt. Note that the command is not
reversible.

Example
Do not flush data

Drop indexes {fCustomers}

Repeat

 Working message {Building indexes...}

 Build indexes {fCustomers}

Until flag true

Build installed menu list

18

Build installed menu list

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Build installed menu list ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

Description

This command builds a list containing the name of all menu instances on the main Omnis
menu bar, starting from the left. All the standard Omnis menus such as File and Edit are
ignored. The list is built in the current list for which you must define the following columns:

Column 1 (Character) Column 2 (Character)

Menu instance name Description for menu class (if one has been
entered)

When you use the Clear list option you get column 1 only defined as #S5 with a 15 character
column width. With this option, the command becomes reversible.

Menu instances from libraries other than the current library are prefixed with their library
names. The flag is cleared if the command fails due to a shortage of memory.

Example
; Build a list of all menu instances installed on the

; main Omnis menu bar

Set current list lMenuList

Define list {lMenuName,lMenuDesc}

Build installed menu list

; Alternatively, you can use $m akelist

Do $imenus.$makelist($ref.$name) Returns lMenuList

Do lMenuList.$redefine(lMenuName)

Build list columns list

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES YES NO All

Syntax

Build list columns list list-or-row-name ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

Description

This command builds a list containing the column names and data types of the current or
specified list. This information is placed in the current list. If the current list contains one

 Build list from file

 19

column, it contains the column names only. The current list column headings are ignored,
but to obtain all the available information, you define the list with two columns as follows:

Col 1 (Character) Col 2 (Character)

List Column name List Column data type

The Clear list option clears and defines the current list to contain one column, #S5, so the
column data types are not returned. With this option, the command becomes reversible.

The flag is cleared if the value of LIST.$linemax prevents a complete list from being built.
The following method and the list of data it loads into the list illustrate the typical values
produced:

Example
Do iMyList.$define(iPODa te,iPONumber,iPOBatched,iSUContact,iITUnitPrice)

Set current list iColsList

Define list {iColName,iColType}

Build list columns list iMyList

; This provides the following values for iColsList

; iPODate - Short date 2000..2099

; iPONumber - Short integer (0 to 255)

; iPOBatched ï Boolean

; iSUContact - Character 30

; iITUnitPrice - Number 2 dp

; Or you do the following:

Calculate iColsList as iMyList.$cols.$makelist($ref.$name,$ref.$coltype)

Build list from file

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Build list from file on field-name ([Exact match][,Use search][,Use sort])

Options

Exact match
If specified, the index value of the field in suitable records must equal the
current value

Use search If specified, the command uses the current search to select data

Use sort If specified, the command uses the current sort field(s) to order the data

Description

This command builds a list of data from the main file using a specified index field. The
records are selected and corresponding field values added to the list in the order of the
specified index field. You must set the main file before using the command.

If the Exact match option is specified, only records matching the current value of the
specified field are added to the list. Similarly, if the Use search check box is selected, only
records matching the current search class are added. In both cases, an error occurs if
neither a field nor a search class is specified.

When large files are involved, that is, those that may require more than the maximum
number of available lines (the value of LIST.$linemax), you can use the flag false condition
to detect when an incomplete list is built.

Build list of event recipients

20

Building a list using this command does not affect the current record buffer and does not
clear óPrepare for updateô mode.

The Use sort option lets you use the database records in sorted order without first having to
load them into a list. You use Set sort field to specify a sort field after which Build list from
file (Use sort) creates a sorted table of records in memory before loading them into the list.
The main advantage of this method is that the sort fields do not have to be read into the list
at all. The Sort field order overrides the index field order but if the sort field is non-indexed,
the index is used as the order in which to gather up records before sorting. Multi-level sorts
are possible by using repeated Set sort field commands to accumulate the required sorting
order. Since sort levels are cumulative you should first clear any existing ones with Clear
sort fields.

Example
; This example compiles a list of all records sorted in order of descending

fCustomers.Surname

; and within each value, in increasing fCustomers.FirstName order

Set current lis t iMyList

Set main file {fCustomers}

Define list {fCustomers.Surname,fCustomers.FirstName}

Clear sort fields

Set sort field fCustomers.Surname (Descending)

Set sort field fCustomers.FirstName

; Note fCustomers.CustomerID is not in the list

Build list from file on fCustomers.CustomerID (Use sort)

Build list of event recipients

Command group Flag affected Reversible Execute on client Platform(s)

Apple events NO NO NO macOS

Syntax

Build list of event recipients

Description

Example
Begin reversible block

 Set current list iList

End reversible block

Define list {iCol1,iCol2} ;; define a list with 2 character variables

Build list of event recipients ;; populates the current list

Build menu list

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Build menu list ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

 Build open window list

 21

Description

This command builds a list containing the name of each menu class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1 (Character) Column 2 (Character)

Menu class name Description for menu (if one has been entered)

The Clear list option clears the current list and redefines it to include only the #S5 field. With
this option, the command becomes reversible but you get column 1 only.

Example
; Build a list of all menu classes in the current library

Set cur rent list lMenuList

Define list {lMenuName,lMenuDesc}

Build menu list

; Alternatively, you can use $makelist

Do $menus.$makelist($ref.$name) Returns lMenuList

Do lMenuList.$redefine(lMenuName)

Build open window list

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES YES NO All

Syntax

Build open window list ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

Description

This command builds a list containing the name of each window instance, starting with the
topmost window instance. The window instance names are stored in the first column of the
list. You can also return the position and size coordinates of each window instance in the
second to fifth columns. The list is built in the current list for which you must define the
following columns:

Col 1 (Char) Col 2 (Long Int) Col 3 (Long Int) Col 4 (Long Int) Col 5 (Long
Int)

Window instance
name

/left window
coord

/top window
coord

/right window
coord

/bottom
window coord

If you use the Clear list option, the list will contain one column only defined as #S5, so the
window coordinates are not returned. Also, with the Clear list option selected, the command
is reversible, that is, the list definition and contents are restored when the method
terminates.

Example
; Build a list of open windows

Set current list lWindowList

Do lWindowList.$define(lName,lLeft,lTop,lRight,lBottom)

Build open window list

Build report list

22

; Alternatively, notation ca n be used to build a list

; of open windows

Do $iwindows.$makelist($ref.$name) Returns lWindowList

Do lWindowList.$redefine(lName)

Build report list

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES YES NO All

Syntax

Build report list ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

Description

This command builds a list containing the name of each report class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1 (Character) Column 2 (Character)

Report class name Description for report (if one has been entered)

You get column 1 only when you use the Clear list option.

The Clear list option clears the current list and redefines it to include only the #S5 field. With
this option the command becomes reversible.

Example
; Build a list of report classes in the current library

Set current list lReportList

Define list {lClass,lDesc}

Build report list

; Alternatively, you can use notation to build a list

; of report classes

Do $clib.$reports.$makelist($ref.$name,$ref.$desc) Returns lReportList

Do lReportList.$redefine(lClass,lDesc)

Build search list

Command group Flag affected Reversible Execute on client Platform(s)

Searches YES YES NO All

Syntax

Build search list ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

 Build window list

 23

Description

This command builds a list containing the name of each search class in the current library.
The list is built in the current list for which the columns must have been defined. The
columns are

Column 1 (Character) Column 2 (Character)

Search class name Description for search (if one has been
entered)

You get column 1 only when you use the Clear list option.

The Clear list option clears the current list and redefines it to include only the #S5 field. With
the Clear list option, the command is reversible. The flag is cleared if the value
of LIST.$linemax prevents a complete list from being built.

Example
; build a list of the available search classes

Set current list lSearchList

Build search list (Clear list)

; or use the following notation

Do $clib.$searches.$makelist($ref.$name) Returns lSearchList

Build window list

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES YES NO All

Syntax

Build window list ([Clear list])

Options

Clear list
If specified, the command empties the current list and defines it to have a single
hash variable column before executing

Description

This command builds a list containing the name of each window class in the current library.
The list is built in the current list for which you must define the following columns

Column 1 (Character) Column 2 (Character)

Window class name Description for window (if one has been entered)

You get column 1 only when you use the Clear list option, but the command becomes
reversible.

The Clear list option clears the current list and redefines it to include only the #S5 field. With
the Clear list option, the command becomes reversible.

Example
; Build a list of all window classes in the current library

Set current list lWindowList

Do lWindowList.$define(lName,lDesc)

Build window list

; Alternatively, notation can be used to build the list

; of window classes

Calculate

24

Do $clib.$windows.$makelist($ref.$name,$ref.$desc) Returns lWindowList

Do lWindowList.$redefine(lName,lDesc)

Calculate

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO YES YES All

Syntax

Calculate field-name as calculation

Description

This command assigns a new value to a data field or variable. The form of the command is
"Calculate X as Y", where X is a valid data field or variable name and Y is either a valid data
field or variable name, value, calculation, or notation. When Calculate is executed the state
of the flag is unchanged, unless #F is recalculated by this command.

You can use Calculate in a reversible block. The data field returns to its initial value when
the method containing the block of reversible commands finishes.

Warning the Calculate command does not redraw a calculated field so if your field is on a
window you must use the Redraw command or the $redraw() method after the Calculate
command to reflect the change.

Operator Precedence

Mathematical expressions are evaluated using the operator precedence so that in the
absence of brackets, * and / operations are evaluated before + and -. The full ordering from
highest to lowest precedence is:

unary minus

* and /

+ and -

>, <, >=, <=, <>, =

& and |

For example, if you execute the command "Calculate lVar1 as 10-2*3" the calculation part is
evaluated as 10-(2*3)

Example
; set the local variable lVar1 equal to the contents of lVar2

Calculate lVar1 as lVar2

; set the local variable lPrice to 10.99 and lQty to 2

Calculate lPrice as 10.99

Calculate lQty as 2

; calculate the local variable lTotal as lPrice multiplied by lQty

Calculate lTotal as lPrice*lQty

; you can also operate on variables using notation, for example

; calculate the local list variable lClassList as a list of all classes in the

current library

Calculate lClassList as $clib.$classes.$makelist($ref.$nam e)

; however some operations are better performed using the Do command, for example

; bring the window instance wMywindow to the front

Do $iwindows.wMywindow.$bringtofront()

 Call DLL

 25

Call DLL

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows

Syntax

Call DLL (library, procedure [,parameters...]) Returns return-value

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command calls a procedure in a DLL, which you must have previously registered by
calling Register DLL. The library is the name or pathname of the DLL containing the
procedure specified by procedure; library and procedure must exactly match the values
passed to Register DLL.

The parameters are passed to the procedure when it is called, and must match the type-
definition passed to Register DLL. The return value of Call DLL is the return value
of procedure, and has the type specified by the type-definition. Register and Call DLL
commands support 64-bit type specifiers.

Example
; Flash the Omnis window to attract the user's attention

; Win32 API to get the main Omnis window: HWND GetActiveWindow(VOID)

Register DLL ('USER32.DLL','GetActiveWindow','J')

Call DLL ('USER32.DLL','GetActiveW indow') Returns lHWND

; Win32 API to Flash a window: BOOL FlashWindow(HWND, BOOL)

Register DLL ('USER32.DLL','FlashWindow','JJJ')

Call DLL ('USER32.DLL','FlashWindow',lHWND,1) Returns lResult

This example creates a file and loads the contents:

Register D LL ("KERNEL32.DLL","CreateFileA","JCJJJJJJ")

Register DLL ("KERNEL32.DLL","CloseHandle","JJ")

Register DLL ("KERNEL32.DLL","ReadFile","J,J,C32768,J,N,J")

Call DLL ("KERNEL32.DLL","CreateFileA","c: \ MYBIGFILE.TXT", -

1073741824,3,0,3,268435584,0) Returns #1

Call DLL ("KERNEL32.DLL","ReadFile",#1,#S1,32767,#49,0) Returns #50

Call DLL ("KERNEL32.DLL","CloseHandle",#1) Returns #50

Calculate #1 as binlength(#S1)

Call external routine

Command group Flag affected Reversible Execute on client Platform(s)

Externals NO NO NO All

Syntax

Call external routine routine-name or library-name/routine-
name (parameters) Returns return-value

Description

This command calls an external routine with mode ext_call and returns a value from the
external in the specified return-field. The return value is placed in the specified field by the
external code using the predefined field reference Ref_returnval with the functions SetFldVal
or SetFldNval. The flag is set if the external routine is found and the call is made but this
does not necessarily mean that the external code has executed correctly. The flag is cleared

Cancel advises

26

if the routine is not found. Note that the routine cannot use the flag to pass information back
to the method.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for example, Call external routine Maths1
(Num1,Num2), the external can directly alter the field value. Enclosing the field in brackets,
for example, Call external routine Maths1 ((Num1),(Num2)), converts the field to a value and
protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parm1, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Example
Call external routine MathsLib/sqroot (iNumber) Returns iNumber2

Cancel advises

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Cancel advises field-name ([All channels])

Options

All channels
If specified, the command applies to all DDE channels, rather than just the
current channel

Description

DDE command, Omnis as client. This command cancels one or more Request advises from
the current channel. If you omit the field name, all Request advises to the current channel
are canceled. If you specify a field name, all Request advises to the current channel which
refer to that field name are canceled.

The command is addressed to the current channel only, and if the current channel is not
open, an error occurs. No error occurs, however, if there are no Request advises commands
to cancel.

If you use the All channels option, all channels are cancelled. There is no need to use
a Cancel advises command before a Close DDE channel command.

When Omnis issues a Request advises to a DDE server, Omnis is in effect saying "Tell me if
this value changes and send me an update". The Enter data command must be running to
allow the incoming data to get through.

Example
Yes/No message {Do you want updates?}

If flag false

 Cancel advises (All channels)

 Quit method

Else

 Request advises iCompan y {Company}

 Request advises iAddress {Address}

End If

Prepare for insert

Enter data

Update files if flag set

 Cancel async method

 27

Cancel async method

Command group Flag affected Reversible Execute on client Platform(s)

Methods YES NO NO All

Syntax

Cancel async method {id-to-cancel (return-value-from-do-async-method)}

Description

This command allows you to cancel the execution of a method that is executing as a result
of a call to the Do async method command.

This command takes a single parameter id-to-cancel, which is the asynchronous call
id returned by Do async method.

This command sets the flag if it has marked the async method for cancellation. Omnis only
checks to see if the method is marked for cancellation after the completion of each method
command, so cancellation may not occur immediately. Also, if you are executing a sensitive
block of code, which should not be cancelled in this way, you can use the Begin critical
block and End critical block commands around the sensitive code. Omnis will only cancel the
method execution when the thread ends the critical block. If the flag is cleared, then either
the asynchronous call id is invalid, or the method has finished. After successfully cancelling
a method call, Omnis still sends the $asynccomplete message, but with an error text
parameter that indicates that the call was cancelled.

Note

You can only call Cancel async method when running in the normal foreground thread.

Example
; iCallId was returned by Do async method

Cancel async method {iCallId}

Cancel event recipient

Command group Flag affected Reversible Execute on client Platform(s)

Apple events YES NO NO macOS

Syntax

Cancel event recipient {recipient-tag}

Description

This command cancels the specified Apple event recipient.

Example
Set event recipient {Microsoft Excel}

; do something

Yes/No message Question {Do you want to keep Excel?}

If flag false

 Cancel event recipient {Microsoft Excel}

Else

 ; continue processing...

End If

Cancel prepare for update

28

Cancel prepare for update

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO NO NO All

Syntax

Cancel prepare for update

Description

This command cancels the Prepare for update mode and releases any semaphores which
may have been set. You use the Prepare for edit/insert command to prepare Omnis for
editing or insertion of records. It is usually followed by Update files which is the usual way of
terminating the Prepare for... state but you can also terminate this state with Cancel prepare
for update. It must be followed by commands which prevent an Update files command from
being encountered.

When you execute a Prepare for... command in multi-user mode, semaphores are used to
implement record locking. Cancel prepare for update neutralizes the effect of a Prepare
for...command and releases all semaphores.

You can use this command within a timer method to implement a timed record release.

Example
Set timer method 600 sec TimerMethod

Prepare for edit

Enter data

Update files if flag set

Clear timer method

; TimerMethod

Yes/No message {Time's up, cancel ed it?}

If flag true

 Cancel prepare for update

 Queue cancel

End If

Case

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Case constant-value or expression

Description

The Case statement is part of a Switch construct that chooses one of an alternative set of
options. The options in a Switch construct are defined by the subsequent Case commands.
The Case command takes either a constant, field name, single calculation, or a comma-
separated series of calculations. You must enclose string literals in quotes. Date values must
match the date format in #FDT.

Example
; Show the direction lPosition equals. eg. if lPosition equals 3 show 'South' in

the ok message

Switch lPosition

 Case 1

 Calculate lDirectio n as 'North'

 Case 2

 CGIDecode

 29

 Calculate lDirection as 'East'

 Case 3

 Calculate lDirection as 'South'

 Case 4

 Calculate lDirection as 'West'

End Switch

OK message {Position [lCount] = [lDirection]}

; Multiple conditions can be used in a comma - separa ted list to one Case

statement.

; Default is used to specify commands that should run if the value is not one of

; those specified in the Case statements

Switch lDirection

 Case 'North','South'

 OK message {The direction is North or South}

 Case 'E ast','West'

 OK message {The direction is East or West}

 Default

 OK message {The direction is Unknown} ;; ; lDirection is none of the

above

End Switch

CGIDecode

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

CGIDecode (stream[,mapplustospace {Default kTrue}]) Returns decoded-stream

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

You use CGIDecode to turn CGI-encoded text back into its original form. It is the inverse
of CGIEncode.

When a client uses HTTP to invoke a script on a WEB server, it uses the CGI encoded
format to pass the arguments to the server. This avoids any ambiguity between the
characters in the argument names and values, and the characters used to delimit URLs, and
the argument names and values.

stream is an Omnis Character or Binary field containing the information to decode.

MapPlusToSpace is a Boolean value. When kTrue, in addition to performing a standard CGI
decode operation, the command maps all instances of the ó+ô character in the input stream,
to the space character.

DecodedStream is an Omnis Character or Binary field that receives the resulting CGI-
decoded representation of the stream argument.

Note: The HTTPHeader, HTTPParse and HTTPPost commands automatically perform CGI
encoding or decoding, as appropriate.

Example
Calculate lStream as 'Name: Charlie Malone,Company: TigerLogic'

CGIEncode (lStream) Returns lEncodedStream

CGIDecode (lEncodedStream) Returns lDecodedStream

; lDecodedStream now contai ns the following:

; Name: Charlie Malone,Company: TigerLogic

CGIEncode

30

Calculate lStream as 'Name: Charlie Malone+Friend,Company: TigerLogic'

CGIEncode (lStream) Returns lEncodedStream

CGIDecode (lEncodedStream, kFalse) Returns lDecodedStream

; lDecodedStream now c ontains the following:

; Name: Charlie Malone+Friend,Company: TigerLogic

CGIDecode (lEncodedStream) Returns lDecodedStream

; lDecodedStream now contains the following:

; Name: Charlie Malone Friend,Company: TigerLogic

; Note the + has been turned into a space character

CGIEncode

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

CGIEncode (stream[,mapplustohex {Default kFalse}]) Returns encoded-stream

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

When a client uses HTTP to invoke a script on a WEB server, it uses the CGI encoded
format to pass the arguments to the server. This avoids any ambiguity between the
characters in the argument names and values, and the characters used to delimit URLs, and
the argument names and values.

You use CGIEncode to map text into the CGI encoded format.

Stream is an Omnis Character or Binary field containing the information to encode.

MapPlusToHex is an optional Boolean parameter which when true indicates that plus
characters in the input stream are to be URL encoded as hex.

EncodedStream is an Omnis Character or Binary field that receives the resulting CGI-
encoded representation of the stream argument.

Note: The HTTPHeader, HTTPParse and HTTPPost commands automatically perform CGI
encoding or decoding, as appropriate.

Example
Calculate lStream as 'Name: Charlie Malone,Company: TigerLogic'

CGIEncode (lStream) Returns lEncodedStream

Change user password

Command group Flag affected Reversible Execute on client Platform(s)

Libraries NO NO NO All

Syntax

Change user password

 Change working directory

 31

Description

This command opens the Password dialog in which the user can change the current
password. The menus are redrawn and lists and variable values (apart from #UL) are
unaffected.

If the current user is the master user, passwords in the #PASSWORDS class can be
changed. In addition, the command gives the user the choice of using another password to
re-enter the current library at a different user level, thus gaining access to different areas of
the library. If a user re-enters at a different level, the value of #UL will change (within the
range 0ï8) to reflect that new user level.

Example
; Prompt the user for a password as specified in #PASSWORDS

; and display the current user lev el

Change user password

OK message {The current user level is [#UL]}

Change working directory

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Change working directory (path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command changes the current directory in use under Windows or Linux. Wild cards are
not allowed with this command.

On Windows, Change working directory only switches directories on the same drive, not
between drives.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
Change working directory ("c: \ omnis \ html") Returns lErrCode ;; windows

Change working directory ("/omnis/html") Returns lErrCode ;; linux

Check data

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Check data ([Perform repairs][,Check data file structure][,Check records][,Check indexes])

{list-of-files (F1,F2,..,Fn) (leave empty to select all)}

Options

Perform repairs If selected, repairs to the data file are automatically carried out

Check data file structure
If specified, the command checks the overall structure of the data
file

Check menu line

32

Check records If specified, the command checks the records in the specified files

Check indexes If specified, the command checks the indexes in the specified files

Description

This command checks the data for the specified file or list of files, and works only when one
user is logged onto the data file. If you omit a file name or list of files, all the files with slots in
the current data file are checked. If the specified file name does not include a data file name
as part of the notation, the default data file for that file is assumed. If the file is closed or
memory-only, the command does not execute and returns with the flag false.

There are Check data file structure, Check records, and Check indexes checkbox options. If
none of these is specified, the command does nothing; if only Check data file structure is
specified, the list of files is ignored. If Perform repairs is specified, any repairs required are
automatically carried out, otherwise the results of the check are added to the check data log.
The check data log is not opened by this command but is updated if already open.

If you are not running in single user mode, this command automatically checks that only one
user is using the data file (the command fails with flag false if this is not true), and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be
incremented at regular intervals. The command may take a long time to execute and it is not
possible to cancel execution even if a working message with cancel box is open.

The command sets the flag if it completes successfully and clears the flag otherwise. It is not
reversible.

Example
Check data (Check records) {fOrders}

If fla g true

 Yes/No message {View Log?}

 If flag true

 Open check data log

 End If

Else

 OK message Error (Icon) {The check data file command could not be carried

out//Please make sure that only one user is logged on to the datafile}

End If

Check menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Check menu line line or instance-name/line

Description

This command places a check mark on the specified line of a menu instance to show that
the option has been selected. You specify the menu instance name and the number of the
menu line you want to check.

You can remove the check mark with Uncheck menu line. If you use this command in a
reversible block, the check mark is removed when the method terminates. Nothing happens
if the menu instance is not installed on the menu bar.

Example
; Test whether a line in the menu instance is checked and

; either check or uncheck it accordingly.

 Clear all files

 33

Install menu mView

Test for menu line checked mView/Large

If flag true

 Uncheck menu line mView/Large

Else

 Check menu line mView/Large

End If

; Alternatively, you change the $checked property of a line

; in the menu instance using notation

Do $imenus.mView.$objs.Large.$checked.$assign(kTrue)

Clear all files

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear all files

Description

This command clears the current record buffer of all file variables for all open libraries and all
open data files, including any memory-only files. However, it does not clear the hash
variables. Window instances are not automatically redrawn so you must follow it
by Redraw if you want the screen to reflect the current state of the buffer.

This command is reversible for read-only and read-write files; the command reverses by re-
reading each record into the current record buffer. Note that using this command in a
reversible block with a memory-only file will clear the current record buffer for that file when
the command reverses.

Example
; Clear all file variables from the current record buffer and

; redraw the current window instance

Clear all files

Do $cinst.$redraw()

Clear check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Clear check data log

Description

This command clears the check data log, which stores all the results of a check data
operation. To clear the log, there is no need for the log to be open.

Example
Check data (Check records) {fOrders}

If flag true

 Yes/No message {View Log?}

 If flag true

 Open check data log

 ; after checking through the log...

 Yes/No message {Clear the log?}

Clear class variables

34

 If flag true

 Clear check data log

 End If

 End If

Else

 OK message Error (Icon) {The check data file co mmand could not be carried

out//Please make sure that only one user is logged on to the datafile}

End If

Clear class variables

Command group Flag affected Reversible Execute on client Platform(s)

Parameters and variables NO NO NO All

Syntax

Clear class variables

Description

This command clears any class variables used within the class and clears the memory used
for the class variables. Clear class variables is placed in a method within the class where
you want to clear variables.

A class variable is initialized to empty or its initial value the first time it is referenced. It
remains allocated until the class variables for its class are cleared. The class variables for all
classes are cleared when the library file is closed.

Example
; Transfer values fro m class variables to instance

; variables and clear the class variables

Calculate cVar1 as 'my class Var1'

Calculate cVar2 as 'my class Var2'

Calculate cVar3 as 'my class Var3'

Calculate iVar1 as cVar1

Calculate iVar2 as cVar2

Calculate iVar3 as cVar3

Cle ar class variables ;; all class variables are now empty

Clear data

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Clear data field-name ([Redraw field][,All windows])

Options

Redraw field
If specified,the command reloads affected window fields with the new value of
the data field,after it has performed the operation; note that this takes the 'All
windows' option into account

All windows
If specified,the command applies to all open window instances, rather than just
the top open window instance

 Clear DDE channel item names

 35

Description

This command clears the data from the specified field or current selection. The data is lost
and is not placed on the clipboard. If you do not specify a field, the current fieldôs data is
cleared (assuming there is a selection).

In the case of a null selection when the cursor is merely flashing in a field and no characters
are selected, Clear data will literally clear "nothing".

Example
; The following method is placed behind a entry field named 'Price' on a window

and

; checks if the value entered is over 5000. If it is, the value entered into

the field

; is cleared and the cursor remains in the field.

On evAfter

 If iPrice>5000

 Yes/No message {Is this price correct?}

 If flag false

 Clear data iPrice (Redraw field)

 Queue set current field {Price}

 End If

Clear DDE channel item names

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Clear DDE channel item names

Description

DDE command, Omnis as client. This command clears all server data item names selected
for use with a print-to-channel report. You use this command when exporting data via a DDE
channel to another Windows application. The channel item names become the item names
into which the server places the fields printed in the Omnis report.

Clear DDE channel item names clears all the item names set up with Set DDE channel item
name.

Example
Set DDE channel number {2}

Open DDE channel {Excel|Sheet1}

Send to DDE channel

Set report name rMyReport

Clear DDE channel item names

Send command {[[TakeControl]} ;; double first [['s so Omnis accepts text

If flag true

 Set DDE channel item name {R1,C1}

 Set DDE channel item name {R2,C1}

 ; ...

 Set DDE chann el item name {R50,C1}

 Print report

End If

Clear find table

36

Clear find table

Command group Flag affected Reversible Execute on client Platform(s)

Finding data NO NO NO All

Syntax

Clear find table

Description

This command clears the find table for the current main file and releases the memory it
used.

When a Find, Next or Previous command is encountered, Omnis uses the Index, Search and
Sort field parameters to create a table of records (similar to a SQL Select table). This may
simply be an existing index in which case no further processing takes place or, if there is a
search and/or sort condition, a file may be scanned and a selection of records sorted in
memory. If a Next or Previous returns an unexpected record or no record, this is probably
because there is still a find table in existence from another Find operation.

For a large file, a substantial amount of RAM may be used.

Example
; Clear the find table after the first overdrawn account is found

Set main file {fAccounts}

Set search as calculation {fAccounts.Balance <0}

Find first on fAccounts.Code (Use search)

Clear find table

Clear line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Clear line in list {line-number (calculation)}

Description

This command clears the values stored in the specified line of the current list. You can
specify the line number in a calculation, otherwise the current line (LIST.$line) is used. The
flag is cleared if the list is empty or if the line is beyond the current end of the list.

Example
; Clear values from any lines in the list that have a

; balance equal to zero

Set current list lMyList

Define list {lName,lBalance}

Add line to list {('Fred',100)}

Add line to list {('George',0)}

Add line to list {('Harry',50)}

For each l ine in list from 1 to lMyList.$linecount step 1

 If lst (lBalance)=0

 Clear line in list

 End If

End For

; Alternatively you can use $clear to clear the values

; of a particular line

Do lMyList.1.$clear()

 Clear list

 37

Clear list

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Clear list ([Hash lists])

Options

Hash lists
If specified, the command clears #L1-#L8 rather than the current list. When this
option is specified, the command is not reversible

Description

This command clears all the lines in the current list and frees the memory they occupy. It
does not alter the definition of the list. If you use Clear list as part of a reversible block, the
list lines will be reloaded when the method containing the reversible block finishes. The list is
only reloaded if it occupies 50,000 bytes of storage or less. Executing Clear list for a smart
list sets $smartlist to kFalse, meaning that it is no longer a smart list.

The All Lists option only clears the hash variable lists #L1 to #L8: all other lists including
task, class, instance and local variable lists, are not cleared by this command.

The following method builds a list of data formats depending on the type of graph selected
by the user. Before the method is built the list is cleared using the Clear list command; this
ensures the list is initialized and completely empty of data.

Example
Set current list iMyList

Clear list

; or you can do it like this

Do iMyList.$clear()

Clear main & connected

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear main & connected

Description

This command clears the memory of current records from the main file and any files
connected to the main file. The windows are not automatically redrawn so you must follow it
with a Redraw window-name command if you want the screen to reflect the current state of
the buffer.

You can use Clear main & connected to release locked records to other users.

