
Omnis Command Reference

Omnis Software Ltd

May 2023 - Updated Oct 2023 Revision 35659

About this Manual

This manual contains a complete list of 4GL commands available in Omnis Studio, arranged in alphabetical order. See the Omnis
Programming manual for further information about using the Omnis commands.

Command information

Each command has the following information, as well as the syntax, description, and an Omnis code example.

Command group Flag affected Reversible Execute on Client Platform(s)

Functional group,e.g.
“Constructs”

Whether or not (YES/NO) the
command sets the flag when it
executes; if the command
executes successfully the flag is
set to True, if it fails the flag is
set to False.

Whether or not (YES/NO)
the command is reversed
when it is executed within a
reversible block; see Begin
reversible block command.

Whether or not (YES/NO) the
command can be executed in a
client method in the JavaScript
Client; see also Client commands

Which platform the
command is available on,
including: Windows, Linux,
macOS; All indicates the
command is available on all
platforms

Command Groups

In versions of Omnis Studio prior to version 10.x the commands were arranged in groups in the Method Editor, but the command
groups no longer appear in the Code Editor. The commands are listed here in the same functional groups for your convenience only.

Calculations Classes Constructs Debugger

Error
handlers

Events External
com-
mands

Externals

Libraries Message
boxes

Methods Operating
system

Parameters
and
variables

Reports
and
Printing

SQL
Object
Com-
mands

Text

Threads

The following commands apply to desktop apps only, and should not be used in web or mobile apps.

Changing
data

Clipboard Data
files

Data
manage-
ment

Enter data Exchanging
data

Fields Files

Finding
data

Importing
and Ex-
porting

List lines Lists

Menus Omnis
environ-
ment

Report
destina-
tions

Report
parame-
ters

Searches Sort
fields

Tasks Toolbars

1

/developers/resources/onlinedocs/Programming/00about.html
/developers/resources/onlinedocs/Programming/00about.html
Commands_A-Z/begin_reversible_block.html
Commands_A-Z/begin_reversible_block.html
calculations.html
classes.html
constructs.html
debugger.html
error_handlers.html
error_handlers.html
events.html
external_commands.html
external_commands.html
external_commands.html
externals.html
libraries.html
message_boxes.html
message_boxes.html
methods.html
operating_system.html
operating_system.html
parameters_and_variables.html
parameters_and_variables.html
parameters_and_variables.html
reports_and_printing.html
reports_and_printing.html
reports_and_printing.html
sql_object_commands.html
sql_object_commands.html
sql_object_commands.html
sql_object_commands.html
text.html
threads.html
changing_data.html
changing_data.html
clipboard.html
data_files.html
data_files.html
data_management.html
data_management.html
data_management.html
enter_data.html
exchanging_data.html
exchanging_data.html
fields.html
files.html
finding_data.html
finding_data.html
importing_and_exporting.html
importing_and_exporting.html
importing_and_exporting.html
list_lines.html
lists.html
menus.html
omnis_environment.html
omnis_environment.html
omnis_environment.html
report_destinations.html
report_destinations.html
report_destinations.html
report_parameters.html
report_parameters.html
report_parameters.html
searches.html
sort_fields.html
sort_fields.html
tasks.html
toolbars.html

Windows

Client Commands

The following commands can be executed in a client method in the JavaScript Client.

Command

Comment
Begin text block
Break to end of switch
asof 35949 Breakpoint
Calculate
Case
Default
Do
Do inherited
Do method
Else
Else If calculation
Else If flag false
Else If flag true
End For
End If
End Switch
End text block
EndWhile
For field value
Get text block
If calculation
If flag false
If flag true
JavaScript:
Jump to start of loop
OKmessage
On
On default
Quit event handler
Quit method
Repeat
Send to trace log
Set reference
Sound bell
Switch
Text:
Until calculation
Until flag false
Until flag true
While calculation
While flag false
While flag true

Error Codes

2

windows.html
Commands_A-Z/aaacomment.html
Commands_A-Z/begin_text_block.html
Commands_A-Z/break_to_end_of_switch.html
Commands_A-Z/breakpoint.html
Commands_A-Z/calculate.html
Commands_A-Z/case.html
Commands_A-Z/default.html
Commands_A-Z/do.html
Commands_A-Z/do_inherited.html
Commands_A-Z/do_method.html
Commands_A-Z/else.html
Commands_A-Z/else_if_calculation.html
Commands_A-Z/else_if_flag_false.html
Commands_A-Z/else_if_flag_true.html
Commands_A-Z/end_for.html
Commands_A-Z/end_if.html
Commands_A-Z/end_switch.html
Commands_A-Z/end_text_block.html
Commands_A-Z/end_while.html
Commands_A-Z/for_field_value.html
Commands_A-Z/get_text_block.html
Commands_A-Z/if_calculation.html
Commands_A-Z/if_flag_false.html
Commands_A-Z/if_flag_true.html
Commands_A-Z/javascript.html
Commands_A-Z/jump_to_start_of_loop.html
Commands_A-Z/ok_message.html
Commands_A-Z/on.html
Commands_A-Z/on_default.html
Commands_A-Z/quit_event_handler.html
Commands_A-Z/quit_method.html
Commands_A-Z/repeat.html
Commands_A-Z/send_to_trace_log.html
Commands_A-Z/set_reference.html
Commands_A-Z/sound_bell.html
Commands_A-Z/switch.html
Commands_A-Z/text_.html
Commands_A-Z/until_calculation.html
Commands_A-Z/until_flag_false.html
Commands_A-Z/until_flag_true.html
Commands_A-Z/while_calculation.html
Commands_A-Z/while_flag_false.html
Commands_A-Z/while_flag_true.html

FileOps
Error Codes

Web
Error
Codes

Obsolete Commands

There were several commands or command groups marked as ‘Obsolete’ in versions of Omnis Studio prior to Studio 10.0 and these
have been removed fromOmnis Studio andwill be commented out in converted libraries: for the benefit of existing users, the obsolete
commands are listed here: Obsolete Commands

Command Filters

The commands in Omnis perform many different functions, including many legacy features that are no longer required for creating
web andmobile apps using the JavaScript Client. There is a filter mechanism in the Method Editor to filter the list of commands that
are displayed in the Code Assistant help list, primarily to remove any old commands, including those for managing Omnis datafiles.

Note you can still use the excluded commands in your code, andmethods in converted libraries using these commands will continue
to work – the filters just hide the commands from the Code Assistant help list.

The command filter is set under the Filter Commands submenu in the Modify menu in the Method Editor: note this is only visible
when the cursor is in Code Editor, while editing a line of code. The Exclude Old Commands filter is enabled by default, which excludes
over 200 old commands, plus there are other filters available that exclude smaller subsets of commands. You can disable the current
filter using the No Filter option, in which case all the commands available in Omnis will be shown in the Code Assistant help list.

Copyright info

The software this document describes is furnished under a license agreement. The software may be used or copied only in accor-
dance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials and examples of this
manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a retrieval system or translated into
any language in any form by any means without the written permission of Omnis Software. © Omnis Software, and its licensors
2023. All rights reserved. Portions © Copyright Microsoft Corporation. Regular expressions Copyright (c) 1986,1993,1995 University
of Toronto. © 1999-2023 The Apache Software Foundation. All rights reserved. This product includes software developed by the
Apache Software Foundation (http://www.apache.org/). Specifically, this product uses Json-smart published under Apache License
2.0 (http://www.apache.org/licenses/LICENSE-2.0) © 2001-2023 Python Software Foundation; All Rights Reserved. The iOS application
wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT license. Omnis® and Omnis Stu-
dio® are registered trademarks of Omnis Software. Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile,
Win32, Win32s are registered trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other
countries. Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark of
Apple, Inc. IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation. ICU is Copyright ©
1995-2023 International Business Machines Corporation and others. UNIX is a registered trademark in the US and other countries
exclusively licensed by X/Open Company Ltd. Portions Copyright (c) 1996-2023, The PostgreSQL Global Development Group Portions
Copyright (c) 1994, The Regents of the University of California Oracle, Java, and MySQL are registered trademarks of Oracle Corpora-
tion and/or its affiliates SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc. Acrobat
is a registered trademark of Adobe Systems, Inc. CodeWarrior is a trademark of Metrowerks, Inc. This software is based in part on
ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com). This software is based in part on the work of the
Independent JPEG Group. This software is based in part of the work of the FreeType Team. Other productsmentioned are trademarks
or registered trademarks of their corporations.

Lists

Commands

The Lists group of commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type the
first few characters), although they are still present in Studio 11 and will continue to function in legacy code. You can show these
commands by disabling the appropriate Command Filter in the Modify menu in the Code Editor.

3

Commands_A-Z/fileops_error_codes.html
Commands_A-Z/fileops_error_codes.html
Commands_A-Z/web_error_codes.html
Commands_A-Z/web_error_codes.html
Commands_A-Z/web_error_codes.html
obsolete.html

You should use the equivalentmethods where available, such as $define() instead ofDefine list, $search() instead of Search list, $sort()
instead of Sort list, and so on, to manipulate the contents of list variables.

Build list
columns
list

Build list
from file

Clear list Copy list
defini-
tion

Define
list

Define
list from
SQL
class

Merge
list

Redefine
list

Search
list

Set
current
list

Sort list Swap
lists

Menus

Commands

These commands are for desktop apps using menu classes only, not web or mobile apps.

Build
installed
menu
list

Build
menu
list

Check
menu
line

Disable
all
menus
and
toolbars

Disable
menu
line

Enable
all
menus
and
toolbars

Enable
menu
line

Install
menu

Popup
menu

Popup
menu
from list

Redraw
menus

Remove
all
menus

Remove
final
menu

Remove
menu

Replace
standard
Edit
menu

Replace
standard
File
menu

Standard
menu
com-
mand

Test for
menu
installed

Test for
menu
line
checked

Test for
menu
line
enabled

Uncheck
menu
line

Message boxes

Commands

Close
working
message
*

No/Yes
message

OK
message

Prompt
for input
*

Redraw
working
message
*

Sound
bell

Working
message
*

Yes/No
message

*These commands are for desktop apps only, not web or mobile apps.

4

Commands_A-Z/build_list_columns_list.html
Commands_A-Z/build_list_columns_list.html
Commands_A-Z/build_list_columns_list.html
Commands_A-Z/build_list_from_file.html
Commands_A-Z/build_list_from_file.html
Commands_A-Z/clear_list.html
Commands_A-Z/copy_list_definition.html
Commands_A-Z/copy_list_definition.html
Commands_A-Z/copy_list_definition.html
Commands_A-Z/define_list.html
Commands_A-Z/define_list.html
Commands_A-Z/define_list_from_sql_class.html
Commands_A-Z/define_list_from_sql_class.html
Commands_A-Z/define_list_from_sql_class.html
Commands_A-Z/define_list_from_sql_class.html
Commands_A-Z/merge_list.html
Commands_A-Z/merge_list.html
Commands_A-Z/redefine_list.html
Commands_A-Z/redefine_list.html
Commands_A-Z/search_list.html
Commands_A-Z/search_list.html
Commands_A-Z/set_current_list.html
Commands_A-Z/set_current_list.html
Commands_A-Z/set_current_list.html
Commands_A-Z/sort_list.html
Commands_A-Z/swap_lists.html
Commands_A-Z/swap_lists.html
Commands_A-Z/build_installed_menu_list.html
Commands_A-Z/build_installed_menu_list.html
Commands_A-Z/build_installed_menu_list.html
Commands_A-Z/build_installed_menu_list.html
Commands_A-Z/build_menu_list.html
Commands_A-Z/build_menu_list.html
Commands_A-Z/build_menu_list.html
Commands_A-Z/check_menu_line.html
Commands_A-Z/check_menu_line.html
Commands_A-Z/check_menu_line.html
Commands_A-Z/disable_all_menus_and_toolbars.html
Commands_A-Z/disable_all_menus_and_toolbars.html
Commands_A-Z/disable_all_menus_and_toolbars.html
Commands_A-Z/disable_all_menus_and_toolbars.html
Commands_A-Z/disable_all_menus_and_toolbars.html
Commands_A-Z/disable_menu_line.html
Commands_A-Z/disable_menu_line.html
Commands_A-Z/disable_menu_line.html
Commands_A-Z/enable_all_menus_and_toolbars.html
Commands_A-Z/enable_all_menus_and_toolbars.html
Commands_A-Z/enable_all_menus_and_toolbars.html
Commands_A-Z/enable_all_menus_and_toolbars.html
Commands_A-Z/enable_all_menus_and_toolbars.html
Commands_A-Z/enable_menu_line.html
Commands_A-Z/enable_menu_line.html
Commands_A-Z/enable_menu_line.html
Commands_A-Z/install_menu.html
Commands_A-Z/install_menu.html
Commands_A-Z/popup_menu.html
Commands_A-Z/popup_menu.html
Commands_A-Z/popup_menu_from_list.html
Commands_A-Z/popup_menu_from_list.html
Commands_A-Z/popup_menu_from_list.html
Commands_A-Z/redraw_menus.html
Commands_A-Z/redraw_menus.html
Commands_A-Z/remove_all_menus.html
Commands_A-Z/remove_all_menus.html
Commands_A-Z/remove_all_menus.html
Commands_A-Z/remove_final_menu.html
Commands_A-Z/remove_final_menu.html
Commands_A-Z/remove_final_menu.html
Commands_A-Z/remove_menu.html
Commands_A-Z/remove_menu.html
Commands_A-Z/replace_standard_edit_menu.html
Commands_A-Z/replace_standard_edit_menu.html
Commands_A-Z/replace_standard_edit_menu.html
Commands_A-Z/replace_standard_edit_menu.html
Commands_A-Z/replace_standard_file_menu.html
Commands_A-Z/replace_standard_file_menu.html
Commands_A-Z/replace_standard_file_menu.html
Commands_A-Z/replace_standard_file_menu.html
Commands_A-Z/standard_menu_command.html
Commands_A-Z/standard_menu_command.html
Commands_A-Z/standard_menu_command.html
Commands_A-Z/standard_menu_command.html
Commands_A-Z/test_for_menu_installed.html
Commands_A-Z/test_for_menu_installed.html
Commands_A-Z/test_for_menu_installed.html
Commands_A-Z/test_for_menu_line_checked.html
Commands_A-Z/test_for_menu_line_checked.html
Commands_A-Z/test_for_menu_line_checked.html
Commands_A-Z/test_for_menu_line_checked.html
Commands_A-Z/test_for_menu_line_enabled.html
Commands_A-Z/test_for_menu_line_enabled.html
Commands_A-Z/test_for_menu_line_enabled.html
Commands_A-Z/test_for_menu_line_enabled.html
Commands_A-Z/uncheck_menu_line.html
Commands_A-Z/uncheck_menu_line.html
Commands_A-Z/uncheck_menu_line.html
Commands_A-Z/close_working_message.html
Commands_A-Z/close_working_message.html
Commands_A-Z/close_working_message.html
Commands_A-Z/no_yes_message.html
Commands_A-Z/no_yes_message.html
Commands_A-Z/ok_message.html
Commands_A-Z/ok_message.html
Commands_A-Z/prompt_for_input.html
Commands_A-Z/prompt_for_input.html
Commands_A-Z/redraw_working_message.html
Commands_A-Z/redraw_working_message.html
Commands_A-Z/redraw_working_message.html
Commands_A-Z/sound_bell.html
Commands_A-Z/sound_bell.html
Commands_A-Z/working_message.html
Commands_A-Z/working_message.html
Commands_A-Z/yes_no_message.html
Commands_A-Z/yes_no_message.html

Methods

Commands

Cancel
async
method *

Clear
method
stack

Clear
timer
method

Do async
method *

Do code
method

Do
method

Optimize
method

Quit all if
canceled
*

Quit all
methods
*

Quit
method

Quit
Omnis

Set timer
method

*These commands are for desktop apps only, not web or mobile apps.

Obsolete Commands

Some of the obsolete commands have been removed from this version: these commandsweremarkedwith “OBSOLETE COMMAND”
and appeared in the ‘Obsolete commands…’ group in the Command list in pre-Studio 10.x versions. The converter in Studio 10.x will
comment out these commands wherever they appear in your code, and a record of the conversion process is added to a log file in the
/logs/conversion folder.

* The Call method OBSOLETE COMMAND is not commented out, but is converted to Do code method using the same parameter as
the old command.

The Translate input/output command is now obsolete and will be commented out in your converted code.

Autocommit OBSOLETE COMMAND

Begin SQL script OBSOLETE COMMAND

Build list from select table OBSOLETE COMMAND

Build list of event recipients OBSOLETE COMMAND

Call method OBSOLETE COMMAND * (converted to Do code method)

Cancel event recipient OBSOLETE COMMAND

Cancel publisher OBSOLETE COMMAND

Cancel subscriber OBSOLETE COMMAND

Close client import file OBSOLETE COMMAND

Close cursor OBSOLETE COMMAND

Commit current session OBSOLETE COMMAND

Declare cursor for OBSOLETE COMMAND

Delete client import file OBSOLETE COMMAND

Describe cursors OBSOLETE COMMAND

Describe database OBSOLETE COMMAND

Describe results OBSOLETE COMMAND

Describe server table OBSOLETE COMMAND

Describe sessions OBSOLETE COMMAND

Disable automatic publications OBSOLETE COMMAND

Disable automatic subscriptions OBSOLETE COMMAND

Disable receiving of Apple events OBSOLETE COMMAND

Enable automatic publications OBSOLETE COMMAND

5

Commands_A-Z/cancel_async_method.html
Commands_A-Z/cancel_async_method.html
Commands_A-Z/cancel_async_method.html
Commands_A-Z/clear_method_stack.html
Commands_A-Z/clear_method_stack.html
Commands_A-Z/clear_method_stack.html
Commands_A-Z/clear_timer_method.html
Commands_A-Z/clear_timer_method.html
Commands_A-Z/clear_timer_method.html
Commands_A-Z/do_async_method.html
Commands_A-Z/do_async_method.html
Commands_A-Z/do_code_method.html
Commands_A-Z/do_code_method.html
Commands_A-Z/do_method.html
Commands_A-Z/do_method.html
Commands_A-Z/optimize_method.html
Commands_A-Z/optimize_method.html
Commands_A-Z/quit_all_if_canceled.html
Commands_A-Z/quit_all_if_canceled.html
Commands_A-Z/quit_all_methods.html
Commands_A-Z/quit_all_methods.html
Commands_A-Z/quit_method.html
Commands_A-Z/quit_method.html
Commands_A-Z/quit_omnis.html
Commands_A-Z/quit_omnis.html
Commands_A-Z/set_timer_method.html
Commands_A-Z/set_timer_method.html

Enable automatic subscriptions OBSOLETE COMMAND

Enable receiving of Apple events OBSOLETE COMMAND

End SQL script OBSOLETE COMMAND

Execute SQL script OBSOLETE COMMAND

Fetch current row OBSOLETE COMMAND

Fetch first row OBSOLETE COMMAND

Fetch last row OBSOLETE COMMAND

Fetch next row OBSOLETE COMMAND

Fetch previous row OBSOLETE COMMAND

Get SQL script OBSOLETE COMMAND

Logoff from host OBSOLETE COMMAND

Logon to host OBSOLETE COMMAND

Make file class from server table OBSOLETE COMMAND

Make schema from server table OBSOLETE COMMAND

Map fields to host OBSOLETE COMMAND

Open client import file OBSOLETE COMMAND

Open cursor OBSOLETE COMMAND

Open desk accessory OBSOLETE COMMAND

Perform SQL OBSOLETE COMMAND

Prepare current cursor OBSOLETE COMMAND

Prompt for event recipient OBSOLETE COMMAND

Prompt for word server OBSOLETE COMMAND

Publish field OBSOLETE COMMAND

Publish now OBSOLETE COMMAND

Quit cursor(s) OBSOLETE COMMAND

Reset cursor(s) OBSOLETE COMMAND

Retrieve rows to file OBSOLETE COMMAND

Rollback current session OBSOLETE COMMAND

Send core event OBSOLETE COMMAND

Send core event with return value OBSOLETE COMMAND

Send database event OBSOLETE COMMAND

Send finder event OBSOLETE COMMAND

Send to publisher OBSOLETE COMMAND

Send word services event OBSOLETE COMMAND

Server specific keyword OBSOLETE COMMAND

Set batch size OBSOLETE COMMAND

Set character mapping OBSOLETE COMMAND

Set client import file name OBSOLETE COMMAND

Set current cursor OBSOLETE COMMAND

Set current session OBSOLETE COMMAND

6

Set database version OBSOLETE COMMAND

Set event recipient OBSOLETE COMMAND

Set hostname OBSOLETE COMMAND

Set password OBSOLETE COMMAND

Set publisher options OBSOLETE COMMAND

Set SQL blob preferences OBSOLETE COMMAND

Set SQL script OBSOLETE COMMAND

Set SQL separators OBSOLETE COMMAND

Set subscriber options OBSOLETE COMMAND

Set transaction mode OBSOLETE COMMAND

Set username OBSOLETE COMMAND

SQL: OBSOLETE COMMAND

Start session OBSOLETE COMMAND

Subscribe field OBSOLETE COMMAND

Subscribe now OBSOLETE COMMAND

Translate input/output

Use event recipient OBSOLETE COMMAND

Omnis environment

Commands

These commands are for desktop apps only, not web or mobile apps.

Set
‘About…’
method

Set
Omnis
window
title

Show
‘About…’
window

Show
Omnis
maxi-
mized

Show
Omnis
mini-
mized

Show
Omnis
normal

Test if
running
in back-
ground

Operating system

Commands

Context
help *

Launch
program

Start
program
maxi-
mized *

Start
program
mini-
mized *

Start
program
normal *

Test for
program
open

Test if file
exists

*These commands are for desktop apps only, not web or mobile apps.

7

Commands_A-Z/set_about_method.html
Commands_A-Z/set_about_method.html
Commands_A-Z/set_about_method.html
Commands_A-Z/set_omnis_window_title.html
Commands_A-Z/set_omnis_window_title.html
Commands_A-Z/set_omnis_window_title.html
Commands_A-Z/set_omnis_window_title.html
Commands_A-Z/show_about_window.html
Commands_A-Z/show_about_window.html
Commands_A-Z/show_about_window.html
Commands_A-Z/show_omnis_maximized.html
Commands_A-Z/show_omnis_maximized.html
Commands_A-Z/show_omnis_maximized.html
Commands_A-Z/show_omnis_maximized.html
Commands_A-Z/show_omnis_minimized.html
Commands_A-Z/show_omnis_minimized.html
Commands_A-Z/show_omnis_minimized.html
Commands_A-Z/show_omnis_minimized.html
Commands_A-Z/show_omnis_normal.html
Commands_A-Z/show_omnis_normal.html
Commands_A-Z/show_omnis_normal.html
Commands_A-Z/test_if_running_in_background.html
Commands_A-Z/test_if_running_in_background.html
Commands_A-Z/test_if_running_in_background.html
Commands_A-Z/test_if_running_in_background.html
Commands_A-Z/context_help.html
Commands_A-Z/context_help.html
Commands_A-Z/launch_program.html
Commands_A-Z/launch_program.html
Commands_A-Z/start_program_maximized.html
Commands_A-Z/start_program_maximized.html
Commands_A-Z/start_program_maximized.html
Commands_A-Z/start_program_maximized.html
Commands_A-Z/start_program_minimized.html
Commands_A-Z/start_program_minimized.html
Commands_A-Z/start_program_minimized.html
Commands_A-Z/start_program_minimized.html
Commands_A-Z/start_program_normal.html
Commands_A-Z/start_program_normal.html
Commands_A-Z/start_program_normal.html
Commands_A-Z/test_for_program_open.html
Commands_A-Z/test_for_program_open.html
Commands_A-Z/test_for_program_open.html
Commands_A-Z/test_if_file_exists.html
Commands_A-Z/test_if_file_exists.html

Parameters and variables

Commands

Clear
class
variables

Report destinations

Commands

Close
print or
export
file

Set print
or export
file
name

These commands are for desktop apps only, not web or mobile apps.

Close
port

Prompt
for desti-
nation

Prompt
for port
name

Prompt
for print
or export
file

Send to
a
window
field

Send to
clip-
board

Send to
DDE
channel

Send to
file

Send to
page
preview

Send to
port

Send to
printer

Set port
name

Set port
parame-
ters

Report parameters

Commands

Prompt
for page
setup

Set
bottom
margin

Set
export
format

Set label
width

Set
labels
across
page

Set left
margin

Set lines
per page

Set page
width

Set
record
spacing

Set
repeat
factor

Set
report
main file

Set
report
main list

Set right
margin

Set top
margin

Reports and Printing

Commands

Begin
print job

End
print job

Load
page
setup

Prepare
for print

8

Commands_A-Z/clear_class_variables.html
Commands_A-Z/clear_class_variables.html
Commands_A-Z/clear_class_variables.html
Commands_A-Z/close_print_or_export_file.html
Commands_A-Z/close_print_or_export_file.html
Commands_A-Z/close_print_or_export_file.html
Commands_A-Z/close_print_or_export_file.html
Commands_A-Z/set_print_or_export_file_name.html
Commands_A-Z/set_print_or_export_file_name.html
Commands_A-Z/set_print_or_export_file_name.html
Commands_A-Z/set_print_or_export_file_name.html
Commands_A-Z/close_port.html
Commands_A-Z/close_port.html
Commands_A-Z/prompt_for_destination.html
Commands_A-Z/prompt_for_destination.html
Commands_A-Z/prompt_for_destination.html
Commands_A-Z/prompt_for_port_name.html
Commands_A-Z/prompt_for_port_name.html
Commands_A-Z/prompt_for_port_name.html
Commands_A-Z/prompt_for_print_or_export_file.html
Commands_A-Z/prompt_for_print_or_export_file.html
Commands_A-Z/prompt_for_print_or_export_file.html
Commands_A-Z/prompt_for_print_or_export_file.html
Commands_A-Z/send_to_a_window_field.html
Commands_A-Z/send_to_a_window_field.html
Commands_A-Z/send_to_a_window_field.html
Commands_A-Z/send_to_a_window_field.html
Commands_A-Z/send_to_clipboard.html
Commands_A-Z/send_to_clipboard.html
Commands_A-Z/send_to_clipboard.html
Commands_A-Z/send_to_dde_channel.html
Commands_A-Z/send_to_dde_channel.html
Commands_A-Z/send_to_dde_channel.html
Commands_A-Z/send_to_file.html
Commands_A-Z/send_to_file.html
Commands_A-Z/send_to_page_preview.html
Commands_A-Z/send_to_page_preview.html
Commands_A-Z/send_to_page_preview.html
Commands_A-Z/send_to_port.html
Commands_A-Z/send_to_port.html
Commands_A-Z/send_to_printer.html
Commands_A-Z/send_to_printer.html
Commands_A-Z/set_port_name.html
Commands_A-Z/set_port_name.html
Commands_A-Z/set_port_parameters.html
Commands_A-Z/set_port_parameters.html
Commands_A-Z/set_port_parameters.html
Commands_A-Z/prompt_for_page_setup.html
Commands_A-Z/prompt_for_page_setup.html
Commands_A-Z/prompt_for_page_setup.html
Commands_A-Z/set_bottom_margin.html
Commands_A-Z/set_bottom_margin.html
Commands_A-Z/set_bottom_margin.html
Commands_A-Z/set_export_format.html
Commands_A-Z/set_export_format.html
Commands_A-Z/set_export_format.html
Commands_A-Z/set_label_width.html
Commands_A-Z/set_label_width.html
Commands_A-Z/set_labels_across_page.html
Commands_A-Z/set_labels_across_page.html
Commands_A-Z/set_labels_across_page.html
Commands_A-Z/set_labels_across_page.html
Commands_A-Z/set_left_margin.html
Commands_A-Z/set_left_margin.html
Commands_A-Z/set_lines_per_page.html
Commands_A-Z/set_lines_per_page.html
Commands_A-Z/set_page_width.html
Commands_A-Z/set_page_width.html
Commands_A-Z/set_record_spacing.html
Commands_A-Z/set_record_spacing.html
Commands_A-Z/set_record_spacing.html
Commands_A-Z/set_repeat_factor.html
Commands_A-Z/set_repeat_factor.html
Commands_A-Z/set_repeat_factor.html
Commands_A-Z/set_report_main_file.html
Commands_A-Z/set_report_main_file.html
Commands_A-Z/set_report_main_file.html
Commands_A-Z/set_report_main_list.html
Commands_A-Z/set_report_main_list.html
Commands_A-Z/set_report_main_list.html
Commands_A-Z/set_right_margin.html
Commands_A-Z/set_right_margin.html
Commands_A-Z/set_top_margin.html
Commands_A-Z/set_top_margin.html
Commands_A-Z/begin_print_job.html
Commands_A-Z/begin_print_job.html
Commands_A-Z/end_print_job.html
Commands_A-Z/end_print_job.html
Commands_A-Z/load_page_setup.html
Commands_A-Z/load_page_setup.html
Commands_A-Z/load_page_setup.html
Commands_A-Z/prepare_for_print.html
Commands_A-Z/prepare_for_print.html

Print
record

Print
report

Print
report
from
disk

Print
report
from
memory

Select
printer

Set
report
name

Transmit
text to
port

Transmit
text to
print file

Searches

Commands

The Searches group of commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type
the first few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by
disabling the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps using Omnis data files and Search classes only, not web or mobile apps.

Build
search
list

Clear
search
class

Reinitialize
search
class

Set
search as
calcula-
tion

Set
search
name

Test data
with
search
class

Sort fields

Commands

The Sort Fields commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type the first
few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by disabling
the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps using Omnis data files and sort fields only, not web or mobile apps.

Clear
sort
fields

Set sort
field

SQL Object Commands

Commands

Begin
state-
ment

End
state-
ment

Get
state-
ment

Sta:

Tasks

Commands

These commands are for desktop apps using Task classes only, not web or mobile apps.

Close
task
instance

Open
task
instance

9

Commands_A-Z/print_record.html
Commands_A-Z/print_record.html
Commands_A-Z/print_report.html
Commands_A-Z/print_report.html
Commands_A-Z/print_report_from_disk.html
Commands_A-Z/print_report_from_disk.html
Commands_A-Z/print_report_from_disk.html
Commands_A-Z/print_report_from_disk.html
Commands_A-Z/print_report_from_memory.html
Commands_A-Z/print_report_from_memory.html
Commands_A-Z/print_report_from_memory.html
Commands_A-Z/print_report_from_memory.html
Commands_A-Z/select_printer.html
Commands_A-Z/select_printer.html
Commands_A-Z/set_report_name.html
Commands_A-Z/set_report_name.html
Commands_A-Z/set_report_name.html
Commands_A-Z/transmit_text_to_port.html
Commands_A-Z/transmit_text_to_port.html
Commands_A-Z/transmit_text_to_port.html
Commands_A-Z/transmit_text_to_print_file.html
Commands_A-Z/transmit_text_to_print_file.html
Commands_A-Z/transmit_text_to_print_file.html
Commands_A-Z/build_search_list.html
Commands_A-Z/build_search_list.html
Commands_A-Z/build_search_list.html
Commands_A-Z/clear_search_class.html
Commands_A-Z/clear_search_class.html
Commands_A-Z/clear_search_class.html
Commands_A-Z/reinitialize_search_class.html
Commands_A-Z/reinitialize_search_class.html
Commands_A-Z/reinitialize_search_class.html
Commands_A-Z/set_search_as_calculation.html
Commands_A-Z/set_search_as_calculation.html
Commands_A-Z/set_search_as_calculation.html
Commands_A-Z/set_search_as_calculation.html
Commands_A-Z/set_search_name.html
Commands_A-Z/set_search_name.html
Commands_A-Z/set_search_name.html
Commands_A-Z/test_data_with_search_class.html
Commands_A-Z/test_data_with_search_class.html
Commands_A-Z/test_data_with_search_class.html
Commands_A-Z/test_data_with_search_class.html
Commands_A-Z/clear_sort_fields.html
Commands_A-Z/clear_sort_fields.html
Commands_A-Z/clear_sort_fields.html
Commands_A-Z/set_sort_field.html
Commands_A-Z/set_sort_field.html
Commands_A-Z/begin_statement.html
Commands_A-Z/begin_statement.html
Commands_A-Z/begin_statement.html
Commands_A-Z/end_statement.html
Commands_A-Z/end_statement.html
Commands_A-Z/end_statement.html
Commands_A-Z/get_statement.html
Commands_A-Z/get_statement.html
Commands_A-Z/get_statement.html
Commands_A-Z/sta_.html
Commands_A-Z/close_task_instance.html
Commands_A-Z/close_task_instance.html
Commands_A-Z/close_task_instance.html
Commands_A-Z/open_task_instance.html
Commands_A-Z/open_task_instance.html
Commands_A-Z/open_task_instance.html

Text

Commands

Begin
text
block

End text
block

Get text
block

Line:

Text:

Threads

Commands

Begin
critical
block

End
critical
block

Start
server

Stop
server

Yield to
other
threads

Toolbars

Commands

These commands are for desktop apps using Toolbar classes only, not web or mobile apps.