Example
; Clear the current record buffer of file variables from fAccounts

; and any connected file classes if insert is cancelled

; $construct of window class

Set main file {fAccounts}

Prepare for insert

Enter data

Clear main file

38

If flag false

 Clear main & connected

End If

Clear main file

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear main file

Description

This command clears the main file record from the current record buffer. The command does
not clear the values taken from the other files.

The Clear main file command does not redraw the window so remember to include an
explicit Redraw window command if you want the screen to reflect the contents of the buffer.

Example
; Clear the current record buffer of file variables from the main

; file fAccounts and redraw the current window instance

Set main file {fAccounts}

Clear main file

Do $cinst.$redraw()

Clear method stack

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Clear method stack

Description

This command cancels all currently executing methods and clears the method stack.
A Clear method stack at the beginning of a method terminates all the methods in the chain
which called the current method but without quitting the current method. $control() methods
are not cleared.

As each method calls another, a return point is stored so that control can pass to the
command following Do method or Do code method as the called method terminates. When
the current method terminates, control returns to the method which was running before it
was called.

The Clear method stack command clears all the return points and is used if the method
commences a completely new operation. This command followed by a Quit method is the
same as Quit all methods.

WARNING It is unwise to clear the method stack if local variables have been passed as
fieldname parameters and you continue executing the current method. This will break all
local variables on the stack.

Example
; Calling method

Calculate iMyVar as 1

Do method Message

 Clear range of fields

 39

; the follow ing message never gets displayed

Do iMyVar+1

OK message {iMyVar=[iMyVar]}

; Method Message

Clear method stack

Do iMyVar+1

; This message prints iMyVar=2

OK message {iMyVAR=[iMyVar]}

Quit method

Clear range of fields

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear range of fields first-data-name to final-data-name

Description

This command clears the specified range of fields from the current record buffer.

Note that first-data-name and last-data-name identify the first and last field of the range to be
cleared, in the order that the fields occur in the current record buffer. In certain current
record buffers, for example the instance variables of an instance, the order of the fields in
the current record buffer is the order in which the fields were created, not the alphabetic
order in which they are displayed in the variable pane of the method editor.

When used in a reversible block, the fields cleared are restored when the method
terminates.

Example
; Clear the current record buffer of fields Surname to Balance

; from fAccounts and redraw the current window instance

Clear range of fields fAccounts.Surname to fAccounts.Balance

Do $cinst.$redraw()

Clear search class

Command group Flag affected Reversible Execute on client Platform(s)

Searches NO YES NO All

Syntax

Clear search class

Description

This command clears the current search class so you can print a report using all records.
This also frees the memory required by the search class.

If you use Clear search class in a reversible block, the search class reverts to its former
setting when the method terminates.

Example
Set report name rMyReport

Set search name sMySearch

; sys (81) returns the current search class

Yes/No message Use Search (Icon) {Do you wish to use the search class '[sys (81)]'

?}

Clear selected files

40

If flag false

 Clear search class

End If

Print report (Use search)

Clear selected files

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear selected files {list-of-files (F1,F2,..,Fn)}

Description

This command clears the current record buffer of records from the specified files. The
command is particularly useful in a multi-user system where it may be necessary to remove
only certain files so that they are not locked.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names to
select multiple names. If no file name or file list is specified, the command does nothing.

This command is reversible for read-only and read-write files; the command reverses by re-
reading each record into the current record buffer. Note that using this command in a
reversible block with a memory-only file will clear the current record buffer for that file when
the command reverses.

Example
; C lear the current record buffer of records from fAccounts

; and fInvoices and redraw the current window instance

Clear selected files {fAccounts,fInvoices}

Do $cinst.$redraw()

Clear sort fields

Command group Flag affected Reversible Execute on client Platform(s)

Sort fields NO YES NO All

Syntax

Clear sort fields

Description

This command removes the sort fields that are currently active. This enables the data to be
printed without any sorting taking place. Alternatively, the command removes the current sort
fields so you can specify new sort levels with Set sort field.

If you use Clear sort fields in a reversible block, the original sort values are restored when
the method terminates.

Example
; Remove the current sort fields and then set the sort

; field as Surname

Clear sort fields

Set sort field fAccounts.Surname

Set report name rMyReport

Send to screen

Print report

 Clear timer method

 41

Clear timer method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO YES NO All

Syntax

Clear timer method

Description

This command clears or cancels the current timer method. Usually a timer method remains
in operation until the library is closed or an error occurs. In a reversible block, the current
timer method is restored when the method terminates.

Example
; Clear the timer method after it is called so that is

; only called once

Set timer method 5 sec Timer

; method Timer

OK message {Timer method triggered once only}

Clear timer method

Clear trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Clear trace log

Description

This command clears the trace log.

Close all designs

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Close all designs

Description

This command closes all the design windows currently open, including all instances of the
method editor.

Example
Close all designs

Close all windows

42

Close all windows

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Close all windows

Description

This command closes all open window instances in all open libraries, and automatically
cancels any working message. The Close all windows command does not close private
instances which do not belong to the current task.

Example
; Prompt to close all open windows

Yes/No message {Do you wish to close all windows ?}

If flag true

 Close all windows

End If

; Alternatively, the $sendall command can be used to close

; all windows

Do $root.$iwindows.$sendall($ref.$close())

Close check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Close check data log

Description

This command closes the check data log if it is open. The command is not reversible and the
flag is not affected.

Example
Check data (Check records) {fOrders}

If flag true

 Yes/No message {View Log?}

 If flag true

 Open check data log (Do not wait for user)

 End If

 ; leave log window open

Else

 OK message Error (Icon) {The check data file comma nd could not be carried

out//Please make sure that only one user is logged on to the datafile}

End If

; now close log

Close check data log

Close data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

 Close DDE channel

 43

Syntax

Close data file {internal-name (leave empty to close all)}

Description

This command closes the open data file with the specified internal name, or closes all the
open data files if no name is specified. It sets the flag if at least one data file is closed. It
clears the flag and does nothing (that is, does not generate a runtime error) if the specified
internal name does not correspond to an open data file.

Note that data files have a notation property $allowclose, which when set to kFalse,
prevents Close data file, the data file notation, and the Data File Browser from closing the
file.

Example
; check the $allowclose property of myDataFile

If $root.$datas.myDataFile.$allowclose

 Close data file {myDataFile}

End If

Close DDE channel

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Close DDE channel ([All channels])

Options

All channels
If specified, the command applies to all DDE channels, rather than just the
current channel

Description

DDE command, Omnis as client. This command closes the current channel. If you use
the All channels option, all open DDE channels are closed. No error occurs if the current
channel is not open.

Example
Set DDE channel number {2}

Open DDE channel {Omnis|Count ry}

If flag false

 OK message {The Country library is not running}

Else

 Do method TransferData

 Close DDE channel

 OK message {Update finished}

End If

Close design

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Close design {class-name}

Close file

44

Description

This command closes the specified design class. Trying to close a class which is not open
simply clears the flag.

Example
Close design

Close file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Close file (refnum) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command closes a file previously opened by the Open file command. You specify the
file reference number returned by Open file in refnum. You should call Close file for each
files you open with Open file, when you have finished using the file.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
; read a text file then close it

Calculate lPathname as con (sys (115),'html', sys (9),'serverusagetask.htm')

Open file (lPathname,lRefNum) Returns lErrCode ;; opens the file

Read file as character (lRefNum,lFile) Returns lEr rCode ;; reads the file

contents into lFile

Close file (lRefNum) Returns lErrCode ;; now close the file

Close import file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

Close import file

Description

This command closes the current import file. You should use it once the data has been read
in.

Example
; import from a csv file called myImport.txt in the root of your omnis tree

Calculate lImportPath as con (sys (115),'myImport.txt')

Set import file name {[lImportPath]}

Prepare for import from file {Delimited (commas)}

Import data lImportList

End import

Close import file

 Close library

 45

Close library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Close library {internal-name (leave empty to close all)}

Description

This command closes the open library file with the specified internal name, or closes all the
open library files if no name is specified. It sets the flag if at least one library file is closed. It
clears the flag and does nothing if the specified internal name does not correspond to an
open library.

Note that the internal name for a library defaults to its physical file name from which the path
and DOS extension has been removed. The Open library command also lets you specify the
internal name (see the example below).

Closing a library closes all windows, reports, and menus belonging to that library which are
open or installed. It also disposes of the CRBs for the file classes and class variables
belonging to that library, closes all lookup files opened by that library, and if there is a
running method from that library on the stack, clears the method stack. If the method stack is
cleared, the command following the current executing command will not execute, and it is
not possible to test the flag value returned from the command.

Example
; Open and close the library mylib.lbs from the root

; of your omnis studio tree

Calculate lLibPath as con (sys (115),'mylib.lbs')

Open library (Do not close others) {[lLibPath],MYLIB}

If flag true

 Yes/No message {Close Library ?}

 If flag true

 Close library {MYLIB}

 End If

End If

Close lookup file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Close lookup file {lookup-name}

Description

This command closes the lookup file which matches the reference name given in the
parameters. Each lookup file is given a reference label when it is opened. In this example it
is "City".

If the reference label given in the Open lookup file command is omitted, you can omit the
lookup name in the Close lookup file command. If the specified lookup file is closed, the flag
is set; if the lookup file doesn't exist, the flag is cleared.

Example
Open lookup file {City,Lo okup.df1,fCities}

If flag true

 OK message {The city you require is [lookup('City','I',2)]}

Close other windows

46

End If

Close lookup file {City}

Close other windows

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Close other windows

Description

This command closes all but the top window instance. As window instances are not
automatically closed in Omnis, you can use this command to close all window instances
except the top window instance. The Close other windows command does not close
private instances which do not belong to the current task.

Example
; Close all other windows

If len (sys (51)) ;; more than 1 window open

 Close other windows

End If

Close port

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO NO NO All

Syntax

Close port

Description

This command closes the current port. You should use it after the data has been transferred.

Example
Set port name {COM1:}

Set port parameters {1200,n,7,2}

Prepare for import from port {One field per line}

Repeat

 Import field from file into lImportField

Until lImportField='start data'

Do method ImportData

Close import file

Close print or export file

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO NO NO All

Syntax

Close print or export file

 Close task instance

 47

Description

This command closes the current print or export file. You use it after the data has been
written to the file. If the file is left open, subsequent data printed to the file is added to the
end of the earlier data.

Example
Send to file

Calculate lPrintFileName as con (sys (115),'myPrintedReport.txt')

Set print or export file name {[lPrintFileName]}

Set report name rMyReport

Print report

Close print or export file

Close task instance

Command group Flag affected Reversible Execute on client Platform(s)

Tasks NO NO NO All

Syntax

Close task instance instance-name

Description

This command closes the specified task instance.

Example
Close task instance tkMyTask

; or do it like this

Do $itasks.tkMyTas k.$close()

Close top window

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES NO NO All

Syntax

Close top window

Description

This command closes the top window instance. As window instances are not automatically
closed in Omnis, you can use this command to close the top window. No error occurs if there
is no window open. This command clears the flag and does nothing if the top window is a
private instance not belonging to the current task.

Example
; Close the top window if it is called 'wMyWindow'

If sys (50)='wMyWindow'

 Close top window

End If

; Alternatively, use notation to close the top window

Do $topwind.$close()

Close trace log

48

Close trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax
Close trace log

Description

This command closes the trace log.

Close window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES NO NO All

Syntax

Close window instance window-instance-name

Description

This command closes the specified window instance. Close window instance clears the
flag and does nothing if the window is a private instance belonging to the current task.
Alternatively you can use the $close() method to close a window instance.

Example
Test for window open {wMyWindow}

If flag true

 Close window instance wMyWindow

End If

; Alternatively, you can do it like this

Do $root.$iwindows.wMyWindow.$close()

Close working message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO NO All

Syntax

Close working message

Description

This command closes the current working message. No error occurs if there is no working
message displayed. Working messages close themselves when methods stop running and
control returns to the user. Once a working message is displayed, a call to another method
leaves the message on the window. The message is not cleared automatically until the first
method ends.

Example
; Close the working message before this method

; has finished

Worki ng message {Processing Record [lCount]}

For lCount from 1 to 20000 step 1

 Redraw working message

 Context help

 49

End For

Close working message

For lCount from 1 to 50000 step 1

 Calculate lValue as lValue+lCount

End For

Context help

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO All

Syntax

Context help {command (parameters)}

Description

This command provides context help to the user. You specify a command mode option, and
depending on the mode you can specify the help file name and context id. The command
mode options are constants listed in the Catalog.

kHelpContextMode
initiates context help mode, showing a ó?ô cursor.

kHelpContext (ôhelpfile nameô, context id)
opens a general help window for the topic specified.

kHelpContextPopup (ôhelpfile nameô, context id)
opens a popup help window for the topic specified.

kHelpContents (ôhelpfile nameô)
opens the help file at the contents page.

kHelpQuit (ôhelpfile nameô)
closes window mode help.

Some options do not work on all platforms.

To implement context help for an object or area, you set the help id as a decimal value in the
$helpid property of a class or object, including windows, menus, and toolbars. You can make
your custom help file which must be placed in the Help folder and the name entered in the
library preference property $clib.$prefs.$helpfilename.

When the user clicks on an object with the help cursor or presses the F1/Help key, Omnis
looks for the help id. If it finds none for a window object, menu line, or toolbar control, it then
looks in the next higher containing object.

Example
; Show the file index.htm from the omnis help folder

; in the standard help window

Context help { kHelpContext ('omnis','index')}

; Show ? cursor and awaits click, when user clicks, shows a popup

; window with topic $cobj.$helpid from $clib.$prefs.$helpfilename

; located in the Help folder

Context help { kHelpContextMode }

Copy file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Copy list definition

50

Syntax

Copy file (from-path [,to-path]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command makes a copy of the file specified in from-path. The to-path is the path to
destination folder into which the file will be copied; the file to be copied must not already
exist in the destination folder. If you omit to-path, a copy of the file named in from-path is
created in the current directory using the same name with the extension ".BAK".

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
Calculate lPathname as con (sys (115),'html', sys (9),'serverusagetask.htm')

Calculate lNewPath as con (sys (115),'html', sys (9),'serverusagetask2.htm')

Copy file (lPathname,lNewPath) Returns lErrCode ;; copies the file in

lPathName to the filename contained in lNewPath

Copy list definition

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Copy list definition list-or-row-name ([Clear list])

Options

Clear list
If specified, the command empties the current list and removes its column
definitions before executing

Description

This command redefines the column headings of the current list by copying the columns and
data structure from the specified list. If the current list contains data and you do not clear the
list, no change is made to the internal structure of the list; in this case, columns are neither
added nor removed, merely renamed and the command is similar to Redefine list.

When the current list is empty or the Clear list option chosen, the command is the equivalent
to 'Define the list so that it matches the specified list'.

Example
Set current list iList1

Define list {iCol1Date,iCol2Num,iCol3Char}

Add line to list

Set current list iList2

Define list {iCol4Date,iCol5Num, iCol6Char}

Add line to list

; now change the definition of iList2 to match iList1

Copy list definition iList1 (Clear list)

; or you can do it like this

Do iList2.$copydefinition(iList1)

 Copy to clipboard

 51

Copy to clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Copy to clipboard field-name

Description

This command copies the contents of the specified field or current selection and places it on
the clipboard. In the case of a null selection when the cursor is merely flashing in a field and
no characters are selected, the Copy to clipboard command will literally copy "nothing".

Example
; Copy one field to another then clear the first field

Copy to clipboard iName

Paste from clipboard iDeliveryName (Redraw field)

Clear data iName (Redraw field)

Create data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Create data file ([Do not close other data]) {file-name, internal-name}

Options

Do not close other data
If specified, the command does not close all open data files before
opening the specified data file

Description

This command creates and opens a new and empty, single segment data file, which
becomes the "current" data file. You can specify the path name of the file to be created and
the internal name for the open data file.

The Do not close other data option lets you have multiple open data files. If you uncheck this
option ,all open data files are closed even if the command fails.

If the disk file with the specified path name cannot be created (and opened), the flag is
cleared. Otherwise, the flag is set if the data file is successfully created and opened.

WARNING: If the file and path name is the same as an existing data file, all segments for
that data file are deleted before the new file is created. If the data file was open, it is closed
and deleted; a new and empty data file is then reopened.

Example
Yes/No message {Do you wish to add a new company?}

If flag true

 ; method to do some preparatory c ode for the new datafile and generate the

company name

 Do method Insert Company

 ; creates a datafile in the same folder as the omnis executable

 ; the name of the datafile is the value of the character variable iCompany

Create directory

52

 Create data file (Do not cl ose other data)

{(con(sys(115),iCompany,'.df1')/[iCompany]}

End If

; or do it like this

Do $datas.$add(con(sys(115),iCompany,'.df1'),kTrue,[iCompany])

Create directory

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Create directory (path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command creates the directory named in path. The directory must not already
exist. Create directory does not create intermediate directories. It only creates the last
directory name in path.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
Calculate lDirName as con (sys (115),'MyNewDirectory')

; create the new directory in the root of your omnis tree

Create directory (lDirName) Returns lErrCode

Create file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Create file (path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command creates the file specified in path. Every directory or folder in path must
already exist. Create file does not create directories or folders.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

It returns an error code (See Error Codes), or zero if no error occurs.

 Create library

 53

Example
Calculate lPathname as con (sys (115),'MyNewFile.txt')

; create the new file in the root of your omnis tree

Create file (lPathname) Returns lErrCode

Create library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Create library ([Do not close others]) {library-file-name, internal-name}

Options

Do not close others
If specified, the command does not close all open libraries before
opening the specified library

Description

This command creates and opens a new library file. You specify the file name (and
pathname if you wish) and internal name of the library. The internal name is an alias that you
supply and use in your methods to refer to that library file.

If no internal name is specified, the default internal name is the disk name of the file with the
path name and suffix removed. For example, under Windows the internal name for
'c:\myfiles\mylib.lbs' is MYLIB. Similarly, under macOS the internal name for
'/myfiles/mylib.lbs' is 'mylib'.

The Do not close others option can also be specified so that you can open multiple libraries.
If the disk file with the specified path name cannot be created (and opened), the flag is
cleared and no libraries are closed. Otherwise, if the option is not specified, all other open
libraries are closed (see Close library for the consequences of closing a library).

WARNING If the path name is the same as an existing library, the existing library is
overwritten. If the existing library is open, it is closed and deleted and a new, empty library is
opened.

Example
; Create a library named mylib.lbs in the root of your

; omnis studio tree

Calculate lLibPath as con (sys (115),'mylib.lbs')

Create library (Do not close others) {[lLibPath]}

If flag true

 OK message {Libraray created!}

End If

Cut to clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Cut to clipboard field-name ([Redraw field][,All windows])

Default

54

Options

Redraw field
If specified, the command reloads affected window fields with the new value of
the data field,after it has performed the operation; note that this takes the 'All
windows' option into account

All windows
If specified, the command applies to all open window instances, rather than
just the top open window instance

Description

This command cuts the contents of the specified field or current selection and places it on
the clipboard. In the case of a null selection when the cursor is merely flashing in a field and
no characters are selected, Cut to clipboard will literally cut "nothing".

Example
; Cut iName to the clipboard and paste it into iDeliveryName

Cut to clipboard iName (Redraw field)

Paste from clipboard iDeliveryName (Redraw field)

Default

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Default

Description

This command marks the block of commands to be run when there is no matching case in
a Switch statement. When a SwitchïCase construct is used, the Default command marks
the start of a block of commands that are executed if none of the preceding Case statements
are executed.

Example
; Sound the bell if lName is not equal to Fred or Jim

Switch lName

 Case 'Fred'

 OK message {Fred}

 Case 'Jim'

 OK message {Jim}

 Default

 OK message (Sound bell) {Neither Fred no r Jim}

End Switch

Define list

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Define list {list-of-field-or-file-names (F1,F2..F3,F4)}

Description

This command defines the variables or file class field names to be used as the column
definitions for the current list; it should follow Set current list. The variables or fields used in

 Define list from SQL class

 55

the definition also describe the data type and length for each column of data held. This
command clears the definition and data in the current list. When reversed, the contents and
definition of the current list are restored to their former values. Duplicate names are ignored
in your list of variables or fields.

Example
Set current list iList1

; define columns iCol1Date, iCol2Num & iCol3Char for the current list

Define list {iCol1Date,iCol2Num,iCol3Char}

; same as before but ignores the duplicate reference to iCol3Char

Define list {iCol1Date,iCol2Num,iCol3Char,iCol3Char}

; define the list based upon all the columns in the file c lass fCustomers

Define list {fCustomers}

; Alternatively, you can avoid using Set Current List by using the following

notation

Do iList1.$define(iCol1Date,iCol2Num,iCol3Char)

; define the list based upon a table,schema or query class

Do iList1.$definefro msqlclass('myTableOrSchemaOrQueryClass')

; FIXED LENGTH COLUMNS

; Normally, the length of a column is set by the type or length of the variable

or field defined for

; the column, therefore the column length for a default character variable would

be 10 m illion.

; However, when you define the list you can truncate the data stored in the

column using

; VariableName/N. For example to use only the first 10 characters of the variable

iCol3Char in column 3

Define list {iCol1Date,iCol2Num,iCol3Char/10}

Define list from SQL class

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Define list from SQL class query, schema, or table-name(parameters)

Description

This command defines the column names and data types for the current list based on the
specified schema, query, or table class.

This results in the creation of a new table instance associated with the list. If the sql-class-
name refers to a table class, the command passes the parameters to the $construct method
of the table class.

When reversed, the contents and definition of the list are restored to their former values.

Example
Set current list iMyList

Define list from SQL class sMySchema

; or do it this way

Do iMyList.$definefromsqlclass('sMySchema')

Delete

56

Delete

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Delete

Description

This command deletes the current record in the main file without prompting the user to
confirm the command, so you should use it with caution. The flag is set if the record is
deleted, or cleared if there is no main file record. The flag is also cleared if the Do not wait
for semaphores option is on and the record is locked.

Example
; The following example deletes records selected by a search class.

Set main file {fAccounts}

Set search name sOverDrawn

Find first on fAccounts.Code (Use search)

Repeat

 Delete

 Next

Until flag false

; This example checks the semaphore and tells the user if the record is locked:

Do not wait for semaph ores

Delete

If flag false

 OK message (Sound bell) {Record in use and can't be deleted}

End If

Delete class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Delete class {class-name}

Description

This command deletes the specified library class. It is not possible to delete a file class, an
installed menu or an open window. It is also not possible to delete a class if one of its
methods is currently executing, that is, if it is somewhere on the method stack. Deleting a
class does not reduce the library file size. It does, however, create free library file blocks so
that creation of another class may be possible without further increase in library size. Errors,
such as attempting to delete a name that does not exist, simply clear the flag and display an
error message.

Example
Delete class {sUser}

 Delete data

 57

Delete data

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Delete data {file-name}

Description

This command deletes all the data and indexes for a specified file in a data file. The data
and indexes for a file class are called a "slot". You can delete a slot only if and when one
user is logged onto the data file.

If a specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns flag false. If you are not running in single user mode, the command
automatically tests that only one user is using the data file (the command fails with the flag
false if this is not true), and further users are prevented from logging onto the data until the
command completes.

If a working message with a count is open while the command is executing, the count will be
incremented at regular intervals. The command may take a long time to execute, and it is not
possible to cancel execution even if a working message with cancel box is open. The
command sets the flag if it completes successfully and clears the flag otherwise. It is not
reversible.

Example
Delete data {fCustomers}

If flag true

 OK message {Data for fCustomers has been deleted}

Else

 OK message Error {Data could not be deleted}

End If

Delete file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Delete file (path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command permanently deletes the file specified by path.

It returns an error code (See Error Codes), or zero if no error occurs.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

Example
Calculate lPathname as con (sys (115),'html', sys (9),'serverusagetask.htm')

Calculate lNewPath as con (sys (115),'html', sys (9),'serverusagetask2.htm')

Delete line in list

58

Copy file (lPathname,lNewPath) Returns lErrCode ;; copie s the file in

lPathName to the filename contained in lNewPath

Does file exist (lNewPath) Returns lStatus ;; see if the file exists

If lStatus

 Delete file (lNewPath) Returns lErrCode ;; delete it

End If

Delete line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Delete line in list {line-number (calculation)}

Description

This command deletes the specified line of the current list by moving all the lines below the
specified line up one line. If the line number is not specified or if it evaluates to 0, the current
line LIST.$line is deleted. The line in a list selected by the user can determine the value of
LIST.$line and is the line deleted if no parameters are specified. LIST.$line is unchanged by
the command unless it was the final line and that line is deleted; in this case LIST.$line is set
to the new final line number. The command never releases any of the memory used by the
list.

The flag is cleared if the list is empty or if the line is beyond the current end of the list;
otherwise, the flag is set.

Example
; Delete all but the first 2 lines in the list

Set current list lMyList

Define list {lName,lAge}

Add line to list {('Fred',10)}

Add line to list {('George',20)}

Add line to list {('Harry',22)}

Add line to list {('William',31)}

Add line to list {('David',62)}

While lMyList.$linecount>2

 Delete line in list {1}

End While

; Alternatively you can use $remove to delete a line from a list

Do lMyList.$remove(1)

Delete selected lines

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Delete selected lines

Description

This command deletes all the selected lines from the current list. This is carried out in
memory and has no effect on the lists stored in the data file unless a Prepare for
Insert/ Edit command is performed.LIST.$line is unaffected unless it is left at a value beyond
the end of the list, in which case it is set to LIST.$linecount.

 Delete with confirmation

 59

Example
; Build a list and delete all lin es except line 3

Set current list lMyList

Define list {lCol1}

For lCount from 1 to 10 step 1

 Add line to list {(lCount)}

End For

Select list line(s) (All lines)

Invert selection for line(s) {3}

Delete selected lines

Delete with confirmation

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Delete with confirmation {message}

Description

This command displays a message asking the user to confirm or cancel the deletion and, if
confirmation is granted, deletes the current record in the main file. An error is reported if
there is no main file.

If a message is not specified, Omnis uses a default message. The message can contain
square-bracket notation which is evaluated when the command is executed. If the current
record is deleted, the flag is set, otherwise it is cleared. If the Do not wait for
semaphores option is on, the flag is cleared if the record is locked.

Example
; This example allows selected records in the main file to be deleted:

Set main file {fAccounts}

Set search as calculation {fAccounts.Balance<0}

Find first on fAccounts.Code (Use search)

While flag true

 Delete with confirmation {Delete [fAccounts.Surname]'s record?}

 Next (Use search)

End While

Deselect list line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Deselect list line(s) ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Description

This command deselects the specified list line. The specified line of the current list is
deselected and is shown without highlight on a window list field when redrawn. You can
specify the line number as a calculation. The All lines option deselects all lines of the current
list. When a list is saved in the data file, the line selection state is stored.

Disable all menus and toolbars

60

Example
; Build a list and deselect line 5

Set current list lMyList

Define list {lCol1}

For lCount from 1 to 10 step 1

 Add line to list {(lCount)}

End For

Select list l ine(s) (All lines)

Deselect list line(s) {(lMyList.$linecount/2)}

; Alternatively, you can deselect a line by assigning its $selected property.

Do lMyList.5.$selected.$assign(kFalse) ;; select line 5

Disable all menus and toolbars

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Disable all menus and toolbars

Description

Example
; Disable all menus and toolbars unless the correct

; password is enterd

Disable all menus and toolbars

Prompt for input Password : Returns lPassword

If low (lPassword)='password'

 Enable all menus and toolbars

End If

; Alternatively, you can disable all user installed menu

; and toolbar instances by setting the $enabled property

Do $imenus.$sendall($ref.$enabled.$assign(kFal se))

Do $itoolbars.$sendall($ref.$enabled.$assign(kFalse))

Disable cancel test at loops

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO YES NO All

Syntax

Disable cancel test at loops

Description

Normally, Omnis tests if the user wishes to cancel execution of the method, at the end of
each loop and during lengthy operations such as searching or sorting a large list. The user
requests a cancel by either clicking on a working message Cancel button, or by pressing
Ctrl-Break under Windows, Ctrl-C under Linux, or Cmnd-period under macOS. Use this
command to disable these tests, meaning that the cancel key combination and clicks on a
working message cancel button will be ignored.

This command is reversed with Enable cancel test at loops, or if placed in a reversible block.

Example
; delete all overdrawn accounts without interruption by the user requesting a

cancel

 Disable enter & escape keys

 61

Set main file {fAccounts}

Set search as calculation {fAccounts.Balance<0}

Find on fAccounts.Code (Use search)

Disa ble cancel test at loops

While flag true

 Working message (Repeat count) {Deleting Account [fAccounts.Code]}

 Delete

 Next on fAccounts.Code (Exact match)

End While

Disable enter & escape keys

Command group Flag affected Reversible Execute on client Platform(s)

Enter data NO YES NO All

Syntax

Disable enter & escape keys

Description

This command disables the Enter key on all platforms; on Windows and Linux, it also
disables the Escape key, whereas on macOS it also disables the Escape key and Cmnd-
period. In other words, it disables the keyboard equivalents of the OK and Cancel
pushbuttons. For example, you can use it during enter data mode to prevent the user from
prematurely updating records by hitting the Enter key, when they attempt to start a new line.
The option will remain set until either it is reversed with an Enable command, a new library is
selected, or it is reversed as part of a reversible block.

Before using this command in a method that initiates an Enter data command, ensure that
the user has some way of ending data entry, that is, by installing an OK and a Cancel
pushbutton, or by using a $control() method that detects the end of data entry.