Hide
docking
area

Install
toolbar

Redraw
toolbar

Remove
toolbar

Show
docking
area

Windows

Commands

These commands are for desktop apps using Window classes only, not web or mobile apps.

Bring
window
instance
to front

Build
open
window
list *

Build
window
list *

Close all
windows

Close
other
windows

Close
top
window

Close
window
instance

Maximize
window
instance

Minimize
window
instance

Open
window
instance

Print top
window

Set top
window
title

Test for
window
open

*These commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type the first few
characters), although they are still present in Studio 11 and will continue to function. You can show these commands by disabling the
appropriate Command Filter in the Modify menu in the Code Editor.

10

Commands_A-Z/begin_text_block.html
Commands_A-Z/begin_text_block.html
Commands_A-Z/begin_text_block.html
Commands_A-Z/end_text_block.html
Commands_A-Z/end_text_block.html
Commands_A-Z/get_text_block.html
Commands_A-Z/get_text_block.html
Commands_A-Z/line_.html
Commands_A-Z/text_.html
Commands_A-Z/begin_critical_block.html
Commands_A-Z/begin_critical_block.html
Commands_A-Z/begin_critical_block.html
Commands_A-Z/end_critical_block.html
Commands_A-Z/end_critical_block.html
Commands_A-Z/end_critical_block.html
Commands_A-Z/start_server.html
Commands_A-Z/start_server.html
Commands_A-Z/stop_server.html
Commands_A-Z/stop_server.html
Commands_A-Z/yield_to_other_threads.html
Commands_A-Z/yield_to_other_threads.html
Commands_A-Z/yield_to_other_threads.html
Commands_A-Z/hide_docking_area.html
Commands_A-Z/hide_docking_area.html
Commands_A-Z/hide_docking_area.html
Commands_A-Z/install_toolbar.html
Commands_A-Z/install_toolbar.html
Commands_A-Z/redraw_toolbar.html
Commands_A-Z/redraw_toolbar.html
Commands_A-Z/remove_toolbar.html
Commands_A-Z/remove_toolbar.html
Commands_A-Z/show_docking_area.html
Commands_A-Z/show_docking_area.html
Commands_A-Z/show_docking_area.html
Commands_A-Z/bring_window_instance_to_front.html
Commands_A-Z/bring_window_instance_to_front.html
Commands_A-Z/bring_window_instance_to_front.html
Commands_A-Z/bring_window_instance_to_front.html
Commands_A-Z/build_open_window_list.html
Commands_A-Z/build_open_window_list.html
Commands_A-Z/build_open_window_list.html
Commands_A-Z/build_open_window_list.html
Commands_A-Z/build_window_list.html
Commands_A-Z/build_window_list.html
Commands_A-Z/build_window_list.html
Commands_A-Z/close_all_windows.html
Commands_A-Z/close_all_windows.html
Commands_A-Z/close_other_windows.html
Commands_A-Z/close_other_windows.html
Commands_A-Z/close_other_windows.html
Commands_A-Z/close_top_window.html
Commands_A-Z/close_top_window.html
Commands_A-Z/close_top_window.html
Commands_A-Z/close_window_instance.html
Commands_A-Z/close_window_instance.html
Commands_A-Z/close_window_instance.html
Commands_A-Z/maximize_window_instance.html
Commands_A-Z/maximize_window_instance.html
Commands_A-Z/maximize_window_instance.html
Commands_A-Z/minimize_window_instance.html
Commands_A-Z/minimize_window_instance.html
Commands_A-Z/minimize_window_instance.html
Commands_A-Z/open_window_instance.html
Commands_A-Z/open_window_instance.html
Commands_A-Z/open_window_instance.html
Commands_A-Z/print_top_window.html
Commands_A-Z/print_top_window.html
Commands_A-Z/set_top_window_title.html
Commands_A-Z/set_top_window_title.html
Commands_A-Z/set_top_window_title.html
Commands_A-Z/test_for_window_open.html
Commands_A-Z/test_for_window_open.html
Commands_A-Z/test_for_window_open.html

List lines

Commands

The List Lines group of commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type
the first few characters), although they are still present in Studio 11 and will continue to function in legacy code. You can show these
commands by disabling the appropriate Command Filter in the Modify menu in the Code Editor.

You should use the equivalent methods where available, such as $add() instead of Add line to list, to manipulate the contents of list
variables.

Add line
to list

AND
selected
and
saved

Clear line
in list

Delete
line in
list

Delete
selected
lines

Deselect
list
line(s)

Go to
next
selected
line

Insert
line in
list

Invert
selection
for line(s)

Load
from list

OR
selected
and
saved

Replace
line in
list

Restore
selection
for line(s)

Save
selection
for line(s)

Select
list
line(s)

Set final
line
number

Swap
selected
and
saved

Test if list
line
selected

XOR
selected
and
saved

Comment

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

#message

Description

This command allows you to add comments to your code. You can either add a new comment, or you can “comment out” existing
lines in your code.

To enter a new comment on an empty line, you can type # and then the comment text, with or without a space after the #. (You
can also type ; to create a new comment, but the comment is marked with #, since semicolon was used for comments in previous
versions).

To enter an inline comment, type “<space>##” at the end of a code line, and then enter the comment text. Inline comments are
positioned over on the right of the code entry area: they are left-tab aligned according to a tab which is indicated by a small marker
at the top of the code entry area: you can drag this marker to reset the tab position.

Note that the Sta:, Text: and JavaScript: commands do not allow inline comments.

To “comment out” lines of code, i.e. to stop the code executing, select themethod line or multiple lines and press Ctrl+/. Use the same
keypress to uncomment previously commented out lines of code (in this case, the comment text must be a valid command to be
uncommented).

11

Commands_A-Z/add_line_to_list.html
Commands_A-Z/add_line_to_list.html
Commands_A-Z/and_selected_and_saved.html
Commands_A-Z/and_selected_and_saved.html
Commands_A-Z/and_selected_and_saved.html
Commands_A-Z/and_selected_and_saved.html
Commands_A-Z/clear_line_in_list.html
Commands_A-Z/clear_line_in_list.html
Commands_A-Z/delete_line_in_list.html
Commands_A-Z/delete_line_in_list.html
Commands_A-Z/delete_line_in_list.html
Commands_A-Z/delete_selected_lines.html
Commands_A-Z/delete_selected_lines.html
Commands_A-Z/delete_selected_lines.html
Commands_A-Z/deselect_list_line(s).html
Commands_A-Z/deselect_list_line(s).html
Commands_A-Z/deselect_list_line(s).html
Commands_A-Z/go_to_next_selected_line.html
Commands_A-Z/go_to_next_selected_line.html
Commands_A-Z/go_to_next_selected_line.html
Commands_A-Z/go_to_next_selected_line.html
Commands_A-Z/insert_line_in_list.html
Commands_A-Z/insert_line_in_list.html
Commands_A-Z/insert_line_in_list.html
Commands_A-Z/invert_selection_for_line(s).html
Commands_A-Z/invert_selection_for_line(s).html
Commands_A-Z/invert_selection_for_line(s).html
Commands_A-Z/load_from_list.html
Commands_A-Z/load_from_list.html
Commands_A-Z/or_selected_and_saved.html
Commands_A-Z/or_selected_and_saved.html
Commands_A-Z/or_selected_and_saved.html
Commands_A-Z/or_selected_and_saved.html
Commands_A-Z/replace_line_in_list.html
Commands_A-Z/replace_line_in_list.html
Commands_A-Z/replace_line_in_list.html
Commands_A-Z/restore_selection_for_line(s).html
Commands_A-Z/restore_selection_for_line(s).html
Commands_A-Z/restore_selection_for_line(s).html
Commands_A-Z/save_selection_for_line(s).html
Commands_A-Z/save_selection_for_line(s).html
Commands_A-Z/save_selection_for_line(s).html
Commands_A-Z/select_list_line(s).html
Commands_A-Z/select_list_line(s).html
Commands_A-Z/select_list_line(s).html
Commands_A-Z/set_final_line_number.html
Commands_A-Z/set_final_line_number.html
Commands_A-Z/set_final_line_number.html
Commands_A-Z/swap_selected_and_saved.html
Commands_A-Z/swap_selected_and_saved.html
Commands_A-Z/swap_selected_and_saved.html
Commands_A-Z/swap_selected_and_saved.html
Commands_A-Z/test_if_list_line_selected.html
Commands_A-Z/test_if_list_line_selected.html
Commands_A-Z/test_if_list_line_selected.html
Commands_A-Z/xor_selected_and_saved.html
Commands_A-Z/xor_selected_and_saved.html
Commands_A-Z/xor_selected_and_saved.html
Commands_A-Z/xor_selected_and_saved.html
../constructs.html

here are some comments
variable delay set by lDelay

adjust Until calculation to increase/decrease delay
Calculate lCount as 1
Repeat ## this is an in-line comment

Calculate lCount as lCount+1
Until lCount>=lDelay*10

Accept advise requests

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept advise requests ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command enables or disables responses to a request Advise message from a client. With
the Accept check box selected, Omnis will respond to an Advise request message specifying a valid field name by repeatedly sending
the field value to the client at appropriate times. If the Accept option is unchecked, all conversations with Advises in force will be
terminated unless the command is part of a reversible block.

Example

Accept advise requests (Accept)

Accept commands

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept commands ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines whether Omnis will accept commands from the client program.
When Accept commands is in force, Omnis will respond to a DDE EXECUTE message by attempting to execute a command string
sent by the client program. All conversations are terminated when you close your Omnis library.

12

../exchanging_data.html
../exchanging_data.html

Example

Accept advise requests (Accept)
Accept commands (Accept)

Accept field requests

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept field requests ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command enables or disables responses to a request for field values issued by a client applica-
tion. With the Accept option selected, Omnis will respond to a Request message specifying a valid field name by sending the field
value to the client program. Values are taken from the current record buffer. Values are only sent when Omnis is in enter data mode
or when no methods are running.

Example

Accept advise requests (Accept)
Accept commands (Accept)
Accept field requests (Accept)

Accept field values

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Accept field values ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines whether Omnis is able to receive data from a client via a DDE POKE
message. With the Accept option selected, Omnis will respond to a Pokemessage specifying a valid field or variable name, by setting
the value of that field to the value transmitted by the client program. Values are stored in the current record buffer and, if the relevant
field is on the top window, that window is redrawn.

Field values are only accepted when Omnis is in enter datamode, Prompted find, or when nomethods are running. All conversations
are terminated when you close your Omnis library.

13

../exchanging_data.html
../exchanging_data.html

Example

Accept advise requests (Accept)
Accept field values (Accept)

Add line to list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Add line to list {line-number (values) {default is end of list}}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command adds a new line to the current list using the current field values in the CRB or values you specify in the list of values. Any
conversions required between data types are carried out automatically. The flag is cleared if the line cannot be added, either because
the maximum number of lines in the list or the memory limits have been exceeded.

You can specify the line number at which the new line is inserted, otherwise the line is added to the end of the list. If the line number
you specify in the command line is empty or evaluates to zero, the new line is added to the end of the list. If too few values are specified,
the other columns are left empty; if toomany values are specified, the extra values are ignored. When you supply a comma-separated
list of values, the values in the CRB are ignored.

Create a fixed list of string and numeric data
Set current list lMyList
Define list {lName,lAge}
Add line to list {('Fred',10)}
Add line to list {('George',20)}

Insert the values of the variables lName and lAge to lMyList at line 1
Calculate lName as 'Harry'
Calculate lAge as 22
Add line to list {1 (lName,lAge

If no values are defiened, the current values of the variables
used in the Define List are added
Add line to list

Alternatively, you can use the $add() method to add lines to your list
Do lMyList.$define(lName,lAge)
Do lMyList.$add('Fred',10)
Do lMyList.$add('George',20)

You can also use the $addbefore() and $addafter() methods to add
lines at a specific position in the list
Do lMyList.$addbefore(1,'Harry',22)

14

../list_lines.html

Advise on find/next/previous

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Advise on find/next/previous ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to send requested Advise messages to the
client program. When Advise requests have been received from a client, the Set server mode command determines when Omnis
is permitted to send field values that have changed. In addition to the Set server mode options, the three commands Advise on
Find/next/previous, Advise on OK, and Advise on Redraw let you toggle individual options on or off.Advise on Find/next/previous lets
you control this particular option without affecting the other two.

Example

Advise on find/next/previous (Accept)

Advise on OK

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Advise on OK ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to send requested Advise messages to the
client program. When Advise requests have been received from a client, the Set server mode command determines when Omnis
is permitted to send field values that have changed. In addition to the Set server mode options, the three commands Advise on
Find/next/previous, Advise on OK, and Advise on Redraw let you toggle individual options on or off. The Advise on OK command lets
you control this particular option without affecting the other two.

Example

Advise on OK (Accept) ## enable advise on OK
Advise on OK ## disable advise on OK

15

../exchanging_data.html
set_server_mode.html
set_server_mode.html
advise_on_ok.html
advise_on_redraw.html
../exchanging_data.html
set_server_mode.html
set_server_mode.html
advise_on_find_next_previous.html
advise_on_find_next_previous.html
advise_on_redraw.html

Advise on redraw

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Advise on redraw ([Accept])

Options

Accept If specified, the mode identified by the command is enabled

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to send requested Advise messages to the
client program. When Advise requests have been received from a client, the Set server mode command determines when Omnis
is permitted to send field values that have changed. In addition to the Set server mode options, the three commands Advise on
Find/next/previous, Advise on OK, and Advise on redraw let you toggle individual options on or off. The Advise on redraw command
lets you control this particular option without affecting the other two.

Example

Advise on redraw (Accept) ## enable advise on redraw
Advise on redraw ## disable advise on redraw

AND selected and saved

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

AND selected and saved ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

16

../exchanging_data.html
set_server_mode.html
set_server_mode.html
advise_on_find_next_previous.html
advise_on_find_next_previous.html
advise_on_ok.html
../list_lines.html

Description

This command performs a logical AND of the Saved selection with the Current selection. You can specify a particular line in the list by
entering either a number or a calculation. The All lines option performs the AND for all lines of the current list.

To allow sophisticated manipulation of data via lists, a list can store two selection states for each line; the “Current” and the “Saved”
selection. The Current and Saved selections have nothing to do with saving data on the disk; they are nomore than labels for two sets
of selections. The lists may be held inmemory and never saved to disk: they will still have a Current and Saved selection state for each
line but they will be lost if not saved. When a list is stored in the data file, both sets of selections are stored.

The list data structure contains the column definitions, the field values for each line of the list, the current selected status and saved
selected status for each line, LIST.$line, LIST.$linecount and LIST.linemax.

The AND selected and saved command performs a logical AND on the saved and current state, and puts the result into the Current
selection. Hence, for a particular line, if both the Current and Saved states are selected, the Current state remains selected, but if either
or both states are deselected, the resulting Current state will become deselected.

Saved State Current State Resulting Current State

Selected Selected Selected
Deselected Selected Deselected
Selected Deselected Deselected
Deselected Deselected Deselected

Example

Line 3 remains selected as it is the only line selected
when both the 'Save selection for line(s)' and
'AND selected and saved' commands are used
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) (All lines)
Save selection for line(s) (All lines)
Deselect list line(s) (All lines)
Select list line(s) {3}
AND selected and saved (All lines)

Begin critical block

Command group Flag affected Reversible Execute on client Platform(s)

Threads NO NO NO All

Syntax

Begin critical block

Description

Begin critical block is only applicable to themultithreaded server. It marks the start of a critical block, namely a section of codewhich
needs to execute in single threaded mode without allowing other client methods to execute. You use End critical block to mark the
end of a critical block.

One example of when you should use a critical block is as follows. Class variables are shared by all clients. Simple atomic operations,
such as the direct assignment of a value to a class variable are safe. Other operations, such as when a method call is involved, could
cause problems, because the method call might be interrupted by another thread. To avoid this, use a critical block.

17

end_critical_block.html

Example

Begin critical block
Calculate cClassVar as $cinst.$getvalue()

End critical block

Begin print job

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Begin print job ([Send to PDF])

Options

Send to PDF If specified, the print job sends its reports to a single PDF file rather than a printer document

Description

This command defines the beginning of an Omnis print job which is ended by the command End print job. Only one print job can be
started at any time: you cannot nest Begin print job commands.

If printing is already in progress, Begin print job returns an error and sets the flag to false. It also returns an error if it cannot set up
the printer, or open the printer document; again, it sets the flag to false in this case.

Begin print job sets the flag to true if it succeeds. It automatically sets the report destination to the printer and closes the report
destination selection window if it is open.

Each report is printed in the same way as if it were in an individual document. If you print two reports in a job, then page numbering
starts at 1 for each report.

You cannot change the page setup while a print job is in progress, although Omnis does not try to enforce this, as it will probably
cause an OS error (and abnormal termination of printing) if you do.

The Begin print job and End print job commands only apply to reports sent to a printer, via the printer report destination.

Example

Create a print job and send 2 reports to the printer
Begin print job
Set report name rMyReport
Print report
Set report name rMyReport2
Print report
End print job

Begin reversible block

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

Begin reversible block

18

../reports_and_printing.html
end_print_job.html
end_print_job.html
../constructs.html

Description

This command begins a reversible block of commands. All reversible commands enclowsed within the commands Begin reversible
block/End reversible block are reversedwhen themethod containing this block finishes. However, a reversible block in the $construct()
method of a window class reverses when the window is closed not when the method is terminated as is normally the case. Omnis
always steps backwards through a reversible block of commands, thus the first command is reversed last.

Reversible blocks let you create subroutines that restore the values of variables, the current record buffer, and so on, to their previous
state when the method terminates. Most commands are reversible: those that are not usually involve an irreversible action such as
changing the data in an Omnis data file or running another program. Methods called from within a reversible block are not reversed.

Example

A method can contain more than one block of reversible commands. In this case,
commands contained within all the blocks are reversed when the method terminates.
All the commands in the following example are reversed when the method containing
the block is finished
Begin reversible block
Disable menu line mMyMenu/5
Set current list iMyList
Build open window list (Clear list)
Calculate iVar as 0
Open window instance wMyWindow

End reversible block

When this block is reversed:
The window instance wMyWindow is closed
iVar returns to its former value
iMyList is restored to its former contents and definition
The current list is set to the former value
Menu line 5 is enabled
The following method hides fields Entry1 and Entry2 and installs the menu mCustomers
Begin reversible block
Hide fields {Entry1,Entry2}
Install menu mCustomers

End reversible block
OK message (Icon) {MCUSTOMERS is now visible}

When this method ends, first MCUSTOMERS is removed, then the fields are shown.
In the following example, the current list is iMyList
Begin reversible block
Set current list iMyList2
Define list {fAccounts.Code,fAccounts.Surname,fAccounts.Balance}
Set main file {fAccounts}
Build list from select table
Enter data

End reversible block

When this method terminates and the command block is reversed, the Main file is reset,
the former list definition is restored and the current list is restored to iMyList.

Begin statement

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

Begin statement ([Carriage return][,Linefeed])

19

end_reversible_block.html
../sql_object_commands.html

Options

Carriage return If specified, the command appends a carriage return, after it appends each line of the statement
Linefeed If specified, the command appends a line feed, after it appends each line of the statement

Description

This command defines the start of a block of SQL statements and text to be stored in the SQL buffer for the current method stack.
The current content of the SQL buffer is cleared when you execute this command. The End statement command defines the end of
the block. The lines are not checked by Omnis in any way andmust be valid SQL in order for the server to be able to use them. To use
the SQL buffer, you call the $prepare or $execdirectmethod of a SQL statement object, passing no parameters.

The Carriage return option causes Omnis to insert a carriage return character between each line of the SQL statement. The Line-
feed option causes Omnis to insert a linefeed character between each line of the SQL statement. If you select both Carriage re-
turn and Linefeed, then Omnis inserts a carriage return followed by a linefeed. If you select neither option, Omnis separates the
statement lines with a space. One example of when you would use these options, is when you use Begin statement, Sta:, End state-
ment, and $execdirect, to add a stored procedure to the database. This makes the procedure more readable when you view it.

Example

Open a multi-threaded omnis sql connection to
the datafile mydatafile and create a statement to
select rows from the table Customers
Calculate lHostname as con(sys(115),'mydatafile.df1')
Do iSessObj.$logon(lHostname,'','','MYSESSION')
Do iSessObj.$newstatement('MyStatement') Returns lStatObj

Begin statement
Sta: Select * From Customers
Sta: Where Cust_ID > 100

End statement
Do lStatObj.$execdirect()
Do lStatObj.$fetch(lMyList,kFetchAll)

Begin text block

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

Begin text block ([Keep current contents][,Carriage return][,Linefeed])

Options

Keep current contents If specified, the command keeps the current contents of the text block rather than
setting it to empty

Carriage return If specified, Omnis appends a carriage return after it appends the text from a Line:
command in the block. If the Carriage return and Linefeed options are both omitted
then Omnis appends a platform newline after each Line: command

Linefeed If specified, Omnis appends a line feed after it appends the text from a Line:
command in the block. If the Carriage return and Linefeed options are both omitted
then Omnis appends a platform newline after each Line: command

20

end_statement.html
end_statement.html
end_statement.html

Description

This command defines the start of a block of text to be stored in the text buffer for the current method stack. The Begin text block
command clears the text buffer by default, and adds the text in subsequent Line: and Text: commands to the text buffer. However,
you can keep the current contents of the buffer by checking the Keep current contents option, in which case text is appended to
current text in the buffer. You build the text block using the Line: and Text: commands, which support leading and trailing spaces
and can contain square bracket notation. The Carriage return and Linefeed options specify the line delimiter added after each Line:
command; if you omit both of these options, Omnis adds the platform specific newline character sequence after each Line: command.
The End text block command defines the end of the text block, and you can return the contents of the text buffer using the Get text
block command.

Example

Begin text block
Text: Thought for the day: (Carriage return)
Text: If a train station is where the train
Text: stops, what is a work station?

End text block
Get text block lTextString
OK message {[lTextString]}

Break to end of loop

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Break to end of loop

Description

This command terminates a Repeat,While or For loop, passing control to the command following theUntil, EndWhile or End For com-
mand. An If command is usually placed before the Break to end of loop to determine the condition under which a break occurs.

You cannot use the Break to end of loop command to break out of a Switch construct. In this case, you must use the Break to end of
switch command.

Example

loop until user replies yes to yes/no message or lCount=100
While lCount<-100
Yes/No message {Break to end of loop ?}
If flag true

Break to end of loop
End If
Calculate lCount as lCount+1

End While

Break to end of switch

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

21

line_.html
text_.html
line_.html
text_.html
line_.html
line_.html
end_text_block.html
get_text_block.html
get_text_block.html
../constructs.html
repeat.html
while_calculation.html
until_calculation.html
end_while.html
end_for.html
if_calculation.html
break_to_end_of_switch.html
break_to_end_of_switch.html

Syntax

Break to end of switch

Description

This command causes Omnis to jump out of the current Case statement (i.e. terminate the Case before the end of Case is reached),
and resumemethod execution after the End Switch command. You use it in conjunction with the Switch and Case commands.

Example

If lCount equals 1 or 2 the ok message following the Break to end of switch never gets shown
Switch lCount
Case 1

OK message {lCount equals 1}
Break to end of switch
OK message {I never run}

Case 2
OK message {lCount equals 2}
Break to end of switch
OK message {I never run}

Default
OK message {lCount not equal to 1 or 2}

End Switch

Breakpoint

Command group Flag affected Reversible Execute on client Platform(s)

upto 35948 Debugger NO NO NO All
asof 35949 Debugger NO NO YES (see note below) All

Syntax

Breakpoint {message}

Description

This command places a breakpoint at a command line in a method where you want to stop execution, to check your coding for
example. You can include a message with the command which is displayed in the debug window when the break occurs. The
command does nothing in the Runtime version of Omnis.

When Omnis encounters a breakpoint the debugger is opened with the current method loaded and the Breakpoint command line
highlighted. You can examine the value of fields and variables by right button/Ctrl-clicking on the field or variable name.

Following a breakpoint you can continue method execution by clicking the Go button or by using Step or Tracemode.

The Breakpoint command is ignored if executed on a thread running on a multi-threaded Omnis Server.

NOTE: The Breakpoint command can be used in client-executedmethods to set a ‘hard’ breakpoint in the code, but note that this will
only be hit if the web browser developer tools are open. It will then break into the browser’s debugger, in the JavaScript code which
was generated from your client-executed method. The browser dev tools can usually be opened using the F12 key.

Example

hit breakpoint when line 5 is processed so we can check the values of lMyList columns
For lMyList.$line from 1 to lMyList.$linecount step 1
If lMyList.$line=5

Do lMyList.$loadcols()
Breakpoint {check lMyList columns}

End If
End For

22

case.html
end_switch.html
switch.html
case.html
../debugger.html
../debugger.html

Bring window instance to front

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Bring window instance to frontwindow-instance-name

Description

Example

Bring the window instance wMyWindow
to the front if it is already open
Test for window open {wMyWindow}
If flag true
Bring window instance to front wMyWindow

Else
Open window instance wMyWindow

End If

Build export format list

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES YES NO All

Syntax

Build export format list ([Clear list])

Options

Clear list If specified, the command empties the current list, and defines it to have a single hash
variable column, before executing

Description

This command builds a list containing the name of each export format. The list is built in the current list for which you must define a
single column to contain the export format.

The Clear list option clears the current list and redefines it to include only the #S4 field. With this option, the command becomes
reversible.

Example

Set current list lExportFormatList
clear list option defines the list as a single column #S4
Build export format list (Clear list)

23

../windows.html
../importing_and_exporting.html

Build externals list

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES YES NO All

Syntax

Build externals list ([Clear list])

Options

Clear list If specified, the command empties the current list, and defines it to have a single hash
variable column, before executing

Description

This command builds a list of the external routines in the external folder. The list is placed in the current list for which youmust define
the following columns

Col 1 (Character) Col 2 (Character Col 3 (Number) Col 4 (Character)

File name Routine name Routine index or ID Routine type

The Clear list option clears the current list. The command becomes reversible with this option.

Example

Begin reversible block
Set current list iExtList

End reversible block
Define list {iExtName,iExtRoutine,iExtRoutineIndex,iExtRoutineType}
Build externals list

Build field names list

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Build field names list ([Clear list][,Full names]) {file-name}

Options

Clear list If specified, the command empties the current list, and defines it to have a single hash
variable column, before executing

Full names If specified, names in the list are prefixed with their file class name

24

../externals.html

Description

This command builds a list of field names for the specified file class in the current list. You must specify the following columns in the
current list.

Column 1 (Character) Column 2 (Character) Column 3 (Character)

Field name Field type and length Description; for index fields only

When you use the Clear list option you get column 1 only defined as #S5. With this option the command becomes reversible. The flag
is cleared if the value of LIST.$linemax prevents a complete list from being built.

The Full names option creates a list in which the fields are prefixed with the file class name, for example, PO_DATE becomes
FPORDERS.PO_DATE.

Example

Build a list of the field names in the file class fAccounts
Set current list lFieldList
Build field names list (Clear list ,Full nam) {fAccounts}

alternatively $makelist can be used
Do $files.fAccounts.$objs.$makelist($ref.$name) Returns lFieldList

Build file list

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Build file list ([Clear list])

Options

Clear list If specified, the command empties the current list, and defines it to have a single hash
variable column, before executing

Description

This command builds a list containing the name of each file class in the current library. The list is built in the current list for which you
must specify the following columns.

Column 1 (Character) Column 2 (Character)

File name Description for file (if you have entered one)

When you use the Clear list option you get column 1 only defined as #S5. With this option the command becomes reversible, that is,
the original contents of the list are restored. The flag is cleared if the number of lines in the list exceeds LIST.$linemax.

Example

Build a list of file classes in the current library
Set current list lFileList
Build file list (Clear list)
alternatively $makelist can be used
Do $files.$makelist($ref.$name) Returns lFileList

25

Build indexes

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Build indexes {file-name}

Description

This command rebuilds all the indexes for the specified file which have been dropped with the Drop indexes command. Drop in-
dexes deletes all the indexes for the specified file apart from the sequence number index. Build indexes checks that all the indexes
defined in the file class actually exist in the data file and builds those which are not there. This command does not build any indexes
which already exist even if they are in a damaged state.

If the specified file name does not include a data file name as part of the notation, the default data file for that file is assumed. If the
file is closed or memory-only, the command does not execute and returns flag false.

If you are not running in single user mode, this command automatically tests that only one user is using the data file (the command
fails with the flag false if this is not true), and further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute, and it is not possible to cancel execution even if a working message with cancel box is
open.

The flag is set if at least one index is successfully rebuilt. Note that the command is not reversible.

Example

Do not flush data
Drop indexes {fCustomers}
Repeat
Working message {Building indexes...}
Build indexes {fCustomers}

Until flag true

Build installed menu list

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Build installed menu list ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

26

drop_indexes.html
drop_indexes.html
drop_indexes.html

Description

This command builds a list containing the name of all menu instances on the main Omnis menu bar, starting from the left. All the
standard Omnis menus such as File and Edit are ignored. The list is built in the current list for which you must define the following
columns:

Column 1 (Character) Column 2 (Character)

Menu instance name Description for menu class (if one has been entered)

When you use the Clear list option you get column 1 only defined as #S5 with a 15 character column width. With this option, the
command becomes reversible.

Menu instances from libraries other than the current library are prefixed with their library names. The flag is cleared if the command
fails due to a shortage of memory.

Example

Build a list of all menu instances installed on the
main Omnis menu bar
Set current list lMenuList
Define list {lMenuName,lMenuDesc}
Build installed menu list

Alternatively, you can use $makelist
Do $imenus.$makelist($ref.$name) Returns lMenuList
Do lMenuList.$redefine(lMenuName)

Build list columns list

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES YES NO All

Syntax

Build list columns list list-or-row-name ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command builds a list containing the column names and data types of the current or specified list. This information is placed
in the current list. If the current list contains one column, it contains the column names only. The current list column headings are
ignored, but to obtain all the available information, you define the list with two columns as follows:

27

../lists.html

Col 1 (Character) Col 2 (Character)

List Column name List Column data type

The Clear list option clears and defines the current list to contain one column, #S5, so the column data types are not returned. With
this option, the command becomes reversible.