Example
; $construct of window class

Begin reversible block

 Disable enter & escape keys

End rev ersible block

Enter data

If flag true

 OK message {OK Button Pressed}

End If

Disable fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO NO NO All

Syntax

Disable fields {list-of-field-names (Name1,Name2,...)}

Description

This command disables the specified field or list of fields, making them inactive during Enter
data and Prompted find. Thus the data entry cursor skips a disabled entry field when in data
entry mode, find, and so on, and disabled pushbuttons cannot be clicked. If an entry field
with scroll bar is disabled, you can tab to it but not change the data. You can
reverse Disable fields or enable a display field using Enable fields.

Disable menu line

62

Example
; disable 2 fields

Begin reversible block

 Disable fields {myField1, myField2}

End reversible block

Do method CheckCredit

Quit method

; now this method ends and the fields are re - enabled as they are in a reversible

block

; to disable a single field on the current window

Do $cwind.$objs.myField1.$enabled.$assign(kFalse)

; to disable all fields on the current window like this

Do $cwind.$objs.$sendall($ref.$enabled.$assign(kFalse))

Disable menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Disable menu line line or instance-name/line

Description

This command disables the specified line of a menu instance, that is, the menu line
becomes grayed out and cannot be selected. You specify the menu-instance-name and the
number of the menu line you want to disable. You can disable a complete menu instance by
disabling line zero, that is the menu title.

You can reverse Disable menu line with the Enable menu line command or, you can use it
in a reversible block. Nothing happens if the specified menu instance is not installed on the
menu bar.

Example
; Install the menu mView and disable a menu line,

; the reversible block causes the menu line to be

; re - enabled when the method has finished

Install menu mView

Begin reversible block

 Disable menu line mView/Large

End reversible b lock

; Alternatively, you can set the $enabled property of a

; menu line using notation

Do $menus.mView.$obj.Large.$enabled(kFalse)

Disable receiving of Apple events

Command group Flag affected Reversible Execute on client Platform(s)

Apple events NO YES NO macOS

Syntax

Disable receiving of Apple events ([Disable compulsory events])

Options

Disable compulsory events If specified, the command disables the compulsory events

 Disable relational finds

 63

(Open application, Quit application, Open documents, Print
documents) in addition to other Apple events

Description

Example
Disable receiving of Apple events

Prepare for edit

Enter data

Update files if flag set

Disable relational finds

Command group Flag affected Reversible Execute on client Platform(s)

Finding data NO YES NO All

Syntax

Disable relational finds

Description

This command reverses the action of Enable relational finds. The default situation is
reinstated, that is, the main file and its connected parent files are joined using the Omnis
connection.

Example
; Build a sor ted combined list of parent and child data

; using an existing omnis connection

Disable relational finds ;; this is the default action

Set main file {fChild}

Set current list lMyList

Define list {fChild,fParent}

Set sort field fParent.ID

Build list fr om file (Use sort)

Do

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO NO YES All

Syntax

Do calculation Returns return-value

Description

This command executes the specified calculation, which is typically some notation that
operates on a particular object or part of your library. It returns a value if you specify
a return-value, which can be a variable of any type.

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this with Calculate or Do Itemref.$assign(value).

Example
; open a new window instance of the window class wMyWindow maximized

Do $clib.$windows.wMyWindow.$open('*',kWindowMaximize)

; redraw the current window instance

Do async method

64

Do $cwind.$re draw()

; redraw EntryField1 on the top window

Do $topwind.$objs.EntryField1.$redraw()

; return a list in the local variable lClassList of all classes in the current

library

Do $clib.$classes.$makelist($ref.$name) Returns lClassList

; close all open w indow instances

Do $iwindows.$sendall($ref.$close())

; set the $textcolor property of the current object to red

; the optional return field can be used to check whether the operation succeeded

Do $cobj.textcolor.$assign(kRed) Returns lFlag

Do async method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Do async method remote-task-class/method-name (parameters) Returns return-value

Description

This command uses the Web Services server to execute a method asynchronously in the
background, while the user continues to work with the application. Because it uses the Web
Services server, you can only use this command if you meet some serial number
requirements: you need a Web edition serial number, and for the development version, a
Web Services serial number.

This command runs the specified remote task method. The method must have a name
allowed for a Web Service method, and it must be marked as a static Web Service method.
The method will only execute in the background if you have executed the Start
server command to start the multi-threaded Web Client server. In a runtime, Do async
method generates a runtime error if you use it before you have called Start server. In the
development version, you can omit the call to Start server if you wish to debug the method;
in this case, the method executes in the foreground, as if it were a normal method call.

The return-value is a long integer that uniquely identifies the call to the method. This is
referred to as the asynchronous call id. You use the asynchronous call id to cancel the
asynchronous method with the Cancel async method command, and to associate the
completion message (see below) with the method call.

Passing Parameters

You can include a list of parameters with the Do async method command which are passed
to the called method. If the called method has fewer parameters than values passed to it, the
extra values are ignored.

Completion Message

When the method executing in the background finishes, Omnis sends a message to the task
instance that was current when Do async method was called. The message is

$asynccomplete(iCallId,cErrText,vRetVal)

where iCallId is the asynchronous call id returned by Do async method, and vRetVal is the
return value of the method executed in the background, unless an error occurred, in which
case cErrText is not empty, and contains information about the error.

 Do code method

 65

Notes

You can only call Do async method when running in the normal foreground thread.

Background threads pend while a message box is displayed.

The background threads only execute when the normal foreground thread is not executing.

The usual restrictions about remote task threads apply, for example you cannot debug a
background thread, and you cannot use certain commands when running code in a
background thread.

Execution of the remote task method occurs in the context of a remote task instance as
usual. This means that the remote task $construct and $destruct methods are called before
and after calling the specified method, and that the user count for the Web Client server
must have an available connection.

If the library containing the remote task closes before the method finishes, Omnis stops its
execution, and does not send the completion message. Note that if the method is in a critical
block, Omnis will not stop its execution until it leaves the critical block. Also, execution will
only stop after the current command being executed by the method completes.

Only use critical blocks for very short time periods in asynchronous methods, as the user
interface will be unresponsive while code is running in a critical block.

Example
; Run the method $backgroundmethod asynchronously in the background - it prints a

report, which the completion message sends to the screen

; Returned long integer iCallId uniquely identifies the method call

Do async method REMOTETASK/$backgroundmethod ('rReport') Returns iCallId

; $backgroundmethod (implemented in remote task, and marked as a Web Service

static method):

; Print the report identified by the parameter to memory, and return the

resulting report

Calculate $devices.Memory.$visible as kTrue

Do $cdevice.$assign(kDevMemory)

Do $prefs.$reportdataname.$assign(iReport)

Set report name [pReportName]

; Note that Print report can be used in the multi - th readed Web Client server from

Studio 4.1.5 onwards

Print report

Quit method iReport

; $asynccomplete(pCallId,pErrorText,pReport) in the task instance that was

current when Do async method was called

If len (pErrorText)=0

 Send to screen

 Print report fr om memory pReport

End If

Do code method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Do code method code-class/method-name (parameters) Returns return-value

Description

This command runs the specified code class method, and accepts a value back from the
called method. The specified method-name must be in the code class code-class. The
command accepts a value back from the called method if you specify a return-value. The
return field can be a variable of any type.

Do default

66

When a code class method is executed using this command, control is passed to the called
method but the value of $cinst is unchanged, therefore the code in the code class method
can refer to $cinst. When the code class method has executed, control passes back to the
original executing method. The current task is not affected by execution moving to the code
class.

Passing Parameters

You can include a list of parameters with the Do code method command which are passed
to the called method. If the called method has fewer parameters than values passed to it, the
extra values are ignored.

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this with Calculate or Do Itemref.$assign(value).

Example
; Call the method myMethod in the code class

; myCodeClass on a click event and pass the

; value of iMyVar as a parameter

On evClick

 Calculate iMyVar as 100

 Do code method myCodeClass/myMethod (iMyVar)

Do default

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO NO All

Syntax

Do default Returns return-value

Description

This command is used within the code for a custom property, and performs the default
behavior for the built-in property with the same name as a custom property. Do default sets
the flag if some built-in processing for the property exists.

Note that where the return field is an item reference, the command sets the reference but
does not assign to it: you must do this with Calculate or Do Itemref.$assign(value).

Example
; Adding a method called $horzscroll.$assign to a window causes this method to be

executed whenever

; Do $horzscroll.$assign is called. If the window is over 20 pixels wide when

the method is called the default

; behavior for $horzscroll.$assign is performed, that is a scroll bar is added.

; declare parameter pScrollBarOn of type Boolean

If pScrollBarOn&$cinst.$width<20

 ; window too narrow for a scroll bar

 Quit method

Else

 ; assign a horz scroll bar

 Do default

End If

Do inherited

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO YES All

 Do method

 67

Syntax

Do inherited Returns return-value

Description

This command runs the superclass method with the same name as the currently executing
method in the current subclass. For example, you can use Do inherited in the $construct()
method of a subclass to execute the $construct() method of its superclass. Similarly you can
run the $destruct() method in a superclass from a subclass.

The flag is set if a method with the name of the current method is found in one of the
superclasses.

Example
; $construct method

Do inherited ;; do superclass construct

; $destruct method

Do inherited ;; do superclass destruct

; a method i n a superclass can also be called using the $inherited method

Do $inherited.$mymethod

Do method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO YES All

Syntax

Do method method-name (parameters) Returns return-value

Description

This command runs the specified method in the current class, and accepts a value back
from the called method. If you use the Do method command in a field or line method, Omnis
searches for the specified method in the field or line methods for the class, and then
searches in the class methods. If the specified method is not found there is an error.

The command accepts a value back from the recipient or receiving method if you specify
a return-value, which can be a variable of any type. Note that where the return field is an
item reference, the command sets the reference but does not assign to it: you must do this
with Calculate or Do Itemref.$assign(value).

When another method is executed using this command, control is passed to the called
method. When the called method has executed, control passes back to the original
executing method. Note that you should use Do code method if you want to run a method in
a code class, that is, a method outside the current class.

Passing Parameters

You can include a list of parameters with Do method which are passed to the called
method. The parameters are taken in the order they appear in the parameter list and placed
in the parameter variables in the called method. You can pass a reference to a field by using
the special parameter variable type Field reference. This means that the called method can
make changes to the field passed to it.

Recursion

Omnis allows a method to call itself, but will eventually run out of stack if the recursion does
not terminate, or becomes too deep.

Do not flush data

68

Example
; Call the method myMethod in the current instance which

; returns a value into iMyVar using Quit method lReturnValue

Do method myMethod Returns iMyVar

; Call myMethod and pass the field reference iMyFieldRef

; so that the value of iMyFieldRef can be changed by the

; method called

Calculate iMyFieldRef as 10

Do method myMethod (iMyFieldRef)

; You can use $cinst, $cfield, and $ctask to specify a method

; in the current instance, field, or task.

Do method $cinst.$mymethod

Do method $cfield.$myfieldmethod

Do method $ctask.$mytaskmethod

; You can also use the do command to call a method

Do $cinst.$mymethod

Do not flush data

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

Syntax

Do not flush data

Description

This command causes all data file operations to be carried out without writing the changed
data to disk at each Update files or Delete. The command is designed to speed up data file
operations when the user is prepared to take the extra risk of data loss.

The command operates best when there is a single user logged into the data file. It is
unlikely to cause speed increase if the data is on a network volume (that is, shared by
several users).

If you use Test for only one user at the beginning of the method, further users are prevented
from opening the data file until the method terminates.

The command sets the flag if the state of the 'Do not flush data' mode is changed. When
placed in a reversible block, the command restores the previous state of the 'Do not flush'
flag upon the termination of the method.

Example
; fast import

Test for only one user

If flag true

 Do not flush data

 Drop indexes

End If

Prompt for import file

Prepare for import from file {Delimited(tabs)}

Import d ata lImportList

End import

Close import file

For each line in list from 1 to lImportList.$linecount step 1

 Prepare for insert ;; transfer list to file

 Load from list

 Update files

End For

 Do not wait for semaphores

 69

Flush data now ;; writes the data immediately to disk

Build indexes ;; rebuild indexes

Flush data ;; Changes mode back to 'Flush data'

Do not wait for semaphores

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO YES NO All

Syntax

Do not wait for semaphores

Description

This command causes all commands which set semaphores to return with a flag clear if the
semaphore is not available.

If Do not wait for semaphores is run first in a method, it will ensure that any subsequent
commands that lock records, such as Prepare for..., Update commands, do not wait for
records to be released. It causes the command to return a flag false and control to return
immediately to the method, if a record is locked.

Semaphores

Semaphores are internal flags or indicators set in the data file to show other users that the
record has been required elsewhere for editing. Semaphores are only set when running in
multi-user mode, that is, the data file is located on a networked server, a Mac volume or on a
DOS machine on which SHARE has been run.

The commands which set semaphores are Prepare for edit, Prepare for insert, Update
files and Delete, and also, if prepare for update mode is on and the file acted upon is
Read/Write, Single file find, Load connected records, Set read/write files, all types
of Find, Next, and Previous. Update files commands lock the whole data file while indexes
are re-sorted.

The Edit/Insert commands always wait for a semaphore, as do automatic find entry fields.

The example below illustrates how any command which causes a change in record locking
requirements can fail (returning flag false). If, when in óPrepare forô mode, a Single file find
cannot lock the new record, it returns a flag false. This could mean either that the record
could not be found, or that it was in use by another workstation. For this reason, it was made
read-only before the Single file find and then changed to read/write. Note also that Update
files can fail if the file cannot be locked while the indexes are re-sorted.

Example
Do not wait for semaphore s

Prepare for edit

If flag true

 Set read - only files {fAccounts}

 Single file find on fAccounts.Code (Exact match)

 If flag false

 Cancel prepare for update

 Quit method kFalse

 End If

 Repeat

 Set read/write files {fAccounts}

 Until flag tr ue

 Repeat

 Update files

 Until flag true

End If

Do redirect

70

Do redirect

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO NO All

Syntax

Do redirect notation-for-object Returns return-value

Description

This command redirects execution from a custom property to any other public method. You
specify the notation (or a calculation which evaluates to a reference to an object) for the
recipient. The recipient of the custom property being processed is $crecipient. The flag is set
if the recipient exists and handles the property with a built-in or custom property.

Example
Do $cwind.$setup ;; the call to $setup in current window instance ..

; $setup method of the window instance

Do redirect $cwind.$objs.EntryField ;; .. is diverted ..

; $setup method of EntryField ;; .. to here

OK message {redirected to [$crecipient().$name]}

Does file exist

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Does file exist (file|folder-name) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command returns kTrue if the specified file or folder exists, otherwise it returns kFalse.
The file or folder must specify the full path.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

See also, the command Test if file exists.

Example
Calculate lPathname as con (sys (115),'html', sys (9),'serverusagetask.htm')

Calculate lNewPath as con (sys (115),'html', sys (9),'serverusagetask2.htm')

Copy file (lPathname,lNewPath) Returns lErrCode ;; copies the file in

lPathName to the filename contained in lNewPath

Does file exist (lNewPath) Returns lStatus ;; see if the file exists

If lStatus

 Delete file (lNewPath) Returns lErrCode ;; delete it

End If

 Drop indexes

 71

Drop indexes

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Drop indexes {file-name}

Description

This command deletes all the indexes for the specified file apart from the record sequence
number index. This enables intensive operations such as data import to proceed without the
overhead of updating all the indexes. You can use Build indexes to rebuild the indexes
which were dropped.

If the specified file name does not include a data file name as part of the notation, the default
data file for that file is assumed. If the file is closed or memory-only, the command does not
execute and returns with the flag false.

If you are running on a shareable volume, Omnis automatically tests that only one user is
logged onto the data file (the command fails with flag false if this is not true) and further
users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be
incremented at regular intervals. The command may take a long time to execute, and it is not
possible to cancel execution even if a working message with cancel box is open.

The command is not reversible: it sets the flag if it completes successfully and clears it
otherwise, for example if there is more than one user logged onto the data file.

Example
; fast import

Do not flush data

Drop indexes {fCustomers} ;; drop the indexes

Do method ImportData ;; import the data

Build indexes {fCustomers} ;; rebuild the indexes

Duplicate class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Duplicate class {class-name/new-name}

Description

This command creates a new library class by duplicating an existing one. The name for the
new class is specified in addition to the class you want to duplicate. Errors, such as
attempting to use a name that is already in use, simply clear the flag and display an error
message.

Typical uses of this command are to allow users to make changes to reports and searches.

Example
Dupli cate class {sArea/sUser}

If flag true

 Modify class {sUser}

 Set search name sUser

 Print report (Use search)

End If

Else

72

Else

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else

Description

This command is used after an If command to mark the beginning of some commands that
are carried out if the condition in the preceding If command is false.

Example
; In the example below, the value of lGender is tested against the condition

; specified in the If s tatement. If the condition fails, control branches to the

; first Else If statement in the method. If the condition again fails, control

; branches to the Else command.

If lGender='M'

 OK message {Record is MALE}

Else If lGender='F'

 OK message {Rec ord is FEMALE}

Else

 OK message (Sound bell) {GENDER Unknown for this record}

End If

; The same result could also be obtained using a switch statement

Switch lGender

 Case 'M'

 OK message {Record is MALE}

 Case 'F'

 OK message {Record is FEMAL E}

 Default

 OK message (Sound bell) {GENDER Unknown for this record}

End Switch

Else If calculation

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else If calculation

Description

This command is used after an If command to mark the beginning of some commands that
are carried out if the condition in the preceding If command is false, or the calculation in
the Else If command is true.

Else If flag false

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

 Else If flag true

 73

Syntax

Else If flag false

Description

This command is used after an If statement and provides a marker before a series of
commands that have to be carried out if the flag is false.

Example
; In the exam ple below, the value of lGender is tested against the condition

; false if cancel if pressed.

Prompt for input Please enter your name Returns lName (Cancel button)

If flag true

 OK message {Your name is [lName]}

Else If flag false ;; cancel button p ressed

 OK message {No name entered}

End If

Else If flag true

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else If flag true

Description

This command follows an If statement and provides a marker before a series of commands
that have to be carried out if the flag is true and if the value does not meet the condition
specified in the If statement.

Example
; use the Yes/No message to set or clear the flag

Yes/No message {Set flag with Yes or No}

If flag false

 OK message {flag is 0}

Else If flag true

 OK message {flag is 1}

End If

Enable all menus and toolbars

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Enable all menus and toolbars

Description

This command enables all menus and toolbars. It reverses the action of Disable all menus
and toolbars. This command will not enable a menu which has been disabled by disabling
line zero. Such a menu can only be enabled by enabling line zero.

Example
; Enable all menus and toolbars if the correct

; password is enterd

Enable cancel test at loops

74

Disable all menus and toolbars

Prompt for input Password : Returns lPassword

If low (lPassword)='password'

 Enable all menus and toolbars

End If

; Alternatively, you can enable all user i nstalled menu

; and toolbar instances by setting the $enabled property

Do $imenus.$sendall($ref.$enabled.$assign(kTrue))

Do $itoolbars.$sendall($ref.$enabled.$assign(kTrue))

Enable cancel test at loops

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO YES NO All

Syntax

Enable cancel test at loops

Description

This command causes Omnis to test if the user wishes to cancel execution of the method, at
the end of each loop and during lengthy operations such as searching or sorting a large list.
The user requests a cancel by either clicking on a working message Cancel button, or by
pressing Ctrl-Break under Windows, Ctrl-C under Linux, or Cmnd-period under macOS. This
command reverses the Disable cancel test at loops command. Unless Omnis has executed
a Disable cancel test at loops, cancel testing is carried out automatically.

Example
; delete all overdrawn accounts without interruption by the user requesting a

cancel

Set main file {fAccounts}

Set search as calculation {fAccoun ts.Balance<0}

Find on fAccounts.Code (Use search)

Disable cancel test at loops

While flag true

 Working message (Repeat count) {Deleting Account [fAccounts.Code]}

 Delete

 Next on fAccounts.Code (Exact match)

End While

Enable cancel test at loops ; ; enable break key for next loop

Enable enter & escape keys

Command group Flag affected Reversible Execute on client Platform(s)

Enter data NO YES NO All

Syntax

Enable enter & escape keys

Description

This command enables the Enter key on all platforms; on Windows and Linux, it also
enables the Escape key, whereas on macOS it also enables the Escape key and Cmnd-
period. It reverses the action of the Disable enter & escape keys command.

In some libraries where the user may accidentally press Enter and terminate enter data
mode, it is useful to disable the Enter key.

 Enable fields

 75

Example
; $construct of window class

Disable enter & escape keys

Enter data

If flag true

 OK message {OK Button Pressed}

End If

Enable enter & escape keys

Enable fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO NO NO All

Syntax

Enable fields {list-of-field-names (Name1,Name2,...)}

Description

This command enables the specified field or list of fields. You can use it to reverse
the Disable fields command, or turn Display fields into Entry fields temporarily.

Example
; enable 2 fields

Begin reversible block

 Enable fields {myField1,myField2}

End reversible block

Prepare for insert

Enter data

Update files if flag set

Quit method

; now this method ends and the fields are re - disabled as they are in a reversible

block

; to enable a single field on the current window

Do $cwind.$objs.myField1.$enabled.$assign(kTrue)

; to enable all fields on the current window like this

Do $cwind.$objs.$sendall($ref.$enabl ed.$assign(kTrue))

Enable menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Enable menu line line or instance-name/line

Description

This command enables the specified line of a menu instance. It reverses the Disable menu
line command. However, you cannot enable a line using this command if you have no
access to it, or if there is no current record. You specify the menu-instance-name and the
number of the menu line you want to enable. The command clears the flag if the menu
instance is not installed or if the line cannot be enabled.

Example
; Install the menu mView and enable the menu line

; 'Large' if it is currently disabled

Enable receiving of Apple events

76

Install menu mView

Disable menu line mView/Large

Test for menu line enabl ed mView/Large

If flag false

 Enable menu line mView/Large

End If

Enable receiving of Apple events

Command group Flag affected Reversible Execute on client Platform(s)

Apple events YES YES NO macOS

Syntax

Enable receiving of Apple events

Description

Example
Yes/No message Question {Do you want to accept Apple events?}

If flag true

 Enable receiving of Apple events

End If

Enable relational finds

Command group Flag affected Reversible Execute on client Platform(s)

Finding data NO YES NO All

Syntax

Enable relational finds ([Use connections]) {list-of-files (F1,F2,..,Fn)}

Options

Use connections
If specified, all connections between the joined files are made when
building the table

Description

This command causes all find tables to be built relationally, ignoring the main file. The file list
is a list of files to be joined and, if Use connections is checked, all connections between the
joined files are made when building the table. In effect, the connections provide the relational
joins, that is, "sequence number = sequence number".

When relational finds are enabled, the index field specified for find and build list commands
is ignored. It is necessary to use a sort to determine the order of the table.

The Disable relational finds command causes a reversion to the default situation where the
main file and its connected parent files are joined using the connections. The Enable
relational finds and Disable relational finds commands are both reversible and do not affect
the flag.

Example
Set current list lMyL ist

Define list {fChild,fParent,fGrandParent}

; Build a relational child/parent/grandparent list using omnis connections

Enable relational finds (Use connections) {fChild,fParent,fGrandparent}

Build list from file

; Build a relational list of records ig noring omnis connections from fParent

; and fChild of parents with children less than 4 years old

 Enclose exported text in quotes

 77

Set search as calculation {fParent.ID=fChild.Parent_ID&fChild.Age<4}

Enable relational finds {fParent,fChild}

Build list from file (Use search)

Enclose exported text in quotes

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

Enclose exported text in quotes ([Enable])

Options

Enable
If specified, all text exported in tab, comma and user delimited format is enclosed in
quotes; executing the command without this option specified will cause text to be
exported without quotes

Description

Example
Set report name rMyReport

Send to file

Prompt for print or export file

Enclose exported text in quotes (Enable)

Print report

; or disable the option with the notation

Do $clib.$prefs.$exportedquotes.$assign(kFalse)

End critical block

Command group Flag affected Reversible Execute on client Platform(s)

Threads NO NO NO All

Syntax

End critical block

Description

End critical block is only applicable to the multithreaded server. It marks the end of a
critical block.

See Begin critical block for more information on critical blocks.

Example
Begin critical block

 Calculate cClassVar as $cinst.$getvalue()

End cr itical block

End export

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

End For

78

Syntax

End export

Description

This command ends the export of data from an Omnis list or row variable.

Example
; export to a file called myExport.txt in the root of your omnis tree

Calculate lExportPath as con (sys (115),'myExport.txt')

Set print or export file name {[lExportPath]}

Prepare for export to file {Delimited (commas)}

Export data lExportList

End export

Close print or export file

End For

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End For

Description

This command ends a For loop. The two For loops For field value and For each line in
list perform looping type operations. The End For command terminates both these
commands.

Example
Do iMyList.$define(iMyCol1)

Do iMyList.$add('A')

Do iMyList.$add('B')

For iMyList.$line from 1 to iMyList.$linecount step 1

 Do iMyList.$loadcols()

 OK message {Line [iMyList.$line] = [iMyCol1]}

End For

Set current list iMyList

For each line in list from 1 to #LN step 1

 Load from list

 OK message {Line [iMyList.$line] = [iMyCol1]}

End For

End If

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End If

Description

This command terminates an If statement once Omnis has executed the commands inside
the If statement; it also marks the end of the commands to be executed as part of
the If...Else Ifblock. Once the commands associated with the If...Else If block have been
executed, control passes to the next command after End If. For every If command, you
should have a corresponding End If command.

 End import

 79

Example
For lCount from 1 to 100 step 1

 If lCount>=25&lCount<=50

 If lCount=25

 OK message {Quater of the way through now}

 Else If lCount=50

 OK message {Halfway through now}

 End If

 End If

End For

OK message {Done}

End import

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

End import

Description

This command ends the import of data without closing the port, DDE channel, or file through
which data is being imported.

Example
Prompt for import file

Prepare for import from file {Delimited (commas)}

Impor t data lImportList

End import

Close import file

End print

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

End print {instance-name}

Description

This command terminates the specified report and prints the totals section. If you omit the
report instance name the End print command terminates the most recently started report
instance. The flag is cleared if no report instances exist.

End print cancels the Prepare for print mode. You must include it after a Prepare for
print command even if a totals section is not required.

You can print running totals of fields in the Record section by including the same fields in the
Totals section of the report. Provided you choose the Totaled property for the field in the
Record section, Omnis automatically maintains a running total.

Example
; Print report record by record

Set main file {fAccounts}

Set report name rMyReport

Send to screen

Prepare for print

Find first on fAccounts.Code

End print job

80

While flag true

 Print r ecord

 Next

End While

End print

; Alternatively, you can end the print using notation

Do $ireports.rMyReport.$endprint()

End print job

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

End print job

Description

This command terminates a print job initiated with Begin print job and sends it to the printer.

End print job clears the flag and returns an error if a job has not been started. It sets the flag
if it succeeds: in this case, the document is now available for the operating system to print.

Once a print job is started, any attempt to set the report destination fails, that is, you cannot
select a new destination until you have issued an End print job.

Issuing End print job immediately after Begin print job may result in an empty document
being printed.

Omnis automatically issues End print job at shutdown; it does not do this at any other time.

Example
; Create a print job and send 2 reports to the printer

Begin print job

Set report name r MyReport

Print report

Set report name rMyReport2

Print report

End print job

End reversible block

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

End reversible block

Description

This command defines the end of a reversible block of commands. All reversible commands
enclosed within the commands Begin reversible block/End reversible block are reversed
when the method containing this block finishes. However, a reversible block in the
$construct() method of a window class reverses when the window is closed and not when
the method is terminated as is normally the case.

Example
; A method can contain more than one block of reversible commands. In this case,

; commands contained within all the blocks are reve rsed when the method

terminates.

 End statement

 81

; All the commands in the following example are reversed when the method

containing

; the block is finished

Begin reversible block

 Disable menu line mMyMenu/5

 Set current list iMyList

 Build open window list (Clear l ist)

 Calculate iVar as 0

 Open window instance wMyWindow

End reversible block

; When this block is reversed:

; The window instance wMyWindow is closed

; iVar returns to its former value

; iMyList is restored to its former contents and definition

; The current list is set to the former value

; Menu line 5 is enabled

; The following method hides fields Entry1 and Entry2 and installs the menu

mCustomers

Begin reversible block

 Hide fields {Entry1,Entry2}

 Install menu mCustomers

End reversible bloc k

OK message (Icon) {MCUSTOMERS is now visible}

; When this method ends, first MCUSTOMERS is removed, then the fields are shown.

; In the following example, the current list is iMyList

Begin reversible block

 Set current list iMyList2

 Define list {fA ccounts.Code,fAccounts.Surname,fAccounts.Balance}

 Set main file {fAccounts}

 Build list from select table

 Enter data

End reversible block

; When this method terminates and the command block is reversed, the Main file is

reset,

; the former list def inition is restored and the current list is restored to

iMyList.

End statement

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

End statement

Description

This command marks the end of a block of Sta: commands that build the SQL buffer for the
current method stack. The Begin statement command defines the start of the block.

Example
; Open a multi - threaded omnis sql connection to

; the datafile mydatafile and create a statement to

; select rows from the table Customers

Calculate lHostname as con (sys (115),'mydatafile.df1')

Do iSessObj.$logon(lHostname,'','','MYSESSION')

Do iSessObj.$newstatement('MyStatement') Returns lStatObj

Begin statement

Sta: Select * From Customers

Sta: Where Cust_ID > 100

End statement

End Switch

82

Do lStatObj.$execdirect()

Do lStatObj.$fetch(lMyList, kFetchAll)

End Switch

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End Switch

Description

This command terminates a Switch statement and defines the point where method execution
continues after each Case statement.

Example
; Select the correct graph window depending on the graph type selected in the

pGraphType parameter.

; Declare Parameter GraphType (Short integer (0 to 255))

Swi tch pGraphType

 Case kGRpie

 Open window instance wGraphPieWindow

 Case kGRbars,kGRarea,kGRlines

 Open window instance wGraph2DWindow

 Case kGR3D

 Open window instance wGraph3DWindow

End Switch

End text block

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

End text block

Description

This command marks the end of a block of text which is placed in the text buffer for the
current method stack. You build up the text block using the Begin text
block and Text: commands. Following an End text block, you can return the contents of the
text buffer using the Get text block command.

Example
Begin text block

Text: Thought for the day: (Carriage return)

Text: If a train station is where the train

Text: stop s, what is a work station?

End text block

Get text block lTextString

OK message {[lTextString]}

 End While

 83

End While

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End While

Description

This command marks the end of a While loop. When the condition specified at the start of
the loop is not fulfilled (testing the flag or calculation) the command after the End While
command is executed. Each loop that begins with a While command must terminate with
an End While command, otherwise an error occurs.

Example
Calculate lCount as 1

While lCount<=3 ;; While loop

 Calculate lCount as lCount+1

End While

OK message {Count=[lCount]} ;; prints óCount=4ô

Calculate lCount as 1

Repeat ;; Repeat loop

 Calculate lCo unt as lCount+1

Until lCount>=3

OK message {Count=[lCount]} ;; prints óCount=3ô

Enter data

Command group Flag affected Reversible Execute on client Platform(s)

Enter data YES NO NO All

Syntax

Enter data until termination-condition (leave blank to terminate on OK or Cancel)

Description

This command puts Omnis into enter data mode which allows data to be entered via the
current window. An error is generated if there is no open window. It initiates an internal
control loop which does the following:

1. Places the cursor in the first entry field,
2. Lets the user enter data from the keyboard,
3. Detects the use of Tab, Shift-Tab and other cursor movements such as click and

moves the cursor to the appropriate field,
4. Waits for an OK, setting flag true before allowing control to pass to the command

following Enter data in the method,
5. Detects a Cancel which aborts data entry with a false flag.

By default, the Enter data command waits for an evOK or evCancel event. When these
events are triggered enter data mode is terminated (assuming the window is not in modeless
enter data mode). However you can include a termination condition with Enter data which
causes enter data mode to continue until the expression becomes true.

Example
; $construct of window class

Enter data ;; ; waits for a evOK or evCancel event

If flag true

 OK message {User has pressed Return}

Export data

84

Else

 OK message {User has canceled}

End If

; or

; $construct of window class

Calculate iValue as 0

Enter data until iValue>10 ;; waits for the user t o enter a value greater

than 10 into an entry field

Export data

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

Export data list-or-row-name

Description

This command exports data from an Omnis list or row variable.

Example
; export to a file called myExport.txt in the root of your omnis tree

Calculate lExportPath as con (sys (115),'myExport.txt')

Set print or export file name {[lExportPath]}

Prepare for export to file {Delimited (commas)}

Export data lExportList

End export

Close print or export file

Export fields

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Export fields index-name ([Indirect][,Use search][,Disable messages]) {list-of-field-
names (Name1,Name2,...)}

Options

Indirect
If specified, the command uses the contents of the first field as the list of
fields

Use search If specified, the command uses the current search to select data

Disable messages
If specified, the command does not open messages requiring a user
response and instead it writes a limited amount of information to the
trace log

Description

Export fields exports the data for the list of fields to the current export file. It provides
runtime access to the functionality of the export data dialog in the IDE. The command sets
the main file for the export to the file corresponding to the first field in the list. The index-
name is the optional name of the indexed field which determines the order of the exported
data.

 Find

 85

Example
; export to a file called myExport.txt in the root of your omnis tree

Calculate lExportPath as con (sys (115),'myExport.txt')

Set print or export file name {[lExportPath]}

Prepare for export to file {Delimited (commas)}

Export fields fCus tomers.CustomerID {fCustomers.Surname,fCustomers.FirstName}

End export

Close print or export file

Find

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Find on field-name ([Exact match][,Use search]) {calculation}

Options

Exact match
If specified, the index value of the field in suitable records must equal the
current value

Use search If specified, the command uses the current search to select data

Description

This command builds a find table and locates the first record in the table, that is, it loads the
main and connected files into the current record buffer. The flag is false and the buffer is
cleared if no record is found.

You use the Find command to locate records within a file. If you donôt use a search, the file
is searched in the order specified by the indexed field until the value given in the calculation
line is matched. In this case, the current find table is the same as the chosen Index.

When the closest match is found, the main and connected files are read into the current
record buffer and the flag is set true. If the indexed field is from a connected file, the search
is repeated automatically until the record having a connected entry in the main file is found.

A blank calculation indicates that the Find is to be performed using the current value of the
selected index field. Thus, if you precede the command with a Clear main file, it is the same
as a Find first.

Omnis can perform a Find with an Exact match requirement. In this case, the value in the
"field found" record must correspond in every detail (for example, upper or lower case
characters) to the current value of the indexed field in the current record buffer. A flag true
indicates a successful Find, otherwise a flag false results, and the main and its connected
files are cleared.

You use the exact match option to locate child records connected to a current parent record.

Clearing the find table

The find table is cleared if:

1. A Clear find table command is executed with the same main file setting.
2. A new Find is carried out on the same file.
3. A Next/Previous command with a new (non-blank) index or a Use Search or Exact

match option where the original Find had none, is used.

Example
; Find all invoices belonging to account lMyAccCode

Pro mpt for input Account Code ? Returns lMyAccCode (Cancel button)

If flag true

Find first

86

 Set main file {fInvoices}

 Set search as calculation {fInvoices.AccCode=lMyAccCode}

 Find on fInvoices.InvNum (Exact match,Use search)

 While flag true

 OK message {Found Invoice [fInvoices.InvNum] for account [fInvoices.AccCode]}

 Next

 End While

End If

Find first

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Find first on field-name ([Use search][,Use sort])

Options

Use search If specified, the command uses the current search to select data

Use sort If specified, the command uses the current sort field(s) to order the data

Description

This command automatically locates the first record in a file using the index for the specified
field. If no field is given, the record sequence number is used. The main and connected files
are read into the CRB if a valid first record is found. The flag is set false if no record is found.

You use the Use search option in conjunction with the specified indexed field to select
the first record which fulfils the search specification. If the search is a calculation, the
optimizer will choose the best index if the index field is left blank.

You use the Use Sort option in conjunction with the current sort fields (see Set sort field) to
create a table of entries from the data file which are sorted into an order set by up to nine
sort fields.

The find table is cleared if:

1. A Clear find table command is executed with the same main file setting.
2. A new Find is carried out on the same file.
3. A Next/Previous command with a new (non-blank) index or a Use Search or Exact

match option where the original Find had none, is used.

If you use the Find first command within a reversible block, it is reversed when the method
finishes, that is, the main and connected records are restored. However, if the data within
the original record has been deleted or changed, it will not be possible to completely restore
the buffer.

Example
; Find the first account with a negative balance, but restore

; the original record when this method finishes

Begin reversible block

 Set main file {fAccounts}

 Set search as calculation {fAccounts.Balance<0}

 Find first on fAccounts.Code (Use search)

End reversible block

 Find last

 87

Find last

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Find last on field-name ([Use search][,Use sort])

Options

Use search If specified, the command uses the current search to select data

Use sort If specified, the command uses the current sort field(s) to order the data

Description

This command automatically locates and displays the last record in a file using a specified
indexed field. You can use the Find last command to locate the last record added to a file by
using the record sequencing number as the index. The flag is set false if no record is found.

You use the Use search option in conjunction with the specified indexed field to select
the last record which fulfils the search specification. If the search is a calculation, the
optimizer will choose the best index if the index field is left blank.

Whenever you use a Find command, a find table is created which determines the order in
which records are displayed using subsequent Next and Previous commands. Once a find
table has been created, subsequent Next or Previous commands will use the table provided
the commands have an empty or the same Index, and the same (or
empty) Search and Exact match conditions. A Clear find table, a new Find on the same file
or Next/Previous commands with a new (non-blank) index or a Search or Exact match where
the original Find had none, will clear the find table.

The Use Sort option works in conjunction with the current sort fields (see Set sort field) to
create a table of entries from the data file which are sorted into an order set by up to 9 sort
fields. Refer to the Find command for details of the find table and its use.

Example
; Find the last account record in the file, but restore

; the original record when this meth od finishes

Begin reversible block

 Set main file {fAccounts}

 Find last on fAccounts.Code (Use search)

End reversible block

Floating default data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files NO YES NO All

Syntax

Floating default data file {list-of-files (F1,F2,..,Fn)}

Description

This command sets the default data file as the current data file and changes whenever the
current data file changes. You use Floating default data file in libraries which open more than
one data file at once. The default behavior in Omnis is that, as each new data file is opened,
it becomes the "current" data file. The concept of a current data file is important when your
commands refer to file classes without specifying a data file.

Flush data

88

The Floating default data file command sets the default data file, for the specified list of files,
to be equal to the current data file and allows it to change (float) whenever the current data
file changes.

The command does not change the flag but is reversible, that is, the previous default data
files are restored when the method containing the command in a reversible block terminates.

Example
; To specify the data file, you can use Set Default Data File to associate a file

class with the

; curr ent data file. In this example we associate fCustomers with Data.df1

Set current data file {Data1}

Set default data file {fCustomers}

; References to fCustomers are now equivalent to references to Data1.fCustomers.

; The association between fCustomers a nd Data1 remains in effect even if the

current data file

; is set to a different data file. To return to the default state where the

default data file "floats"

; to whatever the current data file is, you can use:

Floating default data file {fCustomers}

Flush data

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

Syntax

Flush data

Description

This command reverses Do not flush data and reverts to the default mode where the
changed data is immediately written to disk after each Update files or Delete command.

The command sets the flag if the state of the 'Do not flush data' mode is changed and is
reversible, restoring the previous state of the 'Do not flush' flag when reversed. If the
previous mode was 'Do not flush data', Flush data will cause any modified data which has
not been written to disk, to be written on the next Update files or Delete.

Example
; fast import

Test for only one user

If flag true

 Do not flush data

 Drop indexes

End If

Prompt for i mport file

Prepare for import from file {Delimited(tabs)}

Import data lImportList

End import

Close import file

For each line in list from 1 to lImportList.$linecount step 1

 Prepare for insert ;; transfer list to file

 Load from list

 Update files

End For

Flush data now ;; writes the data immediately to disk

Build indexes ;; rebuild indexes

Flush data ;; Changes mode back to 'Flush data'

 Flush data now

 89

Flush data now

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO NO NO All

Syntax

Flush data now

Description

This command causes any modified data which has not been written to disk to be
immediately written to disk. This command will only do something if a Do not flush
data command has been executed.

This command leaves the flag unaffected and is not reversible.

Example
; fast import

Test for only one user

If flag true

 Do not flush data

 Drop indexes

End If

Prompt for import file

Prepare for import from file {Delimited(tabs)}

Import data lImportList

End import

Clo se import file

For each line in list from 1 to lImportList.$linecount step 1

 Prepare for insert ;; transfer list to file

 Load from list

 Update files

End For

Flush data now ;; writes the data immediately to disk

Build indexes ;; rebuild in dexes

Flush data ;; Changes mode back to 'Flush data'

For each line in list

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

For each line in list ([Selected lines only][,Descending]) from start to stop step step

Options

Selected lines only If specified,the for loop only operates on the selected lines in the list

Descending
If specified,the for loop steps through the list from the largest line
number to the smallest line number

Description

This command marks the beginning of a loop that processes the lines of the current list. You
must specify the current list before executing the For loop. The For loop is a convenient way
to write While/ End While loops to step through each line of a list. With the Selected lines
only option, the loop will skip over any lines encountered that are not selected.

For field value

90

The Start value specifies the line in the list at which method execution of the For loop starts.
The loop continues until the processed line exceeds or is equal to the Stop value. If
the Stepvalue is not specified, the default value of 1 is used. The values involved must all be
integers. The Descending option tells Omnis to step through the list from a high line number
to a low line number. The Start and Stop values are swapped if the Stop value is less than
the Start value.

You can use Jump to start of loop within the loop to continue the next iteration of the loop.
Similarly, Break to end of loop will exit the loop prematurely.

For each line in list operates on the current list. The matching End For will also operate on
the current list. Unpredictable behavior will result if the current list is changed and not
restored within the For/ End For construct.

Example
Prepare for print

Set current list iMyList

For eac h line in list from 1 to iMyList.$linecount step 1

 Load from list

 Print record

End For

End print

; this is equivalent to the method below

Prepare for print

Set current list iMyList

Calculate iMyList.$line as 1

While iMyList.$line<=iMyList.$linecount

 Load from list

 Print record

 Calculate iMyList.$line as iMyList.$line+1

End While

End print

For field value

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

For field-name from start to stop step step

Description

This command marks the beginning of a For loop which defines a series of commands to be
repeated a number of times. You use field-name as a counter that is automatically
incremented by the step value each time the End For statement is reached.

The values involved must all be numbers, preferably integers. If start value is greater
than end value, and step value is positive, the command will perform no loops. Similarly, no
loops are performed if start value is less than end value, and step value is negative.

The end value is evaluated once at the start of the loop, and saved, for performance
reasons, so changing the end value during the loop will have no effect. You can use Jump to
start of loop within the loop to continue the next iteration of the loop. Similarly, you can
terminate the loop early using Break to end of loop if desired.

Example
Calculate lString as ''

For lCount from 0 to 9 step 1

 Calculate lString as con(lString,lCount)

End For

OK message {String=[lString]} ;; shows 'Stri ng=0123456789'

 FTPChmod

 91

Calculate lString as ''

For lCount from 9 to 0 step - 1

 Calculate lString as con(lString,lCount)

End For

OK message {String=[lString]} ;; shows 'String=9876543210'

FTPChmod

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPChmod (socket,filename,mode) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPChmod changes the protection mode of a remote file on the connected FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

Filename is an Omnis Character field containing the pathname of the remote file.

Mode is an Omnis Character field containing the system-dependent file-protection specifier
to apply to the named file. Many FTP servers accept the Linux-style Owner/Group/World 3-
digit Read/Write/Execute scheme (for example, 754 = Owner Read/Write/Execute, Group
Read/Execute World Read-Only). Consult the documentation for the remote system to
determine the acceptable syntax for this argument.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; allow owner to read/write & execute, g roup to read & execute and world to read -

only this file

Calculate lFileMode as 754

FTPChmod (iFTPSocket,lFileName,lFileMode) Returns lErrCode

FTPConnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPConnect (serveraddr,username,password[,port,errorprotocoltext,secure {Default zero
insecure;1 secure;2 use AUTH TLS},verify {Default kTrue}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

FTPConnect

92

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPConnect establishes a connection to the specified FTP server.

ServerAddr is an Omnis Character field containing the hostname or IP address of the FTP
server.

Username is an Omnis Character field containing the user ID with which the command will
log on to the server.

Password is an Omnis Character field containing the password for the user ID.

Port is an optional number or service name, which identifies the TCP/IP port of the FTP
server. If you omit this parameter or pass an empty value, it defaults to the standard FTP
port (21 for non-secure or AUTH TLS secure connections, or 990 for other secure
connections). If you use a service name, the lookup for the service will occur locally.

ErrorProtocolText is an optional Omnis Character field parameter, into
which FTPGetConnect places the protocol exchange that occurred on the control
connection to the FTP server, if an error occurred. Note that you can use the
command FTPGetLastStatus to obtain the protocol exchange in the case when a connection
is successfully established.

Secure is an optional Boolean parameter which indicates if a secure connection is required
to the server. Pass kTrue for a secure connection, in which case the built-in security
technology will be used, so on Windows óSecure Channelô (Schannel) is used, on macOS
óSecure Transportô is used, and on Linux OpenSSL is used.

FTPConnect also supports an alternative secure option, if you pass secure with the value 2,
the connection is initially not secure, but after the initial exchange with the
server, FTPConnect issues an AUTH TLS FTP command to make the connection secure if
the server supports it (see RFC 4217 for details), followed by further commands necessary
to set up the secure connection. Authentication occurs after a successful AUTH TLS
command.

Note that if you use either of the secure options, all data connections are also secure, and all
data transfer uses passive FTP.

AUTH TLS is the standard recommended mechanism for FTPS, and is referred to
as explicit FTPS. The other secure form of FTP supported by this command is referred to
as implicit FTPS, and is no longer recommended; however, we provide support for implicit
FTPS to cater for servers which do not support explicit FTPS.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse.
When Verify is kTrue, the command instructs the installed SSL library to verify the server's
identity using its certificate; if the verification fails, then the connection will not be
established. You can pass Verify as kFalse, to turn off this verification; in this case, the
connection will still be encrypted, but there is a chance the server is an impostor. In order to
perform the verification, the installed SSL library uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own
Certificate Authority to self-sign certificates, you can place its certificate in the cacerts folder,
and the installed SSL library will use it after you restart Omnis.

Socket is an Omnis Long Integer field, which receives the result of the command. If the
command successfully establishes a connection and logs on to the server, Socket has a
value >= 0; you pass this value to the other FTP commands, to execute requests on this
connection. Possible error codes are listed in the Web Command Error Codes Appendix.

Example
FTPConnect (iServerAddress,iUserName,iPassword) Returns iFTPSocket

If iFTPSocket<0

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("An error occurred logging on to ",iServerAddress," -

 FTPCwd

 93

Details follow", kCr ,iServerReplyText)]}

End If

FTPCwd

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPCwd (socket,newdir) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPCwd changes the working directory for the specified FTP connection.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

NewDir is an Omnis Character field containing the new working directory. The contents of
this string are system-dependent. FTPCwd accepts anything for this argument, but the
remote FTP server may not. Most FTP servers accept Linux-style path and file specifications
with path and file separated by slashes, such as

/drive/user/subdirectory/filename.extension

Most FTP servers accept the Linux conventions for abbreviations for special directory
specifications, that is, ".." for the next higher sub-directory, and "~userid" for the home
directory of a particular user ID.

Some FTP servers also accept system-specific directory path formats, that is, Macintosh
colon-separated as in Macintosh HD:My Folder:My File or VMS-style path and file
specifications, as in SOME$DISK:[USER.SUBDIRECTORY]FILENAME.EXTENSION;1.

Consult the documentation for the server to determine the authoritative acceptable directory
path specifications. When in doubt, try the Linux style.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
Calculate lNewDirectory as '../testFolder'

FTPCwd (iFTPSocket,lNewDirectory) Returns lErrCode

If lErrCode

 OK message FTP Error {[con ("Error setting FTP directory", kCr ,"Error code :

",lErrCode)]}

End If

FTPDelete

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

FTPDisconnect

94

Syntax

FTPDelete (socket,filename[,directory {Default kFalse}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPDelete deletes a file or directory on the connected FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

Filename is an Omnis Character field containing the pathname of the remote file or directory
to delete.

Directory is an optional Boolean (that defaults to kFalse) which you pass
as kTrue if Filename is the pathname of a directory rather than a file. Note that a directory
may need to be empty before you can delete it.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
Calculate lFileName as 'myFileToDelete'

FTPDelete (iFTPSocket,lFileName) Returns lErrCode

If lErrCode

 OK message FTP Error {[con ("Error deleting ",lFileName, kCr ,"Status code:

",lErrCode)]}

End If

FTPDisconnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPDisconnect (socket) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPDisconnect closes a connection to an FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
FTPDisconnect (iFTPSocket) Returns lErrCode

If lErrCode

 OK message FTP Error {[con ("Error disconnecting from FTP server ", kCr ,"Error

code : ",lErr Code)]}

End If

 FTPGet

 95

FTPGet

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPGet (socket,remotefile,localfile[,filetype,creator]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPGet downloads a file from an FTP server. The file is transferred using the currently
specified transfer type of ASCII or binary, as specified by the FTPType command. It is
important that you set the transfer type correctly for each file you download, since an
incorrect transfer type will result in a bad downloaded copy of the file.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

RemoteFile is an Omnis Character field containing the pathname of the remote file to
download.

Note: The remote filename may not be acceptable to the local system.

LocalFile is an Omnis Character field containing the pathname of the downloaded file. If the
file already exists, FTPGet will overwrite it with the downloaded file.

FileType and Creator are optional arguments, which the command uses on the Macintosh
platforms only. These specify a file type and creator for the downloaded copy of the file. If
you omit these arguments when calling FTPGet on a Macintosh, they default as follows:

¶ For ASCII transfer type: FileType = TEXT, Creator = ttxt

¶ For binary transfer type: FileType = TEXT, Creator = mdos

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; set file transfer mode to asci

FTPType (iFTPSocket,0) Returns lErrCode

If not (lErrCode)

 ; assumes you are already in the correct folder on the ftp server so only the

file name is needed

 Calculate lRemoteFile as 'myFileToDownload.txt'

 ; identify where to download the file to

 Calculate lLocalFileName as con (sys (115),'downloadFolder', sys (9),lRemoteFile)

 ; download the file

 FTPGet (iFTPSocket,lRemoteFile,lLocalFileName) Returns lErrCode

 If lErrCode

 OK message FTP Error {[con ("Error transferring file ", upp (lRemoteFile)," to

", upp (lLocalFileName), kCr ,"Error code : ",lErrCode)]}

 End If

End If

FTPGetBinary

96

FTPGetBinary

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPGetBinary (socket,remotefile,binfield) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPGetBinary downloads a file from an FTP server into an Omnis binary variable. The file
is transferred using binary transfer mode.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

RemoteFile is an Omnis Character field containing the pathname of the remote file to
download.

BinField is an Omnis Binary or Character field that will receive the contents of the remote
file.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; set file transfer mode to binary

FTPType (iFTPSocket,1) Returns lErrCode

If not (lErrCode)

 ; assumes you are already in the correct folder on the ftp server so only the

file name is needed

 Calculate lRemoteFile as 'omnis.exe'

 ; download the file

 FTPGetBinary (iFTPSocket,lRemoteFile,lBinF ield) Returns lErrCode

 If lErrCode

 OK message FTP Error {[con ("Error transferring file ", upp (lRemoteFile),"Error

code : ",lErrCode)]}

 Else

 ; select where to save the file to on the local machine

 Do FileOps.$selectdirectory (lNewPath,'Enter path to save file to', sys (115))

Returns lStatus

 If lStatus

 ; create the file

 Do lFileOps.$createfile(con (lNewPath, sys (9),lRemoteFile))

 ; write the binary contents downloaded from the FTP server to the new local

file

 Do lFileOp s.$writefile(lBinField)

 End If

 End If

End If

FTPGetLastStatus

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

 FTPList

 97

Syntax

FTPGetLastStatus (socket[,protocoltext]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPGetLastStatus returns status information corresponding to the last FTP command
executed on a connected FTP socket.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

ProtocolText is an optional Omnis Character field parameter, into
which FTPGetLastStatus places the FTP protocol exchange that occurred on the control
connection to the FTP server, for the last FTP command executed. For example, if you
execute FTPPwd, and then call FTPGetLastStatus, ProtocolText might contain:

- > PWD

<- 257 "/" is current directory.

Note that "->" prefixes text sent to the server, and "<-" prefixes text received from the server.

Status is an Omnis Long Integer field which receives the return status of the last FTP
command executed. This information is really redundant, but is provided for compatibility.
The value returned is one of the negative error codes. Possible error codes are listed in
the Web Command Error Codes Appendix.

Example
; Examp le to show how to get the error message from the FTP server when the

download fails

; set file transfer mode to asci

FTPType (iFTPSocket,0) Returns lErrCode

If not (lErrCode)

 ; assumes you are already in the correct folder on the ftp server so only the

file name is needed Calculate lRemoteFile as 'myFileToDownload.txt'

 ; identify where to download the file to

 Calculate lLocalFileName as con (sys (115),'downloadFolder', sys (9),lRemoteFile)

 ; download the file

 FTPGet (iFTPSocket,lRemoteFile,lLocalF ileName) Returns lErrCode

 If lErrCode

 FTPGetLastStatus (iFTPSocket,iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Error transferring file

", upp (lRemoteFile), kCr ,"Error text from the server: ", kCr ,iServerReplyText)]}

 End If

End I f

FTPList

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPList (socket,list[,pathname,mode]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

FTPList

98

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPList lists files on the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

List is an Omnis List field containing a single column of type Character. This list receives the
file listing information, one line per file, returned by the remote FTP server. The list is
dependent on the type of the remote server and may be in long or short format, depending
on the Mode parameter.

Note: Very often, FTP servers return long-format listings in a Linux file listing format. At a
minimum, this file information contains the filename, but usually includes other information.
The Omnis method must parse this information to find the filename and other information.
For example:

ListItem

total 123

drwxr-xr-x 4 userid mygroup Jan 1 1999 .

drwxr-xr-x 6 root root Jan 1 1999 ..

-rw------- 1 userid mygroup Jan 16 1998 myfile

-rw-rðrð 2 userid mygroup Jan 16 1998 myotherfile

Where the columns in the character string correspond to protection, file size, username and
group of the file owner, the date last modified and the name of the file. The files "." and ".."
represent the current and parent directories, respectively, which may neither be retrieved nor
changed.

The file information may not be neatly spaced into columns as in this example. Columns are
separated with one or more spacing characters (space, tab, and so on).

Pathname is an optional Omnis Character field that contains a pathname or wildcard
specification for the files to include in the listing. If omitted, the default is to list all of the files
in the current directory on the FTP server.

Mode is an optional numeric value which indicates whether the server should return a short
or long format listing. If omitted, it defaults to zero.

Code Meaning

0 Filename-only listing

1 Long-format listing

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix

Example
Do iMyList.$define(iListColumn)

; return a long format listing of the current directory into the list variable

iMyList

FTPList (iFTPSocket,iMyList,,1) Returns lErrCode

If lErrCode

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Error obtaining list of files from the FTP

 FTPMkdir

 99

server", kCr ,"Details follow: ", kCr ,iServerReplyText)]}

End If

FTPMkdir

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPMkdir (socket,dirname) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPMkdir creates a new directory on the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

DirName is an Omnis Character field containing the pathname of the new directory to create
on the server.

Note: The name of the new directory must follow the convention and file-naming rules of the
remote system. Not all users will have permissions to create new directories on arbitrary
directories on the remote system. Default file-access permissions apply to the new directory.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; create a new directory called myNe wDirectory in the directory Test

Calculate lDirName as '/Test/myNewDirectory'

FTPMkdir (iFTPSocket,lDirName) Returns lErrCode

If lErrCode

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Error creating directory",lDirNam e, kCr ,"Details

follow: ", kCr ,iServerReplyText)]}

End If

FTPPut

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPPut (socket,localfile,remotefile) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPPutBinary

100

FTPPut uploads a local file to the FTP server. The file is transferred according to the
currently specified transfer type of ASCII or binary as specified by the FTPType command. It
is important that you set the transfer type correctly for each file you upload, since an
incorrect transfer type will result in a bad uploaded copy of the file.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

LocalFile is an Omnis Character field containing the pathname of the file to upload.

RemoteFile is an Omnis Character field containing the pathname of the destination file on
the FTP server.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; upload an ascii file to a FTP server

; set file transfer mode to asci

FTPType (iFTPSocket,0) Returns lErrCode

If not (lErrCode)

 Calculate lLocalFileName as

con (sys (115),'uploadFolder', sys (9) ,'myTextFileToUpload.txt')

 Calculate lRemoteFile as 'myUploadedFile.txt'

 ; upload the file to the current working directory on the FTP server, the file

name will be myUploadedFile.txt

 FTPPut (iFTPSocket,lLocalFileName,lRemoteFile) Returns lErrCode

 If lErrCode

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Error uploading file", upp (lLocalFileName)," to

", upp (lRemoteFile), kCr ,"Details follow: ", kCr ,iServerReplyText)]}

 End If

End If

FTPPutBinary

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPPutBinary (socket,binfield,remotefile) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPPutBinary uploads the contents of an Omnis binary variable to a remote file on the FTP
server. The data is transferred using binary transfer mode.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

BinField is an Omnis Binary or Character field containing the data to transfer.

RemoteFile is an Omnis Character field containing the pathname of the destination file on
the FTP server.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

 FTPPwd

 101

Example
; upload a binary file to a FTP server

; set file transfer mode to binary

FTPType (iFTPSocket,1) Returns lErrCode

If not (lErrCode)

 ; select the binary file to upload

 Do FileOps.$getfilename (lDirName, 'Select the binary file to

upload','*.*', sys (115))

 Do lFileOps.$openfile(lDirName)

 ; read contents into an Omnis binary variable

 Do lFileOps.$readfile(lBinField)

 Calculate lRemoteFile as '/Test/upload/myUploadedFile'

 FTPPutBinary (iFTPSocket,lBi nField,lRemoteFile) Returns lErrCode

 If lErrCode

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Error uploading binary", upp (lDirName)," to

", upp (lRemoteFile), kCr ,"Details follow: ", kCr ,iServerReplyText)]}

 End I f

End If

FTPPwd

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPPwd (socket) Returns server-directory

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPPwd gets the pathname of the current directory on the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

ServerDirectory is an Omnis Character field that receives the pathname of the current
directory. If this is a number less than zero, an error occurred. Possible error codes are listed
in the Web Command Error Codes Appendix.

Note: The value returned depends upon the operating system of the remote server. Many
FTP servers return a Linux-style pathname, but do not assume that this is the case.