The flag is cleared if the value of LIST.$linemax prevents a complete list from being built. The following method and the list of data it
loads into the list illustrate the typical values produced:

Example

Do iMyList.$define(iPODate,iPONumber,iPOBatched,iSUContact,iITUnitPrice)
Set current list iColsList
Define list {iColName,iColType}
Build list columns list iMyList
This provides the following values for iColsList
iPODate - Short date 2000..2099
iPONumber - Short integer (0 to 255)
iPOBatched – Boolean
iSUContact - Character 30
iITUnitPrice - Number 2 dp
Or you do the following:
Calculate iColsList as iMyList.$cols.$makelist($ref.$name,$ref.$coltype)

Build list from file

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Build list from file on field-name ([Exact match][,Use search][,Use sort])

Options

Exact match If specified, the index value of the field in suitable records must equal the current
value

Use search If specified, the command uses the current search to select data
Use sort If specified, the command uses the current sort field(s) to order the data

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command builds a list of data from the main file using a specified index field. The records are selected and corresponding field
values added to the list in the order of the specified index field. You must set the main file before using the command.

If the Exact match option is specified, only records matching the current value of the specified field are added to the list. Similarly,
if the Use search check box is selected, only records matching the current search class are added. In both cases, an error occurs if
neither a field nor a search class is specified.

28

../lists.html

When large files are involved, that is, those that may require more than the maximum number of available lines (the value
of LIST.$linemax), you can use the flag false condition to detect when an incomplete list is built.

Building a list using this command does not affect the current record buffer and does not clear ‘Prepare for update’ mode.

The Use sort option lets you use the database records in sorted order without first having to load them into a list. You use Set sort
field to specify a sort field after which Build list from file (Use sort) creates a sorted table of records in memory before loading them
into the list. The main advantage of this method is that the sort fields do not have to be read into the list at all. The Sort field order
overrides the index field order but if the sort field is non-indexed, the index is used as the order in which to gather up records before
sorting. Multi-level sorts are possible by using repeated Set sort field commands to accumulate the required sorting order. Since sort
levels are cumulative you should first clear any existing ones with Clear sort fields.

Example

This example compiles a list of all records sorted in order of descending fCustomers.Surname
and within each value, in increasing fCustomers.FirstName order
Set current list iMyList
Set main file {fCustomers}
Define list {fCustomers.Surname,fCustomers.FirstName}
Clear sort fields
Set sort field fCustomers.Surname (Descending)
Set sort field fCustomers.FirstName
Note fCustomers.CustomerID is not in the list
Build list from file on fCustomers.CustomerID (Use sort)

Build menu list

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Build menu list ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

Description

This command builds a list containing the name of each menu class in the current library. The list is built in the current list for which
the columns must have been defined. The columns are

Column 1 (Character) Column 2 (Character)

Menu class name Description for menu (if one has been entered)

The Clear list option clears the current list and redefines it to include only the #S5 field. With this option, the command becomes
reversible but you get column 1 only.

29

set_sort_field.html
set_sort_field.html
set_sort_field.html
clear_sort_fields.html
../menus.html

Example

Build a list of all menu classes in the current library
Set current list lMenuList
Define list {lMenuName,lMenuDesc}
Build menu list

Alternatively, you can use $makelist
Do $menus.$makelist($ref.$name) Returns lMenuList
Do lMenuList.$redefine(lMenuName)

Build open window list

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES YES NO All

Syntax

Build open window list ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

Description

This command builds a list containing the name of each window instance, starting with the topmost window instance. The window
instance names are stored in the first column of the list. You can also return the position and size coordinates of eachwindow instance
in the second to fifth columns. The list is built in the current list for which you must define the following columns:

Col 1 (Character) Col 2 (Long Int) Col 3 (Long Int) Col 4 (Long Int) Col 5 (Long Int)

Window instance name /left window coord /top window coord /right window coord /bottom window coord

If you use the Clear list option, the list will contain one column only defined as #S5, so the window coordinates are not returned. Also,
with the Clear list option selected, the command is reversible, that is, the list definition and contents are restored when the method
terminates.

Example

Build a list of open windows
Set current list lWindowList
Do lWindowList.$define(lName,lLeft,lTop,lRight,lBottom)
Build open window list

Alternatively, notation can be used to build a list
of open windows
Do $iwindows.$makelist($ref.$name) Returns lWindowList
Do lWindowList.$redefine(lName)

Build report list

30

../windows.html

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES YES NO All

Syntax

Build report list ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

Description

This command builds a list containing the name of each report class in the current library. The list is built in the current list for which
the columns must have been defined. The columns are

Column 1 (Character) Column 2 (Character

Report class name Description for report (if one has been entered)

You get column 1 only when you use the Clear list option.

The Clear list option clears the current list and redefines it to include only the #S5 field. With this option the command becomes
reversible.

Example

Build a list of report classes in the current library
Set current list lReportList
Define list {lClass,lDesc}
Build report list

Alternatively, you can use notation to build a list
of report classes
Do $clib.$reports.$makelist($ref.$name,$ref.$desc) Returns lReportList
Do lReportList.$redefine(lClass,lDesc)

Build search list

Command group Flag affected Reversible Execute on client Platform(s)

Searches YES YES NO All

Syntax

Build search list ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

31

../reports_and_printing.html
../searches.html

Description

This command builds a list containing the name of each search class in the current library. The list is built in the current list for which
the columns must have been defined. The columns are

Column 1 (Character) Column 2 (Character)

Search class name Description for search (if one has been entered)

You get column 1 only when you use the Clear list option.

The Clear list option clears the current list and redefines it to include only the #S5 field. With the Clear list option, the command is
reversible. The flag is cleared if the value of LIST.$linemax prevents a complete list from being built.

Example

build a list of the available search classes
Set current list lSearchList
Build search list (Clear list)

or use the following notation
Do $clib.$searches.$makelist($ref.$name) Returns lSearchList

Build window list

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES YES NO All

Syntax

Build window list ([Clear list])

Options

Clear list If specified, the command empties the current list and defines it to have a single hash
variable column before executing

Description

This command builds a list containing the name of eachwindow class in the current library. The list is built in the current list for which
you must define the following columns

Column 1 (Character) Column 2 (Character)

Window class name Description for window (if one has been entered)

You get column 1 only when you use the Clear list option, but the command becomes reversible.

The Clear list option clears the current list and redefines it to include only the #S5 field. With the Clear list option, the command
becomes reversible.

32

../windows.html

Example

Build a list of all window classes in the current library
Set current list lWindowList
Do lWindowList.$define(lName,lDesc)
Build window list

Alternatively, notation can be used to build the list
of window classes
Do $clib.$windows.$makelist($ref.$name,$ref.$desc) Returns lWindowList
Do lWindowList.$redefine(lName,lDesc)

Calculate

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO YES YES All

Syntax

Calculate field-name as calculation

Description

This command assigns a new value to a data field or variable. The form of the command is “Calculate X as Y”, where X is a valid data
field or variable name and Y is either a valid data field or variable name, value, calculation, or notation. When Calculate is executed
the state of the flag is unchanged, unless #F is recalculated by this command.

You can use Calculate in a reversible block. The data field returns to its initial valuewhen themethod containing the block of reversible
commands finishes.

Warning the Calculate command does not redraw a calculated field so if your field is on awindow youmust use the Redraw command
or the $redraw() method after the Calculate command to reflect the change.

Operator Precedence

Mathematical expressions are evaluated using the operator precedence so that in the absence of brackets, * and / operations are
evaluated before + and -. The full ordering from highest to lowest precedence is:

unary minus

* and /

• and -

>, <, >=, <=, <>, =

& and |

For example, if you execute the command “Calculate lVar1 as 10-2*3” the calculation part is evaluated as 10-(2*3)

Example

set the local variable lVar1 equal to the contents of lVar2
Calculate lVar1 as lVar2

set the local variable lPrice to 10.99 and lQty to 2
Calculate lPrice as 10.99
Calculate lQty as 2

33

../calculations.html
redraw.html

calculate the local variable lTotal as lPrice multiplied by lQty
Calculate lTotal as lPrice*lQty

you can also operate on variables using notation, for example, calculate the
local list variable lClassList as a list of all classes in the current library
Calculate lClassList as $clib.$classes.$makelist($ref.$name)

however some operations are better performed using the Do command, for example
bring the window instance wMywindow to the front
Do $iwindows.wMywindow.$bringtofront()

Call DLL

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows

Syntax

Call DLL (library, procedure [,parameters…]) Returns return-value

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command calls a procedure in aDLL, which youmust have previously registered by calling Register DLL. The library is the name or
pathname of the DLL containing the procedure specified by procedure; library and procedure must exactly match the values passed
to Register DLL.

The parameters are passed to the procedure when it is called, andmust match the type-definition passed to Register DLL. The return
value of Call DLL is the return value of procedure, and has the type specified by the type-definition. Register and Call DLL commands
support 64-bit type specifiers.

Example

Flash the Omnis window to attract the user's attention
Win32 API to get the main Omnis window: HWND GetActiveWindow(VOID)
Register DLL ('USER32.DLL','GetActiveWindow','J')
Call DLL ('USER32.DLL','GetActiveWindow') Returns lHWND
Win32 API to Flash a window: BOOL FlashWindow(HWND, BOOL)
Register DLL ('USER32.DLL','FlashWindow','JJJ')
Call DLL ('USER32.DLL','FlashWindow',lHWND,1) Returns lResult

This example creates a file and loads the contents:

Register DLL ("KERNEL32.DLL","CreateFileA","JCJJJJJJ")
Register DLL ("KERNEL32.DLL","CloseHandle","JJ")
Register DLL ("KERNEL32.DLL","ReadFile","J,J,C32768,J,N,J")
Call DLL ("KERNEL32.DLL","CreateFileA","c:\MYBIGFILE.TXT",-1073741824,3,0,3,268435584,0) Returns #1
Call DLL ("KERNEL32.DLL","ReadFile",#1,#S1,32767,#49,0) Returns #50
Call DLL ("KERNEL32.DLL","CloseHandle",#1) Returns #50
Calculate #1 as binlength(#S1)

Call external routine

34

register_dll.html
register_dll.html
register_dll.html

Command group Flag affected Reversible Execute on client Platform(s)

Externals NO NO NO All

Syntax

Call external routine routine-name or library-name/routine-name (parameters) Returns return-value

Description

This command calls an external routine with mode ext_call and returns a value from the external in the specified return-field. The
return value is placed in the specified field by the external code using the predefined field reference Ref_returnval with the functions
SetFldVal or SetFldNval. The flag is set if the external routine is found and the call is made but this does not necessarily mean that the
external code has executed correctly. The flag is cleared if the routine is not found. Note that the routine cannot use the flag to pass
information back to the method.

You can pass parameters to the external code by enclosing a comma-separated list of fields and calculations. If you pass a field name,
for example, Call external routine Maths1 (Num1,Num2), the external can directly alter the field value. Enclosing the field in brackets,
for example, Call external routine Maths1 ((Num1),(Num2)), converts the field to a value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with the predefined references Ref_parm1,
Ref_parm2, and so on, Ref_parmcnt gives the number of parameters passed. If the field name is passed as a parameter, you can
use SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field’s value.

Example

Call external routine MathsLib/sqr (iNumber) Returns iNumber2

Cancel advises

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Cancel advises field-name ([All channels])

Options

All channels If specified, the command applies to all DDE channels, rather than just the current channel

Description

DDE command, Omnis as client. This command cancels one or more Request advises from the current channel. If you omit the field
name, all Request advises to the current channel are canceled. If you specify a field name, all Request advises to the current channel
which refer to that field name are canceled.

The command is addressed to the current channel only, and if the current channel is not open, an error occurs. No error occurs,
however, if there are no Request advises commands to cancel.

If you use the All channels option, all channels are cancelled. There is no need to use a Cancel advises command before a Close DDE
channel command.

WhenOmnis issues a Request advises to a DDE server, Omnis is in effect saying “Tell me if this value changes and sendme an update”.
The Enter data commandmust be running to allow the incoming data to get through.

35

../externals.html
../exchanging_data.html
request_advises.html
request_advises.html
close_dde_channel.html
close_dde_channel.html
request_advises.html
enter_data.html

Example

Yes/No message {Do you want updates?}
If flag false
Cancel advises (All channels)
Quit method

Else
Request advises iCompany {Company}
Request advises iAddress {Address}

End If

Prepare for insert
Enter data
Update files if flag set

Cancel async method

Command group Flag affected Reversible Execute on client Platform(s)

Methods YES NO NO All

Syntax

Cancel async method {id-to-cancel (return-value-from-do-async-method)}

Description

This command allows you to cancel the execution of amethod that is executing as a result of a call to the Do asyncmethod command.

This command takes a single parameter id-to-cancel, which is the asynchronous call id returned by Do async method.

This command sets the flag if it has marked the asyncmethod for cancellation. Omnis only checks to see if the method is marked for
cancellation after the completion of each method command, so cancellation may not occur immediately. Also, if you are executing a
sensitiveblockof code, which shouldnot be cancelled in thisway, you canuse theBegin critical block andEndcritical block commands
around the sensitive code. Omnis will only cancel the method execution when the thread ends the critical block. If the flag is cleared,
then either the asynchronous call id is invalid, or the method has finished. After successfully cancelling a method call, Omnis still
sends the $asynccomplete message, but with an error text parameter that indicates that the call was cancelled.

Note

You can only call Cancel async method when running in the normal foreground thread.

Example

iCallId was returned by Do async method
Cancel async method {iCallId}

Cancel prepare for update

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO NO NO All

Syntax

Cancel prepare for update

36

../methods.html
do_async_method.html
do_async_method.html
begin_critical_block.html
end_critical_block.html
../changing_data.html

Description

This command cancels the Prepare for update mode and releases any semaphores which may have been set. You use the Prepare
for edit/insert command to prepare Omnis for editing or insertion of records. It is usually followed by Update files which is the usual
way of terminating the Prepare for… state but you can also terminate this state with Cancel prepare for update. It must be followed
by commands which prevent an Update files command from being encountered.

When you execute a Prepare for… command in multi-user mode, semaphores are used to implement record locking. Cancel prepare
for update neutralizes the effect of a Prepare for…command and releases all semaphores.

You can use this command within a timer method to implement a timed record release.

Example

Set timer method 600 sec TimerMethod
Prepare for edit
Enter data
Update files if flag set
Clear timer method
TimerMethod
Yes/No message {Time's up, cancel edit?}
If flag true
Cancel prepare for update
Queue cancel

End If

Case

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Case constant-value or expression

Description

The Case statement is part of a Switch construct that chooses one of an alternative set of options. The options in a Switch construct
are defined by the subsequent Case commands. The Case command takes either a constant, field name, single calculation, or a
comma-separated series of calculations. You must enclose string literals in quotes. Date values must match the date format in #FDT.

You can use the Break to end of switch command to jump out of the current Case statement and resumemethod execution after the
End Switch command. Note you cannot use the Break to end of loop command to break out of a Switch construct.

Example

Show the direction lPosition equals. eg. if lPosition equals 3 show 'South' in the ok message

Switch lPosition
Case 1

Calculate lDirection as 'North'
Case 2

Calculate lDirection as 'East'
Case 3

Calculate lDirection as 'South'
Case 4

Calculate lDirection as 'West'
End Switch

37

prepare_for_edit.html
prepare_for_edit.html
update_files.html
../constructs.html
switch.html
break_to_end_of_switch.html

OK message {Position [lCount] = [lDirection]}

Multiple conditions can be used in a comma-separated list to one Case statement.
Default is used to specify commands that should run if the value is not one of
those specified in the Case statements
Switch lDirection
Case 'North','South'

OK message {The direction is North or South}
Case 'East','West'

OK message {The direction is East or West}
Default

OK message {The direction is Unknown} ## # lDirection is none of the above
End Switch

CGIDecode

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

CGIDecode (stream[,mapplustospace {Default kTrue}]) Returns decoded-stream

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

You use CGIDecode to turn CGI-encoded text back into its original form. It is the inverse of CGIEncode.

When a client uses HTTP to invoke a script on aWEB server, it uses the CGI encoded format to pass the arguments to the server. This
avoids any ambiguity between the characters in the argument names and values, and the characters used to delimit URLs, and the
argument names and values.

stream is an Omnis Character or Binary field containing the information to decode.

MapPlusToSpace is a Boolean value. When kTrue, in addition to performing a standard CGI decode operation, the commandmaps all
instances of the ‘+’ character in the input stream, to the space character.

DecodedStream is anOmnis Character or Binary field that receives the resulting CGI-decoded representation of the streamargument.

Note: The HTTPHeader, HTTPParse and HTTPPost commands automatically perform CGI encoding or decoding, as appropriate.

Example

Calculate lStream as 'Name: Charlie Malone,Company: Omnis Software'
CGIEncode (lStream) Returns lEncodedStream
CGIDecode (lEncodedStream) Returns lDecodedStream
lDecodedStream now contains the following:
Name: Charlie Malone,Company: Omnis Software
Calculate lStream as 'Name: Charlie Malone+Friend,Company: Omnis Software'
CGIEncode (lStream) Returns lEncodedStream
CGIDecode (lEncodedStream,kFalse) Returns lDecodedStream
lDecodedStream now contains the following:
Name: Charlie Malone+Friend,Company: Omnis Software
CGIDecode (lEncodedStream) Returns lDecodedStream
lDecodedStream now contains the following:
Name: Charlie Malone Friend,Company: Omnis Software
Note the + has been turned into a space character

38

CGIEncode

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

CGIEncode (stream[,mapplustohex {Default kFalse}]) Returns encoded-stream

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

When a client uses HTTP to invoke a script on aWEB server, it uses the CGI encoded format to pass the arguments to the server. This
avoids any ambiguity between the characters in the argument names and values, and the characters used to delimit URLs, and the
argument names and values.

You use CGIEncode to map text into the CGI encoded format.

Stream is an Omnis Character or Binary field containing the information to encode.

MapPlusToHex is an optional Boolean parameter which when true indicates that plus characters in the input stream are to be URL
encoded as hex.

EncodedStream is anOmnis Character or Binary field that receives the resulting CGI-encoded representation of the stream argument.

Note: The HTTPHeader, HTTPParse and HTTPPost commands automatically perform CGI encoding or decoding, as appropriate.

Example

Calculate lStream as 'Name: Charlie Malone,Company: Omnis Software'
CGIEncode (lStream) Returns lEncodedStream

Change user password

Command group Flag affected Reversible Execute on client Platform(s)

Libraries NO NO NO All

Syntax

Change user password

Description

This command opens the Password dialog in which the user can change the current password. The menus are redrawn and lists and
variable values (apart from #UL) are unaffected.

If the current user is themaster user, passwords in the #PASSWORDS class can be changed. In addition, the command gives the user
the choice of using another password to re-enter the current library at a different user level, thus gaining access to different areas of
the library. If a user re-enters at a different level, the value of #UL will change (within the range 0–8) to reflect that new user level.

Example

Prompt the user for a password as specified in #PASSWORDS
and display the current user level
Change user password
OK message {The current user level is [#UL]}

39

../external_commands.html
httpheader.html
httpparse.html
httppost.html
../libraries.html

Change working directory

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Change working directory (path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command changes the current directory in use under Windows or Linux. Wild cards are not allowed with this command.

OnWindows, Change working directory only switches directories on the same drive, not between drives.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

Change working directory ("c:\omnis\html") Returns lErrCode ## windows
Change working directory ("/omnis/html") Returns lErrCode ## linux

Check data

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Check data ([Perform repairs][,Checkdata file structure][,Check records][,Check indexes]) {list-of-files (F1,F2,..,Fn) (leave empty to select
all)}

Options

Perform repairs If selected,repairs to the data file are automatically carried out
Check data file structure If specified,the command checks the overall structure of the data file
Check records If specified,the command checks the records in the specified files
Check indexes If specified,the command checks the indexes in the specified files

Description

This command checks the data for the specified file or list of files, and works only when one user is logged onto the data file. If you
omit a file name or list of files, all the files with slots in the current data file are checked. If the specified file name does not include a
data file name as part of the notation, the default data file for that file is assumed. If the file is closed or memory-only, the command
does not execute and returns with the flag false.

There are Check data file structure, Check records, and Check indexes checkbox options. If none of these is specified, the command
does nothing; if only Check data file structure is specified, the list of files is ignored. If Perform repairs is specified, any repairs required
are automatically carried out, otherwise the results of the check are added to the check data log. The check data log is not opened by
this command but is updated if already open.

If you are not running in single usermode, this command automatically checks that only one user is using the data file (the command
fails with flag false if this is not true), and further users are prevented from logging onto the data until the command completes.

40

../external_commands.html
fileops_error_codes.html
../data_management.html

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute and it is not possible to cancel execution even if a working message with cancel box is
open.

The command sets the flag if it completes successfully and clears the flag otherwise. It is not reversible.

Example

Check data (Check records) {fOrders}
If flag true
Yes/No message {View Log?}
If flag true

Open check data log
End If

Else
OK message Error (Icon) {The check data file command could not be carried out//Please make sure that only one user is logged on to the datafile}

End If

Check menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Check menu line line or instance-name/line

Description

This command places a check mark on the specified line of a menu instance to show that the option has been selected. You specify
the menu instance name and the number of the menu line you want to check.

You can remove the check mark with Uncheck menu line. If you use this command in a reversible block, the check mark is removed
when the method terminates. Nothing happens if the menu instance is not installed on the menu bar.

Example

Test whether a line in the menu instance is checked and
either check or uncheck it accordingly.
Install menu mView
Test for menu line checked mView/Large
If flag true
Uncheck menu line mView/Large

Else
Check menu line mView/Large

End If
Alternatively, you change the $checked property of a line
in the menu instance using notation
Do $imenus.mView.$objs.Large.$checked.$assign(kTrue)

Clear all files

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

41

../menus.html
uncheck_menu_line.html
../files.html

Syntax

Clear all files

Description

This command clears the current record buffer of all file variables for all open libraries and all open data files, including any memory-
only files. However, it does not clear the hash variables. Window instances are not automatically redrawn so you must follow it by Re-
draw if you want the screen to reflect the current state of the buffer.

This command is reversible for read-only and read-write files; the command reverses by re-reading each record into the current record
buffer. Note that using this command in a reversible blockwith amemory-only filewill clear the current record buffer for that filewhen
the command reverses.

Example

Clear all file variables from the current record buffer and
redraw the current window instance
Clear all files
Do $cinst.$redraw()

Clear check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Clear check data log

Description

This command clears the check data log, which stores all the results of a check data operation. To clear the log, there is no need for
the log to be open.

Example

Check data (Check records) {fOrders}
If flag true
Yes/No message {View Log?}
If flag true

Open check data log
after checking through the log...
Yes/No message {Clear the log?}
If flag true
Clear check data log

End If
End If

Else
OK message Error (Icon) {The check data file command could not be carried out//Please make sure that only one user is logged on to the datafile}

End If

Clear class variables

42

redraw.html
redraw.html
../data_management.html

Command group Flag affected Reversible Execute on client Platform(s)

Parameters and variables NO NO NO All

Syntax

Clear class variables

Description

This commandclears any class variables usedwithin the class and clears thememory used for the class variables. Clear class variables is
placed in a method within the class where you want to clear variables.

A class variable is initialized to empty or its initial value the first time it is referenced. It remains allocated until the class variables for
its class are cleared. The class variables for all classes are cleared when the library file is closed.

Example

Transfer values from class variables to instance
variables and clear the class variables
Calculate cVar1 as 'my class Var1'
Calculate cVar2 as 'my class Var2'
Calculate cVar3 as 'my class Var3'
Calculate iVar1 as cVar1
Calculate iVar2 as cVar2
Calculate iVar3 as cVar3
Clear class variables ## all class variables are now empty

Clear data

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Clear data field-name ([Redraw field][,All windows])

Options

Redraw field If specified, the command reloads affected window fields with the new value of the data field, after it has performed
the operation; note that this takes the ‘All windows’ option into account

All windows If specified, the command applies to all open window instances, rather than just the top open window instance

Description

This command clears the data from the specified field or current selection. The data is lost and is not placed on the clipboard. If you
do not specify a field, the current field’s data is cleared (assuming there is a selection).

In the case of a null selection when the cursor is merely flashing in a field and no characters are selected, Clear datawill literally clear
“nothing”.

43

../parameters_and_variables.html
../clipboard.html

Example

The following method is placed behind a entry field named 'Price' on a window and
checks if the value entered is over 5000. If it is, the value entered into the field
is cleared and the cursor remains in the field.
On evAfter
If iPrice>5000

Yes/No message {Is this price correct?}
If flag false
Clear data iPrice (Redraw field)
Queue set current field {Price}

End If
End If

Clear DDE channel item names

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Clear DDE channel item names

Description

DDE command, Omnis as client. This command clears all server data item names selected for use with a print-to-channel report. You
use this command when exporting data via a DDE channel to another Windows application. The channel item names become the
item names into which the server places the fields printed in the Omnis report.

Clear DDE channel item names clears all the item names set up with Set DDE channel item name.

Example

Set DDE channel number {2}
Open DDE channel {Excel|Sheet1}
Send to DDE channel
Set report name rMyReport
Clear DDE channel item names
Send command {[[TakeControl]} ;; double first [['s so Omnis accepts text
If flag true
Set DDE channel item nam {R1,C1}
Set DDE channel item nam {R2,C1}
...
Set DDE channel item name {R50,C1}
Print report

End If

Clear find table

Command group Flag affected Reversible Execute on client Platform(s)

Finding data NO NO NO All

Syntax

Clear find table

44

../exchanging_data.html
set_dde_channel_item_name.html
../finding_data.html

Description

This command clears the find table for the current main file and releases the memory it used.

When a Find, Next or Previous command is encountered, Omnis uses the Index, Search and Sort field parameters to create a table of
records (similar to a SQL Select table). This may simply be an existing index in which case no further processing takes place or, if there
is a search and/or sort condition, a file may be scanned and a selection of records sorted in memory. If a Next or Previous returns an
unexpected record or no record, this is probably because there is still a find table in existence from another Find operation.

For a large file, a substantial amount of RAMmay be used.

Example

Clear the find table after the first overdrawn account is found
Set main file {fAccounts}
Set search as calculation {fAccounts.Balance<0}
Find first on fAccounts.Code (Use search)
Clear find table

Clear line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Clear line in list {line-number (calculation)}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command clears the values stored in the specified line of the current list. You can specify the line number in a calculation, other-
wise the current line (LIST.$line) is used. The flag is cleared if the list is empty or if the line is beyond the current end of the list.

Example

Clear values from any lines in the list that have a
balance equal to zero
Set current list lMyList
Define list {lName,lBalance}
Add line to list {('Fred',100)}
Add line to list {('George',0)}
Add line to list {('Harry',50)}
For each line in list from 1 to lMyList.$linecount step 1
If lst(lBalance)=0

Clear line in list
End If

End For
Alternatively you can use $clear to clear the values
of a particular line
Do lMyList.1.$clear()

45

find.html
next.html
previous.html
next.html
previous.html
../list_lines.html

Clear list

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Clear list ([Hash lists])

Options

Hash lists If specified, the command clears #L1-#L8 rather than the current list. When this option is specified, the command is not reversible

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command clears all the lines in the current list and frees thememory they occupy. It does not alter the definition of the list. If you
use Clear list as part of a reversible block, the list lines will be reloaded when themethod containing the reversible block finishes. The
list is only reloaded if it occupies 50,000 bytes of storage or less. Executing Clear list for a smart list sets $smartlist to kFalse, meaning
that it is no longer a smart list.

The All Lists option only clears the hash variable lists #L1 to #L8: all other lists including task, class, instance and local variable lists,
are not cleared by this command.

The following method builds a list of data formats depending on the type of graph selected by the user. Before the method is built
the list is cleared using the Clear list command; this ensures the list is initialized and completely empty of data.

Example

Set current list iMyList
Clear list
or you can do it like this
Do iMyList.$clear()

Clear main & connected

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear main & connected

Description

This command clears the memory of current records from the main file and any files connected to the main file. The windows are
not automatically redrawn so youmust follow it with a Redraw window-name command if you want the screen to reflect the current
state of the buffer.

You can use Clear main & connected to release locked records to other users.

46

../lists.html
../files.html
redraw.html

Example

Clear the current record buffer of file variables from fAccounts
and any connected file classes if insert is cancelled
$construct of window class
Set main file {fAccounts}
Prepare for insert
Enter data
If flag false
Clear main & con

End If

Clear main file

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear main file

Description

This command clears the main file record from the current record buffer. The command does not clear the values taken from the
other files.

The Clear main file command does not redraw the window so remember to include an explicit Redrawwindow command if youwant
the screen to reflect the contents of the buffer.

Example

Clear the current record buffer of file variables from the main
file fAccounts and redraw the current window instance
Set main file {fAccounts}
Clear main file
Do $cinst.$redraw()

Clear method stack

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Clear method stack

Description

This command cancels all currently executing methods and clears the method stack. A Clear method stack at the beginning of a
method terminates all themethods in the chainwhich called the currentmethod butwithout quitting the currentmethod. $control()
methods are not cleared.

As each method calls another, a return point is stored so that control can pass to the command following Do method or Do code
method as the called method terminates. When the current method terminates, control returns to the method which was running
before it was called.

47

../files.html
redraw.html
../methods.html
do_method.html
do_code_method.html
do_code_method.html

The Clear method stack command clears all the return points and is used if the method commences a completely new operation.
This command followed by a Quit method is the same as Quit all methods.

WARNING It is unwise to clear the method stack if local variables have been passed as fieldname parameters and you continue exe-
cuting the current method. This will break all local variables on the stack.

Example

Calling method
Calculate iMyVar as 1
Do method Message
the following message never gets displayed
Do iMyVar+1
OK message {iMyVar=[iMyVar]}
Method Message
Clear method stack
Do iMyVar+1
This message prints iMyVar=2
OK message {iMyVAR=[iMyVar]}
Quit method

Clear range of fields

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear range of fields first-data-name to final-data-name

Description

This command clears the specified range of fields from the current record buffer.

Note that first-data-name and last-data-name identify the first and last field of the range to be cleared, in the order that the fields
occur in the current record buffer. In certain current record buffers, for example the instance variables of an instance, the order of the
fields in the current record buffer is the order in which the fields were created, not the alphabetic order in which they are displayed in
the variable pane of the method editor.

When used in a reversible block, the fields cleared are restored when the method terminates.

Example

Clear the current record buffer of fields Surname to Balance
from fAccounts and redraw the current window instance
Clear range of fields fAccounts.Surname to fAccounts.Balance
Do $cinst.$redraw()

Clear search class

Command group Flag affected Reversible Execute on client Platform(s)

Searches NO YES NO All

Syntax

Clear search class

48

quit_method.html
quit_all_methods.html
../searches.html

Description

This command clears the current search class so you can print a report using all records. This also frees the memory required by the
search class.

If you use Clear search class in a reversible block, the search class reverts to its former setting when the method terminates.

Example

Set report name rMyReport
Set search name sMySearch
sys(81) returns the current search class
Yes/No message Use Search (Icon) {Do you wish to use the search class '[sys(81)]' ?}
If flag false
Clear search class

End If
Print report (Use search)

Clear selected files

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Clear selected files {list-of-files (F1,F2,..,Fn)}

Description

This command clears the current record buffer of records from the specified files. The command is particularly useful in a multi-user
system where it may be necessary to remove only certain files so that they are not locked.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names to select multiple names. If no file name or
file list is specified, the command does nothing.

This command is reversible for read-only and read-write files; the command reverses by re-reading each record into the current record
buffer. Note that using this command in a reversible blockwith amemory-only filewill clear the current record buffer for that filewhen
the command reverses.

Example

Clear the current record buffer of records from fAccounts
and fInvoices and redraw the current window instance
Clear selected files {fAccounts,fInvoices}
Do $cinst.$redraw()

Clear sort fields

Command group Flag affected Reversible Execute on client Platform(s)

Sort fields NO YES NO All

Syntax

Clear sort fields

49

../files.html
../sort_fields.html

Description

This command removes the sort fields that are currently active. This enables the data to be printed without any sorting taking place.
Alternatively, the command removes the current sort fields so you can specify new sort levels with Set sort field.

If you use Clear sort fields in a reversible block, the original sort values are restored when the method terminates.

Example

Remove the current sort fields and then set the sort
field as Surname
Clear sort fields
Set sort field fAccounts.Surname
Set report name rMyReport
Send to screen
Print report

Clear timer method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO YES NO All

Syntax

Clear timer method

Description

This command clears or cancels the current timer method. Usually a timer method remains in operation until the library is closed or
an error occurs. In a reversible block, the current timer method is restored when the method terminates.

Example

Clear the timer method after it is called so that is
only called once
Set timer method 5 sec Timer

method Timer
OK message {Timer method triggered once only}
Clear timer method

Clear trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Clear trace log

Description

This command clears the trace log.

50

set_sort_field.html
../debugger.html

Close all designs

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Close all designs

Description

This command closes all the design windows currently open, including all instances of the method editor.

Example

Close all designs

Close all windows

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Close all windows

Description

This command closes all open window instances in all open libraries, and automatically cancels any working message. The Close all
windows command does not close private instances which do not belong to the current task.

Example

Prompt to close all open windows
Yes/No message {Do you wish to close all windows ?}
If flag true
Close all windows

End If
Alternatively, the $sendall command can be used to close
all windows
Do $root.$iwindows.$sendall($ref.$close())

Close check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Close check data log

51

../classes.html
../windows.html
../data_management.html

Description

This command closes the check data log if it is open. The command is not reversible and the flag is not affected.

Example

Check data (Check records) {fOrders}
If flag true
Yes/No message {View Log?}
If flag true

Open check data log (Do not wait for user)
End If
leave log window open

Else
OK message Error (Icon) {The check data file command could not be carried out//Please make sure that only one user is logged on to the datafile}

End If
now close log
Close check data log

Close data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Close data file {internal-name (leave empty to close all)}

Description

This command closes the open data file with the specified internal name, or closes all the open data files if no name is specified. It sets
the flag if at least one data file is closed. It clears the flag and does nothing (that is, does not generate a runtime error) if the specified
internal name does not correspond to an open data file.

Note that data files have a notation property $allowclose, which when set to kFalse, prevents Close data file, the data file notation,
and the Data File Browser from closing the file.

Example

check the $allowclose property of myDataFile
If $root.$datas.myDataFile.$allowclose
Close data file {myDataFile}

End If

Close DDE channel

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Close DDE channel ([All channels])

52

../data_files.html
../exchanging_data.html

Options

All channels If specified, the command applies to all DDE channels, rather than just the current channel

Description

DDE command, Omnis as client. This command closes the current channel. If you use the All channels option, all open DDE channels
are closed. No error occurs if the current channel is not open.

Example

Set DDE channel number {2}
Open DDE channel {Omnis|Country}
If flag false
OK message {The Country library is not running}

Else
Do method TransferData
Close DDE channel
OK message {Update finished}

End If

Close design

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Close design {class-name}

Description

This command closes the specified design class. Trying to close a class which is not open simply clears the flag.

Example

Close design

Close file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Close file (refnum) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command closes a file previously opened by the Open file command. You specify the file reference number returned by Open
file in refnum. You should call Close file for each files you open with Open file, when you have finished using the file.

It returns an error code (See Error Codes), or zero if no error occurs.

53

../classes.html
../external_commands.html
open_file.html
open_file.html
open_file.html
open_file.html
fileops_error_codes.html

Example

read a text file then close it

Calculate lPathname as con(sys(115),'html',sys(9),'serverusagetask.htm')
Open file (lPathname,lRefNum) Returns lErrCode ## opens the file
Read file as character (lRefNum,lFile) Returns lErrCode ## reads the file contents into lFile
Close file (lRefNum) Returns lErrCode ## now close the file

Close import file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

Close import file

Description

This command closes the current import file. You should use it once the data has been read in.

Example

Import from a csv file called myImport.txt in the root of your omnis tree
Calculate lImportPath as con(sys(115),'myImport.txt')
Set import file name {[lImportPath]}
Prepare for import from file {Delimited (commas)}
Import data lImportList
End import
Close import file

Close library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Close library internal-name (leave empty to close all)

Description

This command closes the open library file with the specified internal name, or closes all the open library files if no name is specified. It
sets the flag if at least one library file is closed. It clears the flag and does nothing if the specified internal name does not correspond
to an open library.

Note that the internal name for a library defaults to its physical file name fromwhich the path and DOS extension has been removed.
The Open library command also lets you specify the internal name (see the example below).

Closing a library closes all windows, reports, and menus belonging to that library which are open or installed. It also disposes of the
CRBs for the file classes and class variables belonging to that library, closes all lookup files opened by that library, and if there is a
running method from that library on the stack, clears the method stack. If the method stack is cleared, the command following the
current executing command will not execute, and it is not possible to test the flag value returned from the command.

54

../importing_and_exporting.html
../libraries.html
open_library.html

Example

Open and close the library mylib.lbs from the root
of your Omnis studio tree
Calculate lLibPath as con(sys(115),'mylib.lbs')
Open library (Do not close others) [lLibPath],MYLIB
If flag true
Yes/No message {Close Library ?}
If flag true

Close library MYLIB
End If

End If

Close lookup file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Close lookup file {lookup-name}

Description

This command closes the lookup file whichmatches the reference name given in the parameters. Each lookup file is given a reference
label when it is opened. In this example it is “City”.

If the reference label given in the Open lookup file command is omitted, you can omit the lookup name in the Close lookup file com-
mand. If the specified lookup file is closed, the flag is set; if the lookup file doesn’t exist, the flag is cleared.

Example

Open lookup file {City,Lookup.df1,fCities}
If flag true
OK message {The city you require is [lookup('City','I',2)]}

End If
Close lookup file {City}

Close other windows

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Close other windows

Description

This command closes all but the top window instance. As window instances are not automatically closed in Omnis, you can use this
command to close all window instances except the top window instance. The Close other windows command does not close private
instances which do not belong to the current task.

55

../data_files.html
open_lookup_file.html
../windows.html

Example

Close all other windows
If len(sys(51)) ## more than 1 window open
Close other windows

End If

Close port

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO NO NO All

Syntax

Close port

Description

This command closes the current port. You should use it after the data has been transferred.

Example

Set port name {COM1:}
Set port parameters {1200,n,7,2}
Prepare for import from port {One field per line}
Repeat
Import field from file int lImportField

Until lImportField='start data'
Do method ImportData
Close import file

Close print or export file

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO NO NO All

Syntax

Close print or export file

Description

This command closes the current print or export file. You use it after the data has been written to the file. If the file is left open,
subsequent data printed to the file is added to the end of the earlier data.

Example

Send to file
Calculate lPrintFileName as con(sys(115),'myPrintedReport.txt')
Set print or export file name {[lPrintFileName]}
Set report name rMyReport
Print report
Close print or export file

56

../report_destinations.html
../report_destinations.html

Close task instance

Command group Flag affected Reversible Execute on client Platform(s)

Tasks NO NO NO All

Syntax

Close task instance instance-name

Description

This command closes the specified task instance.

Example

Close task instance tkMyTask
or do it like this
Do $itasks.tkMyTask.$close()

Close top window

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES NO NO All

Syntax

Close top window

Description

This command closes the top window instance. As window instances are not automatically closed in Omnis, you can use this com-
mand to close the top window. No error occurs if there is no window open. This command clears the flag and does nothing if the top
window is a private instance not belonging to the current task.

Example

Close the top window if it is called 'wMyWindow'
If sys(50)='wMyWindow'
Close top window

End If
Alternatively, use notation to close the top window
Do $topwind.$close()

Close trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Close trace log

57

../tasks.html
../windows.html
../debugger.html

Description

This command closes the trace log.

Close window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES NO NO All

Syntax

Close window instancewindow-instance-name

Description

This command closes the specified window instance. Close window instance clears the flag and does nothing if the window is a
private instance belonging to the current task. Alternatively you can use the $close() method to close a window instance.

Example

Test for window open {wMyWindow}
If flag true
Close window instance wMyWindow

End If
Alternatively, you can do it like this
Do $root.$iwindows.wMyWindow.$close()

Close working message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO NO All

Syntax

Close working message

Description

This command closes the current working message. No error occurs if there is no working message displayed. Working messages
close themselves whenmethods stop running and control returns to the user. Once a workingmessage is displayed, a call to another
method leaves the message on the window. The message is not cleared automatically until the first method ends.

Example

Close the working message before this method
has finished
Working message {Processing Record [lCount]}
For lCount from 1 to 20000 step 1
Redraw working message

End For
Close working message
For lCount from 1 to 50000 step 1
Calculate lValue as lValue+lCount

End For

58

../windows.html
../message_boxes.html

Context help

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO All

Syntax

Context help {command (parameters)}

Description

This command provides context help to the user: note this only applies to fat client or desktop apps, not web & mobile apps created
using the JavaScript Client.

You specify a commandmode option, and depending on themode you can specify the help file name and context id. The command
mode options are constants listed in the Catalog.

kHelpContextMode
initiates context help mode, showing a ‘?’ cursor.

kHelpContext (’helpfile name’, context id)
opens a general help window for the topic specified.

kHelpContextPopup (’helpfile name’, context id)
opens a popup help window for the topic specified.

kHelpContents (’helpfile name’)
opens the help file at the contents page.

kHelpQuit (’helpfile name’)
closes windowmode help.

Some options do not work on all platforms.

To implement context help for an object or area, you set the help id as a decimal value in the $helpid property of a class or object,
including windows, menus, and toolbars. You canmake your custom help file whichmust be placed in the Help folder and the name
entered in the library preference property $clib.$prefs.$helpfilename.

When the user clicks on an object with the help cursor or presses the F1/Help key, Omnis looks for the help id. If it finds none for a
window object, menu line, or toolbar control, it then looks in the next higher containing object.

Example

Show the file index.htm from the omnis help folder
in the standard help window
Context help {kHelpContext ('omnis','index')}
Show ? cursor and awaits click, when user clicks, shows a popup
window with topic $cobj.$helpid from $clib.$prefs.$helpfilename
located in the Help folder
Context help {kHelpContextMode}

Copy file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Copy file (from-path [,to-path]) Returns err-code

59

../operating_system.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This commandmakes a copy of the file specified in from-path. The to-path is the path to destination folder into which the file will be
copied; the file to be copiedmust not already exist in the destination folder. If you omit to-path, a copy of the file named in from-path is
created in the current directory using the same name with the extension “.BAK”.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

Calculate lPathname as con(sys(115),'html',sys(9),'serverusagetask.htm')
Calculate lNewPath as con(sys(115),'html',sys(9),'serverusagetask2.htm')
Copy file (lPathname,lNewPath) Returns lErrCode
copies the file in lPathName to the filename contained in lNewPath

Copy list definition

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Copy list definition list-or-row-name ([Clear list])

Options

Clear list If specified, the command empties the current list and removes its column definitions before executing

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command redefines the column headings of the current list by copying the columns and data structure from the specified list. If
the current list contains data and you do not clear the list, no change is made to the internal structure of the list; in this case, columns
are neither added nor removed, merely renamed and the command is similar to Redefine list.

When the current list is empty or the Clear list option chosen, the command is the equivalent to ‘Define the list so that it matches the
specified list’.

Example

Set current list iList1
Define list {iCol1Date,iCol2Num,iCol3Char}
Add line to list
Set current list iList2
Define list {iCol4Date,iCol5Num,iCol6Char}

60

fileops_error_codes.html
../lists.html
redefine_list.html

Add line to list
now change the definition of iList2 to match iList1
Copy list definition iList1 (Clear list)
or you can do it like this
Do iList2.$copydefinition(iList1)

Copy to clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Copy to clipboard field-name

Description

This command copies the contents of the specified field or current selection and places it on the clipboard. In the case of a null
selection when the cursor is merely flashing in a field and no characters are selected, the Copy to clipboard command will literally
copy “nothing”.

Example

Copy one field to another then clear the first field
Copy to clipboard iName
Paste from clipboard iDeliveryName (Redraw field)
Clear data iName (Redraw field)

Create data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Create data file ([Do not close other data]) {file-name, internal-name}

Options

Do not close other data If specified, the command does not close all open data files before opening the specified data file

Description

This command creates and opens a new and empty, single segment data file, which becomes the “current” data file. You can specify
the path name of the file to be created and the internal name for the open data file.

The Do not close other data option lets you have multiple open data files. If you uncheck this option ,all open data files are closed
even if the command fails.

If the disk file with the specified path name cannot be created (and opened), the flag is cleared. Otherwise, the flag is set if the data
file is successfully created and opened.

WARNING: If the file and path name is the same as an existing data file, all segments for that data file are deleted before the new file
is created. If the data file was open, it is closed and deleted; a new and empty data file is then reopened.

61

../clipboard.html
../data_files.html

Example

Yes/No message {Do you wish to add a new company?}
If flag true
method to do some preparatory code for the new datafile and generate the company name
Do method Insert Company
creates a datafile in the same folder as the omnis executable
the name of the datafile is the value of the character variable iCompany
Create data file (Do not close other dat) {(con(sys(115),iCompany,'.df1')/[iCompany]}

End If
or do it like this
Do $datas.$add(con(sys(115),iCompany,'.df1'),kTrue,[iCompany])

Create directory

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Create directory (path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command creates the directory named in path. The directory must not already exist. Create directory does not create intermedi-
ate directories. It only creates the last directory name in path.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

Calculate lDirName as con(sys(115),'MyNewDirectory')
create the new directory in the root of your omnis tree
Create directory (lDirName) Returns lErrCode

Create file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Create file (path) Returns err-code

62

../external_commands.html
fileops_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command creates the file specified in path. Every directory or folder in path must already exist. Create file does not create
directories or folders.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

Calculate lPathname as con(sys(115),'MyNewFile.txt')
create the new file in the root of your omnis tree
Create file (lPathname) Returns lErrCode

Create library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Create library ([Do not close others]) library-pathname, internal-name

Options

Do not close others If specified, the command does not close all open libraries before opening the specified library

Description

This command creates and opens a new library file. You specify the full pathname and internal name of the library. The internal name
is an alias that you supply and use in your methods to refer to that library file.

If no internal name is specified, the default internal name is the disk name of the file with the path name and suffix removed. For
example, under Windows the internal name for ‘c:\myfiles\mylib.lbs’ is MYLIB. Similarly, under macOS the internal name for ‘/my-
files/mylib.lbs’ is ‘mylib’.

A Do not close others option can also be specified so that you can openmultiple libraries. If the disk file with the specified pathname
cannot be created (and opened), the flag is cleared and no libraries are closed. Otherwise, if the option is not specified, all other open
libraries are closed (see Close library for the consequences of closing a library).

WARNING If the path name is the same as an existing library, the existing library is overwritten. If the existing library is open, it is closed
and deleted and a new, empty library is opened.

Example

Create a library named mylib.lbs in the root of your Omnis Studio tree
Calculate lLibPath as con(sys(115),'mylib.lbs')
Create library (Do not close others) [lLibPath]
If flag true
OK message {Library created!}

End If

63

fileops_error_codes.html
../libraries.html
close_library.html

Cut to clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Cut to clipboard field-name ([Redraw field][,All windows])

Options

Redraw field If specified, the command reloads affected window fields with the new value of the data field,after it has performed the operation; note
that this takes the ‘All windows’ option into account

All windows If specified, the command applies to all open window instances, rather than just the top open window instance

Description

This command cuts the contents of the specified field or current selection and places it on the clipboard. In the case of a null selection
when the cursor is merely flashing in a field and no characters are selected, Cut to clipboardwill literally cut “nothing”.

Example

Cut iName to the clipboard and paste it into iDeliveryName
Cut to clipboard iName (Redraw field)
Paste from clipboard iDeliveryName (Redraw field)

Default

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Default

Description

This command marks the block of commands to be run when there is no matching case in a Switch statement. When a Switch–
Case construct is used, the Default command marks the start of a block of commands that are executed if none of the preced-
ing Case statements are executed.

Example

Sound the bell if lName is not equal to Fred or Jim
Switch lName
Case 'Fred'

OK message {Fred}
Case 'Jim'

OK message {Jim}
Default

OK message (Sound bell) {Neither Fred nor Jim}
End Switch

64

../clipboard.html
../constructs.html
switch.html
case.html

Define list

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Define list {list-of-field-or-file-names (F1,F2..F3,F4)}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This commanddefines the variables or file class field names to be used as the columndefinitions for the current list; it should follow Set
current list. The variables or fields used in the definition also describe the data type and length for each column of data held. This
command clears the definition and data in the current list. When reversed, the contents and definition of the current list are restored
to their former values. Duplicate names are ignored in your list of variables or fields.

Example

Set current list iList1
define columns iCol1Date, iCol2Num & iCol3Char for the current list
Define list {iCol1Date,iCol2Num,iCol3Char}
same as before but ignores the duplicate reference to iCol3Char
Define list {iCol1Date,iCol2Num,iCol3Char,iCol3Char}
define the list based upon all the columns in the file class fCustomers
Define list {fCustomers}
Alternatively, you can avoid using Set Current List by using the following notation
Do iList1.$define(iCol1Date,iCol2Num,iCol3Char)
define the list based upon a table,schema or query class
Do iList1.$definefromsqlclass('myTableOrSchemaOrQueryClass')
FIXED LENGTH COLUMNS
Normally, the length of a column is set by the type or length of the variable or field defined for
the column, therefore the column length for a default character variable would be 10 million.
However, when you define the list you can truncate the data stored in the column using
VariableName/N. For example to use only the first 10 characters of the variable iCol3Char in column 3
Define list {iCol1Date,iCol2Num,iCol3Char/10}

Define list from SQL class

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Define list from SQL class query, schema, or table-name(parameters)

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

65

../lists.html
set_current_list.html
set_current_list.html
../lists.html

Description

This command defines the column names and data types for the current list based on the specified schema, query, or table class.

This results in the creation of a new table instance associated with the list. If the sql-class-name refers to a table class, the command
passes the parameters to the $construct method of the table class.

When reversed, the contents and definition of the list are restored to their former values.

Example

Set current list iMyList
Define list from SQL class sMySchema
or do it this way
Do iMyList.$definefromsqlclass('sMySchema')

Delete

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Delete

Description

This command deletes the current record in the main file without prompting the user to confirm the command, so you should use it
with caution. The flag is set if the record is deleted, or cleared if there is no main file record. The flag is also cleared if the Do not wait
for semaphores option is on and the record is locked.

Example

The following example deletes records selected by a search class.
Set main file {fAccounts}
Set search name sOverDrawn
Find first on fAccounts.Code (Use search)
Repeat
Delete
Next

Until flag false
This example checks the semaphore and tells the user if the record is locked:
Do not wait for semaphores
Delete
If flag false
OK message (Sound bell) {Record in use and can't be deleted}

End If

Delete class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Delete class {class-name}

66

../changing_data.html
do_not_wait_for_semaphores.html
do_not_wait_for_semaphores.html
../classes.html

Description

This command deletes the specified library class. It is not possible to delete a file class, an installed menu or an open window. It is
also not possible to delete a class if one of its methods is currently executing, that is, if it is somewhere on themethod stack. Deleting
a class does not reduce the library file size. It does, however, create free library file blocks so that creation of another class may be
possible without further increase in library size. Errors, such as attempting to delete a name that does not exist, simply clear the flag
and display an error message.

Example

Delete class {sUser}

Delete data

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Delete data {file-name}

Description

This command deletes all the data and indexes for a specified file in a data file. The data and indexes for a file class are called a “slot”.
You can delete a slot only if and when one user is logged onto the data file.

If a specified file name does not include a data file name as part of the notation, the default data file for that file is assumed. If the
file is closed or memory-only, the command does not execute and returns flag false. If you are not running in single user mode, the
command automatically tests that only one user is using the data file (the command fails with the flag false if this is not true), and
further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute, and it is not possible to cancel execution even if a working message with cancel box is
open. The command sets the flag if it completes successfully and clears the flag otherwise. It is not reversible.

Example

Delete data {fCustomers}
If flag true
OK message {Data for fCustomers has been deleted}

Else
OK message Error {Data could not be deleted}

End If

Delete file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Delete file (path) Returns err-code

67

../data_management.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command permanently deletes the file specified by path.

It returns an error code (See Error Codes), or zero if no error occurs.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

Example

Calculate lPathname as con(sys(115),'html',sys(9),'serverusagetask.htm')
Calculate lNewPath as con(sys(115),'html',sys(9),'serverusagetask2.htm')
Copy file (lPathname,lNewPath) Returns lErrCode ## copies the file in lPathName to the filename contained in lNewPath
Does file exist (lNewPath) Returns lStatus ## see if the file exists
If lStatus
Delete file (lNewPath) Returns lErrCode ## delete it

End If

Delete line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Delete line in list {line-number (calculation)}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command deletes the specified line of the current list by moving all the lines below the specified line up one line. If the line
number is not specified or if it evaluates to 0, the current line LIST.$line is deleted. The line in a list selected by the user can determine
the value of LIST.$line and is the line deleted if no parameters are specified. LIST.$line is unchanged by the command unless it was
the final line and that line is deleted; in this case LIST.$line is set to the new final line number. The command never releases any of the
memory used by the list.

The flag is cleared if the list is empty or if the line is beyond the current end of the list; otherwise, the flag is set.

Example

Delete all but the first 2 lines in the list
Set current list lMyList
Define list {lName,lAge}
Add line to list {('Fred',10)}
Add line to list {('George',20)}
Add line to list {('Harry',22)}
Add line to list {('William',31)}
Add line to list {('David',62)}

68

fileops_error_codes.html
../list_lines.html

While lMyList.$linecount>2
Delete line in list {1}

End While
Alternatively you can use $remove to delete a line from a list
Do lMyList.$remove(1)

Delete selected lines

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Delete selected lines

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command deletes all the selected lines from the current list. This is carried out in memory and has no effect on the lists stored in
the data file unless a Prepare for Insert/ Edit command is performed.LIST.$line is unaffected unless it is left at a value beyond the end
of the list, in which case it is set to LIST.$linecount.

Example

Build a list and delete all lines except line 3
Set current list lMyList
Define list {lCol1}
For lCount from 1 to 10 step 1
Add line to list {(lCount)}

End For
Select list line(s) (All lines)
Invert selection for line(s) {3}
Delete selected lines

Delete with confirmation

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Delete with confirmation {message}

Description

This commanddisplays amessage asking the user to confirmor cancel the deletion and, if confirmation is granted, deletes the current
record in the main file. An error is reported if there is no main file.

If a message is not specified, Omnis uses a default message. The message can contain square-bracket notation which is evalu-
ated when the command is executed. If the current record is deleted, the flag is set, otherwise it is cleared. If the Do not wait for
semaphores option is on, the flag is cleared if the record is locked.

69

../list_lines.html
prepare_for_insert.html
prepare_for_edit.html
do_not_wait_for_semaphores.html
do_not_wait_for_semaphores.html

Example

This example allows selected records in the main file to be deleted:
Set main file {fAccounts}
Set search as calculation {fAccounts.Balance<0}
Find first on fAccounts.Code (Use search)
While flag true
Delete with confirmation {Delete [fAccounts.Surname]'s record?}
Next (Use search)

End While

Deselect list line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Deselect list line(s) ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command deselects the specified list line. The specified line of the current list is deselected and is shown without highlight on a
window list field when redrawn. You can specify the line number as a calculation. The All lines option deselects all lines of the current
list. When a list is saved in the data file, the line selection state is stored.

Example

Build a list and deselect line 5
Set current list lMyList
Define list {lCol1}
For lCount from 1 to 10 step 1
Add line to list {(lCount)}

End For
Select list line(s) (All lines)
Deselect list line(s) {(lMyList.$linecount/2)}
Alternatively, you can deselect a line by assigning its $selected property.
Do lMyList.5.$selected.$assign(kFalse) ## select line 5

Disable all menus and toolbars

70

../list_lines.html

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Disable all menus and toolbars

Description

The Disable all menus and toolbars command disables all top-level menus and toolbars in the main Omnis menu bar or application
docking areas (i.e. not toolbars or menus installed in window classes). For toolbars, the command sets the active state of the docking
areas and disables everything without changing its appearance. Themenus and toolbars can be enabled using the Enable all menus
and toolbars command.

Note $itoolbars represents thegroupof open top-level toolbar instances, and themembers of thegroupare toolbars. Setting $enabled
for an individual toolbar not only affects if controls can be used, but also affects the appearance of controls, hence they gray in this
case.

You can disable all user installed menu and toolbar instances by setting the $enabled property, as follows:

Do $imenus.$sendall($ref.$enabled.$assign(kFalse))
Do $itoolbars.$sendall($ref.$enabled.$assign(kFalse))

Example

Disable all menus and toolbars unless
the correct password is entered
Disable all menus and toolbars
Prompt for input Password : Returns lPassword
If low(lPassword)='password'
Enable all menus and toolbars

End If

Disable cancel test at loops

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO YES NO All

Syntax

Disable cancel test at loops

Description

Normally, Omnis tests if the userwishes to cancel execution of themethod, at the end of each loop andduring lengthy operations such
as searching or sorting a large list. The user requests a cancel by either clicking on a working message Cancel button, or by pressing
Ctrl-Break underWindows, Ctrl-C under Linux, or Cmnd-period undermacOS. Use this command to disable these tests, meaning that
the cancel key combination and clicks on a working message cancel button will be ignored.

This command is reversed with Enable cancel test at loops, or if placed in a reversible block.

71

../menus.html
enable_all_menus_and_toolbars.html
enable_all_menus_and_toolbars.html
../constructs.html
enable_cancel_test_at_loops.html

Example

delete all overdrawn accounts without interruption by the user requesting a cancel
Set main file {fAccounts}
Set search as calculation {fAccounts.Balance<0}
Find on fAccounts.Code (Use search)
Disable cancel test at loops
While flag true
Working message (Repeat count) {Deleting Account [fAccounts.Code]}
Delete
Next on fAccounts.Code (Exact match)

End While

Disable enter & escape keys

Command group Flag affected Reversible Execute on client Platform(s)

Enter data NO YES NO All

Syntax

Disable enter & escape keys

Description

This command disables the Enter key on all platforms; on Windows and Linux, it also disables the Escape key, whereas on macOS it
also disables the Escape key andCmnd-period. In otherwords, it disables the keyboard equivalents of theOK andCancel pushbuttons.
For example, you can use it during enter data mode to prevent the user from prematurely updating records by hitting the Enter key,
when they attempt to start a new line. The option will remain set until either it is reversed with an Enable command, a new library is
selected, or it is reversed as part of a reversible block.

Before using this command in a method that initiates an Enter data command, ensure that the user has some way of ending data
entry, that is, by installing an OK and a Cancel pushbutton, or by using a $control() method that detects the end of data entry.

Example

$construct of window class
Begin reversible block
Disable enter & escape keys

End reversible block
Enter data
If flag true
OK message {OK Button Pressed}

End If

Disable fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO NO NO All

Syntax

Disable fields {list-of-field-names (Name1,Name2,…)}

72

enter_data_cmd.html
../fields.html

Description

This command disables the specified field or list of fields, making them inactive during Enter data and Prompted find. Thus the data
entry cursor skips a disabled entry field when in data entry mode, find, and so on, and disabled pushbuttons cannot be clicked. If an
entry field with scroll bar is disabled, you can tab to it but not change the data. You can reverse Disable fields or enable a display field
using Enable fields.

Example

disable 2 fields
Begin reversible block
Disable fields {myField1,myField2}

End reversible block
Do method CheckCredit
Quit method
now this method ends and the fields are re-enabled as they are in a reversible block
to disable a single field on the current window
Do $cwind.$objs.myField1.$enabled.$assign(kFalse)
to disable all fields on the current window like this
Do $cwind.$objs.$sendall($ref.$enabled.$assign(kFalse))

Disable menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Disable menu line line or instance-name/line

Description

This command disables the specified line of amenu instance, that is, themenu line becomes grayed out and cannot be selected. You
specify the menu-instance-name and the number of the menu line you want to disable. You can disable a complete menu instance
by disabling line zero, that is the menu title.

You can reverse Disable menu line with the Enable menu line command or, you can use it in a reversible block. Nothing happens if
the specified menu instance is not installed on the menu bar.

Example

Install the menu mView and disable a menu line,
the reversible block causes the menu line to be
re-enabled when the method has finished
Install menu mView
Begin reversible block
Disable menu line mView/Large

End reversible block
Alternatively, you can set the $enabled property of a
menu line using notation
Do $menus.mView.$obj.Large.$enabled(kFalse)

Disable relational finds

73

enter_data.html
prompted_find.html
enable_fields.html
../menus.html
enable_menu_line.html

Command group Flag affected Reversible Execute on client Platform(s)

Finding data NO YES NO All

Syntax

Disable relational finds

Description

This command reverses the action of Enable relational finds. The default situation is reinstated, that is, themain file and its connected
parent files are joined using the Omnis connection.

Example

Build a sorted combined list of parent and child data
using an existing omnis connection
Disable relational finds ## this is the default action
Set main file {fChild}
Set current list lMyList
Define list {fChild,fParent}
Set sort field fParent.ID
Build list from file (Use sort)

Do

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO NO YES All

Syntax

Do calculation Returns return-value

Description

This command executes the specified calculation, which is typically some notation that operates on a particular object or part of your
library. It returns a value if you specify a return-value,which can be a variable of any type.

Note that where the return field is an item reference, the command sets the reference but does not assign to it: you must do this
with Calculate or Do Itemref.$assign(value).

Example

open a new window instance of the window class wMyWindow maximized
Do $clib.$windows.wMyWindow.$open('*',kWindowMaximize)

redraw the current window instance
Do $cwind.$redraw()

redraw EntryField1 on the top window
Do $topwind.$objs.EntryField1.$redraw()

return a list in the local variable lClassList of all classes in the current library
Do $clib.$classes.$makelist($ref.$name) Returns lClassList

close all open window instances

74

../finding_data.html
enable_relational_finds.html
../calculations.html
calculate.html

Do $iwindows.$sendall($ref.$close())

set the $textcolor property of the current object to red
the optional return field can be used to check whether the operation succeeded
Do $cobj.textcolor.$assign(kRed) Returns lFlag

Do async method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Do async method remote-task-class/method-name (parameters) Returns return-value

Description

This command uses the Web Services server to execute a method asynchronously in the background, while the user continues to
work with the application. Because it uses the Web Services server, you can only use this command if you meet some serial number
requirements: you need a Web edition serial number, and for the development version, a Web Services serial number.

This command runs the specified remote task method. The method must have a name allowed for a Web Service method, and it
must be marked as a static Web Service method. The method will only execute in the background if you have executed the Start
server command to start themulti-threadedWeb Client server. In a runtime,Do asyncmethod generates a runtime error if you use it
before you have called Start server. In the development version, you can omit the call to Start server if you wish to debug themethod;
in this case, the method executes in the foreground, as if it were a normal method call.

The return-value is a long integer that uniquely identifies the call to the method. This is referred to as the asynchronous call id. You
use the asynchronous call id to cancel the asynchronous method with the Cancel async method command, and to associate the
completion message (see below) with the method call.

Passing Parameters

You can include a list of parameterswith theDo asyncmethod commandwhich are passed to the calledmethod. If the calledmethod
has fewer parameters than values passed to it, the extra values are ignored.

Completion Message

When the method executing in the background finishes, Omnis sends a message to the task instance that was current when Do
async methodwas called. The message is

$asynccomplete(iCallId,cErrText,vRetVal)

where iCallId is the asynchronous call id returned byDo async method, and vRetVal is the return value of themethod executed in the
background, unless an error occurred, in which case cErrText is not empty, and contains information about the error.