Example
; return the current working directory on the FTP server

FTPPwd (iFTPSocket) Returns lDirectory

If lDirectory<0 ;; an error has occurred

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Er ror obtaining current FTP directory", kCr ,"Details

follow: ", kCr ,iServerReplyText)]}

End If

FTPReceiveCommandReplyLine

102

FTPReceiveCommandReplyLine

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPReceiveCommandReplyLine (socket) Returns reply

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPReceiveCommandReplyLine returns the next line of the reply following
an FTPSendCommand. You have to determine if the reply is multi-line, and if so issue
further receive commands to get the remainder of the
reply. FTPReceiveCommandReplyLine will timeout after 60 seconds if it does not receive a
reply.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

Reply is an Omnis Character variable containing the reply from the server. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
FTPSendCommand (iFTPSocket,'pwd')

; return the current directory

FTPReceiveCommandReplyLine (iFTPSocket) Returns lDirName

FTPRename

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPRename (socket,oldname,newname) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPRename renames a remote file.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

OldName is an Omnis Character field containing the pathname of the file to rename.

NewName is an Omnis Character field containing the new pathname for the file

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

 FTPSendCommand

 103

Note: Local filename conventions may not be acceptable to the remote system.

Example
; r ename a file or folder in the current working directory

FTPRename (iFTPSocket,lFileName,lNewFileName) Returns lErrCode

If lErrCode

 FTPGetLastStatus (iServerReplyText) Returns lErrCode

 OK message FTP Error {[con ("Error renaming ",lFileName," to

",lNewFi leName, kCr ,"Details follow:", kCr ,iServerReplyText)]}

End If

FTPSendCommand

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPSendCommand (socket,command) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPSendCommand sends a command to the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

Command is an Omnis Character variable containing the command and its parameters.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
FTPSendCommand (iFTPSocket,'pwd')

; return the current directory

FTPReceive CommandReplyLine (iFTPSocket) Returns lDirName

FTPSetConfig

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPSetConfig (proc[,activeonly {Default zero for no;1 for yes}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPSetConfig provides the FTP commands with configuration information.

FTPSite

104

Proc is an Omnis Character field containing the name of an Omnis method used to report
the progress of FTP operations which transfer data
(FTPGet, FTPGetBinary, FTPList, FTPPut and FTPPutBinary); for example
MYLIBRARY.MYCODE/MYPROC. You can clear the current setting for the FTP progress
proc, by passing an empty value.

ActiveOnly is an optional parameter. A value of 1 causes all FTP over non-secure
connections to be active, rather than the default, which is use passive FTP if the server
supports it (if the connection is secure then only passive FTP can be used). Normally, you
would not select ActiveOnly FTP; this is provided as a possible work-around for servers with
which passive FTP is causing problems. You can find a fuller explanation below of passive
and active FTP.

Status receives the result of executing this command. Possible error codes are listed in
the Web Command Error Codes Appendix.

FTP data transfer commands call the progress proc (if specified) while data transfer is in
progress. This allows you to indicate progress to the user. The commands call the progress
proc with three parameters:

¶ Socket: the FTP socket on which the operation is occurring

¶ TransferredSoFar: the number of characters transferred so far, or for FTPList, the
number of lines received so far.

¶ TotalToTransfer: the total number of characters that need to be transferred; note that
this is only available when executing FTPPut or FTPPutBinary.

The FTP data transfer commands always first attempt to use passive mode to transfer data.
In passive mode, the client initiates the data connection to the server. This is the
recommended mode of operation (see RFC1579, "Firewall Friendly FTP). Most FTP servers
support passive mode, although there are some which do not. In this case, if the attempt to
use passive mode fails, the FTP commands use active mode to transfer data. In this case,
the server initiates the data connection to a port on the client.

Example
; setup the config method

FTPSetConfig ('cCode/FTPProgress')

; Then in code class cCode/FTPProgress

; 3 parameter variables (all defined as long integer)

OK message {Socket [pSocket] - TransferredSoFar [pTransferredSo Far] -

TotalToTransfer [pTotalToTransfer]}

FTPSite

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPSite (socket,parameters) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPSite issues a host specific SITE command to the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

 FTPType

 105

Parameters is an Omnis Character variable containing the host specific command and its
parameters.

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; execute a FTP site specific command

FTPSite (iFTPSocket,'SITE CHMOD 744 /test/myFileToChange') Returns lErrText

FTPType

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPType (socket,filetype) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

FTPType specifies the type of data transfer used by FTPGet and FTPPut, as ASCII or
binary. In ASCII mode, line separators and other text formatting characters will be changed
to the characters required by the local or remote system. In binary mode, line separators and
other text formatting characters are not changed. If the information to be transferred is not
text, use FTPType to change the transfer mode to binary. Otherwise, binary files such as
archives, images, Omnis Libraries, and executable files may be corrupted by the processing
of bytes that coincide with text-formatting characters.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server
using FTPConnect.

FileType is a number indicating the type of subsequent FTPGet and FTPPut transfers on this
socket.

Value Transfer Mode

kFalse/Zero ASCII

kTrue/One Binary

Status is an Omnis Long Integer field which receives the result of executing the command.
Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; set file transfer mode to ascii

FTPType (iFTPSocket,0) Returns lErrCode

If not(lErrCode)

 ; assumes you are already in the correct folder on the ftp server so only the

file name is needed

 Calculate lRemoteFile as 'myFileToDownlo ad.txt'

 ; identify where to download the file to

 ; here we decide to put the download file into a folder called downloadFolder

within the current Omnis tree

 Calculate lLocalFileName as con(sys(115),'downloadFolder',sys(9),lRemoteFile)

Get file info

106

 ; download the file

 FTPGet (iFTPSocket,lRemoteFile,lLocalFileName) Returns lErrCode

 If lErrCode

 OK message FTP Error {[con("Error downloading file ",upp(lRemoteFile)," to

",upp(lLocalFileName),kCr,"Error code : ",lErrCode)]}

 End If

End If

Get file info

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get file info (path, type, creator, log-size, phy-size, creat-date, creat-time, mod-date, mod-
time) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command returns information about the file specified in path.

A file may occupy more physical disk space than is necessary, because disk space is
usually allocated in blocks of some fixed size. This is why the logical and physical sizes can
be different.

It returns an error code (See Error Codes), or zero if no error occurs.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

Example
; return the file info for the omnis executable

Calculate lFileName as con (sys (115),'omnis.exe')

Get file info

(lFileName,lFileType, lFileCreator,lFileLogicalSize,lFilePhysicalSize,lFileCreation

Date,lFileCreationTime,lFileModifiedDate,lFileModifiedTime) Returns lErrCode

Get file name

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get file name (path [,dialog-title] [,file-type...]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command opens the standard Open file dialog for the current Operating System, in
order to obtain the path of a file selected by the user. You would typically use this command
to prompt the user for the path of an existing file. If you want to prompt the user to enter the
path of a new file, use the Put file name command instead.

 Get file read-only attribute

 107

You can specify a dialog-title for the Open dialog.

The optional file-type parameter limits the choice of file types available.

Get file name returns the full pathname of the file the user selects in path, or path remains
empty if no file is selected (that is, the Cancel button was clicked). The selected file is not
opened.

It returns an error code (See Error Codes), or zero if no error occurs.

File types

You can specify one or more extensions (using wildcard patterns like those used in many
DOS and shell commands) separated by semicolons. For example, "*.TXT" would specify
text files only.

Example
; open the Get File dialog and show only omnis libraries

Get file name (lFilePath,'Select the library to open','*.lbs') Returns lErrCode

; open the Get File dialog and show only text files

Get file name (lFilePath,'Select the library to open','*.txt;*.doc') Returns

lErrCode

Get file read-only attribute

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get file read-only attribute (path, read-flag) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command returns the current read-only attribute of the file specified in path. If the read-
flag parameter returns kTrue the file is read-only, otherwise if kFalse is returned the file is
read/write.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
; returns the read - only attribute of the omnis.exe in the omnis tree

Calculate lFileName as con (sys (115),'omnis.exe')

Get file read - only attribute (lFileName,lFileAttribute) Returns lErrCode

Get files

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get files (list-name, first-column, path, file-type [,creator-type] [,8.3]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command returns a list of files in a directory or folder.

To list only files of a specified type, specify the file-type, which is a wildcard, such as ó*.LBSô.

Get folders

108

If you omit the file-type, the command returns the names of all the files.

You specify the list with list-name. The list must have a column defined as list-column-name,
where list-column-name is the name of a variable. This column will receive the names of the
files found under the specified path-name, including the extension.

On Windows, you can also supply the 8.3 parameter. This defaults to kFalse. If you
pass kTrue, then Get files returns the 8.3 name equivalent to any long file names.

It returns an error code (See Error Codes), or zero if no error occurs.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path
delimiter for the current platform: \ (back-slash) on Windows, or / (forward-slash) for Unix
and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return the
full pathname of the folder containing the Omnis executable, including the terminating path
separator, which might be useful to reference files in the Omnis tree.

The following example uses Get files to build a list of all the libraries in the folder returned
by sys(10).

Example
Do lFileList.$define(lFileName)

; get the path of the examples folder in the studio tree

Calculate lPathname as con (sys (115),'welcome', sys (9),'examples')

; return the list of all example libraries

Get files (lFileList,lFileName,lPathname,'*.lbs') Ret urns lErrCode

Get folders

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get folders (list-name, first-column, path [,8.3]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command returns a list of folders under the specified path-name.

You specify the list with list-name. The list must have a column defined as list-column-name,
where list-column-name is the name of a variable. This column will receive the names of the
folders under the specified path-name

On Windows, you can also supply the 8.3 parameter. This defaults to kFalse. If you
pass kTrue, then Get folders returns the 8.3 name equivalent to any long folder names.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
; obtain a list of the folders in the root of your machine

Do lFolderList.$define(lFolderName)

Switch platform ()

 Case 'U'

 Get folders (lFolderList, lFolderName,'/')

 Default

 Get folders (lFolderList,lFolderName,'C: \ ')

End Switch

 Get statement

 109

Get statement

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

Get statement field-name

Description

This command loads the contents of the SQL statement buffer into a specified field or
variable. The field-name parameter can be any Omnis character field or variable. The buffer
holds all SQL statements and text entered since the last Begin statement command which
have not yet been executed. The square brackets and SQL functions will have been
evaluated but the values of indirect @[] square bracket notation will not be available.

Example
; Show the sql to the user before creating the

; table MY_TABLE

Calculate lHostname as con (sys (115),'mydatafile.df1')

Do iSessObj.$logon(lHostname,'','','MYSESSION')

Do iSessObj.$newstatement('MyStatement') Returns lStatObj

Do lRow.$definefromsqlclass('sMySchemaClass')

Do iSessObj.$createnames(lRow) Returns lCreateNames

Begin s tatement

Sta: Create Table MY_TABLE ([lCreateNames])

End statement

Get statement lStatment

Yes/No message {Execute [lStatment]}

If flag true

 Do lStatObj.$execdirect()

End If

Get text block

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

Get text block field-name

Description

This command loads the current contents of the text buffer for the current method stack into
the specified field or variable. You build up the text block using the Begin text
block and Text: commands. Following an End text block, you can return the contents of the
text buffer using the Get text block command.

Example
Begin text block

Text: Thought for the day: (Carriage return)

Text: If a train station is where the train

Text: stops, w hat is a work station?

End text block

Get text block lTextString

OK message {[lTextString]}

Get working directory

110

Get working directory

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get working directory (path) Returns err-code

Description

Returns the current working directory into path.

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

Example
; return the current working directory

Get working directory (lDirectory)

Go to next selected line

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Go to next selected line ([From start][,Backwards])

Options

From start
If specified, the command starts with the first line of the list rather than the line
immediately after the current line

Backwards
If specified, the command steps through the list in reverse order; when used with
'From start' the command starts at the end of the list, otherwise if 'From start' is
not specified, it starts with the line before the current line

Description

This command scans a list for selected lines and goes to the first one it finds. It sets the
current line (LIST.$line) for the current list (#CLIST) equal to the next selected line in that list.

The Go to next selected line command steps through the list starting at the current line (if
no options are selected) until a selected line is found. When a selected line is located,
LIST.$line is set equal to that line number. If a selected line is not found, the flag is cleared
and LIST.$line is unchanged.

The Backwards option causes the list to be searched in descending order; the From
start option causes the list to be searched from the start. If both
options Backwards and From start are selected, the list is searched from the end.

Example
; Transfer the value from line 3 to the 2 selected lines

Set current list lMyList

Define list {lCol1}

For lCount from 1 to 10 step 1

 Add line to list {(lCount)}

End For

Calculate lMyList.$line as 3

Load from list

Select list line(s) {1}

 Hide docking area

 111

Select list line(s) {5}

Go to next selected line (From start)

Replace line in list

Go to next selected line

Replace line in list

Hide docking area

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Hide docking area {docking-area (e.g. kDockingAreaBottom)}

Description

This command closes either the top, bottom, left, or right docking area. The docking area is
specified using one of the docking area
constants: kDockingAreaTop, kDockingAreaBottom, kDockingAreaLeft, or
kDockingAreaRight.

When you close a library, Omnis does not automatically close any docking areas that are
open. You must explicitly hide each docking area using Hide docking area. Leaving docking
areas open and closing the library containing those docking areas can cause problems in
your application.

Example
Show docking area { kDockingAreaLeft }

; install toolbar on left docking area

Install toolbar {tbMyToolbar}

; when the library closes, hide the docking ar ea

Hide docking area { kDockingAreaLeft }

; alternatively you can use the following notation

Do $root.$prefs.$dockingareas.$assign(kDockingAreaNone)

Hide fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO YES NO All

Syntax

Hide fields {list-of-field-names (Name1,Name2,...)}

Description

This command hides the specified field or list of fields. You can display hidden fields
with Show fields.

Example
Yes/No message {Do you want to hide fields?}

If flag true

 Begin reversi ble block

 Hide fields {myField1,myField2}

 End reversible block

End If

; do something

Quit method

; now this method ends and the fields are re - shown as they are in a reversible

block

HTTPClose

112

; To hide a single field on the current window

Do $cwind.$objs.m yField1.$visible.$assign(kFalse)

; to hide all fields on the current window

Do $cwind.$objs.$sendall($ref.$visible.$assign(kFalse))

HTTPClose

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPClose (socket[,option {Default zero for complete;1 for partial;2 for
abort}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPClose closes, and depending on the Option, releases a Socket. When the socket is
connected, this will result in the closure of the connection to the remote application. All new
sockets returned by all Web commands, must eventually be released using HTTPClose, to
avoid resource leakage.

The most brutal form of HTTPClose is an abortive close. In this case, no consideration is
given to the state of the connection, or exchanges with the remote application, and the
socket is closed and released immediately. This form of HTTPClose is recommended for
use in error handling situations.

The mildest form of HTTPClose is a partial close. In this case, the socket is not released,
and you will need to call HTTPClose again to release the socket. A partial close initiates a
disconnect of the TCP/IP connection, by sending a TCP/IP packet with the finish flag set.
This means that you can no longer send data to the remote application, but you can continue
to receive data. The remote application will be informed of the partial close, when it receives
zero bytes.

The remaining form of HTTPClose is a complete close. In this form, HTTPClose initiates a
close of the connection if necessary, receives data on the connection until no more is
available (to flush the connection), and releases the socket.

Socket is an Omnis Long Integer field containing a number representing a previously opened
socket.

Option is an optional Omnis Integer field, which has the value zero for a complete close, 1
for a partial close, and 2 for an abortive close. If omitted, it defaults to a complete close.

Status is an Omnis Long Integer field which receives the value zero for success, or an error
code < 0 for failure. Possible error codes are listed in the Web Command Error Codes
Appendix.

Example
; Connect to the server IP address iHostName on port iPort, send

; the message iMessage and then close the socket

Calculate iHostName as '0.0.0.0'

Calculate iPort as 6000

Calculate lMessage as 'Hello remote application'

HTTPOpen (iHostName,iPort) Returns iSocket

If iSocket>0

 HTTPGet

 113

 ; connected

 HTTPSend (iSocket,lMessage) Returns lCharCount

End If

HTTPClose (iSocket)

HTTPGet

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPGet (host,uri[,cgilist,hdrlist,service|port,secure {Default kFalse},verify {Default kTrue},m
ap+ {Default kFalse}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPGet is a client command that submits a GET HTTP request to a Web server.

Host is a Character field containing the hostname or IP address of the Web server.

URI is a Character field containing the URI to GET from the Web Server. For example,
"/default.html", or "/cgi-bin/mycgiscript"

CGIList is an optional parameter. It is an Omnis list with two character columns. The list
contains the CGI arguments to be appended to the URI. There is one row for each CGI
argument. For example

Attribute Value

Name John Smith

City Podunk

Alive On

Submit Please

Note: Before the values are sent to the Web server, HTTPGet automatically performs any
CGI encoding required to pass special characters in the arguments. There is no need to call
the CGIEncode command.

HdrList is an optional parameter. It is an Omnis list with two character columns.. The list
contains additional headers to add to the headers of the HTTP GET request. Note that the
header name excludes the ó:ô, which HTTPGet inserts automatically when it formats the
header.

For example

Header name Value

User-Agent My Client

Content-type text/html

HTTPGet

114

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to the port number specified in the host, or if none is present, it
defaults to 80 or 443, the default port for HTTP or HTTPS respectively (depending on the
value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required
to the server. Pass kTrue for a secure connection, in which case the built-in security
technology will be used, so on Windows óSecure Channelô (Schannel) is used, on macOS
óSecure Transportô is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse.
When Verify is kTrue, the command instructs the installed SSL library to verify the server's
identity using its certificate; if the verification fails, then the connection will not be
established. You can pass Verify as kFalse, to turn off this verification; in this case, the
connection will still be encrypted, but there is a chance the server is an impostor. In order to
perform the verification, the installed SSL library uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own
Certificate Authority to self-sign certificates, you can place its certificate in the cacerts folder,
and the installed SSL library will use it after you restart Omnis.

Map+ is an optional Boolean parameter which when true indicates that plus characters in
CGI parameter names and values in the CGIList are to be URL encoded as hex.

Socket receives the result of the request. HTTPGet opens a connection to the Web server,
and formats and sends an HTTP GET request to the server. If the command succeeds, it
returns the socket number for the connection to the WEB server; otherwise, it returns an
error number which is less than zero. After successfully issuing HTTPGet, you should
call HTTPRead to read the response from the server; ALWAYS call HTTPClose to close the
connection and free the socket. Possible error codes are listed in the Web Command Error
Codes Appendix.

HTTPGet adds the following header fields by default:

Attribute Value

Accept */*

User-Agent TigerLogic ï Omnis

Note: After calling HTTPGet, you can call HTTPSend to send your own content, before you
read the response, provided that you include Content-type and Content-length headers in
the HdrList.

Example
; Open a connection to the web server and read the server respose

; into lBuffer

Calculate iHostName as '0.0.0.0'

Do lCGIList.$d efine(lAttribute,lValue)

Do lCGIList.$add('Name','John Smith')

Do lCGIList.$add('Email','john.smith@smiths.com')

HTTPGet (iHostName,'/default',lCGIList) Returns iSocket

HTTPRead (iSocket,lBuffer) Returns lCharCount

HTTPClose (iSocket) Returns lStatus

 HTTPHeader

 115

HTTPHeader

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPHeader (socket,status,headerlist) Returns length

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPHeader is a server command that sends an HTTP standard header to an HTTP client,
for example, an Omnis application or a Web browser. HTTP headers are normally hidden
from Web clients, but convey very useful information regarding the status and contents of
the Web page. An Omnis method must send a header back to a connected Web browser in
order to have its results properly displayed.

Socket is an Omnis Long Integer field containing the number of a socket that has already
been opened for a TCP/IP client, usually a Web browser or Omnis application that requires
and can understand HTTP.

Status is an Omnis Long Integer field containing an HTTP status code. The status code may
change the way in which any following HTML or other information displays on the Web
browser. The following table contains the status codes which HTTPHeader recognises.
Other status codes are accepted, but HTTPHeader then sends "Unknown status" as the text
for the code.

Code Meaning

200 The request was completed successfully

201 The request was a POST method and was completed successfully. Data was sent to
the server, and a new resource was created as a result of the request.

202 A GET method returned only partial results.

204 The request was completed successfully, but there is no new information. The
browser will continue to display the document from which the request originated.

301 The requested URL has moved permanently

302 The requested URL has moved temporarily

304 The GET request included a header with an If-Modified-Since field. However, the
server found that the data requested had not been modified since the date in this
field. The document was not resent (the Web browser will probably display it from its
cache).

400 The request syntax was wrong

401 The request requires an Authorization field but the client did not specify one. Usually
results in a username and password to be displayed

HTTPOpen

116

403 Access is forbidden

404 The request URL could not be found.

500 The server has encountered an internal error and cannot continue with the request.

501 The server does not support this method

502 Bad gateway

503 Service unavailable

HeaderList is an Omnis list with two character columns. The list contains the headers to
send. Note that HTTPHeader automatically sends some headers, so do not provide those
(see below).

At a minimum, for Omnis to return normal Web-page HTML text to the client, you should
send a header containing the line:

Header name Value

Content-type text/html

HTTPHeader automatically includes the following lines in all HTTP response headers:

Attribute Value

Content-type text/html (only if the HeaderList does not contain a Content-type header)

Date The current GMT date and time in HTTP header format

Server Omnis

MIME-version 1.0

Length is an Omnis Long Integer field which receives the number of characters sent, or an
error code less than zero. Possible error codes are listed in the Web Command Error Codes
Appendix.

Example
; When a new connection is received call the method $newconnection

; and reply to the client to confirm the request was com pleted

HTTPServer ('$newconnection',6001) Returns lStatus

; method $newconnection

Do lHeaderList.$define(lAttribute,lValue)

HTTPHeader (iSocket,200,lHeaderList) Returns lCharCount

HTTPOpen

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPOpen (hostname[,service|port,secure {Default kFalse},verify {Default kTrue}]) Returns
 socket

 HTTPPage

 117

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPOpen is a client command that opens an HTTP connection to a Web server.

Hostname is a Character field containing the hostname or IP address of an HTTP server.
For example:

www.myhost.com or 255.255.255.254

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to 80 or 443, the default port for HTTP or HTTPS respectively
(depending on the value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required
to the server. Pass kTrue for a secure connection, in which case the built-in security
technology will be used, so on Windows óSecure Channelô (Schannel) is used, on macOS
óSecure Transportô is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse.
When Verify is kTrue, the command instructs the installed SSL library to verify the server's
identity using its certificate; if the verification fails, then the connection will not be
established. You can pass Verify as kFalse, to turn off this verification; in this case, the
connection will still be encrypted, but there is a chance the server is an impostor. In order to
perform the verification, the installed SSL library uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own
Certificate Authority to self-sign certificates, you can place its certificate in the cacerts folder,
and the installed SSL library will use it after you restart Omnis.

If HTTPOpen succeeds, socket receives a positive number which is the socket for the new
connection to the server. Otherwise, socket receives a negative error code. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Connect to the server IP address iHostName on port iPort and send

; the message iMessage

Calculate iHostName as '0.0.0.0'

Calculate iPort as 6000

Calculate lMessage as 'Hello remote applicati on'

HTTPOpen (iHostName,iPort) Returns iSocket

If iSocket>0

 ; connected

 HTTPSend (iSocket,lMessage) Returns lCharCount

End If

HTTPPage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPPage (url[,service|port,verify {Default kTrue}]) Returns html-text

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

HTTPParse

118

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPPage is a client command that retrieves the content of the Web page specified by the
URL, into an Omnis Character or Binary variable.

Note: HTTPPage allows you to get HTML text source through a server, transparently and
without additional coding.

URL is an Omnis Character field containing a standard Web page URL of the form
http://domaininfo.xxx/path/webpagepage. If you are using a secure connection, the URL
must be prefixed with https://.

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to the port number specified in the URL, or if none is present,
it defaults to 80 or 443, the default port for HTTP or HTTPS respectively.

The primary role of HTTPPage is to grab, simply and quickly, the HTML text source of the
page specified by the URL. The URL may also specify a CGI name and arguments, but it is
simpler to access CGIs by using the HTTPPost or HTTPGet functions.

If an error occurs, the command returns a negative number
to Page. Otherwise, Page receives the contents of the specified URL. In other words, it
receives the complete HTTP response for the URL, including the status line and the
headers. Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; Read the html content from lURL into the cha racter variable lHtmlPage

Calculate lUrl as 'http://www.omnis.net/news/index.html'

HTTPPage (lUrl) Returns lHtmlPage

HTTPParse

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPParse (message,headerlist,method,httpver[,uri,cgilist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPParse is a server command to parse HTTP header information from an incoming
request message.

Message is an Omnis Character or Binary field containing the full text of an HTTP request
message.

HeaderList is an Omnis list with two character columns. The list receives the headers
extracted from the request message, one line per header.

For example, after the call, the list might contain entries such as:

Attribute Value

 HTTPParse

 119

Date The current GMT date and time in HTTP header

User-Agent NCSA Mosaic for the X Window System/2.4 libwww/2.12
modified

Accept /

Content-type Application/x-www-form-urlencoded

Content-
length

1234

Note: HTTPParse automatically strips the colons after the attribute names.

Method is an Omnis character field that receives the type of HTTP method being requested,
for example, GET, POST, or HEAD.

HTTPVersion is an Omnis Character field containing the version of HTTP. For example, 1.0.

URI is an Omnis Character field that receives the name of the URI to be processed. At a
minimum, the URI is a single slash, so every URI returned from HTTPParse is of the form
/URLName.

Note: Due to the presence of the leading slash, a simple Omnis equality string comparison to
the name of the URI fails. Use the pos() function or similar parsing mechanism to find the
URI name. The trailing question mark of a GET-method CGI, which separates the URI path
from the CGI arguments, is stripped by HTTPParse.

CGIList is an Omnis list field with two character columns. It receives the CGI arguments
present in the request, either extracted from the URL, or extracted from content of type
"application/x-www-form-urlencoded". For example, if the following HTML form is the
submitted from a browser:

Name:

City:

Are you alive?

and the user types in John Smith, Podunk and checks the City field,
after HTTPParse, CGIList contains:

Attribute Value

Name John Smith

City Podunk

Alive Yes

Submit Please

Note: Before the data is stored in the list, HTTPParse automatically decodes any CGI
encoding required to pass special characters. There is no need to call the CGIDecode
command.

Possible error codes are listed in the Web Command Error Codes Appendix.

Example
; When a new con nection is received call the method $newconnection

; to read and parse the message sent by HTTPPost

HTTPServer ('$newconnection',6001) Returns lStatus

; method $newconnection

HTTPRead (iSocket,lBuffer) Returns lCharCount

HTTPPost

120

Do lHeaderList.$define(lHeaderNam e,lHeaderValue)

Do lCGIList.$define(lAttribute,lValue)

HTTPParse (lBuffer,lHeaderList,lMethod,lHttpVersion,lUri,lCGIList) Returns lStatus

HTTPPost

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPPost (host,uri[,cgilist,hdrlist,service|port,secure {Default kFalse},verify {Default kTrue},
map+ {Default kFalse}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPPost is a client command that submits a POST HTTP request to a Web server.

Host is a Character field containing the hostname or IP address of the Web server.

URI is a Character field containing the URI to GET from the Web Server. For example,
"/default.html", or "/cgi-bin/mycgiscript"

CGIList is an optional parameter. It is an Omnis list with two character columns. The list
contains the CGI arguments to be posted to the URI. These will be sent as content of type
"application/x-www-form-urlencoded". There is one row for each CGI argument. For example

Attribute Value

Name John Smith

City Podunk

Alive On

Submit Please

Note: Before the values are sent to the Web server, HTTPPost automatically performs any
CGI encoding required to pass special characters in the arguments. There is no need to call
the CGIEncode command.

HdrList is an optional parameter. It is an Omnis list with two character columns.. The list
contains additional headers to add to the headers of the HTTP POST request. Note that the
header name excludes the ó:ô, which HTTPPost inserts automatically when it formats the
header.

For example

Header name Value

User-Agent My Client

Content-type text/html

Note that because CGI arguments are sent as content, you can only supply your own
Content-type and Content-length headers if you do not supply CGI arguments.

 HTTPPost

 121

Service|Port is an optional parameter that specifies the service name or port number of the
server. If you specify a service name, the lookup for the port number occurs locally. If you
omit this argument, it defaults to the port number specified in the host, or if none is present, it
defaults to 80 or 443, the default port for HTTP or HTTPS respectively (depending on the
value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required
to the server. Pass kTrue for a secure connection, in which case the built-in security
technology will be used, so on Windows óSecure Channelô (Schannel) is used, on macOS
óSecure Transportô is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse.
When Verify is kTrue, the command instructs the installed SSL library to verify the server's
identity using its certificate; if the verification fails, then the connection will not be
established. You can pass Verify as kFalse, to turn off this verification; in this case, the
connection will still be encrypted, but there is a chance the server is an impostor. In order to
perform the verification, the installed SSL library uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own
Certificate Authority to self-sign certificates, you can place its certificate in the cacerts folder,
and the installed SSL library will use it after you restart Omnis.

Map+ is an optional Boolean parameter which when true indicates that plus characters in
CGI parameter names and values in the CGIList are to be URL encoded as hex.

Socket receives the result of the request. HTTPPost opens a connection to the Web server,
and formats and sends an HTTP POST request to the server. If the command succeeds, it
returns the socket number for the connection to the WEB server; otherwise, it returns an
error number which is less than zero. After successfully issuing HTTPPost, you should
call HTTPRead to read the response from the server; ALWAYS call HTTPClose to close the
connection and free the socket. Possible error codes are listed in the Web Command Error
Codes Appendix.

HTTPPost adds the following header fields by default:

Attribute Value

Accept */*

Content-length The length of the content (Only if you supply CGI arguments)

Content-type application/x-www-form-urlencoded (Only if you supply CGI
arguments)

User-Agent TigerLogic ï Omnis

Note: After calling HTTPPost, you can call HTTPSend to send your own content, before you
read the response, provided that you include Content-type and Content-length headers in
the HdrList.