Notes

You can only call Do async methodwhen running in the normal foreground thread.

Background threads pend while a message box is displayed.

The background threads only execute when the normal foreground thread is not executing.

The usual restrictions about remote task threads apply, for example you cannot debug a background thread, and you cannot use
certain commands when running code in a background thread.

Execution of the remote task method occurs in the context of a remote task instance as usual. This means that the remote task
$construct and $destruct methods are called before and after calling the specified method, and that the user count for the Web
Client server must have an available connection.

If the library containing the remote task closes before the method finishes, Omnis stops its execution, and does not send the com-
pletion message. Note that if the method is in a critical block, Omnis will not stop its execution until it leaves the critical block. Also,
execution will only stop after the current command being executed by the method completes.

Only use critical blocks for very short time periods in asynchronous methods, as the user interface will be unresponsive while code is
running in a critical block.

75

../methods.html
start_server.html
start_server.html
start_server.html
start_server.html
cancel_async_method.html

Example

Run the method $backgroundmethod asynchronously in the background - it prints a report, which the completion message sends to the screen
Returned long integer iCallId uniquely identifies the method call
Do async method REMOTETASK/$backgroundmethod ('rReport') Returns iCallId
$backgroundmethod (implemented in remote task, and marked as a Web Service static method):
Print the report identified by the parameter to memory, and return the resulting report
Calculate $devices.Memory.$visible as kTrue
Do $cdevice.$assign(kDevMemory)
Do $prefs.$reportdataname.$assign(iReport)
Set report name [pReportName]
Note that Print report can be used in the multi-threaded Web Client server from Studio 4.1.5 onwards
Print report
Quit method iReport
$asynccomplete(pCallId,pErrorText,pReport) in the task instance that was current when Do async method was called
If len(pErrorText)=0
Send to screen
Print report from memory pReport

End If

Do code method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Do code method code-class/method-name (parameters) Returns return-value

Description

This command runs the specified code class method, and accepts a value back from the called method. The specified method-
namemust be in the code class code-class. The command accepts a value back from the calledmethod if you specify a return-value.
The return field can be a variable of any type.

When a code class method is executed using this command, control is passed to the called method but the value of $cinst is un-
changed, therefore the code in the code class method can refer to $cinst. When the code class method has executed, control passes
back to the original executing method. The current task is not affected by execution moving to the code class.

Passing Parameters

You can include a list of parameters with theDo codemethod commandwhich are passed to the calledmethod. If the calledmethod
has fewer parameters than values passed to it, the extra values are ignored.

Note that where the return field is an item reference, the command sets the reference but does not assign to it: you must do this
with Calculate or Do Itemref.$assign(value).

Example

Call the method myMethod in the code class
myCodeClass on a click event and pass the
value of iMyVar as a parameter
On evClick
Calculate iMyVar as 100
Do code method myCodeClass/myMethod (iMyVar)

76

../methods.html
calculate.html
do.html

Do default

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO NO All

Syntax

Do default Returns return-value

Description

This command is used within the code for a custom property, and performs the default behavior for the built-in property with the
same name as a custom property. Do default sets the flag if some built-in processing for the property exists.

Note that where the return field is an item reference, the command sets the reference but does not assign to it: you must do this
with Calculate or Do Itemref.$assign(value).

Example

Adding a method called $horzscroll.$assign to a window causes this method to be executed whenever
Do $horzscroll.$assign is called. If the window is over 20 pixels wide when the method is called the default
behavior for $horzscroll.$assign is performed, that is a scroll bar is added.
declare parameter pScrollBarOn of type Boolean
If pScrollBarOn&$cinst.$width<20
window too narrow for a scroll bar
Quit method

Else
assign a horz scroll bar
Do default

End If

Do inherited

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO YES All

Syntax

Do inherited Returns return-value

Description

This command runs the superclass method with the same name as the currently executing method in the current subclass. For
example, you can use Do inherited in the $construct() method of a subclass to execute the $construct() method of its superclass.
Similarly you can run the $destruct() method in a superclass from a subclass.

The flag is set if a method with the name of the current method is found in one of the superclasses.

Example

$construct method
Do inherited ## do superclass construct

$destruct method
Do inherited ## do superclass destruct

a method in a superclass can also be called using the $inherited method
Do $inherited.$mymethod

77

../calculations.html
calculate.html
../calculations.html

Do method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO YES All

Syntax

Do methodmethod-name (parameters) Returns return-value

Description

This command runs the specified method in the current class, and accepts a value back from the called method. If you use the Do
method command in a field or line method, Omnis searches for the specified method in the field or line methods for the class, and
then searches in the class methods. If the specified method is not found there is an error.

The command accepts a value back from the recipient or receiving method if you specify a return-value, which can be a variable of
any type. Note that where the return field is an item reference, the command sets the reference but does not assign to it: you must
do this with Calculate or Do Itemref.$assign(value).

When another method is executed using this command, control is passed to the called method. When the called method has exe-
cuted, control passes back to the original executing method. Note that you should use Do code method if you want to run a method
in a code class, that is, a method outside the current class.

Passing Parameters

You can include a list of parameters with Do method which are passed to the called method. The parameters are taken in the order
they appear in the parameter list and placed in the parameter variables in the called method. You can pass a reference to a field by
using the special parameter variable type Field reference. This means that the called method can make changes to the field passed
to it.

Recursion

Omnis allows a method to call itself, but will eventually run out of stack if the recursion does not terminate, or becomes too deep.

Example

Call the method myMethod in the current instance which
returns a value into iMyVar using Quit method lReturnValue
Do method myMethod Returns iMyVar
Call myMethod and pass the field reference iMyFieldRef
so that the value of iMyFieldRef can be changed by the
method called
Calculate iMyFieldRef as 10
Do method myMethod (iMyFieldRef)
You can use $cinst, $cfield, and $ctask to specify a method
in the current instance, field, or task.
Do method $cinst.$mymethod
Do method $cfield.$myfieldmethod
Do method $ctask.$mytaskmethod
You can also use the do command to call a method
Do $cinst.$mymethod

Do not flush data

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

78

../methods.html
calculate.html
do.html
do_code_method.html
../changing_data.html

Syntax

Do not flush data

Description

This command causes all data file operations to be carried out without writing the changed data to disk at each Update files or Delete.
The command is designed to speed up data file operations when the user is prepared to take the extra risk of data loss.

The command operates best when there is a single user logged into the data file. It is unlikely to cause speed increase if the data is
on a network volume (that is, shared by several users).

If you use Test for only one user at the beginning of the method, further users are prevented from opening the data file until the
method terminates.

The command sets the flag if the state of the ‘Do not flush data’ mode is changed. When placed in a reversible block, the command
restores the previous state of the ‘Do not flush’ flag upon the termination of the method.

Example

fast import
Test for only one user
If flag true
Do not flush data
Drop indexes

End If

Prompt for import file
Prepare for import from file {Delimited(tabs)}
Import data lImportList
End import
Close import file

For each line in list from 1 to lImportList.$linecount step 1
Prepare for insert ## transfer list to file
Load from list
Update files

End For
Flush data now ## writes the data immediately to disk
Build indexes ## rebuild indexes
Flush data ## Changes mode back to 'Flush data'

Do not wait for semaphores

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO YES NO All

Syntax

Do not wait for semaphores

Description

This command causes all commands which set semaphores to return with a flag clear if the semaphore is not available.

If Do not wait for semaphores is run first in amethod, it will ensure that any subsequent commands that lock records, such as Prepare
for…, Update commands, do not wait for records to be released. It causes the command to return a flag false and control to return
immediately to the method, if a record is locked.

79

update_files.html
delete.html
test_for_only_one_user.html
../changing_data.html

Semaphores

Semaphores are internal flags or indicators set in the data file to show other users that the record has been required elsewhere for
editing. Semaphores are only set when running in multi-user mode, that is, the data file is located on a networked server, a Mac
volume or on a DOSmachine on which SHARE has been run.

The commands which set semaphores are Prepare for edit, Prepare for insert, Update files and Delete, and also, if prepare for update
mode is on and the file acted upon is Read/Write, Single file find, Load connected records, Set read/write files, all types of Find, Next,
and Previous. Update files commands lock the whole data file while indexes are re-sorted.

The Edit/Insert commands always wait for a semaphore, as do automatic find entry fields.

The example below illustrates how any commandwhich causes a change in record locking requirements can fail (returning flag false).
If, when in ‘Prepare for’ mode, a Single file find cannot lock the new record, it returns a flag false. This could mean either that the
record could not be found, or that it was in use by another workstation. For this reason, it was made read-only before the Single file
find and then changed to read/write. Note also that Update files can fail if the file cannot be locked while the indexes are re-sorted.

Example

Do not wait for semaphores
Prepare for edit
If flag true
Set read-only files {fAccounts}
Single file find on fAccounts.Code (Exact match)
If flag false

Cancel prepare for update
Quit method kFalse

End If
Repeat

Set read/write files {fAccounts}
Until flag true
Repeat

Update files
Until flag true

End If

Do redirect

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO NO All

Syntax

Do redirect notation-for-object Returns return-value

Description

This command redirects execution from a custom property to any other public method. You specify the notation (or a calculation
which evaluates to a reference to an object) for the recipient. The recipient of the customproperty being processed is $crecipient. The
flag is set if the recipient exists and handles the property with a built-in or custom property.

Example

Do $cwind.$setup ## the call to $setup in current window instance ..

$setup method of the window instance
Do redirect $cwind.$objs.EntryField ## .. is diverted ..

$setup method of EntryField ## .. to here
OK message {redirected to [$crecipient().$name]}

80

prepare_for_edit.html
prepare_for_insert.html
update_files.html
delete.html
single_file_find.html
load_connected_records.html
set_read_write_files.html
find.html
next.html
previous.html
update_files.html
single_file_find.html
single_file_find.html
single_file_find.html
update_files.html
../calculations.html

Does file exist

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Does file exist (file|folder-name) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command returns kTrue if the specified file or folder exists, otherwise it returns kFalse. The file or folder must specify the full path.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

See also, the command Test if file exists.

Example

Calculate lPathname as con(sys(115),'html',sys(9),'serverusagetask.htm')
Calculate lNewPath as con(sys(115),'html',sys(9),'serverusagetask2.htm')
Copy file (lPathname,lNewPath) Returns lErrCode ## copies the file in lPathName to the filename contained in lNewPath
Does file exist (lNewPath) Returns lStatus ## see if the file exists
If lStatus
Delete file (lNewPath) Returns lErrCode ## delete it

End If

Drop indexes

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Drop indexes {file-name}

Description

This command deletes all the indexes for the specified file apart from the record sequence number index. This enables intensive
operations such as data import to proceed without the overhead of updating all the indexes. You can use Build indexes to rebuild the
indexes which were dropped.

If the specified file name does not include a data file name as part of the notation, the default data file for that file is assumed. If the
file is closed or memory-only, the command does not execute and returns with the flag false.

If you are running on a shareable volume, Omnis automatically tests that only one user is logged onto the data file (the command
fails with flag false if this is not true) and further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute, and it is not possible to cancel execution even if a working message with cancel box is
open.

The command is not reversible: it sets the flag if it completes successfully and clears it otherwise, for example if there is more than
one user logged onto the data file.

81

../external_commands.html
test_if_file_exists.html
../data_management.html
build_indexes.html

Example

fast import
Do not flush data
Drop indexes {fCustomers} ## drop the indexes
Do method ImportData ## import the data
Build indexes {fCustomers} ## rebuild the indexes

Duplicate class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Duplicate class {class-name/new-name}

Description

This command creates a new library class by duplicating an existing one. The name for the new class is specified in addition to the
class you want to duplicate. Errors, such as attempting to use a name that is already in use, simply clear the flag and display an error
message.

Typical uses of this command are to allow users to make changes to reports and searches.

Example

Duplicate class {sArea/sUser}
If flag true
Modify class {sUser}
Set search name sUser
Print report (Use search)

End If

Else

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else

Description

This command is used after an If command to mark the beginning of some commands that are carried out if the condition in the
preceding If command is false.

82

../classes.html
../constructs.html
if_calculation.html
if_calculation.html

Example

In the example below, the value of lGender is tested against the condition
specified in the If statement. If the condition fails, control branches to the
first Else If statement in the method. If the condition again fails, control
branches to the Else command.
If lGender='M'
OK message {Record is MALE}

Else If lGender='F'
OK message {Record is FEMALE}

Else
OK message (Sound bell) {GENDER Unknown for this record}

End If
The same result could also be obtained using a switch statement
Switch lGender
Case 'M'

OK message {Record is MALE}
Case 'F'

OK message {Record is FEMALE}
Default

OK message (Sound bell) {GENDER Unknown for this record}
End Switch

Else If calculation

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else If calculation

Description

This command is used after an If command to mark the beginning of some commands that are carried out if the condition in the
preceding If command is false, or the calculation in the Else If command is true.

Else If flag false

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else If flag false

Description

This command is used after an If statement and provides a marker before a series of commands that have to be carried out if the flag
is false.

83

../constructs.html
if_calculation.html
if_calculation.html
../constructs.html

Example

In the example below, the value of lGender is tested against the condition
false if cancel if pressed.
Prompt for input Please enter your nam Returns lName (Cancel button)
If flag true
OK message {Your name is [lName]}

Else If flag false ## cancel button pressed
OK message {No name entered}

End If

Else If flag true

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Else If flag true

Description

This command follows an If statement and provides a marker before a series of commands that have to be carried out if the flag is
true and if the value does not meet the condition specified in the If statement.

Example

use the Yes/No message to set or clear the flag
Yes/No message {Set flag with Yes or No}
If flag false
OK message {flag is 0}

Else If flag true
OK message {flag is 1}

End If

Enable all menus and toolbars

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Enable all menus and toolbars

Description

This command enables all top-level menus and toolbars in the main Omnis menu bar or application docking areas (i.e. not toolbars
or menus installed in window classes). It reverses the action of Disable all menus and toolbars. This commandwill not enable amenu
which has been disabled by disabling line zero. Such a menu can only be enabled by enabling line zero.

84

../constructs.html
if_calculation.html
if_calculation.html
../menus.html
disable_all_menus_and_toolbars.html

Example

Enable all menus and toolbars if the correct
password is enterd
Disable all menus and toolbars
Prompt for input Password : Returns lPassword
If low(lPassword)='password'
Enable all menus and toolbars

End If
Alternatively, you can enable all user installed menu
and toolbar instances by setting the $enabled property
Do $imenus.$sendall($ref.$enabled.$assign(kTrue))
Do $itoolbars.$sendall($ref.$enabled.$assign(kTrue))

Enable cancel test at loops

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO YES NO All

Syntax

Enable cancel test at loops

Description

This command causes Omnis to test if the user wishes to cancel execution of themethod, at the end of each loop and during lengthy
operations such as searching or sorting a large list. The user requests a cancel by either clicking on a workingmessage Cancel button,
or by pressing Ctrl-Break under Windows, Ctrl-C under Linux, or Cmnd-period under macOS. This command reverses the Disable
cancel test at loops command. Unless Omnis has executed a Disable cancel test at loops, cancel testing is carried out automatically.

Example

delete all overdrawn accounts without interruption by the user requesting a cancel
Set main file {fAccounts}
Set search as calculation {fAccounts.Balance<0}
Find on fAccounts.Code (Use search)
Disable cancel test at loops
While flag true
Working message (Repeat count) {Deleting Account [fAccounts.Code]}
Delete
Next on fAccounts.Code (Exact match)

End While
Enable cancel test at loops ## enable break key for next loop

Enable enter & escape keys

Command group Flag affected Reversible Execute on client Platform(s)

Enter data NO YES NO All

Syntax

Enable enter & escape keys

85

../constructs.html
disable_cancel_test_at_loops.html
disable_cancel_test_at_loops.html
disable_cancel_test_at_loops.html
../enter_data.html

Description

This command enables the Enter key on all platforms; on Windows and Linux, it also enables the Escape key, whereas on macOS it
also enables the Escape key and Cmnd-period. It reverses the action of the Disable enter & escape keys command.

In some libraries where the user may accidentally press Enter and terminate enter data mode, it is useful to disable the Enter key.

Example

$construct of window class
Disable enter & escape keys
Enter data
If flag true
OK message {OK Button Pressed}

End If
Enable enter & escape keys

Enable fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO NO NO All

Syntax

Enable fields {list-of-field-names (Name1,Name2,…)}

Description

This command enables the specified field or list of fields. You can use it to reverse the Disable fields command, or turn Display fields
into Entry fields temporarily.

Example

enable 2 fields
Begin reversible block
Enable fields {myField1,myField2}

End reversible block
Prepare for insert
Enter data
Update files if flag set
Quit method
now this method ends and the fields are re-disabled as they are in a reversible block
to enable a single field on the current window
Do $cwind.$objs.myField1.$enabled.$assign(kTrue)
to enable all fields on the current window like this
Do $cwind.$objs.$sendall($ref.$enabled.$assign(kTrue))

Enable menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Enable menu line line or instance-name/line

86

disable_enter_&_escape_keys.html
../fields.html
disable_fields.html
../menus.html

Description

This command enables the specified line of a menu instance. It reverses the Disable menu line command. However, you cannot
enable a line using this command if you have no access to it, or if there is no current record. You specify themenu-instance-name and
the number of the menu line you want to enable. The command clears the flag if the menu instance is not installed or if the line
cannot be enabled.

Example

Install the menu mView and enable the menu line
'Large' if it is currently disabled
Install menu mView
Disable menu line mView/Large
Test for menu line enabled mView/Large
If flag false
Enable menu line mView/Large

End If

Enable relational finds

Command group Flag affected Reversible Execute on client Platform(s)

Finding data NO YES NO All

Syntax

Enable relational finds ([Use connections]) {list-of-files (F1,F2,..,Fn)}

Options

Use connections If specified, all connections between the joined files are made when building the table

Description

This command causes all find tables to be built relationally, ignoring the main file. The file list is a list of files to be joined and, if Use
connections is checked, all connections between the joined files aremadewhen building the table. In effect, the connections provide
the relational joins, that is, “sequence number = sequence number”.

When relational finds are enabled, the index field specified for find and build list commands is ignored. It is necessary to use a sort to
determine the order of the table.

The Disable relational finds command causes a reversion to the default situation where the main file and its connected parent files
are joined using the connections. The Enable relational finds and Disable relational finds commands are both reversible and do not
affect the flag.

Example

Set current list lMyList
Define list {fChild,fParent,fGrandParent}
Build a relational child/parent/grandparent list using omnis connections
Enable relational finds (Use con) {fChild,fParent,fGrandparent}
Build list from file
Build a relational list of records ignoring omnis connections from fParent
and fChild of parents with children less than 4 years old
Set search as calculation {fParent.ID=fChild.Parent_ID&fChild.Age<4}
Enable relational finds {fParent,fChild}
Build list from file (Use search)

87

disable_menu_line.html
../finding_data.html
disable_relational_finds.html
disable_relational_finds.html

Enclose exported text in quotes

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

Enclose exported text in quotes ([Enable])

Options

Enable If specified, all text exported in tab, comma and user delimited format is enclosed in quotes; executing the
command without this option specified will cause text to be exported without quotes

Description

Example

Set report name rMyReport
Send to file
Prompt for print or export file
Enclose exported text in quotes (Enable)
Print report
or disable the option with the notation
Do $clib.$prefs.$exportedquotes.$assign(kFalse)

End critical block

Command group Flag affected Reversible Execute on client Platform(s)

Threads NO NO NO All

Syntax

End critical block

Description

End critical block is only applicable to the multithreaded server. It marks the end of a critical block.

See Begin critical block for more information on critical blocks.

Example

Begin critical block
Calculate cClassVar as $cinst.$getvalue()

End critical block

End export

88

../importing_and_exporting.html
../threads.html
begin_critical_block.html

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

End export

Description

This command ends the export of data from an Omnis list or row variable.

Example

export to a file called myExport.txt in the root of your omnis tree
Calculate lExportPath as con(sys(115),'myExport.txt')
Set print or export file name {[lExportPath]}
Prepare for export to file {Delimited (commas)}
Export data lExportList
End export
Close print or export file

End For

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End For

Description

This command ends a For loop. The two For loops For field value and For each line in list perform looping type operations. The End
For command terminates both these commands.

Example

Do iMyList.$define(iMyCol1)
Do iMyList.$add('A')
Do iMyList.$add('B')
For iMyList.$line from 1 to iMyList.$linecount step 1
Do iMyList.$loadcols()
OK message {Line [iMyList.$line] = [iMyCol1]}

End For
Set current list iMyList
For each line in list from 1 to #LN step 1
Load from list
OK message {Line [iMyList.$line] = [iMyCol1]}

End For

End If

89

../importing_and_exporting.html
../constructs.html
for_field_value.html
for_each_line_in_list.html

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End If

Description

This command terminates an If statement once Omnis has executed the commands inside the If statement; it also marks the end
of the commands to be executed as part of the If…Else Ifblock. Once the commands associated with the If…Else If block have been
executed, control passes to the next command after End If. For every If command, you should have a corresponding End If command.

Example

For lCount from 1 to 100 step 1
If lCount>=25&lCount<=50

If lCount=25
OK message {Quater of the way through now}

Else If lCount=50
OK message {Halfway through now}

End If
End If

End For
OK message {Done}

End import

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

End import

Description

This command ends the import of data without closing the port, DDE channel, or file through which data is being imported.

Example

Prompt for import file
Prepare for import from file {Delimited (commas)}
Import data lImportList
End import
Close import file

End print

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

90

../constructs.html
if_calculation.html
if_calculation.html
if_calculation.html
../importing_and_exporting.html
../reports_and_printing.html

Syntax

End print {instance-name}

Description

This command terminates the specified report and prints the totals section. If you omit the report instance name the End print com-
mand terminates the most recently started report instance. The flag is cleared if no report instances exist.

End print cancels the Prepare for print mode. You must include it after a Prepare for print command even if a totals section is not
required.

You can print running totals of fields in the Record section by including the same fields in the Totals section of the report. Provided
you choose the Totaled property for the field in the Record section, Omnis automatically maintains a running total.

Example

Print report record by record
Set main file {fAccounts}
Set report name rMyReport
Send to screen
Prepare for print
Find first on fAccounts.Code
While flag true
Print record
Next

End While
End print
Alternatively, you can end the print using notation
Do $ireports.rMyReport.$endprint()

End print job

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

End print job

Description

This command terminates a print job initiated with Begin print job and sends it to the printer.

End print job clears the flag and returns an error if a job has not been started. It sets the flag if it succeeds: in this case, the document
is now available for the operating system to print.

Once a print job is started, any attempt to set the report destination fails, that is, you cannot select a new destination until you have
issued an End print job.

Issuing End print job immediately after Begin print job may result in an empty document being printed.

Omnis automatically issues End print job at shutdown; it does not do this at any other time.

91

prepare_for_print.html
../reports_and_printing.html
begin_print_job.html
begin_print_job.html

Example

Create a print job and send 2 reports to the printer
Begin print job
Set report name rMyReport
Print report
Set report name rMyReport2
Print report
End print job

End reversible block

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

End reversible block

Description

This command defines the end of a reversible block of commands. All reversible commands enclosed within the commands Begin
reversible block/End reversible block are reversed when the method containing this block finishes. However, a reversible block in the
$construct() method of a window class reverses when the window is closed and not when the method is terminated as is normally
the case.

Example

A method can contain more than one block of reversible commands. In this case,
commands contained within all the blocks are reversed when the method terminates.
All the commands in the following example are reversed when the method containing
the block is finished
Begin reversible block
Disable menu line mMyMenu/5
Set current list iMyList
Build open window list (Clear list)
Calculate iVar as 0
Open window instance wMyWindow

End reversible block
When this block is reversed:
The window instance wMyWindow is closed
iVar returns to its former value
iMyList is restored to its former contents and definition
The current list is set to the former value
Menu line 5 is enabled
The following method hides fields Entry1 and Entry2 and installs the menu mCustomers
Begin reversible block
Hide fields {Entry1,Entry2}
Install menu mCustomers

End reversible block
OK message (Icon) {MCUSTOMERS is now visible}
When this method ends, first MCUSTOMERS is removed, then the fields are shown.
In the following example, the current list is iMyList
Begin reversible block
Set current list iMyList2
Define list {fAccounts.Code,fAccounts.Surname,fAccounts.Balance}

92

../constructs.html
begin_reversible_block.html
begin_reversible_block.html

Set main file {fAccounts}
Build list from select table

Enter data
End reversible block
When this method terminates and the command block is reversed, the Main file is reset,
the former list definition is restored and the current list is restored to iMyList.

End statement

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

End statement

Description

This command marks the end of a block of Sta: commands that build the SQL buffer for the current method stack. The Begin state-
ment command defines the start of the block.

Example

Open a multi-threaded omnis sql connection to
the datafile mydatafile and create a statement to
select rows from the table Customers
Calculate lHostname as con(sys(115),'mydatafile.df1')
Do iSessObj.$logon(lHostname,'','','MYSESSION')
Do iSessObj.$newstatement('MyStatement') Returns lStatObj
Begin statement
Sta: Select * From Customers
Sta: Where Cust_ID > 100
End statement
Do lStatObj.$execdirect()
Do lStatObj.$fetch(lMyList,kFetchAll)

End Switch

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End Switch

Description

This command terminates a Switch statement and defines the point where method execution continues after each Case statement.

93

../sql_object_commands.html
sta_.html
begin_statement.html
begin_statement.html
../constructs.html
switch.html
case.html

Example

Select the correct graph window depending on the graph type selected in the pGraphType parameter.

Declare Parameter GraphType (Short integer (0 to 255))
Switch pGraphType
Case kGRpie

Open window instance wGraphPieWindow
Case kGRbars,kGRarea,kGRlines

Open window instance wGraph2DWindow
Case kGR3D

Open window instance wGraph3DWindow
End Switch

End text block

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

End text block

Description

This command marks the end of a block of text which is placed in the text buffer for the current method stack. You build up the text
block using the Begin text block and Text: commands. Following an End text block, you can return the contents of the text buffer
using the Get text block command.

Example

Begin text block
Text: Thought for the day: (Carriage return)
Text: If a train station is where the train
Text: stops, what is a work station?
End text block
Get text block lTextString
OK message {[lTextString]}

End While

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

End While

Description

This commandmarks the end of aWhile loop. When the condition specified at the start of the loop is not fulfilled (testing the flag or
calculation) the command after the EndWhile command is executed. Each loop that begins with aWhile commandmust terminate
with an End While command, otherwise an error occurs.

94

../text.html
begin_text_block.html
text_.html
get_text_block.html
../constructs.html
while_calculation.html
while_calculation.html

Example

Calculate lCount as 1
While lCount<=3 ## While loop
Calculate lCount as lCount+1

End While
OK message {Count=[lCount]} ## prints 'Count=4'
Calculate lCount as 1
Repeat ## Repeat loop
Calculate lCount as lCount+1

Until lCount>=3
OK message {Count=[lCount]} ## prints 'Count=3'

Enter data

Command group Flag affected Reversible Execute on client Platform(s)

Enter data YES NO NO All

Syntax

Enter data until termination-condition (leave blank to terminate on OK or Cancel)

Description

This command puts Omnis into enter data mode which allows data to be entered via the current window. An error is generated if
there is no open window. It initiates an internal control loop which does the following:

• Places the cursor in the first entry field,

• Lets the user enter data from the keyboard,

• Detects the use of Tab, Shift-Tab and other cursor movements such as click and moves the cursor to the appropriate field,

• Waits for an OK, setting flag true before allowing control to pass to the command following Enter data in the method,

• Detects a Cancel which aborts data entry with a false flag.

By default, the Enter data command waits for an evOK or evCancel event. When these events are triggered enter data mode is
terminated (assuming the window is not inmodeless enter datamode). However you can include a termination condition with Enter
datawhich causes enter data mode to continue until the expression becomes true.

Example

$construct of window class
Enter data ## waits for a evOK or evCancel event
If flag true
OK message {User has pressed Return}

Else
OK message {User has canceled}

End If
or
$construct of window class
Calculate iValue as 0

95

../enter_data.html

Export data

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting NO NO NO All

Syntax

Export data list-or-row-name

Description

This command exports data from an Omnis list or row variable.

Example

export to a file called myExport.txt in the root of your omnis tree
Calculate lExportPath as con(sys(115),'myExport.txt')
Set print or export file name {[lExportPath]}
Prepare for export to file {Delimited (commas)}
Export data lExportList
End export
Close print or export file

Export fields

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Export fields index-name ([Indirect][,Use search][,Disable messages]) {list-of-field-names (Name1,Name2,…)}

Options

Indirect If specified, the command uses the contents of the first field as the list of fields
Use search If specified, the command uses the current search to select data
Disable messages If specified, the command does not open messages requiring a user response and instead it writes a limited

amount of information to the trace log

Description

Export fields exports the data for the list of fields to the current export file. It provides runtime access to the functionality of the
export data dialog in the IDE. The command sets the main file for the export to the file corresponding to the first field in the list.
The index-name is the optional name of the indexed field which determines the order of the exported data.

Example

export to a file called myExport.txt in the root of your omnis tree
Calculate lExportPath as con(sys(115),'myExport.txt')
Set print or export file name {[lExportPath]}
Prepare for export to file {Delimited (commas)}
Export fields fCustomers.CustomerID {fCustomers.Surname,fCustomers.FirstName}
End export
Close print or export file

96

../importing_and_exporting.html
../importing_and_exporting.html

FileOps error codes

Error Code Error Text

1 Too few parameters passed on the command line
12 Out of memory error
998 Undefined error
999 No operation on this platform
-30 Unable to delete directory or file
-36 Disk IO error (or error during operation)
-39 End of file reached during Read file as character or Read file as binary
-43 File not found
-48 File or directory already exists
-51 Bad file reference number
-59 Problem during rename

Find

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Find on field-name ([Exact match][,Use search]) {calculation}

Options

Exact match If specified, the index value of the field in suitable records must equal the current value
Use search If specified, the command uses the current search to select data

Description

This command builds a find table and locates the first record in the table, that is, it loads themain and connected files into the current
record buffer. The flag is false and the buffer is cleared if no record is found.

You use the Find command to locate records within a file. If you don’t use a search, the file is searched in the order specified by the
indexed field until the value given in the calculation line is matched. In this case, the current find table is the same as the chosen
Index.

When the closest match is found, the main and connected files are read into the current record buffer and the flag is set true. If the
indexed field is from a connected file, the search is repeated automatically until the record having a connected entry in the main file
is found.

A blank calculation indicates that the Find is to be performed using the current value of the selected index field. Thus, if you precede
the command with a Clear main file, it is the same as a Find first.

Omnis can perform a Find with an Exact match requirement. In this case, the value in the “field found” record must correspond in
every detail (for example, upper or lower case characters) to the current value of the indexed field in the current record buffer. A flag
true indicates a successful Find, otherwise a flag false results, and the main and its connected files are cleared.

You use the exact match option to locate child records connected to a current parent record.

Clearing the find table

The find table is cleared if:

97

../finding_data.html
clear_main_file.html
find_first.html

• A Clear find table command is executed with the samemain file setting.

• A new Find is carried out on the same file.

• A Next/Previous command with a new (non-blank) index or a Use Search or Exact match option where the original Find had
none, is used.

Example

Find all invoices belonging to account lMyAccCode
Prompt for input Account Code ? Returns lMyAccCode (Cancel button)
If flag true
Set main file {fInvoices}
Set search as calculation {fInvoices.AccCode=lMyAccCode}
Find on fInvoices.InvNum (Exact match,Use search)
While flag true

OK message {Found Invoice [fInvoices.InvNum] for account [fInvoices.AccCode]}
Next

End While
End If

Find first

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Find first on field-name ([Use search][,Use sort])

Options

Use search If specified, the command uses the current search to select data
Use sort If specified, the command uses the current sort field(s) to order the data

Description

This command automatically locates the first record in a file using the index for the specified field. If no field is given, the record
sequence number is used. The main and connected files are read into the CRB if a valid first record is found. The flag is set false if no
record is found.