Example
; Post a HTTP request to the server lServer listening on port 6001

Do lCGIList.$define(lAttribute,l Value)

Do lCGIList.$add('Name','John Smith')

Do lCGIList.$add('Email','john.smith@smiths.com')

Calculate lServer as '0.0.0.0.0.0'

HTTPPost (lServer,' \ default',lCGIList,lHeaderList,6001) Returns iSocket

HTTPRead

122

HTTPRead

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPRead (socket,buffer[,type {Default zero for server; Non-zero for
client}]) Returns received-byte-count

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPRead is a client and server command that reads a complete HTTP request message
or response. Servers use it to read requests, and clients use it to read responses.

Socket is a long integer field containing the socket number of an open HTTP connection.

Buffer is a character or binary field into which HTTPRead places the received request or
response. If the field is character, then the response must be encoded in UTF-8; in this
case, HTTPRead converts the received data from UTF-8 to character.

Type is an optional parameter. It is a Boolean value, where zero indicates server behavior,
and non-zero indicates client behavior. If omitted, it defaults to zero.

Received-byte-count is a long Integer field which receives the number of bytes placed
in Buffer. If an error occurs, an error code less than zero is returned here. Possible error
codes are listed in the Web Command Error Codes Appendix.

Note: HTTPRead always operates in blocking mode, and will timeout after the connection is
inactive for the comms timeout value (which can be changed from its default of 1 minute
using the command WebDevSetConfig). The server reads until the HTTP request header is
complete, and it has received content of the correct size. The client behaves similarly, but
will also treat graceful closure of the connection as marking the end of the response.

Example
; When a new connection is received call the method $newconnection

; to read the message

HTTPServer ('$newconnection',6001) Returns lStatus

; method $newconnection

HTTPRead (iSocket,lBuffer) Returns lByteCo unt

HTTPSend

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSend (socket,buffer) Returns sent-byte-count

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

 HTTPServer

 123

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

Socket is a long integer field containing the socket number of a connected socket.

Buffer is a character or binary field containing the data to send on the socket. If you pass a
character field, then HTTPSend will convert the data to UTF-8, and then send the UTF-8.

HTTPSend returns the number of bytes it sent to sent-byte-count, a long integer field.

If the socket is in blocking mode, HTTPSend always sends all of the data, unless an error
occurs.

If the socket is in non-blocking mode, HTTPSend sends as much data as it can without
blocking.

If an error occurs, HTTPSend returns a negative error code

Notes

If the connection to the server is secure, HTTPSend always sends the data in blocking
mode.

Non-blocking sockets return an error code of -10035 if the socket cannot accept the data to
send immediately. Some implementations of socket libraries may have limits on the number
of bytes you can send at one time. Consult the documentation for your installed sockets
libraries. You may have to send a message in multiple chunks in order to send a very long
message. Always check sent-byte-count to determine how much of the buffer has actually
been sent; if the value is less than the buffer size, you need to call HTTPSend again, to
send the rest of the buffer.

It does not make sense to send a character field on a non-blocking socket, because
the sent-byte-count corresponds to the sent UTF-8 bytes.

Example
; Connect to the server IP address iHostName on port iPort and send

; the message iMessage

Calculate iHostName as '0.0.0.0'

Calculate iPort as 6 000

Calculate lMessage as 'Hello remote application'

TCPConnect (iHostName,iPort) Returns iSocket

If iSocket>0

 ; connected

 HTTPSend (iSocket,lMessage) Returns lByteCount

End If

HTTPServer

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPServer (webproc,port[,workingmessage {Default non-zero for visible; zero for
invisible}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPSetProxyServer

124

HTTPServer invokes a listening socket on a specified port, to receive incoming HTTP
requests. This command optionally shows an Omnis working message with the count of
accepted connections. HTTPServer calls a user-specified Omnis method each time a new
connection arrives. The user function receives the socket number for the new HTTP
connection.

WebProc is an Omnis Character field containing the name of the Omnis method to be called
when a connection arrives. The method receives one parameter, the number of the socket
for the new HTTP connection. For example, MYLIBRARY.MYCODE/MYPROC.

You may read and write to the parameter socket with HTTPRead, HTTPSend,
or HTTPHeader commands or a TCP equivalent (TCPSend; for example).

Port is an Omnis Integer field that is optionally used to indicate the port number on
which HTTPServer listens for connections. If omitted, the port number defaults to 80.

Caution: You must close the socket with HTTPClose before quitting the Omnis method.

The command returns an integer status, which is less than zero if an error occurs. Possible
error codes are listed in the Web Command Error Codes Appendix.

Stopping HTTPServer

Once started, HTTPServer runs indefinitely until it is stopped. There are three ways to
stop HTTPServer:

1. Press the Cancel button on the working message displayed by the command.

2. Press the break key sequence (Ctrl-Break/Ctrl-C/Cmnd-period).

3. Set the Omnis flag to false before returning from the WebProc method. Obviously, you
need to make sure the flag is true before returning, if you wish to process further
connections

Example
; Listen for incoming http requests on port 6001, call the

; method $newconnection in the current instance when a

; connection arrives.

HTTPServer ('$newconnection',6001) Returns lStatus

HTTPSetProxyServer

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSetProxyServer ([hostname,service|port,secure {Default kFalse},verify {Default kTrue}
]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPSetProxyServer sets the server to which the HTTPGet, HTTPPage and HTTPPost
commands connect; the proxy server then requests the URI from the original server (either
directly, or via another proxy server). Before HTTPSetProxyServer has been called, the
commands connect directly to the server for the URI. After setting a proxy server, you can
revert to direct connections, by calling HTTPSetProxyServer with empty parameters.

 HTTPSplitHTML

 125

Note: There is only a single proxy server setting for the Omnis environment, meaning that it
is shared by all threads in the multi-threaded server.

Hostname is a Character field containing the hostname or IP address of the HTTP proxy
server. For example:

www.myhost.com or 255.255.255.254

Service|Port is an optional parameter that specifies the service name or port number of the
proxy server. If you specify a service name, the lookup for the port number occurs locally. If
you omit this argument, it defaults to 80 or 443, the default port for HTTP or HTTPS
respectively (depending on the value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required
to the server. Pass kTrue for a secure connection, in which case the built-in security
technology will be used, so on Windows óSecure Channelô (Schannel) is used, on macOS
óSecure Transportô is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse.
When Verify is kTrue, the command instructs the installed SSL library to verify the server's
identity using its certificate; if the verification fails, then the connection will not be
established. You can pass Verify as kFalse, to turn off this verification; in this case, the
connection will still be encrypted, but there is a chance the server is an impostor. In order to
perform the verification, the installed SSL library uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own
Certificate Authority to self-sign certificates, you can place its certificate in the cacerts folder,
and the installed SSL library will use it after you restart Omnis.

The command returns an integer status, which is less than zero if an error occurs. Possible
error codes are listed in the Web Command Error Codes Appendix.

Example
; All requests to HTTPGet, HTTPPost and HTTPPage connect to this proxy server

Calculate lHostName as "my.proxy.com"

Calculate lPort as "8080"

HTTPSetProxyServer (lHostName,lPort)

; Clear the proxy server settings, so HTTP Get, HTTPPost and HTTPPage connect

directly to the server for the requested URI

HTTPSetProxyServer

HTTPSplitHTML

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSplitHTML (message,tagtextlist) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPSplitHTML is a client function to parse the HTML from a Web page into an Omnis list.
The HTML tags are parsed out of the text, so that it easier to write a program that grabs the
Web page content or interprets the tags from a form.

HTTPSplitURL

126

Message is an Omnis Character or Binary field containing the text of the content portion of a
Web page, including HTML tags.

TagtextList is an Omnis list defined to have three columns, all character. Column 1 contains
the opening HTML tag, column 2 the actual page text, and column 3 the closing HTML tag.

The command returns an integer status, which is less than zero if an error occurs. Possible
error codes are listed in the Web Command Error Codes Appendix.

Example
; Parse the html from lURL into the list lHtmlTagList

Calculate lUrl as 'http://www.omnis.net/news/index.html'

HTTPPage (lUrl) Returns lHtmlPage

Do lHtmlTagList.$define(lOpeningHtmlTag,lHtmlText,lClosingHtmlTag)

HTTPSplitHTML (lHtmlPage,lHt mlTagList)

HTTPSplitURL

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSplitURL (url,hostname,uri) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

HTTPSplitURL is a server and client function which splits a full URL into a hostname and a
path (that is, a URI). Useful for following HREF links on pages.

URL is an Omnis Character field containing a standard Web page URL of the form
http://host.mydomain.com/path/webpage.html. If you are using a secure connection, the URL
must be prefixed with https://.

Hostname is an Omnis character field that receives the hostname parsed out of the URL
argument. For example, given the URL, above, the hostname portion would be
host.mydomain.com

URI is an Omnis Character field that receives URI parsed out of the URL. For example,
given the URL, above, the URI would be /path/webpage.html.

The command returns an integer status, which is less than zero if an error occurs. Possible
error codes are listed in the Web Command Error Codes Appendix.

Example
; Split lUrl into lHostname and lUri

Calculate lUrl as 'http://www.omnis.net/news/index.html'

HTTPSplitURL (lUrl,lHostName,lUri) Returns lStatus

;; lHostName = www.omnis.net, lUri = /news/index. html

If calculation

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

 If canceled

 127

Syntax

If calculation

Description

This command tests the result of the calculation and branches if zero. If the result of the
calculation is non-zero, the result of the test will be true; a result of zero is interpreted as
false. As with all If commands, control passes to the next command in the method if the
result is true, otherwise to the next End If, Else or Else If in the method.

Example
If pSecurityLevel=1

 Open window instance wAministrator

Else

 OK message {This feature is only available to the Administrator}

End If

If canceled

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

If canceled ([No refresh])

Options

No refresh
If specified, the command does not refresh the screen; this may result in
improved performance on some platforms, especially when the command is used
in each iteration of a loop

Description

This command tests whether the user wishes to cancel execution of the current method, and
branches if not. The user requests a cancel by either clicking on a working message Cancel
button, or by pressing Ctrl-Break under Windows, Ctrl-C under Linux, or Cmnd-period under
macOS. If Enable cancel test at loops is switched on, a loop or other processing may detect
a cancel and quit all methods before it is detected by an If canceled command.

Example
Calculate #F as 1

Disable cancel test at loops

Working message (Cancel button) {Doi ng some work}

Repeat

 Redraw working message

 If canceled

 OK message (Icon,Sound bell) {Method Terminated.}

 Quit method

 End If

Until flag false

If flag false

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

If flag false

If flag true

128

Description

This command lets you implement a branch or change of processing order within a method
depending on the result of the previous command. It tests the flag and if it is false, the
commands following the If flag false are executed. However, if the flag is true, control
branches to the next Else, Else If or End If in the method.

Example
; Open the window wMyWindow if it is not already open

Test for window open {wMyWindow}

If flag false

 Open window instance wMyWin dow

End If

If flag true

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

If flag true

Description

This command lets you implement a branch or change of processing order within a method
depending on the result of the previous command. It tests the flag and if it is true, the
commands following the If flag true are executed. However, if the flag is false, control
branches to the next Else, Else If or End If in the method.

Example
; Test if list line sele cted sets the flag to true if the line is selected

Set current list iMyList

Test if list line selected {2}

If flag true

 ; If the list line is selected, processing continues here.

 OK message {The list line is selected}

End If

IMAPCheck

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPCheck (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPCheck sends a CHECK command to the IMAP server. The CHECK command
requests a checkpoint of the currently selected mailbox. Refer to RFC 3501 for more details.

 IMAPConnect

 129

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
IMAPCheck (iIMAPSocket) Returns lStatus

If lStatus<0

 ; The CHECK command failed

End If

IMAPConnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPConnect (server,username,password[,stsproc,responselist,secure {Default zero
insecure;1 secure;2 use STARTTLS},verify {Default kTrue}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPConnect establishes a connection with an IMAP server. The server must support
IMAP4rev1. See RFC 3501 for details. If IMAPConnect succeeds, it returns the socket
opened to the IMAP server. You can use this socket with the other IMAP commands which
require a socket argument. If an error occurs, IMAPConnect returns an error code, which is
less than zero. Possible error codes are listed in the Web Command Error Codes Appendix.

Note that it is essential that you call IMAPDisconnect when you have finished using the
connection to the IMAP server.

Server is an Omnis Character field containing the IP address or hostname of an IMAP
server. For example: imap.mydomain.com or 255.255.255.254. If the server is not using the
default IMAP port (143, or 993 for a secure connection), you can optionally append the port
number on which the server is listening, using the syntax server:port, for example
imap.mydomain.com:1234.

IMAPConnect

130

Username is an Omnis Character field containing the user name that will be used to log in to
the IMAP server. The command uses CRAM-MD5 authentication if possible; if CRAM-MD5
is not supported by the server, or fails to authenticate for some reason, the command uses
the plain text LOGIN command if the server allows it.

Password is an Omnis character field containing the password for the user specified by
the username parameter.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information. Note you can only omit responselist if it would be
the last parameter to be sent, therefore if you include secure and/or verify, then
responselist must be included.

Secure is an optional Boolean parameter which indicates if a secure connection is required
to the server. Pass kTrue for a secure connection, in which case the built-in security
technology will be used, so on Windows óSecure Channelô (Schannel) is used, on macOS
óSecure Transportô is used, and on Linux OpenSSL is used.

IMAPConnect also supports an alternative secure option, if you pass secure with the value
2, the connection is initially not secure, but after the initial exchange with the
server, IMAPConnect issues a STARTTLS IMAP command to make the connection secure
if the server supports it (see RFC 3501 for details). Authentication occurs after a successful
STARTTLS command.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse.
When Verify is kTrue, the command instructs the installed SSL library to verify the server's
identity using its certificate; if the verification fails, then the connection will not be
established. You can pass Verify as kFalse, to turn off this verification; in this case, the
connection will still be encrypted, but there is a chance the server is an impostor. In order to
perform the verification, the installed SSL library uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own
Certificate Authority to self-sign certificates, you can place its certificate in the cacerts folder,
and the installed SSL library will use it after you restart Omnis.

Example
; Establish a connection to the IMAP server lServer for user

; lUsername using the password lPassword

Calculate lServer as 'my.imap.server'

Calculate lUserName as 'myusername'

Calculate lPassword as 'mypassword'

IMAPConnect (lServer,lUserName,lPassword) Returns iIMAPSocket

If iIMAPSocke t<0

 ; Connection failed

End If

 IMAPCopyMessage

 131

IMAPCopyMessage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPCopyMessage (socket,messageuid,destmailboxname[,stsproc,responselist]) Returns
status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPCopyMessage copies a message from the currently selected mailbox to another
mailbox, using the UID COPY command. Refer to RFC 3501 for more details.

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of
the message to be copied.

Destmailboxname is the name of the mailbox into which the message is to be copied.

IMAP mailbox names are left-to-right hierarchical using a single character to separate levels
of hierarchy. If you execute IMAPListMailboxes with empty RefName and MailboxName
parameters, the returned list has a single line from which you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when
sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Copy message with UID 142 from INBOX to sub - folder Test of INBOX

Calculate iMailbox as "INBOX"

IMAPSelectMailbox

(iIMAPSocket,iMailbox,iMessages,iRecent,iUIDNext,iUIDValidity,iUnseen) Returns

lSta tus

If lStatus>=0

IMAPCreateMailbox

132

 Calculate iMailbox as "INBOX.Test"

 Calculate iUID as 142

 IMAPCopyMessage (iIMAPSocket,iUID,iMailbox) Returns lStatus

 If lStatus<0

 ; The copy failed

 End If

End If

IMAPCreateMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPCreateMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPCreateMailbox creates a new mailbox on the IMAP server.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Mailboxname is the name of the mailbox to be created.

IMAP mailbox names are left-to-right hierarchical using a single character to separate levels
of hierarchy. If you execute IMAPListMailboxes with empty RefName and MailboxName
parameters, the returned list has a single line from which you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when
sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Create a new folder Test in the INBOX.

; "." is the hierarchy separator

Calculate iMailbox as "INBOX.Test"

IMAPCrea teMailbox (iIMAPSocket,iMailbox) Returns lStatus

 IMAPDeleteMailbox

 133

If lStatus<0

 ; The CREATE command failed

End If

IMAPDeleteMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPDeleteMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPDeleteMailbox deletes a mailbox (and the messages it contains) on the IMAP server.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Mailboxname is the name of the mailbox to be deleted.

IMAP mailbox names are left-to-right hierarchical using a single character to separate levels
of hierarchy. If you execute IMAPListMailboxes with empty RefName and MailboxName
parameters, the returned list has a single line from which you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when
sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Delete folder Test from the INBOX.

; "." is the hierarchy separator

Calculate iMailbox as "INBOX.Test"

IMAPDeleteMailbox (iIMAPSocket,iMailbox) Returns lStatus

If lStatus<0

 ; The DE LETE command failed

End If

IMAPDisconnect

134

IMAPDisconnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPDisconnect (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPDisconnect closes a connection to an IMAP server.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Close the connection to the IMAP server

IMAPDisconnect (iIMAPSocket)

IMAPExpungeMessages

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPExpungeMessages (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

 IMAPListMailboxes

 135

IMAPExpungeMessage permanently removes all messages that have the \Deleted flag set
from the currently selected mailbox.

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Delete messag es in the selected mailbox with the \ Deleted flag

IMAPExpungeMessages (iIMAPSocket) Returns lStatus

If lStatus<0

 ; The EXPUNGE command failed

End If

IMAPListMailboxes

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPListMailboxes (socket,refname,mailboxname,list[,stsproc,responselist]) Returns statu
s

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPListMailboxes sends a LIST command to the IMAP server, in order to get a list of a
subset of mailbox names from the complete set of all names available to the client.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Refname is an Omnis Character field. The command encloses refname in double quotes,
and sends it as the reference name argument of the LIST command. Setting this to an empty
string means the mailbox names will be interpreted from the top level. You may also set this
as the name of a mailbox, in which case this will be taken as the root of the search, and only

IMAPListMailboxes

136

mailboxes which are subfolders of this will be included in the search. For full details, see
RFC 3501.

Mailboxname is an Omnis Character field. The command encloses mailboxname in double
quotes, and sends it as the mailbox name with possible wildcards argument of the LIST
command. Setting this to an empty string is a special request, which will return a single list
line including the hierarchy separator character. Otherwise it will return a list of mailboxes
which match your search criteria. For example, * will return a list of mailboxes beginning
with M. For full details, see RFC 3501.

List receives the mailboxes returned by the server. Before calling the command, you must
define the list to have seven columns, as follows:

Column Contains

HasChildren A long integer which receives the \HasChildren flag value for the mailbox. Not
all servers support this flag, and even when a server supports the flag, it may
not always supply a value for this flag. Supported values are kFalse if the
mailbox has the \HasNoChildren flag, kTrue if the mailbox has the
\HasChildren flag, and kUnknown if the mailbox has neither of these flags.

NoInferiors A long integer which receives the \NoInferiors flag value for the
mailbox. kTrue if the mailbox has the \NoInferiors flag, kFalse if not.

NoSelect A long integer which receives the \NoSelect flag value for the
mailbox. kTrue if the mailbox has the \NoSelect flag, kFalse if not.

Marked A long integer which receives the \Marked flag value for the mailbox. kTrue if
the mailbox has the \Marked flag, kFalse if not.

UnMarked A long integer which receives the \UnMarked flag value for the
mailbox. kTrue if the mailbox has the \UnMarked flag, kFalse if not.

Separator The mailbox hierarchy separator character

MailboxName The mailbox name

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; List all mailboxes (folders) in the INBOX (INBOX is a standard IMAP mailbox)

; "." is the hierarchy separator

Do

iMailboxList.$define(iHasChildren,i NoInferiors,iNoselect,iMarked,iUnmarked,iSepara

tor,iMailbox)

Calculate iRefName as "INBOX."

 IMAPListMessages

 137

Calculate iMailbox as "%"

IMAPListMailboxes (iIMAPSocket,iRefName,iMailbox,iMailboxList) Returns lStatus

If lStatus<0

 ; Command failed

End If

IMAPListMessages

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPListMessages (socket,list[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPListMessages gets the list of messages in the currently selected mailbox.

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

List receives the list of messages in the mailbox. Before calling the command, you must
defined the list to have nine columns, as follows:

Column Contains

UID A long integer which receives the IMAP Unique Identifier (UID) of the message.
Note that the line number in the list is the IMAP message sequence number, at
the point the list was generated. It is safest to use UIDs to identify messages.

Size A long integer which receives the RFC 822 size in bytes of the message.

InternalDate A date-time which receives the Internal Date of the message. This is typically
the date and time that the message was placed in the mailbox.

Answered A long integer which is set to kTrue if the message has the \Answered
flag, kFalse if not.

Deleted A long integer which is set to kTrue if the message has the \Deleted
flag, kFalse if not.

Draft A long integer which is set to kTrue if the message has the \Draft flag, kFalse if
not.

Flagged A long integer which is set to kTrue if the message has the \Flagged
flag, kFalse if not.

Recent A long integer which is set to kTrue if the message has the \Recent
flag, kFalse if not.

IMAPListSubscribedMailboxes

138

Seen A long integer which is set to kTrue if the message has the \Seen flag, kFalse if
not.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; List all messages in the currently selected mailbox

Do

iMessageList.$define(iUID,iSize,iInternalDate,iAnswered,iDeleted,iDraft,iFlagged,i

Recent,iSeen)

IMAPListMessages (iIMAPSocket,iMessageList) Returns lStatus

If lStatus<0

 ; Command failed

End If

IMAPListSubscribedMailboxes

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPListSubscribedMailboxes (socket,refname,mailboxname,list[,stsproc,responselist]) R
eturns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPListSubscribedMailboxes sends an LSUB command to the IMAP server, in order to
get a list of a subset of mailbox names from the complete set of all subscribed names
available to the client.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Refname is an Omnis Character field. The command encloses refname in double quotes,
and sends it as the reference name argument of the LIST command. Setting this to an empty
string means the mailbox names will be interpreted from the top level. You may also set this
as the name of a mailbox, in which case this will be taken as the root of the search, and only

 IMAPListSubscribedMailboxes

 139

mailboxes which are subfolders of this will be included in the search. For full details, see
RFC 3501.

Mailboxname is an Omnis Character field. The command encloses mailboxname in double
quotes, and sends it as the mailbox name with possible wildcards argument of the LIST
command. Setting this to an empty string is a special request, which will return a single list
line including the hierarchy separator character. Otherwise it will return a list of mailboxes
which match your search criteria. For example, * will return a list of mailboxes beginning
with M. For full details, see RFC 3501.

List receives the mailboxes returned by the server. Before calling the command, you must
define the list to have seven columns, as follows:

Column Contains

HasChildren A long integer which receives the \HasChildren flag value for the mailbox. Not
all servers support this flag, and even when a server supports the flag, it may
not always supply a value for this flag. Supported values are kFalse if the
mailbox has the \HasNoChildren flag, kTrue if the mailbox has the
\HasChildren flag, and kUnknown if the mailbox has neither of these flags.

NoInferiors A long integer which receives the \NoInferiors flag value for the
mailbox. kTrue if the mailbox has the \NoInferiors flag, kFalse if not.

NoSelect A long integer which receives the \NoSelect flag value for the
mailbox. kTrue if the mailbox has the \NoSelect flag, kFalse if not.

Marked A long integer which receives the \Marked flag value for the mailbox. kTrue if
the mailbox has the \Marked flag, kFalse if not.

UnMarked A long integer which receives the \UnMarked flag value for the
mailbox. kTrue if the mailbox has the \UnMarked flag, kFalse if not.

Separator The mailbox hierarchy separator character

MailboxName The mailbox name

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; List all subscribed mailboxes (folders) in the INBOX (INBOX is a standard IMAP

mailbox)

; "." is the hierarchy separator

Do

iMailboxList.$define(iHa sChildren,iNoInferiors,iNoselect,iMarked,iUnmarked,iSepara

tor,iMailbox)

IMAPNoOp

140

Calculate iRefName as "INBOX."

Calculate iMailbox as "%"

IMAPListSubscribedMailboxes (iIMAPSocket,iRefName,iMailbox,iMailboxList) Returns

lStatus

If lStatus<0

 ; Command failed

End I f

IMAPNoOp

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPNoOp (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPNoOp sends a NOOP command to the IMAP server. The command itself does nothing,
but clients can use the NOOP command to poll the server to get status updates via
untagged responses (which will be placed in the responselist parameter if it is present). See
RFC 3501 for details. Note that the IMAPListMessages command automatically sends a
NOOP command before fetching the list of messages; this ensures that new messages are
returned in the list.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Issue a NOOP command to poll the server

Do iResponseList.$define(iResponse)

IMAPNoOp (iIMAPSocket,"",iResponseList) Returns lStatus

If lS tatus<0

 ; NOOP command failed

End If

 IMAPRecvHeaders

 141

IMAPRecvHeaders

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPRecvHeaders (socket,messageuid,headers[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded,allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPRecvHeaders receives the headers for a specified message in the currently selected
mailbox. The received headers are in RFC 822 format. You can pass the received headers
to the MailSplit command, in order to parse them.

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of
the message for which the headers are to be retrieved.

Headers is an Omnis Binary or Character field which receives the RFC 822 headers for the
message. For correct results with many of the encodings supported by MailSplit you must
receive into a Binary field.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Receive headers for message with UID 142 in the currently selected mailbox

Calculate iUID as 142

IMAPRecvHeaders (iIMAPSocket,iUID,lHeaders) Returns lStatus

If lStatus<0

 ; Command failed

End If

IMAPRecvMessage

142

IMAPRecvMessage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPRecvMessage (socket,messageuid,message[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPRecvMessage receives a specified message in the currently selected mailbox. The
received message is in RFC 822 format. You can pass the received message to
the MailSplit command, in order to parse it.

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of
the message to be retrieved.

Message is an Omnis Binary or Character field which receives the RFC 822 format
message. For correct results with many of the encodings supported by MailSplit you must
receive into a Binary field.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Receive message with UID 142 in the currently selected mailbox

Calculate iUID as 142

IMAPRecvMessage (iIMAPSocket, iUID,lMessage) Returns lStatus

If lStatus<0

 ; Command failed

End If

 IMAPRenameMailbox

 143

IMAPRenameMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPRenameMailbox (socket,oldmailboxname,newmailboxname[,stsproc,responselist]) Re
turns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPRenameMailbox renames a mailbox.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Oldmailboxname is the name of the mailbox to be renamed.

Newmailboxname is the new name for the mailbox.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Rename folder Test in the INBOX to Test2

; "." is the hierarchy separa tor

Calculate iMailbox as "INBOX.Test"

Calculate iNewMailbox as "INBOX.Test2"

IMAPRenameMailbox (iIMAPSocket,iMailbox,iNewMailbox) Returns lStatus

If lStatus<0

 ; RENAME command failed

End If

IMAPSelectMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

IMAPSelectMailbox

144

Syntax

IMAPSelectMailbox (socket,mailboxname,messages,recent,uidnext,uidvalidity,unseen[,stsp
roc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPSelectMailbox makes a mailbox the currently selected mailbox. Certain IMAP
commands operate in the context of a selected mailbox, meaning that this command needs
to be executed first.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Mailboxname is the name of the mailbox to be selected.

IMAP mailbox names are left-to-right hierarchical using a single character to separate levels
of hierarchy. If you execute IMAPListMailboxes with empty RefName and MailboxName
parameters, the returned list has a single line from which you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when
sending them to the server.

Messages is an Omnis Long Integer field which receives the number of messages in the
selected mailbox, if the command succeeds. If the count is not received in the response to
the IMAP SELECT command, this value can be zero.

Recent is an Omnis Long Integer field which receives the number of messages in the
selected mailbox with the \Recent flag set, if the command succeeds.If the count is not
received in the response to the IMAP SELECT command, this value can be zero.

Uidnext is an Omnis Long Integer field which receives the next unique identifier value for the
selected mailbox, if the command succeeds.If the value is not received in the response to
the IMAP SELECT command, this value can be zero.

Uidvalidity is an Omnis Long Integer field which receives the unique identifier validity value
for the selected mailbox, if the command succeeds.If the value is not received in the
response to the IMAP SELECT command, this value can be zero.

Unseen is an Omnis Long Integer field which receives the message sequence number of the
first unseen message in the selected mailbox, if the command succeeds.If the value is not
received in the response to the IMAP SELECT command, this value can be zero.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

 IMAPSetMessageFlags

 145

Example
; Make INBOX the curren tly selected mailbox

Calculate iMailbox as "INBOX"

IMAPSelectMailbox

(iIMAPSocket,iMailbox,iMessages,iRecent,iUIDNext,iUIDValidity,iUnseen) Returns

lStatus

If lStatus<0

 ; SELECT command failed

End If

IMAPSetMessageFlags

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPSetMessageFlags (socket,messageuid,answered,deleted,draft,flagged,seen[,stsproc,r
esponselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPSetMessageFlags adds and removes flags for a message in the currently selected
mailbox. Each flag value can be passed as follows:

Value Meaning

kFalse Remove the flag from the message.

kTrue Add the flag to the message.

kUnknown Leave the flag unchanged.

Before using this command, you must select a mailbox using
the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of
the message for which the flags are to be set.

Answered is the flag value (as defined above) for \Answered.

Deleted is the flag value (as defined above) for \Deleted.

Draft is the flag value (as defined above) for \Draft.

Flagged is the flag value (as defined above) for \Flagged.

Seen is the flag value (as defined above) for \Seen.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

IMAPSubscribeMailbox

146

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Note:

You use IMAPSetMessageFlags to delete a message, by adding the \Deleted flag to the
message. You can then permanently delete all messages in the currently selected mailbox
with the \Deleted flag set, by calling IMAPExpungeMessages

Example
; Mark message 142 in the currently selected mailbox as deleted

Calculate iUID as 142

Calculate iAnswered as kUnknown

Calculate iDeleted as kTrue

Calculate iDraft as kUnknown

Calculate iFlagged as kUnknown

Calculate iSeen as kUnknown

IMAPSetMessageFlags (iIMAPSocket,iUID,iAnswered,iDeleted,iDraft,iFlagged,iSeen)

Returns lStatus

If lStatus<0

 ; Command failed

End If

IMAPSubscribeMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPSubscribeMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPSubscribeMailbox issues a SUBSCRIBE command to the server, to add a specified
mailbox name to the server's set of "active" or "subscribed" mailboxes as returned by
IMAPListSubscribedMailboxes.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Mailboxname is the name of the mailbox.

IMAP mailbox names are left-to-right hierarchical using a single character to separate levels
of hierarchy. If you execute IMAPListMailboxes with empty RefName and MailboxName
parameters, the returned list has a single line from which you can access the hierarchy
separator.

 IMAPUnsubscribeMailbox

 147

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when
sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Add INBOX.Test to the subscribed mailboxes

; "." is the hierarchy separator

Calculate iMailbox as "INBOX.Test"

IMAPSubscribeMailbox (iIMAPSoc ket,iMailbox) Returns lStatus

If lStatus<0

 ; SUBSCRIBE command failed

End If

IMAPUnsubscribeMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPUnsubscribeMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

IMAPUnsubscribeMailbox issues an UNSUBSCRIBE command to the server, to remove a
specified mailbox name from the server's set of "active" or "subscribed" mailboxes as
returned by IMAPListSubscribedMailboxes.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server
using IMAPConnect.

Mailboxname is the name of the mailbox.

IMAP mailbox names are left-to-right hierarchical using a single character to separate levels
of hierarchy. If you execute IMAPListMailboxes with empty RefName and MailboxName
parameters, the returned list has a single line from which you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when
sending them to the server.

Import data

148

Stsproc is an optional parameter containing the name of an Omnis method that this
command calls with status messages. This command calls the method with no parameters,
and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines
received from the IMAP server. Before calling this command, define the responselist to have
a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of
executing this command. These sometimes include unsolicited information, for example, an
update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if
you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example
; Remove INBOX.Test from the subscribed mailboxes

; "." is the hierarchy separator

Calcul ate iMailbox as "INBOX.Test"

IMAPUnsubscribeMailbox (iIMAPSocket,iMailbox) Returns lStatus

If lStatus<0

 ; UNSUBSCRIBE command failed

End If

Import data

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import data list-or-row-name

Description

This command reads the next data item into the specified list or row variable. You use
the Import data command to import data from a file or port. Once you select an import file or
port, and issue a Prepare for import command, Import data adds the data to the specified list
or row variable.

If a record is successfully read from the file or port, Omnis sets the flag. An error occurs if
the import file or port is closed or if the specified list or row variable does not exist. The flag
is set after reading a record successfully.

After the import is complete, you should follow Import data with an End import and the
appropriate Close import file or Close port.

There is a one-to-one mapping between the columns or fields in the import file and the
columns in the list or row variable. Therefore, if there are fewer columns or fields in the
import file than in the list or row, the excess import columns or fields are ignored. Likewise, if
there are more columns in the list or row than in the import file, the excess columns are left
blank.

Example
; import from a csv file called myImport.txt in the root of your omnis tree

Calculate lImportPath as con (sys (115),'myImport.txt')

Set import file name {[lImportPath]}

Pre pare for import from file {Delimited (commas)}

Import data lImportList

 Import field from file

 149

End import

Close import file

Import field from file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import field from file into field-name ([Single character][,Leave in buffer])

Options

Single character If specified, the command reads a single character at a time

Leave in buffer
If specified, the command leaves the data it returns in the buffer meaning
that the next call to the command will return the same value

Description

This command reads a line of characters from the current import file to the specified field. It
lets you read fields from a file without using a window and Import data. Usually the command
reads a whole line at a time but there are options which modify this.

The Single character option tells Omnis to read a single character at a time. If the field is a
Character or a National field, it is set to have a length of one, containing the single character
imported from the file. If the field is a Number field, the field value is set to the ASCII code of
the single character imported from the file.

The Leave in buffer option tells Omnis to read the string or single character but not remove it
from the buffer. Therefore, the next Import field from file will read exactly the same value.

An error will occur if the import file has not been opened; Omnis clears the flag on reaching
the end of the file. Do not mix Import data and Import field from file because they use the
input buffer in different ways.

Example
; import from a csv file called myImport.txt in the root of your omnis tree

Calculate lImportPath as con (sys (115),'myImport.txt')

Set import file name {[lImportPath]}

Prepare for import from file {Delimited (commas)}

Repeat

 Import field from file into lImportField

Until lImportField='start data'

Do method ImportData

Close import file

Import field from port

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import field from port into field-name ([Single character][,Leave in buffer][,Clear buffer][,Do
not wait])

Import fields

150

Options

Single character If specified the command reads a single character at a time

Leave in buffer
If specified, the command leaves the data it returns in the buffer meaning
that the next call to the command will return the same value

Clear buffer If specified, the command clears the import buffer before executing

Do not wait If specified, the command will not wait until data is available

Description

This command reads a line of characters from the current port to the specified field. Import
field from port lets you read fields from a port without using a window and Import data.
Usually the command reads a whole line at a time but there are options which modify this:

Single character tells Omnis to read a single character at a time. If the field is a Character or
a National field, it is set to have a length of one, containing the single character imported
from the port. If the field is a Number field, the field value is set to the ASCII code of the
single character imported from the port.

Leave in buffer tells Omnis to read the string or single character but not remove it from the
buffer. Therefore, the next Import field from port command will read exactly the same
value.

Clear buffer clears the import buffer so that previously received values are ignored.

Do not wait prevents Omnis from waiting until a string or character is available.

An error will occur if the import port has not been opened; Omnis clears the flag if nothing
has been read. Do not mix the Import data and Import field from port commands because
they use the input buffer in different ways.

Example
Set port name {COM1:}

Prepare for import from port {One field per line}

Repeat

 Import field from port into lImportField

Until lImportField='start data'

Do method ImportData

Close import file

Import fields

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import fields (Insert records|Update records[,Indirect][,Disable messages]) {list-of-field-
names (Name1,Name2,...)}

Types

Insert records The command inserts new records

Update records
The command searches for existing records in the file and updates the
records that it finds; data for which there is no matching record is ignored

 Insert line in list

 151

Options

Indirect
If specified, the command uses the contents of the first field as the list of
fields

Disable messages
If specified, the command does not open messages requiring a user
response and instead it writes a limited amount of information to the
trace log

Description

Import fields imports the data for the list of fields from the current import file into the data
file. It provides runtime access to the functionality of the import data dialog in the IDE. The
command sets the main file for the import to the file corresponding to the first field in the list.

The Insert records option causes the command to insert new records for the data in the file
being imported.

The Update records option causes the command to search for an existing record in the data
file, for each record in the file being imported, and then update that record. Import records for
which there is no matching record in the data file are ignored.

Example
; import from a csv file called myImport.txt in the root of your omnis tree

Calculate lImportPath as con (sys (115),'myImport.txt')

Set import file name {[lImportPath]}

Prepare for import from file {Delimited (commas)}

Import fields (Insert records) {fCustomers.Surn ame,fCustomers.FirstName}

End import

Close import file

Insert line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Insert line in list {line-number (values) {default is current line}}

Description

This command takes the current field values and inserts them at a particular line in the list.
The new line is inserted before the specified line and all the lines below the specified line are
moved down one place.

If a set of comma-separated values is included as a parameter, these values are read (in
order) into the columns of the new line. In this case, the field names for the columns are not
used to specify the data for the new line.

You can specify the line number using a calculation. However, if the parameter for the
command is empty or evaluates to zero, the current line is used, that is, the field values are
inserted at the current line and all other lines are moved down one place.

If there is no current line (LIST.$line = 0), the field values are added at the end of the list. If
the line is beyond the current end of the list (for example, the LIST.$line given is greater
than LIST.$linecount),Insert line in list is equivalent to Add line to list. The flag is cleared if
the list is already at its maximum size (LIST.$linemax).

Example
; Insert 10 lines in between the 2 exisiting lines

Install menu

152

Set current list lMyList

Define list {lName,lAge}

Insert line in list {('Fred',10)}

Insert line in list {('George',20)}

For lCount from 1 to 10 step 1

 Insert line in list {2 ('Harry',22)}

End For

; Alternatively, you can use the $addbefore() and $addafter() methods to add

lines to a list

Do lMyList.$addbefore(1,'Harry',22)

Do lMyList.$addafter(2,'William',31)

Install menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Install menu class-name[/instance-name] [(parameters)]

Description

This command installs an instance of the specified menu class on the main menu bar and
assigns an instance name. The default instance name is the name of the menu class. The
flag is set if the menu is installed.

You can choose the menu class from a list containing your own menus in the current library,
and the standard menus *File, *Edit, and so on. When the menu instance is installed its
$construct() method is called receiving any parameters passed.

If you use the Install menu command in a reversible block, the menu instance is removed
from the menu bar when the method terminates. However, the order of the menus on the
menu bar may not necessarily be the same as before.

Example
; Install the menu mView and pass the parameter

; lView to its $construct method

Calculate lView as 'Large'

Install menu mView (lView)

; mView $constuct method

Do $cinst.$objs.[pView].$checked.$assign(kTrue) ;; Check the menu line pView

; Alternatively, you can install a menu using $open

Do $clib.$menus.mView.$open()

Install toolbar

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Install toolbar {class[/instance][/dock-area/l/t][(params)]{defaults are class settings}}

Description

This command installs the specified toolbar class into the named docking area. You specify
the docking area using one of the toolbar
constants: kDockingAreaTop, kDockingAreaBottom, kDockingAreaLeft,kDockingAreaRight,
or kDockingAreaFloating. If you omit the docking area name the toolgroup is installed into

 Invert selection for line(s)

 153

the docking area specified in the class. You can install multiple toolbars onto the same
docking area.

If the specified docking area is kDockingAreaFloating, then you can specify the left (/l) and
top (/t) position of the toolbar instance in pixels .

Example
; show the left and right toolbar docking areas

Show docking area { kDockingAreaLeft }

Show docking area { kDockingAreaRight }

; install a toolbar into each docking area

Install toolbar {tbMyToolbar/ kDockingAreaLeft }

Install toolbar {tbMyOtherToolbar/ kDockingAreaRight }

; or you can install a toolbar notationally

Do $clib.$toolbars.tbMyToolbar.$open('*', kDockingAreaLeft) Returns l ToolBarRef

Invert selection for line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Invert selection for line(s) ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Description

This command inverts the selection state of a line, that is, from selected to deselected or
vice-versa. You can specify a particular line in the list by entering either a number or a
calculation. You can show the selection state on the window by invoking the Redraw
lists (Selection only) command.

The All lines option inverts the selection states of all lines of the current list. If no line number
is given, the current line selection is inverted. When a list is saved in the data file, the
selection state of each line is stored. The following example selects all but the middle line of
the list:

Example
; Select list lines 2 and 4 and then invert the selection

; so list lines 1,3 and 5 are selected

Set current list lMyList

Define list {lName,lAge}

Add line to list {('Fred',10)}

Add line to list {('George',20)}

Add line to list {('Harry',22)}

Add line to list {('William',31)}

Add line to list {('David',62)}

Select list line(s) {2}

Select list line(s) {4}

Invert selection for line(s) (All lines)

JavaScript:

154

JavaScript:

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO NO YES All

Syntax

JavaScript: javascript-code

Description

Use this command to insert raw JavaScript code into the method in the client methods
JavaScript file. Consequently, this command cannot be run in a server method.

Jump to start of loop

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Jump to start of loop

Description

This command jumps to the Until or While command at the beginning of the current loop,
missing out all commands after the jump. When used in a WhileïEnd While loop, Jump to
start of loop jumps to the start of the loop so that Omnis can make the While test; the loop
continues or terminates depending on the result of this test, whereas, Break to end of
loop automatically terminates the loop regardless of the value of the condition. Placing a
Jump outside a loop causes an error.

Example
; Only calculate l Balance if an account number has been entered

Calculate lBalance as 0

Repeat

 Prompt for input Account Number Returns lAccountNumber (Cancel button)

 If flag false ;; cancel button

 Break to end of loop

 Else If len(lAccountNumber)=0 ;; no ac count number entered

 OK message {Please enter a n account number}

 Jump to start of loop

 End If

 Calculate lBalance as 100

Until lBalance>0

Launch program

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO All

Syntax

Launch program program-name|program-name,document-name Returns return-value ([Do
not quit Omnis])

 Load connected records

 155

Options

Do not quit Omnis
This option is ignored on platforms other than macOS. When running on
macOS, specify this option to prevent Omnis from closing after launching
the program

Description

This command launches the specified program.

On Windows and Linux, this command behaves just like the command Start program
normal, except that you can also wait for the output from the program (see below). The Do
not quit Omnis option is ignored.

On Windows and Linux, you can run a command line program, and receive the output from
the program via the Returns clause of the command. If a variable is specified in the Returns
clause, Omnis Studio waits for the executable to terminate before continuing, and returns the
output from the command in the variable.

On Windows, you can omit the program name, and supply just the document name prefixed
by a comma. This will open the document in the application associated with its file extension.

The rest of this command description applies only to macOS. If you include a file name, the
application is launched with the file name as a document. If the specified file name
represents a document which the program cannot understand, it will be ignored. You must
specify pathnames for the program and document, as shown in the example below.

You can reference either the application (with the .app suffix) or the executable in the
bundle. For example, to launch iTunes you can specify either :

/Applications/iTunes.app
or
/Applications/iTunes.app/Contents/macOS/iTunes

The default action is to quit Omnis, but the Do not quit Omnis option lets you keep Omnis
open. If you choose this option, Omnis will continue to run in the background, concurrently
with the new program. A new program launched by Omnis will always be opened on top,
even if Omnis is already in the background. The flag is set false if an error is detected, for
example, if a program or file name cannot be found. When you execute Launch program,
control passes from your application to the operating system and there is no automatic way
of returning to Omnis.

Example
; Launch the specified program

Launch program c: \ windows \ notepad.exe

If flag false

 OK message (Icon,S ound bell) {Couldn't find notepad.exe}

End If

Load connected records

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Load connected records {file-name}

Load error handler

156

Description

This command loads the connected records for the specified file. The Load connected
records command ensures that the identity of the current connected records for the current
record is correct. As Omnis automatically loads connected records of the main file into the
current record buffer, this command is not usually required. However, in multi-user systems,
this command ensures that, if any other workstation makes changes to the way in which
records are connected, these changes will be reflected at the current workstation.

The flag is cleared if there is no current record for the specified file class, and in the event
that no file class is specified, Omnis uses the main file. This command does not clear
the Prepare for update mode but does cause multi-user semaphores to be set and should be
avoided when in Prepare for... mode.

If a parent record requires locking, another user is editing it, and the Wait for
semaphores command is on, the lock cursor will be displayed. If the user cancels the lock,
the flag is cleared and the parent record is not loaded. The Do not wait for
semaphores command prevents the user from having to wait for the record and returns a
flag false if the parent record is not available.

If placed in a reversible block, the parent record reverts to its former value when the method
terminates. If you need to read in grandparent records, you can add this command to the
usual Next command:

Example
; Use load connected records to load the grandparent record,

; as only the parent record of the main file is loaded after a find

Set main file {fChild}

Find first

Load connected records {fParent}

Do $cinst.$redraw()

Load error handler

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers NO YES NO All

Syntax

Load error handler ([All libraries]) [name/]name (first-error-number, last-error-number)

Options

All libraries
If specified, the error handler applies to errors encountered in all libraries, rather
than just the calling library

Description

This command loads a specified method which handles errors which may occur within a
library. You can specify a range of error codes to be handled by the handler by giving the
first and last error number. If no range is specified, the handler is called for all errors. Errors
are either Fatal or Warning.

Error codes such as kerrUnqindex, kerrBadnotation, kerrSQL, can also be used as
parameters. The Catalog window lists all the constants available in Omnis.

Fatal errors

A fatal error is one that normally stops method execution and drops into the debugger if
available. The error code #ERRCODE is displayed on the status line in the debugger and
is greater than 100,000.

Warning errors

 Load event handler

 157

A warning error is one that does not normally quit the method nor report an error description.
The error code #ERRCODE is displayed on the status line in the debugger, if invoked, and
is less than 100,000.

The check box option All libraries is provided. If this is not checked, the handler is called only
for errors encountered in the library which loaded the error handler. This command leaves
the flag unaffected and is reversible; that is, the handler is unloaded when the command is
reversed. An error handler remains loaded until it is unloaded or the library containing the
handler method is closed. Error handlers loaded within an error handler always unload when
that error handler terminates.

An alternative to using the parameters passed to the error handler, is to use the
variables #ERRCODE and #ERRTEXT. However, you must copy the values of
#ERRCODE and #ERRTEXT upon entry to the error handler, since commands you execute
in the error handler might change their values.

An error handler can use one of the Set error action commands (SEA) to set what it requires
the next action to be. If the error handler quits without making a Set error action and there is
another handler capable of accepting the error, the second handler is called. Otherwise, the
default action for the error is carried out, depending on whether it is a fatal error or warning.

If an error occurs within an error handler, that error is handled in the usual way except that
the original error handler will not be used (even if it could handle that error). It is possible to
load error handlers within an error handler; these are meant to deal with errors within the
handler and are unloaded automatically when the error handler completes execution.

Example
; pCode is defined as a Long Integer

; pText is defined as a character type

; A typical error handler

If pCode=kerrBadnotation

 ; handle error - pText contains a string describing the error

End If

; The following example handles the error returned by the data manager when an

attempt to

; duplicate a unique index occurs on update:

Load error handler cMyErrorHandler/Errors

Prepare for edit

Enter data

Update files if flag set

; In the method Errors of code class cMyErrorHandler

If pCode=kerrUnqindex

 OK message Error (Icon) {You have entered a duplicate field value/'X' has been

appended to your entry}

 Calculate iValue as con (iValue,'X')

 Enter data

 If flag true

 SEA repeat co mmand

 Else

 SEA continue execution

 End If

End If

Load event handler

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES YES NO All

Syntax

Load event handler routine-name or library-name/routine-name (parameters)

Load external routine

158

Description

This command makes the specified external routine an event handler, enabling the routine to
show its own windows, put its own menus on the menu bar, act as its own event filter, and
so on.

Event handlers are modules of code which, when loaded, form part of the Omnis event-
processing loop. Events are passed to the external before being handled by Omnis. As each
call to the external takes place, it can identify whether to take appropriate action. If the event
handler returns a flag false, Omnis knows that the event was meant for Omnis and the
external has ignored it.

You can enter the routine name as the parameter. If the library/resource is not in the
EXTERNAL folder, the name of the file containing the library/resource and the name of the
library/resource within that file are given as parameters. If no file name is given, the current
dynamic link library/resource is searched for the specified routine name.

When the method is called, any existing event handler is not unloaded but continues to be
called along with the new handler. The flag is cleared if the routine cannot be loaded.

If you use Load event handler in a reversible block, the event handler is unloaded when the
method containing the reversible block terminates.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for example, Call external routine Maths1
(LVAR1,LVAR2), the external can directly alter the field value. Enclosing the field in
brackets, for example, Call external routine Maths1 ((LVAR1),(LVAR2)), converts the field to
a value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parm1, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Example
Load event handler myEventHandler

Load external routine

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES YES NO All

Syntax

Load external routine routine-name or library-name/routine-name (parameters)

Description

This command loads the specified external code into memory. You can enter the routine
name as the parameter. If the library/resource is not in the EXTERNAL folder, the name of
the file containing the library/resource and the library/resource name within that file are given
as parameters.

If the library/resource is already loaded or is not found, the flag is cleared and no action is
taken. If this command is included in a reversible block, the library/resource is unloaded
when the method terminates. If the library/resource is loaded in, it is called with the mode set
at ext_load.

You can pass parameters to the external code by enclosing a comma-separated list of fields
and calculations. If you pass a field name, for example, Call external routine Maths1
(LVAR1,LVAR2), the external can directly alter the field value. Enclosing the field in
brackets, for example, Call external routine Maths1 ((LVAR1),(LVAR2)), converts the field to
a value and protects the field from alteration.

 Load from list

 159

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with
the predefined references Ref_parm1, Ref_parm2, and so on, Ref_parmcnt gives the
number of parameters passed. If the field name is passed as a parameter, you can use
SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field's value.

Example
Load external routine MathsLib/sqroot (iNumber,iNumber2)

Load from list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Load from list {line-number (variable-names) {default is current line}}

Description

This command transfers field values from the current list to the corresponding fields in the
current record buffer. However, if you include a list of fields, the values in the current list are
transferred to the specified fields (see example). Each column value, taken in the order it
was defined, is copied to the corresponding field in the field list.

Field names parameter list

The command Load from list with '0 (CVAR1,,CVAR12)' specified will load the first column
of the current line of the list into CVAR1, ignore the second column, and load the third
column into LVAR12. If too few field names are specified, the other columns are not loaded.
If too many field names are specified, the extra fields are cleared. Any conversions required
between data types are carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the
values are loaded from the current line. If the list is empty or if the line evaluates to a value
greater than the total number of lines in the list, the flag is cleared and the fields in the
parameter list or in the list definition are cleared.

Example
Set current list lMyList

Define list {lName,lAge}

Add line to list {('Fred',10)}

Add line to list {('George',20)}

Add line to list {('Harry',22)}

Add line to list {('William',31)}

Add line to list {('David',62)}

Do lMyList.$line.$assign(4) ;; set the current line

Load from list ;; load the values from the current line into lName and lAge

Load from list {2} ;; load the values from line 2 i nto lName and lAge

Load from list {4 (lTmpName,lTmpAge)} ;; load the values from line 2 into

lTmpName and lTmpAge

Load page setup

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing NO YES NO All

Syntax

Load page setup

MailSplit

160

Description

This command loads the page setup from the current report class and makes it the current
page setup. Every report class has optionally a page setup stored with it, for use when the
report is printed. The flag is set if there is a current report class and it contains a page setup.
When used in a reversible block the previous page setup is restored once the method has
finished.

The stored page setup for a report class never becomes the current page setup unless
a Load page setup command is issued.

Example
; Load the page setup for rMyReport

Set report name rMyReport

Load page setup

Print report

MailSplit

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

MailSplit (message,headerlist,body{Char|Bin|MIME-List}) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This Web command is multi-threaded, allowing another thread to execute in the multi-
threaded server while it runs. Note that the same socket cannot safely be used concurrently
by more than one thread.

MAILSplit parses an Internet e-mail message. It can also decompose MIME content. It
returns a Status value less than zero if an error occurs. Possible error codes are listed in
the Web Command Error Codes Appendix.

Message is an Omnis Binary or Character field containing the complete text of an Internet e-
mail message, including the header. Messages in this form are returned in the MailList
argument of the POP3Recv command, and by the
commands POP3RecvMessage and IMAPRecvMessage. You can also pass the headers
returned by POP3RecvHeaders and IMAPRecvHeaders, in order to parse the headers.For
correct results with many of the encodings supported by MAILSplit you must use a Binary
field to receive the message.

Example message:

Received: by tigerlogic.com with SMTP; 12 Aug 1996 11:49:59 - 0700

Received: (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)

id LAA09789; Mon, 12 Aug 1996 11:46:45 - 0700

Date: Mon, 12 Aug 1996 11:46:45 - 0700

From: someone@somedomain.com (PersonalName here)

Message - Id: <199608121846.LAA09789@netcom8.netcom.com>

To: someoneelse@somedomain.com

Subject: This is an e - mail subject

Hello from TigerLogic Corporation

HeaderList is an Omnis list with two character columns. The list receives the information
from the e-mail message header as attribute/value pairs. There is one row for each item in
the header. For example, assuming the e-mail message above:

 MailSplit

 161

Attribute Value

Received by tigerlogic.com with SMTP; 12 Aug 1996 11:49:59 ï0700

Received (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)
id LAA09789; Mon, 12 Aug 1996 11:46:45 ï0700

Date Mon, 12 Aug 1996 11:46:45 ï0700

From someone@somedomain.com (PersonalName here)

Message-Id <199608121846.LAA09789@netcom8.netcom.com>

To someoneelse@somedomain.com

Subject This is an e-mail subject

Note: Two header lines may have the same attribute name. This is within the RFC822
message header specification. In this case, the HeaderList has two lines with the same
Attribute name, as with Received in the above example. Long header lines that are split and
continued in the message header are concatenated into one line in the list, as with the
second Received attribute in the above example. The colon at the end of the attribute is
stripped.

The Body parameter can be either an Omnis character field or an Omnis list.

If Body is an Omnis character field, MAILSplit returns the body of the e-mail message into
this variable, minus the header. In the example: TigerLogic Corporation. Note, however, that
if the body contains MIME content, the HeaderList only receives headers up to and
excluding the MIME-Version header, and the body receives the rest of the message, starting
with MIME-Version.

Alternatively, you can pass an Omnis list as the Body parameter. In this case,
the HeaderList receives all of the headers, and the Body list receives either a single line
containing the message body (if the message does not have MIME content), or a line for
each MIME body part in the message body (if the message has MIME content). We discuss
how MIME content is handled in this way below.

Header Values Containing International Characters

MAILSplit supports RFC 2047, for the UTF-8 and ISO8859-N character encodings. When it
encounters text in header values that is encoded according to the RFC 2047 rules for the
character encodings it supports, it converts the header value into its original value before
storing it in the HeaderList.

MIME Content

MIME content can be thought of as a tree, which has a single root node, the message. Each
node in the tree has a MIME type and a MIME subtype.

Non-leaf nodes have the type "multipart", and these contain other nodes, which themselves
can be multipart. A non-leaf node does not contain data.

Leaf nodes have other types, such as "text" and "application", and these contain data. The
type "message" can also be considered a container, but the MAILSplit (and SMTPSend)
commands treat messages as leaf nodes. If you wish to decompose a message contained in
MIME content, you need to call MAILSplit again for that message.

Each node in the tree is referred to as a body part.

The Body list receives a representation of the MIME content tree, with a line for each body
part. Before calling MAILSplit, define a list with up to nine columns (the last three columns
are optional):

MailSplit

162

Column Contains

Level A long integer which indicates the level of this node in the tree. The single
root node has level zero. The next level down is one, and so on. This will
become clearer in some examples below.

Content-type The type of this body part e.g. "text" or "multipart"

Content-
subtype

The sub-type of this body part e.g. "plain"

Filename The name of the file corresponding to this body-part. Used for leaf-nodes
which are file attachments.

Character
data

If the content-type is "text" or "message", this column contains the data. Leaf
nodes only.

Binary data If the content-type is not "text", "message" or "multipart", this column contains
the data. Leaf nodes only.

Character-set The character set of the data. The commands only understand us-ascii and
iso-8859-1. The latter is equivalent to the Ansi character set used on the
Windows platforms. Character data in any other character set will not be
handled correctly.

Content-
Transfer-
Encoding

How the data is encoded: "base64", "quoted-printable", "7bit" etc. The
command handles decoding from base64 and quoted-printable, meaning that
the data in the character and binary columns above has been decoded.

On the Macintosh, character data in the iso-8859-1 character set has
been converted to the Macintosh character set.

On all platforms, the command replaces CRLFs with the Omnis
newline character.

Content-
disposition

The content disposition of the body part. Either empty, "attachment" or
"inline". This is a hint to the receiving application about how to handle the
content. Inline body parts are intended to be displayed when the message is
displayed, whereas attachments are considered separate from the main body
of the mail message, and their display should not be automatic.

Some example lists:

A message sent by a mailer such as Outlook Express, containing both text and HTML
versions of the message text:

Lev Content-
type

Content-
subtype

File Char Bin Char-
set

Encoding Disposition

0 multipart Alternative

1 text Plain From Bob iso-
8859-1

quoted-
printable

1 text Html <!DOCTYPE
HTMLé

 iso-
8859-1

quoted-
printable

A message sent by a mailer such as Outlook Express, containing both text and HTML
versions of the message text, and having a single file attachment:

 MailSplit

 163

Lev Content-
type

Content-
subtype

File Char Bin Char-
set

Encoding Disposition

0 multipart mixed

1 multipart alternative

2 text plain From Bob iso-
8859-1

quoted-
printable

2 text html <!DOCTYPE
HTMLé

 iso-
8859-1

quoted-
printable

1 application octet-
stream

App.h This is
my file
dataé

 base64 attachment

Example
; Split and decompose pMessage as received from

POP3Recv,POP3RecvHeaders,POP3RecvMessage,

; IMAPRecvHeader s or IMAPRecvMessage

; Return pDate, pFrom, pSubject and pBody (if message rather than headers) and

save

; any attachments in pEnclosurePath

Do lHeaderList.$define(lAttribute,lValue)

Do

lMimeList.$define(lLevel,lContentType,lContentSubType,lFileName,lCha rData,lBinData

,lCharSet,lEncoding)

MailSplit (pMessage,lHeaderList,lMimeList)

; extract header information

Do

lHeaderList.$search(upp (lAttribute)='DATE'| upp (lAttribute)='FROM'| upp (lAttribute)=

'SUBJECT')

Do lHeaderList.$first(kTrue , kFalse) Returns lLineRe f

While lLineRef

 Do lHeaderList.$loadcols()

 Switch upp (lAttribute)

 Case 'DATE'

 Calculate pDate as lValue

 Case 'FROM'

 Calculate pFrom as lValue

 Case 'SUBJECT'

 Calculate pSubject as lValue

 End Switch

 Do lHeaderList.$next (lLineRef, kTrue , kFalse)

End While

; decompose the MIME content from lMimeList

For lMimeList.$line from 1 to lMimeList.$linecount step 1

 Do lMimeList.$loadcols()

 If lContentType='text'&(lContentSubType='plain') ;; found body of e - mail in

character format.