You use the Use search option in conjunction with the specified indexed field to select the first record which fulfils the search specifi-
cation. If the search is a calculation, the optimizer will choose the best index if the index field is left blank.

You use the Use Sort option in conjunction with the current sort fields (see Set sort field) to create a table of entries from the data file
which are sorted into an order set by up to nine sort fields.

The find table is cleared if:

• A Clear find table command is executed with the samemain file setting.

• A new Find is carried out on the same file.

• A Next/Previous command with a new (non-blank) index or a Use Search or Exact match option where the original Find had
none, is used.

If you use the Find first command within a reversible block, it is reversed when the method finishes, that is, the main and connected
records are restored. However, if the data within the original record has been deleted or changed, it will not be possible to completely
restore the buffer.

98

clear_find_table.html
next.html
previous.html
../finding_data.html
set_sort_field.html
clear_find_table.html
find.html
next.html
previous.html

Example

Find the first account with a negative balance, but restore
the original record when this method finishes
Begin reversible block
Set main file {fAccounts}
Set search as calculation {fAccounts.Balance<0}
Find first on fAccounts.Code (Use search)

End reversible block

Find last

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Find last on field-name ([Use search][,Use sort])

Options

Use search If specified, the command uses the current search to select data
Use sort If specified, the command uses the current sort field(s) to order the data

Description

This command automatically locates and displays the last record in a file using a specified indexed field. You can use the Find last com-
mand to locate the last record added to a file by using the record sequencing number as the index. The flag is set false if no record is
found.

You use the Use search option in conjunction with the specified indexed field to select the last record which fulfils the search specifi-
cation. If the search is a calculation, the optimizer will choose the best index if the index field is left blank.

Whenever you use a Find command, a find table is created which determines the order in which records are displayed using subse-
quent Next and Previous commands. Once a find table has been created, subsequent Next or Previous commands will use the table
provided the commands have an empty or the same Index, and the same (or empty) Search and Exact match conditions. A Clear find
table, a new Find on the same file or Next/Previous commands with a new (non-blank) index or a Search or Exact match where the
original Find had none, will clear the find table.

The Use Sort option works in conjunction with the current sort fields (see Set sort field) to create a table of entries from the data file
which are sorted into an order set by up to 9 sort fields. Refer to the Find command for details of the find table and its use.

Example

Find the last account record in the file, but restore
the original record when this method finishes
Begin reversible block
Set main file {fAccounts}
Find last on fAccounts.Code (Use search)

End reversible block

Floating default data file

99

../finding_data.html
find.html
next.html
previous.html
clear_find_table.html
clear_find_table.html
next.html
previous.html
find.html

Command group Flag affected Reversible Execute on client Platform(s)

Data files NO YES NO All

Syntax

Floating default data file {list-of-files (F1,F2,..,Fn)}

Description

This command sets the default data file as the current data file and changes whenever the current data file changes. You use Floating
default data file in libraries which openmore than one data file at once. The default behavior in Omnis is that, as each new data file is
opened, it becomes the “current” data file. The concept of a current data file is important when your commands refer to file classes
without specifying a data file.

The Floating default data file command sets the default data file, for the specified list of files, to be equal to the current data file and
allows it to change (float) whenever the current data file changes.

The command does not change the flag but is reversible, that is, the previous default data files are restored when the method con-
taining the command in a reversible block terminates.

Example

To specify the data file, you can use Set Default Data File to associate a file class with the
current data file. In this example we associate fCustomers with Data.df1
Set current data file {Data1}
Set default data file {fCustomers}
References to fCustomers are now equivalent to references to Data1.fCustomers.
The association between fCustomers and Data1 remains in effect even if the current data file
is set to a different data file. To return to the default state where the default data file "floats"
to whatever the current data file is, you can use:
Floating default data file {fCustomers}

Flush data

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

Syntax

Flush data

Description

This command reverses Do not flush data and reverts to the default mode where the changed data is immediately written to disk
after each Update files or Delete command.

The command sets the flag if the state of the ‘Do not flush data’ mode is changed and is reversible, restoring the previous state of the
‘Do not flush’ flag when reversed. If the previous mode was ‘Do not flush data’, Flush data will cause any modified data which has not
been written to disk, to be written on the next Update files or Delete.

Example

fast import
Test for only one user
If flag true
Do not flush data

100

../data_files.html
../changing_data.html
do_not_flush_data.html
update_files.html
delete.html
update_files.html
delete.html

Drop indexes
End If
Prompt for import file
Prepare for import from file {Delimited(tabs)}
Import data lImportList
End import
Close import file
For each line in list from 1 to lImportList.$linecount step 1
Prepare for insert ## transfer list to file
Load from list
Update files

End For
Flush data now ## writes the data immediately to disk
Build indexes ## rebuild indexes
Flush data ## Changes mode back to 'Flush data'

Flush data now

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO NO NO All

Syntax

Flush data now

Description

This command causes any modified data which has not been written to disk to be immediately written to disk. This command will
only do something if a Do not flush data command has been executed.

This command leaves the flag unaffected and is not reversible.

Example

fast import
Test for only one user
If flag true
Do not flush data
Drop indexes

End If
Prompt for import file
Prepare for import from file {Delimited(tabs)}
Import data lImportList
End import
Close import file
For each line in list from 1 to lImportList.$linecount step 1
Prepare for insert ## transfer list to file
Load from list
Update files

End For
Flush data now ## writes the data immediately to disk
Build indexes ## rebuild indexes
Flush data ## Changes mode back to 'Flush data'

For each line in list

101

do_not_flush_data.html

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

For each line in list ([Selected lines only][,Descending]) from start to stop step step

Options

Selected lines only If specified,the for loop only operates on the selected lines in the list
Descending If specified,the for loop steps through the list from the largest line number to the smallest line number

Description

This command marks the beginning of a loop that processes the lines of the current list. You must specify the current list before
executing the For loop. The For loop is a convenient way to write While/ End While loops to step through each line of a list. With
the Selected lines only option, the loop will skip over any lines encountered that are not selected.

The Start value specifies the line in the list atwhichmethod execution of the For loop starts. The loop continues until the processed line
exceeds or is equal to the Stop value. If the Stepvalue is not specified, the default value of 1 is used. The values involvedmust all be inte-
gers. The Descending option tells Omnis to step through the list from a high line number to a low line number. The Start and Stop val-
ues are swapped if the Stop value is less than the Start value.

You can use Jump to start of loop within the loop to continue the next iteration of the loop. Similarly, Break to end of loop will exit the
loop prematurely.

For each line in list operates on the current list. Thematching End For will also operate on the current list. Unpredictable behavior will
result if the current list is changed and not restored within the For/ End For construct.

Example

Prepare for print
Set current list iMyList
For each line in list from 1 to iMyList.$linecount step 1
Load from list
Print record

End For
End print
this is equivalent to the method below
Prepare for print
Set current list iMyList
Calculate iMyList.$line as 1
While iMyList.$line<=iMyList.$linecount
Load from list
Print record
Calculate iMyList.$line as iMyList.$line+1

End While
End print

For field value

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

For field-name from start to stop step step

102

../constructs.html
while_calculation.html
end_while.html
jump_to_start_of_loop.html
break_to_end_of_loop.html
end_for.html
end_for.html
../constructs.html

Description

This commandmarks the beginning of a For loopwhich defines a series of commands to be repeated a number of times. You use field-
name as a counter that is automatically incremented by the step value each time the End For statement is reached.

The values involved must all be numbers, preferably integers. If start value is greater than end value, and step value is positive, the
command will perform no loops. Similarly, no loops are performed if start value is less than end value, and step value is negative.

The end value is evaluated once at the start of the loop, and saved, for performance reasons, so changing the end value during the
loop will have no effect. You can use Jump to start of loop within the loop to continue the next iteration of the loop. Similarly, you can
terminate the loop early using Break to end of loop if desired.

Example

Calculate lString as ''
For lCount from 0 to 9 step 1
Calculate lString as con(lString,lCount)

End For
OK message {String=[lString]} ## shows 'String=0123456789'
Calculate lString as ''
For lCount from 9 to 0 step -1
Calculate lString as con(lString,lCount)

End For
OK message {String=[lString]} ## shows 'String=9876543210'

FTPChmod

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPChmod (socket,filename,mode) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPChmod changes the protection mode of a remote file on the connected FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

Filename is an Omnis Character field containing the pathname of the remote file.

Mode is an Omnis Character field containing the system-dependent file-protection specifier to apply to the named file. Many FTP
servers accept the Linux-styleOwner/Group/World 3-digit Read/Write/Execute scheme (for example, 754 =OwnerRead/Write/Execute,
Group Read/Execute World Read-Only). Consult the documentation for the remote system to determine the acceptable syntax for
this argument.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

allow owner to read/write & execute, group to read & execute and world to read-only this file
Calculate lFileMode as 754
FTPChmod (iFTPSocket,lFileName,lFileMode) Returns lErrCode

103

end_for.html
jump_to_start_of_loop.html
break_to_end_of_loop.html
../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html

FTPConnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPConnect (serveraddr,username,password[,port,errorprotocoltext,secure {Default zero insecure;1 secure;2 use AUTH TLS},verify {De-
fault kTrue}, charset {Default kUniTypeAuto}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPConnect establishes a connection to the specified FTP server.

ServerAddr is an Omnis Character field containing the hostname or IP address of the FTP server.

Username is an Omnis Character field containing the user ID with which the command will log on to the server.

Password is an Omnis Character field containing the password for the user ID.

Port is an optional number or service name, which identifies the TCP/IP port of the FTP server. If you omit this parameter or pass
an empty value, it defaults to the standard FTP port (21 for non-secure or AUTH TLS secure connections, or 990 for other secure
connections). If you use a service name, the lookup for the service will occur locally.

ErrorProtocolText is an optional Omnis Character field parameter, into which FTPGetConnect places the protocol exchange that oc-
curred on the control connection to the FTP server, if an error occurred. Note that you can use the command FTPGetLastStatus to
obtain the protocol exchange in the case when a connection is successfully established.

Secure is an optional Boolean* parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

*FTPConnect also supports an alternative secure option, if you pass securewith the value 2, the connection is initially not secure, but
after the initial exchange with the server, FTPConnect issues an AUTH TLS FTP command tomake the connection secure if the server
supports it (see RFC 4217 for details), followed by further commands necessary to set up the secure connection. Authentication occurs
after a successful AUTH TLS command.

Note that if you use either of the secure options, all data connections are also secure, and all data transfer uses passive FTP.

AUTH TLS is the standard recommended mechanism for FTPS, and is referred to as explicit FTPS. The other secure form of FTP sup-
ported by this command is referred to as implicit FTPS, and is no longer recommended; however, we provide support for implicit FTPS
to cater for servers which do not support explicit FTPS.

FTPS resumes the TLS session for data connections. In addition, it automatically sends PBSZ and PROT commands to the server after
establishing a secure control connection.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Charset specifies the character set used for exchanging pathnames with the FTP server, and for exchanging file character data with
the FTP server. Charset can either be kUniTypeAuto, kUniTypeUTF8, kUniTypeNativeCharacters, kUniTypeAnsi…, kUniTypeISO8859_…,
or kUniTypeOEM.

If you specify kUniTypeAuto, after FTPConnect establishes a connection, it sends a FEAT command to the server to determine if the
server supports UTF8. If the server supports UTF8, then the connection uses UTF8 as the charset, otherwise it uses kUniTypeNa-
tiveCharacters.

104

../external_commands.html
ftpgetlaststatus.html

Socket is an Omnis Long Integer field, which receives the result of the command. If the command successfully establishes a connec-
tion and logs on to the server, Socket has a value >= 0; you pass this value to the other FTP commands, to execute requests on this
connection. Possible error codes are listed in the Web Command Error Codes Appendix.

Example

FTPConnect (iServerAddress,iUserName,iPassword) Returns iFTPSocket
If iFTPSocket<0
FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("An error occurred logging on to ",iServerAddress," - Details follow",kCr,iServerReplyText)]}

End If

FTPCwd

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPCwd (socket,newdir) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPCwd changes the working directory for the specified FTP connection.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

NewDir is an Omnis Character field containing the new working directory. The contents of this string are system-dependent. FT-
PCwd accepts anything for this argument, but the remote FTP server may not. Most FTP servers accept Linux-style path and file
specifications with path and file separated by slashes, such as

/drive/user/subdirectory/filename.extension

Most FTP servers accept the Linux conventions for abbreviations for special directory specifications, that is, “..” for the next higher
sub-directory, and “~userid” for the home directory of a particular user ID.

Some FTP servers also accept system-specific directory path formats, that is, Macintosh colon-separated as in Macintosh HD:My
Folder:My File or VMS-style path and file specifications, as in SOME$DISK:[USER.SUBDIRECTORY]FILENAME.EXTENSION;1.

Consult the documentation for the server to determine the authoritative acceptable directory path specifications. When in doubt, try
the Linux style.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

Calculate lNewDirectory as '../testFolder'

FTPCwd (iFTPSocket,lNewDirectory) Returns lErrCode
If lErrCode
OK message FTP Error {[con("Error setting FTP directory",kCr,"Error code : ",lErrCode)]}

End If

105

web_error_codes.html
../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html

FTPDelete

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPDelete (socket,filename[,directory {Default kFalse}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPDelete deletes a file or directory on the connected FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

Filename is an Omnis Character field containing the pathname of the remote file or directory to delete.

Directory is an optional Boolean (that defaults to kFalse) which you pass as kTrue if Filename is the pathname of a directory rather
than a file. Note that a directory may need to be empty before you can delete it.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

Calculate lFileName as 'myFileToDelete'
FTPDelete (iFTPSocket,lFileName) Returns lErrCode
If lErrCode
OK message FTP Error {[con("Error deleting ",lFileName,kCr,"Status code: ",lErrCode)]}

End If

FTPDisconnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPDisconnect (socket) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPDisconnect closes a connection to an FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

106

../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html

Example

FTPDisconnect (iFTPSocket) Returns lErrCode
If lErrCode
OK message FTP Error {[con("Error disconnecting from FTP server ",kCr,"Error code : ",lErrCode)]}

End If

FTPGet

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPGet (socket,remotefile,localfile[,filetype,creator]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPGet downloads a file from an FTP server. The file is transferred using the currently specified transfer type of ASCII or binary, as
specifiedby theFTPType command. It is important that you set the transfer type correctly for eachfile youdownload, since an incorrect
transfer type will result in a bad downloaded copy of the file.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

RemoteFile is an Omnis Character field containing the pathname of the remote file to download.

Note: The remote filenamemay not be acceptable to the local system.

LocalFile is an Omnis Character field containing the pathname of the downloaded file. If the file already exists, FTPGet will overwrite
it with the downloaded file.

FileType and Creator are optional arguments, which the command uses on theMacintosh platforms only. These specify a file type and
creator for the downloaded copy of the file. If you omit these arguments when calling FTPGet on a Macintosh, they default as follows:

• For ASCII transfer type: FileType = TEXT, Creator = ttxt

• For binary transfer type: FileType = TEXT, Creator = mdos

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

set file transfer mode to asci
FTPType (iFTPSocket,0) Returns lErrCode
If not(lErrCode)
assumes you are already in the correct folder on the ftp server so only the file name is needed
Calculate lRemoteFile as 'myFileToDownload.txt'
identify where to download the file to
Calculate lLocalFileName as con(sys(115),'downloadFolder',sys(9),lRemoteFile)
download the file
FTPGet (iFTPSocket,lRemoteFile,lLocalFileName) Returns lErrCode
If lErrCode

OK message FTP Error {[con("Error transferring file ",upp(lRemoteFile)," to ",upp(lLocalFileName),kCr,"Error code : ",lErrCode)]}
End If

End If

107

web_error_codes.html
web_error_codes.html

FTPGetBinary

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPGetBinary (socket,remotefile,binfield) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPGetBinary downloads a file from an FTP server into an Omnis binary variable. The file is transferred using binary transfer mode.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

RemoteFile is an Omnis Character field containing the pathname of the remote file to download.

BinField is an Omnis Binary or Character field that will receive the contents of the remote file.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

set file transfer mode to binary
FTPType (iFTPSocket,1) Returns lErrCode
If not(lErrCode)
assumes you are already in the correct folder on the ftp server so only the file name is needed
Calculate lRemoteFile as 'omnis.exe'
download the file
FTPGetBinary (iFTPSocket,lRemoteFile,lBinField) Returns lErrCode
If lErrCode

OK message FTP Error {[con("Error transferring file ",upp(lRemoteFile),"Error code : ",lErrCode)]}
Else

select where to save the file to on the local machine
Do FileOps.$selectdirectory(lNewPath,'Enter path to save file to',sys(115)) Returns lStatus
If lStatus
create the file
Do lFileOps.$createfile(con(lNewPath,sys(9),lRemoteFile))
write the binary contents downloaded from the FTP server to the new local file
Do lFileOps.$writefile(lBinField)

End If
End If

End If

FTPGetLastStatus

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPGetLastStatus (socket[,protocoltext]) Returns status

108

../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPGetLastStatus returns status information corresponding to the last FTP command executed on a connected FTP socket.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

ProtocolText is an optional Omnis Character field parameter, into which FTPGetLastStatus places the FTP protocol exchange that
occurred on the control connection to the FTP server, for the last FTP command executed. For example, if you execute FTPPwd, and
then call FTPGetLastStatus, ProtocolText might contain:

-> PWD
<- 257 "/" is current directory.

Note that “->” prefixes text sent to the server, and “<-” prefixes text received from the server.

Status is an Omnis Long Integer field which receives the return status of the last FTP command executed. This information is really
redundant, but is provided for compatibility. The value returned is one of the negative error codes. Possible error codes are listed in
the Web Command Error Codes Appendix.

Example

Example to show how to get the error message from the FTP server when the download fails
set file transfer mode to asci
FTPType (iFTPSocket,0) Returns lErrCode
If not(lErrCode)
assumes you are already in the correct folder on the ftp server so only the file name is needed Calculate lRemoteFile as 'myFileToDownload.txt'
identify where to download the file to
Calculate lLocalFileName as con(sys(115),'downloadFolder',sys(9),lRemoteFile)
download the file
FTPGet (iFTPSocket,lRemoteFile,lLocalFileName) Returns lErrCode
If lErrCode

FTPGetLastStatus (iFTPSocket,iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error transferring file ",

upp(lRemoteFile),kCr,"Error text from the server: ",
kCr,iServerReplyText)]}
End If

End If

FTPList

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPList (socket,list[,pathname,mode]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPList lists files on the FTP server.

109

ftpconnect.html
ftppwd.html
web_error_codes.html

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

List is an Omnis List field containing a single column of type Character. This list receives the file listing information, one line per
file, returned by the remote FTP server. The list is dependent on the type of the remote server and may be in long or short format,
depending on the Mode parameter.

Note: Very often, FTP servers return long-format listings in a Linux file listing format. At a minimum, this file information contains
the filename, but usually includes other information. The Omnis method must parse this information to find the filename and other
information. For example

ListItem
total 123
drwxr-xr-x 4 userid mygroup Jan 1 1999 .
drwxr-xr-x 6 root root Jan 1 1999 ..
-rw——- 1 userid mygroup Jan 16 1998 myfile
-rw-r—r— 2 userid mygroup Jan 16 1998 myotherfile

Where the columns in the character string correspond to protection, file size, username and group of the file owner, the date last
modified and the name of the file. The files “.” and “..” represent the current and parent directories, respectively, which may neither
be retrieved nor changed.

The file information may not be neatly spaced into columns as in this example. Columns are separated with one or more spacing
characters (space, tab, and so on).

Pathname is an optional Omnis Character field that contains a pathname or wildcard specification for the files to include in the listing.
If omitted, the default is to list all of the files in the current directory on the FTP server.

Mode is an optional numeric value which indicates whether the server should return a short or long format listing. If omitted, it
defaults to zero.

Code Meaning

0 Filename-only listing
1 Long-format listing

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix

Example

Do iMyList.$define(iListColumn)
return a long format listing of the current directory into the list variable iMyList
FTPList (iFTPSocket,iMyList,,1) Returns lErrCode
If lErrCode
FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error obtaining list of files from the FTP server",kCr,"Details follow: ",kCr,iServerReplyText)]}

End If

FTPMkdir

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPMkdir (socket,dirname) Returns status

110

web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPMkdir creates a new directory on the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

DirName is an Omnis Character field containing the pathname of the new directory to create on the server.

Note: The name of the new directory must follow the convention and file-naming rules of the remote system. Not all users will have
permissions to create new directories on arbitrary directories on the remote system. Default file-access permissions apply to the new
directory.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

create a new directory called myNewDirectory in the directory Test
Calculate lDirName as '/Test/myNewDirectory'
FTPMkdir (iFTPSocket,lDirName) Returns lErrCode
If lErrCode
FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error creating directory",lDirName,kCr,"Details follow: ",kCr,iServerReplyText)]}

End If

FTPPut

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPPut (socket,localfile,remotefile) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPPut uploads a local file to the FTP server. The file is transferred according to the currently specified transfer type of ASCII or binary
as specifiedby the FTPType command. It is important that you set the transfer type correctly for each file youupload, since an incorrect
transfer type will result in a bad uploaded copy of the file.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

LocalFile is an Omnis Character field containing the pathname of the file to upload.

RemoteFile is an Omnis Character field containing the pathname of the destination file on the FTP server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

111

ftpconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html
ftptype.html
ftpconnect.html
web_error_codes.html
web_error_codes.html

Example

upload an ascii file to a FTP server
set file transfer mode to asci
FTPType (iFTPSocket,0) Returns lErrCode
If not(lErrCode)
Calculate lLocalFileName as con(sys(115),'uploadFolder',sys(9),'myTextFileToUpload.txt')
Calculate lRemoteFile as 'myUploadedFile.txt'
upload the file to the current working directory on the FTP server, the file name will be myUploadedFile.txt
FTPPut (iFTPSocket,lLocalFileName,lRemoteFile) Returns lErrCode
If lErrCode

FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error uploading file",upp(lLocalFileName)," to ",upp(lRemoteFile),kCr,"Details follow: ",kCr,iServerReplyText)]}

End If
End If

FTPPutBinary

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPPutBinary (socket,binfield,remotefile) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPPutBinary uploads the contents of an Omnis binary variable to a remote file on the FTP server. The data is transferred using binary
transfer mode.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

BinField is an Omnis Binary or Character field containing the data to transfer.

RemoteFile is an Omnis Character field containing the pathname of the destination file on the FTP server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

upload a binary file to a FTP server
set file transfer mode to binary
FTPType (iFTPSocket,1) Returns lErrCode
If not(lErrCode)
select the binary file to upload
Do FileOps.$getfilename(lDirName,'Select the binary file to upload','*.*',sys(115))
Do lFileOps.$openfile(lDirName)
read contents into an Omnis binary variable
Do lFileOps.$readfile(lBinField)
Calculate lRemoteFile as '/Test/upload/myUploadedFile'
FTPPutBinary (iFTPSocket,lBinField,lRemoteFile) Returns lErrCode
If lErrCode

FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error uploading binary",upp(lDirName)," to ",upp(lRemoteFile),kCr,"Details follow: ",kCr,iServerReplyText)]}

End If
End If

112

../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html

FTPPwd

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPPwd (socket) Returns server-directory

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPPwd gets the pathname of the current directory on the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

ServerDirectory is an Omnis Character field that receives the pathname of the current directory. If this is a number less than zero, an
error occurred. Possible error codes are listed in the Web Command Error Codes Appendix.

Note: The value returned depends upon the operating system of the remote server. Many FTP servers return a Linux-style pathname,
but do not assume that this is the case.

Example

return the current working directory on the FTP server
FTPPwd (iFTPSocket) Returns lDirectory
If lDirectory<0 ;; an error has occurred
FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error obtaining current FTP directory",kCr,"Details follow: ",kCr,iServerReplyText)]}

End If

FTPReceiveCommandReplyLine

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPReceiveCommandReplyLine (socket) Returns reply

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPReceiveCommandReplyLine returns the next line of the reply following an FTPSendCommand. You have to determine if the reply
is multi-line, and if so issue further receive commands to get the remainder of the reply. FTPReceiveCommandReplyLinewill timeout
after 60 seconds if it does not receive a reply.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

Reply is an Omnis Character variable containing the reply from the server. Possible error codes are listed in the Web Command Error
Codes Appendix.

113

../external_commands.html
ftpconnect.html
web_error_codes.html
../external_commands.html
ftpsendcommand.html
ftpconnect.html
web_error_codes.html
web_error_codes.html

Example

FTPSendCommand (iFTPSocket,'pwd')
return the current directory
FTPReceiveCommandReplyLine (iFTPSocket) Returns lDirName

FTPRename

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPRename (socket,oldname,newname) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPRename renames a remote file.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

OldName is an Omnis Character field containing the pathname of the file to rename.

NewName is an Omnis Character field containing the new pathname for the file

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Note: Local filename conventions may not be acceptable to the remote system.

Example

rename a file or folder in the current working directory
FTPRename (iFTPSocket,lFileName,lNewFileName) Returns lErrCode
If lErrCode
FTPGetLastStatus (iServerReplyText) Returns lErrCode
OK message FTP Error {[con("Error renaming ",lFileName," to ",lNewFileName,kCr,"Details follow:",kCr,iServerReplyText)]}

End If

FTPSendCommand

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPSendCommand (socket,command) Returns status

114

../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPSendCommand sends a command to the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

Command is an Omnis Character variable containing the command and its parameters.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

FTPSendCommand (iFTPSocket,'pwd')
return the current directory
FTPReceiveCommandReplyLine (iFTPSocket) Returns lDirName

FTPSetConfig

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPSetConfig (proc[,activeonly {Default zero for no;1 for yes}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPSetConfig provides the FTP commands with configuration information.

Proc is an Omnis Character field containing the name of an Omnis method used to report the progress of FTP operations which
transfer data (FTPGet, FTPGetBinary, FTPList, FTPPut and FTPPutBinary); for example MYLIBRARY.MYCODE/MYPROC. You can clear
the current setting for the FTP progress proc, by passing an empty value.

ActiveOnly is an optional parameter. A value of 1 causes all FTP over non-secure connections to be active, rather than the default,
which is use passive FTP if the server supports it (if the connection is secure then only passive FTP can be used). Normally, you would
not select ActiveOnly FTP; this is provided as a possible work-around for servers with which passive FTP is causing problems. You can
find a fuller explanation below of passive and active FTP.

Status receives the result of executing this command. Possible error codes are listed in the Web Command Error Codes Appendix.

FTP data transfer commands call the progress proc (if specified) while data transfer is in progress. This allows you to indicate progress
to the user. The commands call the progress proc with three parameters:

• Socket: the FTP socket on which the operation is occurring

• TransferredSoFar: the number of characters transferred so far, or for FTPList, the number of lines received so far.

• TotalToTransfer: the total number of characters that need to be transferred; note that this is only available when executing FTP-
Put or FTPPutBinary.

The FTP data transfer commands always first attempt to use passive mode to transfer data. In passive mode, the client initiates the
data connection to the server. This is the recommended mode of operation (see RFC1579, “Firewall Friendly FTP). Most FTP servers
support passivemode, although there are somewhich donot. In this case, if the attempt to use passivemode fails, the FTP commands
use active mode to transfer data. In this case, the server initiates the data connection to a port on the client.

115

ftpconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html
ftpget.html
ftpgetbinary.html
ftplist.html
ftpput.html
ftpputbinary.html
web_error_codes.html
ftplist.html
ftpput.html
ftpput.html
ftpputbinary.html

Example

setup the config method
FTPSetConfig ('cCode/FTPProgress')
Then in code class cCode/FTPProgress
3 parameter variables (all defined as long integer)
OK message {Socket [pSocket] - TransferredSoFar [pTransferredSoFar] - TotalToTransfer [pTotalToTransfer]}

FTPSite

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPSite (socket,parameters) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPSite issues a host specific SITE command to the FTP server.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

Parameters is an Omnis Character variable containing the host specific command and its parameters.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

execute a FTP site specific command
FTPSite (iFTPSocket,'SITE CHMOD 744 /test/myFileToChange') Returns lErrText

FTPType

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

FTPType (socket,filetype) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

FTPType specifies the type of data transfer used by FTPGet and FTPPut, as ASCII or binary. In ASCII mode, line separators and other
text formatting characters will be changed to the characters required by the local or remote system. In binary mode, line separators
and other text formatting characters are not changed. If the information to be transferred is not text, use FTPType to change the

116

../external_commands.html
ftpconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html
ftpget.html
ftpput.html

transfer mode to binary. Otherwise, binary files such as archives, images, Omnis Libraries, and executable files may be corrupted by
the processing of bytes that coincide with text-formatting characters.

Socket is an Omnis Long Integer field containing a socket opened to an FTP server using FTPConnect.

FileType is a number indicating the type of subsequent FTPGet and FTPPut transfers on this socket.

Value Transfer Mode

kFalse/Zero ASCII
kTrue/One Binary

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

set file transfer mode to ascii
FTPType (iFTPSocket,0) Returns lErrCode
If not(lErrCode)
assumes you are already in the correct folder on the ftp server so only the file name is needed
Calculate lRemoteFile as 'myFileToDownload.txt'
identify where to download the file to
here we decide to put the download file into a folder called downloadFolder within the current Omnis tree
Calculate lLocalFileName as con(sys(115),'downloadFolder',sys(9),lRemoteFile)
download the file
FTPGet (iFTPSocket,lRemoteFile,lLocalFileName) Returns lErrCode
If lErrCode
OK message FTP Error {[con("Error downloading file ",
upp(lRemoteFile)," to ",upp(lLocalFileName),
kCr,"Error code : ",lErrCode)]}
End If
End If

Get file info

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get file info (path, type, creator, log-size, phy-size, creat-date, creat-time, mod-date, mod-time) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command returns information about the file specified in path.

A file may occupymore physical disk space than is necessary, because disk space is usually allocated in blocks of some fixed size. This
is why the logical and physical sizes can be different.

It returns an error code (See Error Codes), or zero if no error occurs.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

117

ftpconnect.html
ftpget.html
ftpput.html
web_error_codes.html
web_error_codes.html
../external_commands.html
fileops_error_codes.html

Example

return the file info for the omnis executable
Calculate lFileName as con(sys(115),'omnis.exe')
Get file info (lFileName,lFileType,lFileCreator,lFileLogicalSize,lFilePhysicalSize,lFileCreationDate,lFileCreationTime,lFileModifiedDate,lFileModifiedTime) Returns lErrCode

Get file name

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get file name (path [,dialog-title] [,file-type…]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command opens the standard Open file dialog for the current Operating System, in order to obtain the path of a file selected by
the user. You would typically use this command to prompt the user for the path of an existing file. If you want to prompt the user to
enter the path of a new file, use the Put file name command instead.

You can specify a dialog-title for the Open dialog.

The optional file-type parameter limits the choice of file types available.

Get file name returns the full pathname of the file the user selects in path, or path remains empty if no file is selected (that is, the
Cancel button was clicked). The selected file is not opened.

It returns an error code (See Error Codes), or zero if no error occurs.

File types

You can specify one or more extensions (using wildcard patterns like those used in many DOS and shell commands) separated by
semicolons. For example, “*.TXT” would specify text files only.