 Calculate pBody as lCharData

 End If

 If lFileName<>'' ;; found file attachment, write the file to the enclosures

folder

 Calculate lFilePath as con (pEnclosurePath,lFileName)

 Do lFileOps.$createfile(lFilePath)

 Do lFileOps.$open file(lFilePath)

 Do lFileOps.$writefile(lBinData) Returns lReturnFlag

 Do lFileOps.$closefile()

 End If

End For

Maximize window instance

164

Maximize window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Maximize window instance window-instance-name

Description

Example
; Maximize the window wMyWindow to full screen

Maximize window instance wMyWindow

; Alternatively, you can do it like this

Do $cwind.$maximize()

Merge list

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Merge list list-or-row-name ([Clear list][,Use search])

Options

Clear list
If specified, the command empties the current list and defines it to match the
specified list before executing

Use search If specified, the command uses the current search to select data

Description

This command adds the specified list to the end of the list previously specified as the current
list. Once the list reaches its maximum size, the command finishes and clears the flag.
Omnis does not check that the same fields are stored in the two lists (which they should be).
If the same fields are not present, data is not transferred.

If you use the Clear list option, the current list is initially cleared and defined to hold the same
fields as the specified list. This is the same as copying a list.

If you use the Use search option, only lines matching the search class are merged or added
to the current list. All lines match if there is no current search class.

Example
; To merge th e list iList1 to the current list iList2

Set current list iList2

Set search name sMySearch

Merge list iList1 (Clear list,Use search)

If flag true

 Sort list

Else

 OK message {Merge failed at line [iList1.$linecount]}

End If

; To append only selected li nes

 Message timeout

 165

Set current list iList2

Set search as calculation {#LSEL}

Merge list iList1 (Use search)

; or do it like this

Do iList2.$merge(iList1)

Message timeout

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Message timeout {interval (seconds)}

Description

This command specifies the time Omnis has to wait for DDE responses to messages sent to
other applications. There is a default value of 30 seconds when Omnis is started.

The following general purpose method sets up a DDE channel by increasing the message
timeout by 5 seconds until successful. You pass three parameters to the method, that is, the
initial timeout, the channel number and the program 'name|document'.

Example
; open dde channel

; par ameter pNum is short int

; parameter pChannel is short int

; parameter pProgDoc is character

Set DDE channel number {pChannel}

Repeat

 Message timeout {pNum}

 Open DDE channel {[pProgDoc]}

 If flag false

 Yes/No message {Give up 'Open DDE channel' ?}

 If flag true

 Close DDE channel

 End If

 End If

 Calculate pNum as pNum+5

Until flag true

Minimize window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Minimize window instance window-instance-name

Description

This command minimizes the specified window instance:

¶ On Windows and Linux, the window is shown as an icon at the bottom of the Omnis
application window.

¶ On macOS, the window is shown as an icon in the dock.

Example
; Min imize the window wMyWindow to reduce it to an icon

Minimize window instance wMyWindow

Modify class

166

; Alternatively, you can do it like this

Do $cwind.$minimize()

Modify class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Modify class {class-name}

Description

This command opens a library class in design mode. Method execution continues and does
not wait for the design window to be closed. Modify class lets users modify new search and
report classes created with the New class command. Opening a class in design mode when
one of its methods is running causes a Quit all methods to be carried out before the design
window opens. If the class does not exist, the command clears the flag.

Example
New class {Search Class/sOver Drawn}

Modify class {sOverDrawn}

; now you can

Set search name sOverDrawn

Print report (Use search)

Modify methods

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Modify methods {class-name}

Description

This command opens the method editor for the specified class. Method execution continues
and does not wait for the design window to be closed. Opening a method in design mode
first causes a Quit all methods if one of the methods for that class is running. The flag is
cleared if the specified class does not exist, or if it is a file, search, or report class.

Example
New class {Window/wMyWindow}

; open at the $construct() method for the window wMyWindow

Modify methods {wMyWindow}

Move file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Move file (from-path, to-path) Returns err-code

 New class

 167

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

This command moves the file specified in from-path to the folder named in to-path. It returns
an error code (See Error Codes), or zero if no error occurs. The to-path is the path to
destination folder into which the file will be moved. The command may fail if the to-
path directory contains a file with the same name as from-path filename.

Move file cannot move a file across volumes (disks). Use Copy file and Delete
file instead. Move file cannot move directories.

Example
; Prompt the user for a file to move together with a path

; to move to and move the file

Do FileOps.$putfilename (lPathname,'Select a file for moving','') Returns

lReturnFlag

If lReturnFlag

 Do FileOps.$selectdirectory (lNewPath,'Path to move to') Returns lReturnFlag

 If lReturnFlag

 Move file (lPathname,lNewPath) Returns lErrCode

 End If

End If

New class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

New class {superclass-name or class-type/name}

Description

This command creates a new class with the specified type and class name. For example,
you can use New class in association with Modify class to allow users to create new search
and report classes. Attempting to create a class with the same name as one which already
exists clears the flag and displays an error message.

Example
New class {Window/wMywindow}

Modify class {wMyWindow}

Next

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Next on field-name ([Exact match][,Use search])

Options

Exact match
If specified, the index value of the field in suitable records must equal the
current value

Use search If specified, the command uses the current search to select data

No/Yes message

168

Description

This command locates the next record using the current find table. The Next command
works in the same way as the corresponding option on the Commands menu but with no
redraw, allowing you to work through a file. It is usually used after a Find command which
creates a find table of records.

If the Index field, Exact match and/or Search option used in the Next is incompatible with the
preceding Find, a new find table is built. Normally, the parameters in this command are left
blank so that the current find table is used.

If the Next command does not follow a Find, a find table is built for the current main file
before doing the Next.

If an indexed field is specified, Next on SU_NAME for example, the find table is just the
index order for the field. The Use search option creates a find table for the current main file
in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.

Once the next record is located, the main and connected files are read into the current
record buffer.

An error occurs whenever a Next on FIELD command is performed on a non-indexed field or
if the field is not in the main file or its connected files.

If the next record is found, the flag is set; if not, it is cleared.

If the Exact match option is chosen, the next record is loaded where the index value of the
specified field matches the current value.

If you use Next with a search, it builds a find table if necessary and finds the next record
listed on the find table which meets the search criteria.

Example
; A dd 5% to all account balances

Find first on fAccounts.Code

While flag true

 Calculate fAccounts.Balance as fAccounts.Balance+((fAccounts.Balance/100)*5)

 Update files

 Next

End While

No/Yes message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes YES NO NO All

Syntax

No/Yes message title ([Icon][,Sound bell][,Cancel button]) {message}

Options

Icon If specified, the message displays an operating system specific icon

Sound bell If specified, the system bell sounds when the command displays the message

Cancel button If specified, the message has a cancel button

Description

This command displays a message box containing the specified message and provides
a No and a Yes pushbutton. You can include a Cancel button by checking the Cancel
button option. When the message box is displayed method execution is halted temporarily; it

 OK message

 169

remains open until the user clicks on one of the buttons before continuing. The No button is
the default button and can therefore be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts
and screen size. In the message text you can force a break between lines (a carriage return)
by using the notation "//"or the kCr constant enclosed in square brackets, e.g. 'First
line[kCr]Second line'. Also you can add a short title for the message box.

For greater emphasis, you can select an Icon for the message box (the default "info" icon for
the current operating system), and you can force the system bell to sound by checking
the Sound bell check box. Under Windows XP, you have to specify a system sound for a
'Question' in the Control Panel for the Sound Bell option to work.

You can insert a No/Yes message at any appropriate point in a method. If the user clicks
the No button, the flag is cleared; otherwise, a Yes sets the flag. You can use
the msgcancelled() function to detect if the user pressed the Cancel button.

Example
; Open a No/Yes dialog and display the option selected

No/Yes message My Editor (Icon,Cancel button) {Do you wish to save the changes you

have made ?}

If msgcancelled ()

 OK message My Editor {Cancel button pressed}

Else

 If flag true

 OK message My Editor {OK button pressed}

 Else

 OK message My Editor {Cancel butto n pressed}

 End If

End If

OK message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO YES All

Syntax

OK message title ([Icon][,Sound bell][,Cancel button]) {message}

Options

Icon If specified, the message displays an operating system specific icon

Sound bell If specified, the system bell sounds when the command displays the message

Cancel button If specified, the message has a cancel button

Description

This command displays the specified message and waits for the user to click
the OK or Cancel button before continuing. Method execution is halted temporarily while the
message box is displayed. The number of message lines displayed depends on your
operating system, fonts and screen size. In the message text you can force a break between
lines (a carriage return) by using the notation "//" or the kCr constant enclosed in square
brackets, e.g. 'First line[kCr]Second line'. Also you can add a short title for the message box.

For greater emphasis, you can select an Icon for the message box (the default "info" icon for
the current operating system), and you can force the system bell to sound by checking
the Sound bell check box.

On

170

The message box displayed by this command has an OK button by default, but you can add
a Cancel button by checking the Cancel button option. After executing an OK message, the
flag is unchanged, but you can use the msgcancelled() function to detect if the user pressed
the Cancel button.

You can use square bracket notation in the message text to display the current value of
fields and variables.

Note - for JavaScript client-executed methods this command uses a standard alert() or
confirm() dialog.

Example
; Open a Ok messsage dialog, if cancel is pressed

; abort printing

Calculate lUserName as 'My Name'

OK message My Editor (Icon,Cancel button) {Ready to print, press Ok to continue}

If msgcancelled ()

 OK message My Editor {Printing aborted by user [lUserName]}

 Quit method

End If

On

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO YES All

Syntax

On event-code or codes (code1,code2,...)

Description

This command is used in an event handling method and marks the beginning of a code
segment that executes when the specified event (or one of a number events) is received by
the current event handling method. An On command also marks the end of any
preceding On statement. You specify the event or list of events using the event constants.

When Omnis generates an event it sends the event information as a series of event
parameters to the appropriate event handling method. The first parameter is always an event
constant. Further parameters, if any, depend on the event and further describe the event.
This event information is interpreted by the On statements in the event handling methods.
Window field events are sent to the $event() method behind the field, then to the $control()
method for the window instance, and then to the $control() method for the current task.
Events that occur in the window itself, such as a click on the window background, are sent to
the class method called $event(), then to the $control() method for the current task. A
particular event is sent to the first On command which applies, and when the
next On command is encountered quits the method.

You should place any code which is to be executed for all events before the
first On command. You cannot nest On commands or put them in an If or Else statement.
You can use On default to handle any events not handled by an earlier On event command.
The On commands must be in event handling methods only: if used elsewhere they are not
executed. The function sys(86) at the start of a method reports any events received by the
object.

See also Quit event handler.

Example
; This example shows typical event handling fo r a field

On evBefore

 ; code to process an evBefore event

 On default

 171

On evAfter

 ; code to process an evAfter event

On evClick,evDoubleClick

 ; code to process both evClick and evDoubleClick events

On default

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO YES All

Syntax

On default

Description

This command is used in an event handling method and handles any events not handled by
the preceding On commands. You use the On command to mark the beginning and end of
an On statement. You should place any code which is to be executed for all events before
the first On command.

Example
On evClick

 ; process code for evClick event

On default

 ; handle all other events

Open check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO YES NO All

Syntax

Open check data log ([Do not wait for user])

Options

Do not wait for user
Unless this option is specified, the user must close the window before
method execution continues, and before doing anything else

Description

This command opens the check data log. If the Do not wait for user option is specified,
execution continues with the next command, otherwise execution stops until the user has
closed the log. You use the check data log to manage the problems encountered in a data
file after the Check data command is run. The data log window lets you repair any problems
listed in the window, print the contents of the log, or clear the log.

Example
Check data (Check indexes)

Open check data log

Open data file

172

Open data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Open data file ([Do not close other data][,Read-only][,No conversion by runtime][,Convert
without user prompts][,Full Unicode conversion]) {file-name[,internal-name] or
odb://[address:port:]name[,internal-name]}

Options

Do not close other data
If specified, the command does not close all open data files
before opening the specified data file

Read-only If specified, the data file is opened in read-only mode

No conversion by runtime

Omnis normally offers to convert data files created by an
earlier version of Omnis. If this option is specified, the runtime
version of Omnis will not offer to convert the file, and the
command will fail

Convert without user prompts

If specified, and conversion is allowed, Omnis will immediately
perform the conversion without giving the user any prompts
that require a response; also, the user cannot cancel the
conversion

Full Unicode conversion

Unicode Studio only. If specified, and convert without user
prompts is specified, do full Unicode conversion instead of
quick conversion (quick conversion is only ok when you know
all character data in the file is 7 bit)

Description

This command opens the specified data file and makes that file the "current" data file, using
either the pathname of the datafile, or the location of the datafile hosted via the Omnis Data
Bridge (ODB). It clears the flag if the data file cannot be found or opened. If the Do not close
other data check box option is not specified, all existing data files are closed even if the
command fails. Opening a data file which is already open will close and reopen that data file.
The Read-only Studio/Omnis 7 check box causes the data file to be opened in read-only
mode. This lets you open an Omnis 7 data file in read-only mode in Omnis Studio without
conversion taking place.

If you select the No conversion by runtime option, and the data file was created with a
previous version of Omnis, then the runtime version of Omnis will not convert the data file.
The default is that an Omnis runtime will ask the user if they want to convert the data file.

If an opened data file uses more than one segment, all segments are opened. The rules for
finding the additional segments which form part of the data file are as follows:

¶ Under Windows and Linux, the paths given in the Omnis environment variable are
searched; if the file is not in any of these locations, then Omnis searches the
directory containing the first segment.

¶ Under macOS, root directories of all mounted volumes are searched as well as the
folders containing the first segment and the most recently opened library.

You can override the default internal name by specifying your own in the parameter for the
command.

 Open DDE channel

 173

If the data file is to be accessed using the Omnis Data Bridge (ODB), then instead of using a
pathname, you can specify the location of the file using a special syntax:

¶ odb://[address:port:]name

where address:port is the TCP/IP address and port number of the ODB server, e.g.
127.0.0.1:5900, and name is the name of a data file accessed using the ODB server. You
can omit address:port:, in which case Omnis uses the address and port stored in
the $odbserver root preference. Note that the value of $odbserver is stored in the file odb.txt
in the studio folder of the Omnis installation tree.

Example
Open data file {Sales.df1,Sales}

If flag true

 Find first

 If flag true

 Open data file (Do not close other data) {Purch.df1,Purchases}

 If flag true

 Calculate fPurchases.Field1 as fSales.Field1

 Prepare for insert with current values

 Enter data

 Update files if flag set

 End If

 End If

End If

; Example 2 - Transfer datafile 1 to datafile 2

Open data file {pOrders.df1,pOrders1}

If flag true

 Set main file {fOrders}

 Find first on fOrders.OrderNum

 While flag true

 Prepare for insert with current values

 Open data file {pOrders2.df1,pOrders2}

 Update files if flag set

 Open data file {pOrders.df1,pOrders1}

 Next on fOrders.O rderNum

 End While

End If

; Example 3 - Open a data file on a specific ODB server

Open data file {odb://127.0.0.1:5900:test}

; Example 4 - Open a data file using the ODB server identified by

$prefs.$odbserver

Open data file {odb://test}

Open DDE channel

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES YES NO Windows

Syntax

Open DDE channel {program-name | topic-name}

Description

This command opens the current channel for exchanging data. If there is a valid response,
the flag is set and the channel is successfully opened. If the channel is already open, the
existing conversation is closed.

When entering the command in a method, you use the parameters to specify the program
and the topic to which the message is to be addressed. Note that the "pipe" (or vertical bar)
between the program name and topic name is required.

Open file

174

This command is reversible, that is, a previous conversation will reopen if this command is
contained within a reversible block.

When the command is used in a method containing a reversible block, and if a new
conversation is initiated using the same channel number as an existing conversation, the
original continues to process incoming messages only, and at the end of the method, the
new conversation is stopped and the original becomes fully active.

Example
Set DDE channel number {2}

Open DDE channel {Omnis|Country}

If flag false

 OK message {The Country library is not running}

Else

 Do method TransferData

 Close DDE channel

 OK message {Update fi nished}

End If

Open file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Open file (path, refnum [,'r']) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external
command.

It returns an error code (See Error Codes), or zero if no error occurs.

Example
; Prompt the user for a file for opening

Do FileOps.$putfilename (lPathname,'Select a file','') Returns lReturnFlag

If lRetur nFlag

 Open file (lPathname,lRefNum)

End If

Open library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Open library ([Do not close others][,Enable conversion by runtime][,Do not open startup
task][,Convert without user prompts]) {library-file-name,internal-
name,password (parameters)}

Options

Do not close others
If specified, the command does not close all open libraries
before opening the specified library

Enable conversion by runtime The development version of Omnis offers to convert libraries
created by an earlier version of Omnis. If this option is

 Open library

 175

specified, the runtime version of Omnis will also offer to
convert such libraries

Do not open startup task
If specified, the command does not construct an instance of
the startup task when it opens the library

Convert without user prompts

If specified, and conversion is allowed, Omnis will
immediately perform the conversion without giving the user
any prompts that require a response; also, the user cannot
cancel the conversion

Description

This command opens the specified library file and closes other libraries, if specified. You
specify the library name (including path name if required), internal name, password, and
startup method parameters of the library to be opened. If the disk file with the specified path
name cannot be opened or is not a valid library, the flag is cleared and no libraries are
closed.

If the internal name of an opened library is specified, a check is made to ensure the internal
name is unique among the open libraries, and a runtime error occurs if this is not the case. If
no internal name is specified, the default internal name is the disk name of the file with the
path name and suffix removed. For example, the internal name for 'hd:myfiles:testlib.lbs' is
'testlib'.

Do not close others

The Do not close others option lets you keep open all other libraries. Otherwise, all other
open libraries are closed (see the Close library command for the consequences of closing a
library). If an attempt is made to open a library which is already open, that library is closed
and reopened.

Startup task

If the Do not open startup task option is specified, the startup task construct for the opened
library is not called. Otherwise, the startup task $construct() method is called and the
parameters for it are passed. The startup task instance name will be either the library name
or the library internal name if it has one: it is not called Startup_Task.

Enable conversion by runtime

If you select the Enable conversion by runtime option, and the library was created with a
previous version of Omnis, then the runtime version of Omnis can convert the library if the
user allows. The default is that an Omnis runtime will not ask the user if they want to convert
the library.

Passwords

If a password is specified, an attempt is made to open the library with that password. If it is
not a valid password or no password is specified, the library is opened in the usual way, that
is, if the library does not need a master password, it is opened at the master level; otherwise
the usual prompt for password dialog is opened (the library is closed and a flag false
returned if this dialog is closed without a password being entered).

Example
; Open the library mylib.lbs from the r oot of your

; omnis studio tree

Calculate lLibPath as con (sys (115),'mylib.lbs')

Open library (Do not close others) {[lLibPath],MYLIB}

If flag true

 OK message {Library Opened!}

End If

Open lookup file

176

Open lookup file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES YES NO All

Syntax

Open lookup file {lookup-name,data-file-name,file-class-name,index-field}

Description

This command opens an Omnis data file for use as a lookup file. You give each lookup file a
reference name which you use in subsequent lookup() functions to select a particular data
file and file class.

You can open any Omnis data file as a lookup file, including any data file accessed via the
Omnis Data Bridge (ODB). In a lookup file, you can use the file classes to look up field
values based on an indexed search. Each file class should consist of at least two fields: the
first is the index (usually a character field), the second is any field type. For example, the
data file Lookup.df1 has a file class called fCities with the following structure:

File name Field1 Field2

fPic Char Indexed Picture

fCities Char Indexed Char

The parameters for Open lookup file are separated by ",". The first parameter is a label that
you create to become the reference to that lookup "channel". If you omit this label, Omnis
assumes that you will use only one lookup file whereupon you can use lookup() without its
first parameter. The label you give to each lookup is case-insensitive and if you use the
same one twice, the previous lookup file is closed. A flag true is returned if the data file is
found and opened.

The example at the bottom opens a data file called Lookup.df1 and assigns the label "City"
to the lookup channel. The City lookup uses the file class fCities within that data file and
uses the first index to search for the required data. The OK message uses lookup() to search
the first indexed field for an exact match with the value "I". If the match is found, the value of
field 2 in the matched record is returned and displayed as part of the OK message. If no
match is found, lookup() returns an empty value.

Note that the index and field are specified as numbers because your particular library may
not include the file class used in the lookup data file. If you omit either number, the default is
to use the first field as the index, and the second as the field value to be returned in
the lookup() function.

Omnis opens the data file using the following rules. Omnis first tries to open the file using the
supplied data-file-name. If this fails, and if the data-file-name does not contain any special
characters used in pathnames (for example, under Windows ó:ô and ó\ô), then Omnis searches
for the file.

Under Windows and Linux, Omnis searches the paths included in the Omnis environment
variable. The Omnis environment variable must contain a semicolon separated list of
pathnames, for example:

C: \ OMNIS\ LOOKUPS;D:\ OMNIS\ LOOKUPS

Under macOS, Omnis searches the System folder, Omnis folder and then the root of each
mounted volume, in that order.

The flag is set if the lookup is successful, that is, the data file is opened, the file slot exists
and the indexed field is indeed indexed. The lookup file is closed if the command is reversed
(see Begin reversible block).

 Open runtime data file browser

 177

You can close lookup files using Close lookup file, but this is not necessary: all lookup files
associated with a library are closed automatically when the library quits.

You can maintain the data within the lookup file from within the library by:

1. Adding the appropriate file classes to your library,
2. Changing the data file to the lookup file using Open data file,
3. Opening a window and editing/ inserting data in the usual way, and
4. Returning to the original data file.

You can also load multiple data files with Open data file.

Example
Open lookup fi le {City,Lookup.df1,fCities,1}

If flag true

 OK message {The city you require is [lookup('City','I',2)]}

End If

; You can open more than one file class within a particular data file by

assigning

; a different label to each lookup

Open lookup file {City 2,Lookup.df1,fCities2}

Open lookup file {City,Lookup.df1,fCities}

Open lookup file {Country,Lookup.df1,fCountries}

; You can also open a lookup file accessed using the Omnis Data Bridge (ODB)

Open lookup file {City,odb://127.0.0.1:5900:LookUpData,fCities, 1}

Open runtime data file browser

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Open runtime data file browser

Description

Example
Open data file {Salaries.df1}

Set current data file {Salaries}

Open runtime data file browser

Open task instance

Command group Flag affected Reversible Execute on client Platform(s)

Tasks NO NO NO All

Syntax

Open task instance class-name[/instance-name] [(parameters)]

Description

This command opens the specified task and assigns an instance name. You can include a
list of parameters which are sent to the $construct() method in the task instance. Note that
startup task instance is normally opened when the library opens: its name will be either the
library name or the library internal name if it has one.

Example
Open task instance tkMyTask (1)

; or do it like this

Open trace log

178

Do $tasks.tkMyTask.$open('*',1) ;; * is the default instance name

; Then in the $construct of tkMyTask

If pOpenWindow ;; pOpenWindow is a boolean p arameter variable

 Open window instance wMyWindow

End If

Open trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Open trace log ([Clear trace log])

Options

Clear trace log If specified, the command clears the trace log

Description

This command opens the trace log. The trace log can also be opened via the Tools menu.

Example
; open the trace log and clear any existing messages

Open trace log (Clear trace log)

Open window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO YES NO All

Syntax

Open window instance class[/instance] [/l/t/r/b/cen/max/min/stk] [(params)]

Description

This command opens an instance of the specified window class. You can specify the
position and size of the window instance (using the left, top, right, bottom coordinates in
pixels), and you can center, maximize, minimize, and stack the window. Furthermore, you
can send a list of parameters to the windowôs $construct() method.

Open window instance lets you open multiple instances of the same window class. The
default instance name for a window is the class name, but if you want to open multiple
instances of the same window class you must assign a unique name to each instance.
Window instance names are case-sensitive.

Window Position and Size

You can specify the position of the top-left corner of the window instance by adding the
coordinates to the end of the window-name/instance-name parameter, that is, window-
name/instance-name/left/top. You specify the position in pixels, the origin being /0/0, that is,
under the menu bar. By providing all four coordinates, you can specify the position and size
of the window instance.

Centering and Stacking Windows

The /CEN option automatically centers the window instance. You can include the four
window size coordinates with the /CEN option so the window is sized and centered.

 Optimize method

 179

The /STK option opens the window instance about 12 pixels (the stack offset) to the right
and down from the current top window. When a stacked window reaches the edge of the
screen, it is placed back at the top of the stack, offset slightly from the first window.

Maximizing and Minimizing Windows

The /MAX option opens and maximizes the window instance. If you include the position and
size coordinates with this option, the window is opened with the specified position and size
and then maximized.

The /MIN option opens and minimizes the window instance. If you include the position and
size coordinates with this option, the window is opened with the specified position and size
and then minimized.

$construct() Method and Passing Parameters

When you open a window instance, the $construct() method for that instance is run. In this
method, you place commands which set up the conditions required by the window. For
example, you may want to set the main file, build particular lists, and so on. Just as with Do
method and Do code method you can send parameters to the window using Open window
instance.

Reversible blocks in the $construct() method do not reverse until the window instance is
closed, unlike a normal method whose reversible blocks reverse on termination of the
method.

Example
; Open 2 instances of the window wMyWindow stacked

Open window instance wMyWindow/wInst1/CEN

Open window instance wMyWindow/wInst2/STK

; Alternatively, you can let Omnis assign enumerated names to

; multiple instances by specifying ó*ô as the instance name.

Open window instance wMywindow/*

Open window instance wMywindow/*

; Specify the size and location when ope ning the window

; wMyWindow

Open window instance wMyWindow/*/10/10/100/100

; Specify the size and location in variables

Calculate lLeft as 10

Calculate lRight as 100

Calculate lTop as 10

Calculate lBottom as 100

Open window instance wMyWindow/*/[lLeft]/[lTop]/[lRight]/[lBottom]

; Open the window wMyWindow maximized

Open window instance wMyWindow/*/MAX

; Open the window wMyWindow minimized

Open window instance wMyWindow/*/MIN

; Open the window wMyWindow and pass the variables lMyVar1 and lMyVar2

; to i ts $construct method

Open window instance wMyWindow/*/ (lMyVar1,lMyVar2)

Optimize method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO YES NO All

Syntax

Optimize method

OR selected and saved

180

Description

This command stores an optimized form of the method so when the method is executed for
a second time it runs much faster. You should position this command so that it is the first
executable statement of the method, except when you put it in a reversible block. Methods
which are executed frequently, such as control methods and loops, are best optimized. The
command is reversible and does not change the flag.

Optimize method works immediately, therefore when it is executed for the first time it
converts all of the subsequent lines of the method being executed into its optimized form and
continues execution. When the method terminates, the optimized form of that method is kept
in RAM; the optimized form is executed if the method is called again. If Optimize method is
in a reversible block the optimized form of the method is disposed of when the method
terminates; so it will be rebuilt each time the method executes. The optimized method is also
discarded whenever the design window is open for the method or the method is modified
using the notation.

WARNING Optimizing too many methods will increase the memory used which may
eventually result in a slowdown or worse.

Example
; Build a list of invoices for the first overdrawn account

Optimize method

Set main file {fAccounts}

Set current list iInvoices

Define list {fInvoices}

Set search name sOverDrawn

Find first on fAccounts.Code (Use search)

While flag true

 Single file find on fInvoices.AccCode (Exact match) {fAccounts.Code}

 Add line to list

 Next

End While

OR selected and saved

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

OR selected and saved ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Description

This command performs a logical OR of the Saved selection with the Current selection. To
allow sophisticated manipulation of data via lists, a list can store two selection states for
each line; the "Current" and the "Saved" selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of
selections. The lists may be held in memory and never saved to disk: they will still have a
Current and Saved selection state for each line but they will be lost if not saved. When a list
is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.

The OR selected and saved command performs a logical OR on the Saved and Current
states and puts the result into the Current selection. Hence, if either or both the Current and

 Paste from clipboard

 181

Saved states are selected, the Current state becomes selected, but if both states are
deselected, the resulting Current state will remain deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current State

S S S

D S S

S D S

D D D

The All lines option performs the OR on all lines of the current list. The following example
selects all lines of the list.

Example
; Lines 3 and 5 remain s elected as line 3 is the

; only line selected in the saved list and line 5 is

; the only line selected in the current list

Set current list lMyList

Define list {lCol1}

For lCol1 from 1 to 6 step 1

 Add line to list {lCol1}

End For

Select list line(s) {3 }

Save selection for line(s) (All lines)

Deselect list line(s) (All lines)

Select list line(s) {5}

OR selected and saved (All lines)

Paste from clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Paste from clipboard field-name ([Redraw field][,All windows])

Options

Redraw field
If specified, the command reloads affected window fields with the new value of
the data field, after it has performed the operation; note that this takes the 'All
windows' option into account

All windows
If specified, the command applies to all open window instances, rather than
just the top open window instance

Description

This command pastes the contents of the clipboard into the specified field, current selection
or at the insertion point. When the field-name parameter is specified, Paste from clipboard
pastes the contents of the clipboard into the field replacing the contents of the whole field.
However, when the field-name parameter is not specified the command will paste the