Example

open the Get File dialog and show only omnis libraries
Get file name (lFilePath,'Select the library to open','*.lbs') Returns lErrCode
open the Get File dialog and show only text files
Get file name (lFilePath,'Select the library to open','*.txt;*.doc') Returns lErrCode

Get file read-only attribute

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get file read-only attribute (path, read-flag) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command returns the current read-only attribute of the file specified in path. If the read-flag parameter returns kTrue the file is
read-only, otherwise if kFalse is returned the file is read/write.

It returns an error code (See Error Codes), or zero if no error occurs.

118

put_file_name.html
fileops_error_codes.html
../external_commands.html
fileops_error_codes.html

Example

returns the read-only attribute of the omnis.exe in the omnis tree
Calculate lFileName as con(sys(115),'omnis.exe')
Get file read-only attribute (lFileName,lFileAttribute) Returns lErrCode

Get files

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get files (list-name, first-column, path, file-type [,creator-type] [,8.3]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command returns a list of files in a directory or folder.

To list only files of a specified type, specify the file-type, which is a wildcard, such as ‘*.LBS’.

If you omit the file-type, the command returns the names of all the files.

You specify the list with list-name. The list must have a column defined as list-column-name, where list-column-name is the name of
a variable. This column will receive the names of the files found under the specified path-name, including the extension.

On Windows, you can also supply the 8.3 parameter. This defaults to kFalse. If you pass kTrue, then Get files returns the 8.3 name
equivalent to any long file names.

It returns an error code (See Error Codes), or zero if no error occurs.

When constructing the path to a file or folder, you can use sys(9) to insert the correct path delimiter for the current platform: \ (back-
slash) onWindows, or / (forward-slash) for Unix and 64-bit macOS (: colon on 32-bit macOS). In addition, you can use sys(115) to return
the full pathname of the folder containing the Omnis executable, including the terminating path separator, whichmight be useful to
reference files in the Omnis tree.

The following example uses Get files to build a list of all the libraries in the folder returned by sys(10).

Example

Do lFileList.$define(lFileName)
get the path of the examples folder in the studio tree
Calculate lPathname as con(sys(115),'welcome',sys(9),'examples')
return the list of all example libraries
Get files (lFileList,lFileName,lPathname,'*.lbs') Returns lErrCode

Get folders

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get folders (list-name, first-column, path [,8.3]) Returns err-code

119

../external_commands.html
fileops_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command returns a list of folders under the specified path-name.

You specify the list with list-name. The list must have a column defined as list-column-name, where list-column-name is the name of
a variable. This column will receive the names of the folders under the specified path-name

OnWindows, you can also supply the 8.3 parameter. This defaults to kFalse. If you pass kTrue, then Get folders returns the 8.3 name
equivalent to any long folder names.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

obtain a list of the folders in the root of your machine
Do lFolderList.$define(lFolderName)
Switch platform()
Case 'U'

Get folders (lFolderList,lFolderName,'/')
Default

Get folders (lFolderList,lFolderName,'C:\')
End Switch

Get statement

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

Get statement field-name

Description

This command loads the contents of the SQL statement buffer into a specified field or variable. The field-name parameter can be
any Omnis character field or variable. The buffer holds all SQL statements and text entered since the last Begin statement command
which have not yet been executed. The square brackets and SQL functions will have been evaluated but the values of indirect @[]
square bracket notation will not be available.

Example

Show the sql to the user before creating the table MY_TABLE
Calculate lHostname as con(sys(115),'mydatafile.df1')
Do iSessObj.$logon(lHostname,'','','MYSESSION')
Do iSessObj.$newstatement('MyStatement') Returns lStatObj
Do lRow.$definefromsqlclass('sMySchemaClass')
Do iSessObj.$createnames(lRow) Returns lCreateNames
Begin statement
Sta: Create Table MY_TABLE ([lCreateNames])

End statement
Get statement lStatment
Yes/No message {Execute [lStatment]}
If flag true
Do lStatObj.$execdirect()

End If

120

fileops_error_codes.html
../sql_object_commands.html
begin_statement.html

Get text block

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

Get text block field-name

Description

This command loads the current contents of the text buffer for the current method stack into the specified field or variable. You build
up the text block using the Begin text block and Text: commands. Following an End text block, you can return the contents of the text
buffer using the Get text block command.

Example

Begin text block
Text: Thought for the day: (Carriage return)
Text: If a train station is where the train
Text: stops, what is a work station?

End text block
Get text block lTextString
OK message {[lTextString]}

Get working directory

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Get working directory (path) Returns err-code

Description

Returns the current working directory into path.

Note: The flag is set according to whether Omnis was able to make a call to this external command.

Example

return the current working directory
Get working directory (lDirectory)

Go to next selected line

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Go to next selected line ([From start][,Backwards])

121

../text.html
begin_text_block.html
text_.html
end_text_block.html
../external_commands.html
../list_lines.html

Options

From start If specified, the command starts with the first line of the list rather than the line
immediately after the current line

Backwards If specified, the command steps through the list in reverse order; when used with
‘From start’ the command starts at the end of the list, otherwise if ‘From start’ is not
specified, it starts with the line before the current line

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command scans a list for selected lines and goes to the first one it finds. It sets the current line (LIST.$line) for the current list
(#CLIST) equal to the next selected line in that list.

The Go to next selected line command steps through the list starting at the current line (if no options are selected) until a selected
line is found. When a selected line is located, LIST.$line is set equal to that line number. If a selected line is not found, the flag is cleared
and LIST.$line is unchanged.

The Backwards option causes the list to be searched in descending order; the From start option causes the list to be searched from
the start. If both options Backwards and From start are selected, the list is searched from the end.

Example

Transfer the value from line 3 to the 2 selected lines
Set current list lMyList
Define list {lCol1}
For lCount from 1 to 10 step 1
Add line to list {(lCount)}

End For
Calculate lMyList.$line as 3
Load from list
Select list line(s) {1}
Select list line(s) {5}
Go to next selected line (From start)
Replace line in list
Go to next selected line
Replace line in list

Hide docking area

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Hide docking area {docking-area (e.g. kDockingAreaBottom)}

Description

This command closes either the top, bottom, left, or right docking area. The docking area is specified using one of the docking area
constants: kDockingAreaTop, kDockingAreaBottom, kDockingAreaLeft, or kDockingAreaRight.

When you close a library, Omnis does not automatically close any docking areas that are open. Youmust explicitly hide each docking
area usingHide docking area. Leaving docking areas open and closing the library containing those docking areas can cause problems
in your application.

122

../toolbars.html

Example

Show docking area {kDockingAreaLeft}
install toolbar on left docking area
Install toolbar {tbMyToolbar}
when the library closes, hide the docking area
Hide docking area {kDockingAreaLeft}
alternatively you can use the following notation
Do $root.$prefs.$dockingareas.$assign(kDockingAreaNone)

Hide fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO YES NO All

Syntax

Hide fields {list-of-field-names (Name1,Name2,…)}

Description

This command hides the specified field or list of fields. You can display hidden fields with Show fields.

Example

Yes/No message {Do you want to hide fields?}
If flag true
Begin reversible block

Hide fields {myField1,myField2}
End reversible block

End If
do something
Quit method
now this method ends and the fields are re-shown as they are in a reversible block
To hide a single field on the current window
Do $cwind.$objs.myField1.$visible.$assign(kFalse)
to hide all fields on the current window
Do $cwind.$objs.$sendall($ref.$visible.$assign(kFalse))

HTTPClose

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPClose (socket[,option {Default zero for complete;1 for partial;2 for abort}]) Returns status

123

../fields.html
show_fields.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPClose closes, and depending on the Option, releases a Socket. When the socket is connected, this will result in the closure of the
connection to the remote application. All new sockets returned by all Web commands, must eventually be released usingHTTPClose,
to avoid resource leakage.

The most brutal form of HTTPClose is an abortive close. In this case, no consideration is given to the state of the connection, or
exchanges with the remote application, and the socket is closed and released immediately. This form of HTTPClose is recommended
for use in error handling situations.

The mildest form of HTTPClose is a partial close. In this case, the socket is not released, and you will need to call HTTPClose again to
release the socket. A partial close initiates a disconnect of the TCP/IP connection, by sending a TCP/IP packet with the finish flag set.
This means that you can no longer send data to the remote application, but you can continue to receive data. The remote application
will be informed of the partial close, when it receives zero bytes.

The remaining form of HTTPClose is a complete close. In this form,HTTPClose initiates a close of the connection if necessary, receives
data on the connection until no more is available (to flush the connection), and releases the socket.

Socket is an Omnis Long Integer field containing a number representing a previously opened socket.

Option is an optional Omnis Integer field, which has the value zero for a complete close, 1 for a partial close, and 2 for an abortive close.
If omitted, it defaults to a complete close.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes are
listed in the Web Command Error Codes Appendix.

Example

Connect to the server IP address iHostName on port iPort, send
the message iMessage and then close the socket
Calculate iHostName as '0.0.0.0'
Calculate iPort as 6000
Calculate lMessage as 'Hello remote application'
HTTPOpen (iHostName,iPort) Returns iSocket
If iSocket>0
connected
HTTPSend (iSocket,lMessage) Returns lCharCount

End If
HTTPClose (iSocket)

HTTPGet

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPGet (host,uri[,cgilist,hdrlist,service|port,secure {Default kFalse},verify {Default kTrue},map+ {Default kFalse}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPGet is a client command that submits a GET HTTP request to a Web server.

124

web_error_codes.html
../external_commands.html

Host is a Character field containing the hostname or IP address of the Web server.

URI is a Character field containing the URI to GET from the Web Server. For example, “/default.html”, or “/cgi-bin/mycgiscript”

CGIList is an optional parameter. It is an Omnis list with two character columns. The list contains the CGI arguments to be appended
to the URI. There is one row for each CGI argument. For example

Attribute Value

Name John Smith
City Podunk
Alive On
Submit Please

Note: Before the values are sent to the Web server, HTTPGet automatically performs any CGI encoding required to pass special char-
acters in the arguments. There is no need to call the CGIEncode command.

HdrList is an optional parameter. It is an Omnis list with two character columns. The list contains additional headers to add to the
headers of the HTTP GET request. Note that the header name excludes the ‘:’, which HTTPGet inserts automatically when it formats
the header.

For example

Header name Value

User-Agent My Client
Content-type text/html

Service|Port is an optional parameter that specifies the service name or port number of the server. If you specify a service name, the
lookup for the port number occurs locally. If you omit this argument, it defaults to the port number specified in the host, or if none is
present, it defaults to 80 or 443, the default port for HTTP or HTTPS respectively (depending on the value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Map+ is an optional Boolean parameter which when true indicates that plus characters in CGI parameter names and values in the
CGIList are to be URL encoded as hex.

Socket receives the result of the request.HTTPGet opens a connection to theWeb server, and formats and sends anHTTPGET request
to the server. If the command succeeds, it returns the socket number for the connection to the WEB server; otherwise, it returns an
error number which is less than zero. After successfully issuing HTTPGet, you should call HTTPRead to read the response from the
server; ALWAYS call HTTPClose to close the connection and free the socket. Possible error codes are listed in theWeb Command Error
Codes Appendix.

HTTPGet adds the following header fields by default:

Attribute Value

Accept */*
User-Agent Omnis Software – Omnis

Note: After callingHTTPGet, you can call HTTPSend to send your own content, before you read the response, provided that you include
Content-type and Content-length headers in the HdrList.

125

cgiencode.html
httpread.html
httpclose.html
web_error_codes.html
web_error_codes.html
httpsend.html

Example

Open a connection to the web server and read the server response
into lBuffer
Calculate iHostName as '0.0.0.0'
Do lCGIList.$define(lAttribute,lValue)
Do lCGIList.$add('Name','John Smith')
Do lCGIList.$add('Email','john.smith@smiths.com')
HTTPGet (iHostName,'/default',lCGIList) Returns iSocket
HTTPRead (iSocket,lBuffer) Returns lCharCount
HTTPClose (iSocket) Returns lStatus

HTTPHeader

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPHeader (socket,status,headerlist) Returns length

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPHeader is a server command that sends an HTTP standard header to an HTTP client, for example, an Omnis application or aWeb
browser. HTTP headers are normally hidden fromWeb clients, but convey very useful information regarding the status and contents
of the Web page. An Omnis method must send a header back to a connected Web browser in order to have its results properly
displayed.

Socket is an Omnis Long Integer field containing the number of a socket that has already been opened for a TCP/IP client, usually a
Web browser or Omnis application that requires and can understand HTTP.

Status is an Omnis Long Integer field containing an HTTP status code. The status code may change the way in which any following
HTML or other information displays on theWeb browser. The following table contains the status codeswhichHTTPHeader recognises.
Other status codes are accepted, but HTTPHeader then sends “Unknown status” as the text for the code.

Code Meaning

200 The request was completed successfully
201 The request was a POST method and was completed successfully. Data was sent to

the server, and a new resource was created as a result of the request.
202 A GET method returned only partial results.
204 The request was completed successfully, but there is no new information. The

browser will continue to display the document from which the request originated.
301 The requested URL has moved permanently
302 The requested URL has moved temporarily
304 The GET request included a header with an If-Modified-Since field. However, the

server found that the data requested had not been modified since the date in this
field. The document was not resent (the Web browser will probably display it from
its cache).

400 The request syntax was wrong
401 The request requires an Authorization field but the client did not specify one.

Usually results in a username and password to be displayed
403 Access is forbidden
404 The request URL could not be found.

126

../external_commands.html

Code Meaning

500 The server has encountered an internal error and cannot continue with the request.

501 The server does not support this method
502 Bad gateway
503 Service unavailable

HeaderList is an Omnis list with two character columns. The list contains the headers to send. Note that HTTPHeader automatically
sends some headers, so do not provide those (see below).

At a minimum, for Omnis to return normal Web-page HTML text to the client, you should send a header containing the line:

Header name Value

Content-type text/html

HTTPHeader automatically includes the following lines in all HTTP response headers:

Attribute Value

Content-type text/html (only if the HeaderList does not contain a Content-type header)
Date The current GMT date and time in HTTP header format
Server Omnis
MIME-version 1.0

Length is an Omnis Long Integer field which receives the number of characters sent, or an error code less than zero. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example

When a new connection is received call the method $newconnection
and reply to the client to confirm the request was completed
HTTPServer ('$newconnection',6001) Returns lStatus
method $newconnection
Do lHeaderList.$define(lAttribute,lValue)
HTTPHeader (iSocket,200,lHeaderList) Returns lCharCount

HTTPMethod

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPMethod (socket, uri, method, requesthdrlist, requestcontent, responsestatuscode, responsehdrrow, responsecontent) Re-
turns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

HTTPMethod is a new client command that submits to a Web Server an HTTP request to execute a specified HTTP method.

This Web command requires an existing socket opened with HTTPOpen in order to submit the request. Note that this allows you to
sequentially submit more than one request using the same socket connection subject to the rules of HTTP e.g. if the server returns
a connection close header in its response, no more requests can be sent on the connection: at this point you need to use HTTPClose

127

web_error_codes.html
../external_commands.html
httpopen.html
httpclose.html

to free the socket resources and open a new connection if you want to send more requests to the server. Re-using a connection like
this can be a significant performance improvement, especially when using a secure connection, where the connection set-up time is
relatively costly.

Socket is a long integer field containing the socket number of an open HTTP connection.

URI is a Character field containing the URI to which the request is addressed. For example, “/default.html”, or “/cgi-bin/mycgiscript”.
Note that if you wish to send query string parameters you must append them to the URI, using the standard ? syntax, e.g. “/de-
fault.html?name=test&value=good”. You should encode these parameter names and values using CGIEncode.

Method is a Character field containing the HTTP method to be executed. Note that the method is case-sensitive. Standard HTTP
methods such as GET and POST need to be specified in upper case.

RequestHdrList is an Omnis list with two character columns. The list contains the HTTP headers to send to the server. HTTPMethod
automatically adds a content-length header if you do not specify it in this list, and RequestContent is supplied and not empty.

For example:

Header name Value

User-Agent My Client
Content-type text/html

RequestContent is the content to send to the server with the request. It only makes sense to send content with certain methods,
e.g. POST. You can supply either character data, which the command converts to UTF-8 before sending, or binary data.

ResponseStatusCode is an integer field into which Omnis returns the HTTP status code of the HTTP request, e.g. 200 for success.

ResponseHdrRow is a row variable which Omnis populates with the headers received in the response from the server. HTTPMethod
clears the row and adds columns as necessary. The column name is the header name converted to lower case, with any - characters
removed. In addition, if there are headers with the same name,they are combined into a single header with that name,with comma-
separated values.

ResponseContent is a binary or character field into which the command stores the content (if any) received in the response from the
server. If this is a character field, the command assumes the content is UTF-8 encoded, and converts from UTF-8 to character before
storing the response in the field.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure.

HTTPOpen

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPOpen (hostname[,service|port,secure {Default kFalse},verify {Default kTrue}, useproxy {Default kTrue}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPOpen is a client command that opens an HTTP connection to a Web server.

Hostname is a Character field containing the hostname or IP address of an HTTP server. For example:

www.myhost.com or 255.255.255.254

Service|Port is an optional parameter that specifies the service name or port number of the server. If you specify a service name, the
lookup for the port number occurs locally. If you omit this argument, it defaults to 80 or 443, the default port for HTTP or HTTPS
respectively (depending on the value of Secure).

128

../external_commands.html

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

If useproxy is kTrue (the default), and proxy server parameters have been set using HTTPSetProxyServer, HTTPOpen connects to the
proxy server, setting up a secure tunnel if the proxy server does not have a secure URL, but the requested connection is secure. If
kFalse, HTTPOpen connects directly to the specified host and port.

If HTTPOpen succeeds, socket receives a positive number which is the socket for the new connection to the server. Other-
wise, socket receives a negative error code. Possible error codes are listed in the Web Command Error Codes Appendix.

Example

Connect to the server IP address iHostName on port iPort and send
the message iMessage
Calculate iHostName as '0.0.0.0'
Calculate iPort as 6000
Calculate lMessage as 'Hello remote application'
HTTPOpen (iHostName,iPort) Returns iSocket
If iSocket>0
connected
HTTPSend (iSocket,lMessage) Returns lCharCount

End If

HTTPPage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPPage (url[,service|port,verify {Default kTrue}]) Returns html-text

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPPage is a client command that retrieves the content of the Web page specified by the URL, into an Omnis Character or Binary
variable.

Note: HTTPPage allows you to get HTML text source through a server, transparently and without additional coding.

URL is an Omnis Character field containing a standard Web page URL of the form http://domaininfo.xxx/path/webpagepage. If you
are using a secure connection, the URL must be prefixed with https://.

Service|Port is an optional parameter that specifies the service name or port number of the server. If you specify a service name, the
lookup for the port number occurs locally. If you omit this argument, it defaults to the port number specified in the URL, or if none is
present, it defaults to 80 or 443, the default port for HTTP or HTTPS respectively.

The primary role of HTTPPage is to grab, simply and quickly, the HTML text source of the page specified by the URL. The URLmay also
specify a CGI name and arguments, but it is simpler to access CGIs by using the HTTPPost or HTTPGet functions.

129

httpsetproxyserver.html
web_error_codes.html
../external_commands.html
httppost.html
httpget.html

If an error occurs, the command returns a negative number to Page. Otherwise, Page receives the contents of the specified URL. In
other words, it receives the complete HTTP response for the URL, including the status line and the headers. Possible error codes are
listed in the Web Command Error Codes Appendix.

Example

Read the html content from lURL into the character variable lHtmlPage
Calculate lUrl as 'http://www.omnis.net/news/index.html'
HTTPPage (lUrl) Returns lHtmlPage

HTTPParse

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPParse (message,headerlist,method,httpver[,uri,cgilist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPParse is a server command to parse HTTP header information from an incoming request message.

Message is an Omnis Character or Binary field containing the full text of an HTTP request message.

HeaderList is an Omnis list with two character columns. The list receives the headers extracted from the request message, one line
per header.

For example, after the call, the list might contain entries such as:

Attribute Value

Date The current GMT date and time in HTTP header
User-Agent NCSA Mosaic for the X Window System/2.4 libwww/2.12 modified
Accept /
Content-type Application/x-www-form-urlencoded
Content-length 1234

Note: HTTPParse automatically strips the colons after the attribute names.

Method is an Omnis character field that receives the type of HTTP method being requested, for example, GET, POST, or HEAD.

HTTPVersion is an Omnis Character field containing the version of HTTP. For example, 1.0.

URI is an Omnis Character field that receives the name of the URI to be processed. At a minimum, the URI is a single slash, so every
URI returned from HTTPParse is of the form /URLName.

Note: Due to the presence of the leading slash, a simple Omnis equality string comparison to the name of the URI fails. Use the pos()
function or similar parsing mechanism to find the URI name. The trailing question mark of a GET-method CGI, which separates the
URI path from the CGI arguments, is stripped by HTTPParse.

CGIList is an Omnis list field with two character columns. It receives the CGI arguments present in the request, either extracted from
the URL, or extracted from content of type “application/x-www-form-urlencoded”. For example, if the following HTML form is the
submitted from a browser:

Name:

130

web_error_codes.html
../external_commands.html

City:

Are you alive?

and the user types in John Smith, Podunk and checks the City field, after HTTPParse, CGIList contains:

Attribute Value

Name John Smith
City Podunk
Alive Yes
Submit Please

Note: Before the data is stored in the list, HTTPParse automatically decodes any CGI encoding required to pass special characters.
There is no need to call the CGIDecode command.

Possible error codes are listed in the Web Command Error Codes Appendix.

Example

When a new connection is received call the method $newconnection
to read and parse the message sent by HTTPPost
HTTPServer ('$newconnection',6001) Returns lStatus
method $newconnection
HTTPRead (iSocket,lBuffer) Returns lCharCount
Do lHeaderList.$define(lHeaderName,lHeaderValue)
Do lCGIList.$define(lAttribute,lValue)
HTTPParse (lBuffer,lHeaderList,lMethod,lHttpVersion,lUri,lCGIList) Returns lStatus

HTTPPost

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPPost (host,uri[,cgilist,hdrlist,service|port,secure {Default kFalse},verify {Default kTrue},map+ {Default kFalse}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPPost is a client command that submits a POST HTTP request to a Web server.

Host is a Character field containing the hostname or IP address of the Web server.

URI is a Character field containing the URI to GET from the Web Server. For example, “/default.html”, or “/cgi-bin/mycgiscript”

CGIList is an optional parameter. It is an Omnis list with two character columns. The list contains the CGI arguments to be posted
to the URI. These will be sent as content of type “application/x-www-form-urlencoded”. There is one row for each CGI argument. For
example

Attribute Value

Name John Smith
City Podunk
Alive On

131

web_error_codes.html
../external_commands.html

Attribute Value

Submit Please

Note: Before the values are sent to the Web server, HTTPPost automatically performs any CGI encoding required to pass special
characters in the arguments. There is no need to call the CGIEncode command.

HdrList is an optional parameter. It is an Omnis list with two character columns.. The list contains additional headers to add to the
headers of the HTTP POST request. Note that the header name excludes the ‘:’, whichHTTPPost inserts automatically when it formats
the header.

For example

Header name Value

User-Agent My Client
Content-type text/html

Note that because CGI arguments are sent as content, you can only supply your own Content-type and Content-length headers if you
do not supply CGI arguments.

Service|Port is an optional parameter that specifies the service name or port number of the server. If you specify a service name, the
lookup for the port number occurs locally. If you omit this argument, it defaults to the port number specified in the host, or if none is
present, it defaults to 80 or 443, the default port for HTTP or HTTPS respectively (depending on the value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Map+ is an optional Boolean parameter which when true indicates that plus characters in CGI parameter names and values in the
CGIList are to be URL encoded as hex.

Socket receives the result of the request. HTTPPost opens a connection to the Web server, and formats and sends an HTTP POST
request to the server. If the command succeeds, it returns the socket number for the connection to the WEB server; otherwise, it
returns an error number which is less than zero. After successfully issuing HTTPPost, you should call HTTPRead to read the response
from the server; ALWAYS call HTTPClose to close the connection and free the socket. Possible error codes are listed in the Web
Command Error Codes Appendix.

HTTPPost adds the following header fields by default:

Attribute Value

Accept */*
Content-length The length of the content (Only if you supply CGI arguments)
Content-type application/x-www-form-urlencoded (Only if you supply CGI arguments)
User-Agent Omnis Software – Omnis

Note: After callingHTTPPost, you can call HTTPSend to send your owncontent, before you read the response, provided that you include
Content-type and Content-length headers in the HdrList.

Example

Post a HTTP request to the server lServer listening on port 6001
Do lCGIList.$define(lAttribute,lValue)
Do lCGIList.$add('Name','John Smith')
Do lCGIList.$add('Email','john.smith@smiths.com')
Calculate lServer as '0.0.0.0.0.0'
HTTPPost (lServer,'\default',lCGIList,lHeaderList,6001) Returns iSocket

132

httpread.html
httpclose.html
web_error_codes.html
web_error_codes.html
httpsend.html

HTTPRead

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPRead (socket,buffer[,type {Default zero for server; Non-zero for client}]) Returns received-byte-count

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPRead is a client and server command that reads a complete HTTP request message or response. Servers use it to read requests,
and clients use it to read responses.

Socket is a long integer field containing the socket number of an open HTTP connection.

Buffer is a character or binary field into which HTTPRead places the received request or response. If the field is character, then the
response must be encoded in UTF-8; in this case, HTTPRead converts the received data from UTF-8 to character.

Type is an optional parameter. It is a Boolean value, where zero indicates server behavior, and non-zero indicates client behavior. If
omitted, it defaults to zero.

Received-byte-count is a long Integer field which receives the number of bytes placed in Buffer. If an error occurs, an error code less
than zero is returned here. Possible error codes are listed in the Web Command Error Codes Appendix.

Note: HTTPRead always operates in blocking mode, and will timeout after the connection is inactive for the comms timeout value
(which can be changed from its default of 1 minute using the commandWebDevSetConfig). The server reads until the HTTP request
header is complete, and it has received content of the correct size. The client behaves similarly, but will also treat graceful closure of
the connection as marking the end of the response.

Example

When a new connection is received call the method $newconnection
to read the message
HTTPServer ('$newconnection',6001) Returns lStatus
method $newconnection
HTTPRead (iSocket,lBuffer) Returns lByteCount

HTTPSend

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSend (socket,buffer) Returns sent-byte-count

133

../external_commands.html
web_error_codes.html
webdevsetconfig.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

Socket is a long integer field containing the socket number of a connected socket.

Buffer is a character or binary field containing the data to send on the socket. If you pass a character field, thenHTTPSendwill convert
the data to UTF-8, and then send the UTF-8.

HTTPSend returns the number of bytes it sent to sent-byte-count, a long integer field.

If the socket is in blocking mode, HTTPSend always sends all of the data, unless an error occurs.

If the socket is in non-blocking mode, HTTPSend sends as much data as it can without blocking.

If an error occurs, HTTPSend returns a negative error code

Notes

If the connection to the server is secure, HTTPSend always sends the data in blocking mode.

Non-blocking sockets return an error code of -10035 if the socket cannot accept the data to send immediately. Some implemen-
tations of socket libraries may have limits on the number of bytes you can send at one time. Consult the documentation for your
installed sockets libraries. You may have to send a message in multiple chunks in order to send a very long message. Always
check sent-byte-count to determine howmuch of the buffer has actually been sent; if the value is less than the buffer size, you need
to call HTTPSend again, to send the rest of the buffer.

It does notmake sense to send a character field on a non-blocking socket, because the sent-byte-count corresponds to the sent UTF-8
bytes.

Example

Connect to the server IP address iHostName on port iPort and send
the message iMessage
Calculate iHostName as '0.0.0.0'
Calculate iPort as 6000
Calculate lMessage as 'Hello remote application'
TCPConnect (iHostName,iPort) Returns iSocket
If iSocket>0
connected
HTTPSend (iSocket,lMessage) Returns lByteCount

End If

HTTPServer

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPServer (webproc,port[,workingmessage {Default non-zero for visible; zero for invisible}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPServer invokes a listening socket on a specified port, to receive incoming HTTP requests. This command optionally shows an
Omnis workingmessage with the count of accepted connections. HTTPServer calls a user-specified Omnis method each time a new
connection arrives. The user function receives the socket number for the new HTTP connection.

134

../external_commands.html

WebProc is an Omnis Character field containing the name of the Omnis method to be called when a connection arrives. Themethod
receives one parameter, the number of the socket for the new HTTP connection. For example, MYLIBRARY.MYCODE/MYPROC.

Youmay read andwrite to theparameter socketwithHTTPRead, HTTPSend, orHTTPHeader commands or a TCPequivalent (TCPSend;
for example).

Port is an Omnis Integer field that is optionally used to indicate the port number on which HTTPServer listens for connections. If
omitted, the port number defaults to 80.

Caution: You must close the socket with HTTPClose before quitting the Omnis method.

The command returns an integer status, which is less than zero if an error occurs. Possible error codes are listed in theWeb Command
Error Codes Appendix.

Stopping HTTPServer

Once started, HTTPServer runs indefinitely until it is stopped. There are three ways to stop HTTPServer:

1. Press the Cancel button on the working message displayed by the command.

2. Press the break key sequence (Ctrl-Break/Ctrl-C/Cmnd-period).

3. Set the Omnis flag to false before returning from the WebProc method. Obviously, you need to make sure the flag is true before
returning, if you wish to process further connections

Example

Listen for incoming http requests on port 6001, call the
method $newconnection in the current instance when a
connection arrives.
HTTPServer ('$newconnection',6001) Returns lStatus

HTTPSetAuthentication

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSetAuthentication (socket, type, username, password) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

HTTPSetAuthentication provides the parameters needed to authenticate an HTTP request with the server; the command only sup-
ports HTTP basic authentication, or no authentication. If you use basic authentication, you are recommended to use a secure con-
nection. Use this command to set up authentication after calling HTTPOpen and before calling HTTPMethod. Note that if you do
not want to authenticate the request, a new socket created with HTTPOpen defaults to no authentication, so you do not need to call
HTTPSetAuthentication in this case.

Socket is a long integer field containing the socket number of an open HTTP connection.

Type is a long integer with value zero for no authentication, or 1 for basic authentication.

Username is a character field containing the user name for basic authentication.

Password is a character field containing the password for basic authentication.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure.

HTTPSetProxyServer

135

httpread.html
httpsend.html
httpheader.html
tcpsend.html
httpclose.html
web_error_codes.html
web_error_codes.html
../external_commands.html
httpopen.html
httpmethod.html

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSetProxyServer ([hostname,service|port,secure {Default kFalse},verify {Default kTrue}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPSetProxyServer sets the server to which the HTTPGet, HTTPPage and HTTPPost commands connect; the proxy server then
requests the URI from the original server (either directly, or via another proxy server). Before HTTPSetProxyServer has been called,
the commands connect directly to the server for the URI. After setting a proxy server, you can revert to direct connections, by calling
HTTPSetProxyServerwith empty parameters.

Note: There is only a single proxy server setting for the Omnis environment, meaning that it is shared by all threads in the multi-
threaded server.

Hostname is a Character field containing the hostname or IP address of the HTTP proxy server. For example:

www.myhost.com or 255.255.255.254

Service|Port is an optional parameter that specifies the service name or port number of the proxy server. If you specify a service name,
the lookup for the port number occurs locally. If you omit this argument, it defaults to 80 or 443, the default port for HTTP or HTTPS
respectively (depending on the value of Secure).

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

The command returns an integer status, which is less than zero if an error occurs. Possible error codes are listed in theWeb Command
Error Codes Appendix.

Example

All requests to HTTPGet, HTTPPost and HTTPPage connect to this proxy server
Calculate lHostName as "my.proxy.com"
Calculate lPort as "8080"
HTTPSetProxyServer (lHostName,lPort)
Clear the proxy server settings, so HTTPGet, HTTPPost and HTTPPage connect directly to the server for the requested URI
HTTPSetProxyServer

HTTPSplitHTML

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSplitHTML (message,tagtextlist) Returns status

136

../external_commands.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPSplitHTML is a client function to parse the HTML from aWeb page into an Omnis list. The HTML tags are parsed out of the text,
so that it easier to write a program that grabs the Web page content or interprets the tags from a form.

Message is an Omnis Character or Binary field containing the text of the content portion of a Web page, including HTML tags.

TagtextList is an Omnis list defined to have three columns, all character. Column 1 contains the opening HTML tag, column 2 the
actual page text, and column 3 the closing HTML tag.

The command returns an integer status, which is less than zero if an error occurs. Possible error codes are listed in theWeb Command
Error Codes Appendix.

Example

Parse the html from lURL into the list lHtmlTagList
Calculate lUrl as 'http://www.omnis.net/'
HTTPPage (lUrl) Returns lHtmlPage
Do lHtmlTagList.$define(lOpeningHtmlTag,lHtmlText,lClosingHtmlTag)
HTTPSplitHTML (lHtmlPage,lHtmlTagList)

HTTPSplitURL

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

HTTPSplitURL (url,hostname,uri) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

HTTPSplitURL is a server and client function which splits a full URL into a hostname and a path (that is, a URI). Useful for following
HREF links on pages.

URL is an Omnis Character field containing a standard Web page URL of the form http://host.mydomain.com/path/webpage.html. If
you are using a secure connection, the URL must be prefixed with https://.

Hostname is an Omnis character field that receives the hostname parsed out of the URL argument. For example, given the URL,
above, the hostname portion would be host.mydomain.com

URI is an Omnis Character field that receives URI parsed out of the URL. For example, given the URL, above, the URI would be
/path/webpage.html.

The command returns an integer status, which is less than zero if an error occurs. Possible error codes are listed in theWeb Command
Error Codes Appendix.

Example

Split lUrl into lHostname and lUri
Calculate lUrl as 'http://www.omnis.net/news/index.html'
HTTPSplitURL (lUrl,lHostName,lUri) Returns lStatus
lHostName = www.omnis.net, lUri = /news/index.html

137

web_error_codes.html
web_error_codes.html
../external_commands.html
web_error_codes.html
web_error_codes.html

If calculation

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

If calculation

Description

This command tests the result of the calculation and branches if zero. If the result of the calculation is non-zero, the result of the test
will be true; a result of zero is interpreted as false. As with all If commands, control passes to the next command in the method if the
result is true, otherwise to the next End If, Else or Else If in the method.

Example

If pSecurityLevel=1
Open window instance wAministrator

Else
OK message {This feature is only available to the Administrator}

End If

If canceled

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

If canceled ([No refresh])

Options

No refresh If specified, the command does not refresh the screen; this may
result in improved performance on some platforms, especially when
the command is used in each iteration of a loop

Description

This command tests whether the user wishes to cancel execution of the current method, and branches if not. The user requests a
cancel by either clicking on aworkingmessage Cancel button, or by pressing Ctrl-Break underWindows, Ctrl-C under Linux, or Cmnd-
period undermacOS. If Enable cancel test at loops is switched on, a loop or other processingmay detect a cancel and quit all methods
before it is detected by an If canceled command.

Example

Calculate #F as 1
Disable cancel test at loops
Working message (Cancel button) {Doing some work}
Repeat
Redraw working message
If canceled

138

../constructs.html
end_if.html
else.html
else_if_calculation.html
../constructs.html
enable_cancel_test_at_loops.html

OK message (Icon,Sound bell) {Method Terminated.}
Quit method

End If
Until flag false

If flag false

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

If flag false

Description

This command lets you implement a branch or change of processing order within a method depending on the result of the previous
command. It tests the flag and if it is false, the commands following the If flag false are executed. However, if the flag is true, control
branches to the next Else, Else If or End If in the method.

Example

Open the window wMyWindow if it is not already open
Test for window open {wMyWindow}
If flag false
Open window instance wMyWindow

End If

If flag true

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

If flag true

Description

This command lets you implement a branch or change of processing order within a method depending on the result of the previous
command. It tests the flag and if it is true, the commands following the If flag true are executed. However, if the flag is false, control
branches to the next Else, Else If or End If in the method.

Example

Test if list line selected sets the flag to true if the line is selected
Set current list iMyList
Test if list line selected {2}
If flag true
If the list line is selected, processing continues here.
OK message {The list line is selected}

End If

139

../constructs.html
else.html
else_if_calculation.html
end_if.html
../constructs.html
else.html
else_if_calculation.html
end_if.html

IMAPCheck

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPCheck (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPCheck sends a CHECK command to the IMAP server. The CHECK command requests a checkpoint of the currently selected
mailbox. Refer to RFC 3501 for more details.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

IMAPCheck (iIMAPSocket) Returns lStatus
If lStatus<0
The CHECK command failed

End If

IMAPConnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPConnect (server,username,password[,stsproc,responselist,secure {Default zero insecure;1 secure;2 use STARTTLS},verify {De-
fault kTrue}]) Returns socket

140

../external_commands.html
imapselectmailbox.html
imapconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPConnect establishes a connection with an IMAP server. The server must support IMAP4rev1. See RFC 3501 for details. If IMAP-
Connect succeeds, it returns the socket opened to the IMAP server. You can use this socket with the other IMAP commands which
require a socket argument. If an error occurs, IMAPConnect returns an error code, which is less than zero. Possible error codes are
listed in the Web Command Error Codes Appendix.

Note that it is essential that you call IMAPDisconnect when you have finished using the connection to the IMAP server.

Server is an Omnis Character field containing the IP address or hostname of an IMAP server. For example: imap.mydomain.com or
255.255.255.254. If the server is not using the default IMAP port (143, or 993 for a secure connection), you can optionally append the
port number on which the server is listening, using the syntax server:port, for example imap.mydomain.com:1234.

Username is an Omnis Character field containing the user name that will be used to log in to the IMAP server. The command uses
CRAM-MD5 authentication if possible; if CRAM-MD5 is not supported by the server, or fails to authenticate for some reason, the com-
mand uses the plain text LOGIN command if the server allows it.

Password is an Omnis character field containing the password for the user specified by the username parameter.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.
Note you can only omit responselist if it would be the last parameter to be sent, therefore if you include secure and/or verify, then
responselist must be included.

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

IMAPConnect also supports an alternative secure option, if you pass secure with the value 2, the connection is initially not secure,
but after the initial exchange with the server, IMAPConnect issues a STARTTLS IMAP command to make the connection secure if the
server supports it (see RFC 3501 for details). Authentication occurs after a successful STARTTLS command.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Example

Establish a connection to the IMAP server lServer for user
lUsername using the password lPassword
Calculate lServer as 'my.imap.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
IMAPConnect (lServer,lUserName,lPassword) Returns iIMAPSocket
If iIMAPSocket<0
Connection failed

End If

141

web_error_codes.html
imapdisconnect.html

IMAPCopyMessage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPCopyMessage (socket,messageuid,destmailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPCopyMessage copies a message from the currently selected mailbox to another mailbox, using the UID COPY command. Refer
to RFC 3501 for more details.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of the message to be copied.

Destmailboxname is the name of the mailbox into which the message is to be copied.

IMAPmailbox names are left-to-right hierarchical using a single character to separate levels of hierarchy. If you execute IMAPListMail-
boxes with empty RefName andMailboxName parameters, the returned list has a single line fromwhich you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Copy message with UID 142 from INBOX to sub-folder Test of INBOX
Calculate iMailbox as "INBOX"
IMAPSelectMailbox (iIMAPSocket,iMailbox,iMessages,iRecent,iUIDNext,iUIDValidity,iUnseen) Returns lStatus
If lStatus>=0
Calculate iMailbox as "INBOX.Test"
Calculate iUID as 142
IMAPCopyMessage (iIMAPSocket,iUID,iMailbox) Returns lStatus
If lStatus<0

The copy failed
End If

End If

142

../external_commands.html
imapselectmailbox.html
imapconnect.html
imaplistmailboxes.html
imaplistmailboxes.html
web_error_codes.html
web_error_codes.html

IMAPCreateMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPCreateMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPCreateMailbox creates a newmailbox on the IMAP server.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Mailboxname is the name of the mailbox to be created.

IMAPmailbox names are left-to-right hierarchical using a single character to separate levels of hierarchy. If you execute IMAPListMail-
boxes with empty RefName andMailboxName parameters, the returned list has a single line fromwhich you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Create a new folder Test in the INBOX.
"." is the hierarchy separator
Calculate iMailbox as "INBOX.Test"
IMAPCreateMailbox (iIMAPSocket,iMailbox) Returns lStatus
If lStatus<0
The CREATE command failed

End If

IMAPDeleteMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPDeleteMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

143

../external_commands.html
imapconnect.html
imaplistmailboxes.html
imaplistmailboxes.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPDeleteMailbox deletes a mailbox (and the messages it contains) on the IMAP server.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Mailboxname is the name of the mailbox to be deleted.

IMAPmailbox names are left-to-right hierarchical using a single character to separate levels of hierarchy. If you execute IMAPListMail-
boxes with empty RefName andMailboxName parameters, the returned list has a single line fromwhich you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Delete folder Test from the INBOX.
"." is the hierarchy separator
Calculate iMailbox as "INBOX.Test"
IMAPDeleteMailbox (iIMAPSocket,iMailbox) Returns lStatus
If lStatus<0
The DELETE command failed

End If

IMAPDisconnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPDisconnect (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPDisconnect closes a connection to an IMAP server.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

144

imapconnect.html
imaplistmailboxes.html
imaplistmailboxes.html
web_error_codes.html
web_error_codes.html
../external_commands.html
imapconnect.html

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Close the connection to the IMAP server
IMAPDisconnect (iIMAPSocket)

IMAPExpungeMessages

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPExpungeMessages (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPExpungeMessage permanently removes all messages that have the \Deleted flag set from the currently selected mailbox.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Delete messages in the selected mailbox with the \Deleted flag
IMAPExpungeMessages (iIMAPSocket) Returns lStatus
If lStatus<0
The EXPUNGE command failed

End If

145

web_error_codes.html
web_error_codes.html
../external_commands.html
imapselectmailbox.html
imapconnect.html
web_error_codes.html
web_error_codes.html

IMAPListMailboxes

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPListMailboxes (socket,refname,mailboxname,list[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPListMailboxes sends a LIST command to the IMAP server, in order to get a list of a subset of mailbox names from the complete
set of all names available to the client.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Refname is anOmnisCharacter field. The commandencloses refname indoublequotes, and sends it as the referencenameargument
of the LIST command. Setting this to an empty string means the mailbox names will be interpreted from the top level. You may also
set this as the name of a mailbox, in which case this will be taken as the root of the search, and only mailboxes which are subfolders
of this will be included in the search. For full details, see RFC 3501.

Mailboxname is an Omnis Character field. The command enclosesmailboxname in double quotes, and sends it as themailbox name
with possible wildcards argument of the LIST command. Setting this to an empty string is a special request, which will return a single
list line including the hierarchy separator character. Otherwise it will return a list of mailboxes which match your search criteria. For
example, Ӎ*�will return a list of mailboxes beginning with M. For full details, see RFC 3501.

List receives the mailboxes returned by the server. Before calling the command, you must define the list to have seven columns, as
follows:

Column Contains

HasChildren A long integer which receives the \HasChildren flag value for the mailbox. Not all servers support this flag,
and even when a server supports the flag, it may not always supply a value for this flag. Supported values
are kFalse if the mailbox has the \HasNoChildren flag, kTrue if the mailbox has the \HasChildren flag,
and kUnknown if the mailbox has neither of these flags.

NoInferiors A long integer which receives the \NoInferiors flag value for the mailbox. kTrue if the mailbox has the
\NoInferiors flag, kFalse if not.

NoSelect A long integer which receives the \NoSelect flag value for the mailbox. kTrue if the mailbox has the
\NoSelect flag, kFalse if not.

Marked A long integer which receives the \Marked flag value for the mailbox. kTrue if the mailbox has the \Marked
flag, kFalse if not.

UnMarked A long integer which receives the \UnMarked flag value for the mailbox. kTrue if the mailbox has the
\UnMarked flag, kFalse if not.

Separator The mailbox hierarchy separator character
MailboxName The mailbox name

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

146

../external_commands.html
imapconnect.html
web_error_codes.html
web_error_codes.html

Example

List all mailboxes (folders) in the INBOX (INBOX is a standard IMAP mailbox)
"." is the hierarchy separator
Do iMailboxList.$define(iHasChildren,iNoInferiors,iNoselect,iMarked,iUnmarked,iSeparator,iMailbox)
Calculate iRefName as "INBOX."
Calculate iMailbox as "%"
IMAPListMailboxes (iIMAPSocket,iRefName,iMailbox,iMailboxList) Returns lStatus
If lStatus<0
Command failed

End If

IMAPListMessages

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPListMessages (socket,list[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPListMessages gets the list of messages in the currently selected mailbox.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

List receives the list of messages in the mailbox. Before calling the command, you must defined the list to have nine columns, as
follows:

Column Contains

UID A long integer which receives the IMAP Unique Identifier (UID) of the message. Note that the line
number in the list is the IMAPmessage sequence number, at the point the list was generated. It is
safest to use UIDs to identify messages.

Size A long integer which receives the RFC 822 size in bytes of the message.
InternalDate A date-time which receives the Internal Date of the message. This is typically the date and time that

the message was placed in the mailbox.
Answered A long integer which is set to kTrue if the message has the Answered flag, kFalse if not.
Deleted A long integer which is set to kTrue if the message has the Deleted flag, kFalse if not.
Draft A long integer which is set to kTrue if the message has the Draft flag, kFalse if not.
Flagged A long integer which is set to kTrue if the message has the Flagged flag, kFalse if not.
Recent A long integer which is set to kTrue if the message has the Recent flag, kFalse if not.
Seen A long integer which is set to kTrue if the message has the Seen flag, kFalse if not.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes

147

include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

List all messages in the currently selected mailbox
Do iMessageList.$define(iUID,iSize,iInternalDate,iAnswered,iDeleted,iDraft,iFlagged,iRecent,iSeen)
IMAPListMessages (iIMAPSocket,iMessageList) Returns lStatus
If lStatus<0
Command failed

End If

IMAPListSubscribedMailboxes

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPListSubscribedMailboxes (socket,refname,mailboxname,list[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPListSubscribedMailboxes sends an LSUB command to the IMAP server, in order to get a list of a subset of mailbox names from
the complete set of all subscribed names available to the client.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Refname is anOmnisCharacter field. The commandencloses refname indoublequotes, and sends it as the referencenameargument
of the LIST command. Setting this to an empty string means the mailbox names will be interpreted from the top level. You may also
set this as the name of a mailbox, in which case this will be taken as the root of the search, and only mailboxes which are subfolders
of this will be included in the search. For full details, see RFC 3501.

Mailboxname is an Omnis Character field. The command enclosesmailboxname in double quotes, and sends it as themailbox name
with possible wildcards argument of the LIST command. Setting this to an empty string is a special request, which will return a single
list line including the hierarchy separator character. Otherwise it will return a list of mailboxes which match your search criteria. For
example, Ӎ*�will return a list of mailboxes beginning with M. For full details, see RFC 3501.

List receives the mailboxes returned by the server. Before calling the command, you must define the list to have seven columns, as
follows:

Column Contains

HasChildren A long integer which receives the \HasChildren flag value for the mailbox. Not all
servers support this flag, and even when a server supports the flag, it may not
always supply a value for this flag. Supported values are kFalse if the mailbox has
the \HasNoChildren flag, kTrue if the mailbox has the \HasChildren flag,
and kUnknown if the mailbox has neither of these flags.

NoInferiors A long integer which receives the \NoInferiors flag value for the mailbox. kTrue if
the mailbox has the \NoInferiors flag, kFalse if not.

NoSelect A long integer which receives the \NoSelect flag value for the mailbox. kTrue if the
mailbox has the \NoSelect flag, kFalse if not.

148

web_error_codes.html
web_error_codes.html
../external_commands.html
imapconnect.html

Column Contains

Marked A long integer which receives the \Marked flag value for the mailbox. kTrue if the
mailbox has the \Marked flag, kFalse if not.

UnMarked A long integer which receives the \UnMarked flag value for the mailbox. kTrue if the
mailbox has the \UnMarked flag, kFalse if not.

Separator The mailbox hierarchy separator character
MailboxName The mailbox name

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

List all subscribed mailboxes (folders) in the INBOX (INBOX is a standard IMAP mailbox)
"." is the hierarchy separator
Do iMailboxList.$define(iHasChildren,iNoInferiors,iNoselect,iMarked,iUnmarked,iSeparator,iMailbox)
Calculate iRefName as "INBOX."
Calculate iMailbox as "%"
IMAPListSubscribedMailboxes (iIMAPSocket,iRefName,iMailbox,iMailboxList) Returns lStatus
If lStatus<0
Command failed

End If

IMAPNoOp

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPNoOp (socket[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPNoOp sends a NOOP command to the IMAP server. The command itself does nothing, but clients can use the NOOP command
to poll the server to get status updates via untagged responses (which will be placed in the responselist parameter if it is present). See
RFC 3501 for details. Note that the IMAPListMessages command automatically sends a NOOP command before fetching the list of
messages; this ensures that newmessages are returned in the list.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

149

web_error_codes.html
web_error_codes.html
../external_commands.html
imaplistmessages.html
imapconnect.html

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Issue a NOOP command to poll the server
Do iResponseList.$define(iResponse)
IMAPNoOp (iIMAPSocket,"",iResponseList) Returns lStatus
If lStatus<0
NOOP command failed

End If

IMAPRecvHeaders

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPRecvHeaders (socket,messageuid,headers[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPRecvHeaders receives the headers for a specified message in the currently selected mailbox. The received headers are in RFC
822 format. You can pass the received headers to the MailSplit command, in order to parse them.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of the message for which the headers are to
be retrieved.

Headers is an Omnis Binary or Character field which receives the RFC 822 headers for the message. For correct results with many of
the encodings supported by MailSplit you must receive into a Binary field.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

150

web_error_codes.html
web_error_codes.html
../external_commands.html
mailsplit.html
imapselectmailbox.html
imapconnect.html
mailsplit.html
web_error_codes.html
web_error_codes.html

Example

Receive headers for message with UID 142 in the currently selected mailbox
Calculate iUID as 142
IMAPRecvHeaders (iIMAPSocket,iUID,lHeaders) Returns lStatus
If lStatus<0
Command failed

End If

IMAPRecvMessage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPRecvMessage (socket,messageuid,message[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPRecvMessage receives a specified message in the currently selected mailbox. The received message is in RFC 822 format. You
can pass the received message to the MailSplit command, in order to parse it.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of the message to be retrieved.

Message is an Omnis Binary or Character field which receives the RFC 822 format message. For correct results with many of the
encodings supported by MailSplit you must receive into a Binary field.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Receive message with UID 142 in the currently selected mailbox
Calculate iUID as 142
IMAPRecvMessage (iIMAPSocket,iUID,lMessage) Returns lStatus
If lStatus<0
Command failed

End If

151

../external_commands.html
mailsplit.html
imapselectmailbox.html
imapconnect.html
mailsplit.html
web_error_codes.html
web_error_codes.html

IMAPRenameMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPRenameMailbox (socket,oldmailboxname,newmailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPRenameMailbox renames a mailbox.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Oldmailboxname is the name of the mailbox to be renamed.

Newmailboxname is the new name for the mailbox.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Rename folder Test in the INBOX to Test2
"." is the hierarchy separator
Calculate iMailbox as "INBOX.Test"
Calculate iNewMailbox as "INBOX.Test2"
IMAPRenameMailbox (iIMAPSocket,iMailbox,iNewMailbox) Returns lStatus
If lStatus<0
RENAME command failed

End If

IMAPSelectMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPSelectMailbox (socket,mailboxname,messages,recent,uidnext,uidvalidity,unseen[,stsproc,responselist]) Returns status

152

../external_commands.html
imapconnect.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPSelectMailboxmakes a mailbox the currently selected mailbox. Certain IMAP commands operate in the context of a selected
mailbox, meaning that this command needs to be executed first.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Mailboxname is the name of the mailbox to be selected.

IMAPmailbox names are left-to-right hierarchical using a single character to separate levels of hierarchy. If you execute IMAPListMail-
boxes with empty RefName andMailboxName parameters, the returned list has a single line fromwhich you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when sending them to the server.

Messages is an Omnis Long Integer field which receives the number of messages in the selected mailbox, if the command succeeds.
If the count is not received in the response to the IMAP SELECT command, this value can be zero.

Recent is an Omnis Long Integer field which receives the number of messages in the selectedmailbox with the \Recent flag set, if the
command succeeds.If the count is not received in the response to the IMAP SELECT command, this value can be zero.

Uidnext is an Omnis Long Integer field which receives the next unique identifier value for the selected mailbox, if the command
succeeds.If the value is not received in the response to the IMAP SELECT command, this value can be zero.

Uidvalidity is an Omnis Long Integer field which receives the unique identifier validity value for the selectedmailbox, if the command
succeeds.If the value is not received in the response to the IMAP SELECT command, this value can be zero.

Unseen is an Omnis Long Integer field which receives the message sequence number of the first unseen message in the selected
mailbox, if the command succeeds.If the value is not received in the response to the IMAP SELECT command, this value can be zero.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Make INBOX the currently selected mailbox
Calculate iMailbox as "INBOX"
IMAPSelectMailbox (iIMAPSocket,iMailbox,iMessages,iRecent,iUIDNext,iUIDValidity,iUnseen) Returns lStatus
If lStatus<0
SELECT command failed

End If

IMAPSetMessageFlags

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPSetMessageFlags (socket,messageuid,answered,deleted,draft,flagged,seen[,stsproc,responselist]) Returns status

153

imapconnect.html
imaplistmailboxes.html
imaplistmailboxes.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPSetMessageFlags adds and removes flags for a message in the currently selected mailbox. Each flag value can be passed as
follows:

Value Meaning

kFalse Remove the flag from the message.
kTrue Add the flag to the message.
kUnknown Leave the flag unchanged.

Before using this command, you must select a mailbox using the IMAPSelectMailbox command

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Messageuid is an Omnis Long Integer field containing the IMAP Unique Identifier (UID) of the message for which the flags are to be
set.

Answered is the flag value (as defined above) for \Answered.

Deleted is the flag value (as defined above) for \Deleted.

Draft is the flag value (as defined above) for \Draft.

Flagged is the flag value (as defined above) for \Flagged.

Seen is the flag value (as defined above) for \Seen.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Note:

You use IMAPSetMessageFlags to delete a message, by adding the \Deleted flag to the message. You can then permanently delete
all messages in the currently selected mailbox with the \Deleted flag set, by calling IMAPExpungeMessages

Example

Mark message 142 in the currently selected mailbox as deleted
Calculate iUID as 142
Calculate iAnswered as kUnknown
Calculate iDeleted as kTrue
Calculate iDraft as kUnknown
Calculate iFlagged as kUnknown
Calculate iSeen as kUnknown
IMAPSetMessageFlags (iIMAPSocket,iUID,iAnswered,iDeleted,iDraft,iFlagged,iSeen) Returns lStatus
If lStatus<0
Command failed

End If

154

imapselectmailbox.html
imapconnect.html
web_error_codes.html
web_error_codes.html
imapexpungemessages.html

IMAPSubscribeMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPSubscribeMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPSubscribeMailbox issues a SUBSCRIBE command to the server, to add a specifiedmailbox name to the server’s set of “active” or
“subscribed” mailboxes as returned by IMAPListSubscribedMailboxes.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Mailboxname is the name of the mailbox.

IMAPmailbox names are left-to-right hierarchical using a single character to separate levels of hierarchy. If you execute IMAPListMail-
boxes with empty RefName andMailboxName parameters, the returned list has a single line fromwhich you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Add INBOX.Test to the subscribed mailboxes
"." is the hierarchy separator
Calculate iMailbox as "INBOX.Test"
IMAPSubscribeMailbox (iIMAPSocket,iMailbox) Returns lStatus
If lStatus<0
SUBSCRIBE command failed

End If

IMAPUnsubscribeMailbox

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

IMAPUnsubscribeMailbox (socket,mailboxname[,stsproc,responselist]) Returns status

155

../external_commands.html
imaplistsubscribedmailboxes.html
imapconnect.html
imaplistmailboxes.html
imaplistmailboxes.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

IMAPUnsubscribeMailbox issues an UNSUBSCRIBE command to the server, to remove a specified mailbox name from the server’s
set of “active” or “subscribed” mailboxes as returned by IMAPListSubscribedMailboxes.

Socket is an Omnis Long Integer field containing a socket opened to an IMAP server using IMAPConnect.

Mailboxname is the name of the mailbox.

IMAPmailbox names are left-to-right hierarchical using a single character to separate levels of hierarchy. If you execute IMAPListMail-
boxes with empty RefName andMailboxName parameters, the returned list has a single line fromwhich you can access the hierarchy
separator.

All the Omnis IMAP commands automatically enclose mailbox names in double quotes when sending them to the server.

Stsproc is an optional parameter containing the name of an Omnis method that this command calls with status messages. This
command calls the method with no parameters, and the status information in the variable #S1. The status information logs protocol
messages exchanged on the connection to the server.

Responselist is an optional parameter into which this command places response lines received from the IMAP server. Before calling
this command, define the responselist to have a single Character column. When the command returns successfully, the response list
contains the untagged and tagged responses received from the IMAP server as a result of executing this command. These sometimes
include unsolicited information, for example, an update on the current number of messages in the selected mailbox. Each line in the
response list is a response line received from the server. See RFC 3501 for more details, if you need to handle this sort of information.

This command returns an integer, which is less than zero if an error occurred. Possible error codes are listed in the Web Command
Error Codes Appendix.

Example

Remove INBOX.Test from the subscribed mailboxes
"." is the hierarchy separator
Calculate iMailbox as "INBOX.Test"
IMAPUnsubscribeMailbox (iIMAPSocket,iMailbox) Returns lStatus
If lStatus<0
UNSUBSCRIBE command failed

End If

Import data

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import data list-or-row-name

Description

This command reads the next data item into the specified list or row variable. You use the Import data command to import data
from a file or port. Once you select an import file or port, and issue a Prepare for import command, Import data adds the data to the
specified list or row variable.

If a record is successfully read from the file or port, Omnis sets the flag. An error occurs if the import file or port is closed or if the
specified list or row variable does not exist. The flag is set after reading a record successfully.

After the import is complete, you should follow Import datawith an End import and the appropriate Close import file or Close port.

156

imaplistsubscribedmailboxes.html
imapconnect.html
imaplistmailboxes.html
imaplistmailboxes.html
web_error_codes.html
web_error_codes.html
../importing_and_exporting.html
prepare_for_import_from_file.html
end_import.html
close_import_file.html
close_port.html

There is a one-to-one mapping between the columns or fields in the import file and the columns in the list or row variable. Therefore,
if there are fewer columns or fields in the import file than in the list or row, the excess import columns or fields are ignored. Likewise,
if there are more columns in the list or row than in the import file, the excess columns are left blank.

The ‘LFonlyLineTermination’ item in the ‘default’ section of config.json allows you to control how carriage returns and line feeds are
handled when importing data from a file. If true, when Omnis imports a tab- or comma-separated file and the file has no Carriage
Return (CR) line separators, Omnis will then check for Line Feed (LF) line separators and use these to break record rows.

Example

import from a csv file called myImport.txt in the root of your omnis tree
Calculate lImportPath as con(sys(115),'myImport.txt')
Set import file name {[lImportPath]}
Prepare for import from file {Delimited (commas)}
Import data lImportList
End import
Close import file

Import field from file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import field from file into field-name ([Single character][,Leave in buffer])

Options

Single character If specified, the command reads a single character at a time
Leave in buffer If specified, the command leaves the data it returns in the buffer meaning

that the next call to the command will return the same value

Description

This command reads a line of characters from the current import file to the specified field. It lets you read fields from a file without
using a window and Import data. Usually the command reads a whole line at a time but there are options which modify this.

The Single character option tells Omnis to read a single character at a time. If the field is a Character or a National field, it is set to have
a length of one, containing the single character imported from the file. If the field is a Number field, the field value is set to the ASCII
code of the single character imported from the file.

TheLeave inbuffer option tellsOmnis to read the stringor single character butnot remove it fromthebuffer. Therefore, thenext Import
field from filewill read exactly the same value.

An error will occur if the import file has not been opened; Omnis clears the flag on reaching the end of the file. Do not mix Import
data and Import field from file because they use the input buffer in different ways.

Example

import from a csv file called myImport.txt in the root of your omnis tree
Calculate lImportPath as con(sys(115),'myImport.txt')
Set import file name {[lImportPath]}
Prepare for import from file {Delimited (commas)}
Repeat
Import field from file int lImportField

Until lImportField='start data'
Do method ImportData
Close import file

157

../importing_and_exporting.html
import_data.html
import_data.html
import_data.html

Import field from port

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import field from port into field-name ([Single character][,Leave in buffer][,Clear buffer][,Do not wait])

Options

Single character If specified the command reads a single character at a time
Leave in buffer If specified, the command leaves the data it returns in the buffer meaning that the next call to

the command will return the same value
Clear buffer If specified, the command clears the import buffer before executing
Do not wait If specified, the command will not wait until data is available

Description

This command reads a line of characters from the current port to the specified field. Import field from port lets you read fields from a
port without using a window and Import data. Usually the command reads a whole line at a time but there are options whichmodify
this:

Single character tells Omnis to read a single character at a time. If the field is a Character or a National field, it is set to have a length
of one, containing the single character imported from the port. If the field is a Number field, the field value is set to the ASCII code of
the single character imported from the port.

Leave in buffer tells Omnis to read the string or single character but not remove it from the buffer. Therefore, the next Import field
from port command will read exactly the same value.

Clear buffer clears the import buffer so that previously received values are ignored.

Do not wait prevents Omnis from waiting until a string or character is available.

An error will occur if the import port has not been opened; Omnis clears the flag if nothing has been read. Do not mix the Import
data and Import field from port commands because they use the input buffer in different ways.

Example

Set port name {COM1:}
Prepare for import from port {One field per line}
Repeat
Import field from port int lImportField

Until lImportField='start data'
Do method ImportData
Close import file

Import fields

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Import fields (Insert records|Update records[,Indirect][,Disable messages]) {list-of-field-names (Name1,Name2,…)}

158

../importing_and_exporting.html
import_data.html
import_data.html
import_data.html
../importing_and_exporting.html

Types

Insert records The command inserts new records
Update records The command searches for existing records in the file and updates the

records that it finds; data for which there is no matching record is ignored

Options

Indirect If specified, the command uses the contents of the first field as the list of
fields

Disable mes-
sages

If specified, the command does not open messages requiring a user
response and instead it writes a limited amount of information to the trace
log

Description

Import fields imports the data for the list of fields from the current import file into the data file. It provides runtime access to the
functionality of the import data dialog in the IDE. The command sets the main file for the import to the file corresponding to the first
field in the list.

The Insert records option causes the command to insert new records for the data in the file being imported.

The Update records option causes the command to search for an existing record in the data file, for each record in the file being
imported, and then update that record. Import records for which there is no matching record in the data file are ignored.

Example

import from a csv file called myImport.txt in the root of your omnis tree
Calculate lImportPath as con(sys(115),'myImport.txt')
Set import file name {[lImportPath]}
Prepare for import from file {Delimited (commas)}
Import fields (Insert records) {fCustomers.Surname,fCustomers.FirstName}
End import
Close import file

Insert line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Insert line in list {line-number (values) {default is current line}}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

159

../list_lines.html

Description

This command takes the current field values and inserts themat a particular line in the list. The new line is insertedbefore the specified
line and all the lines below the specified line are moved down one place.

If a set of comma-separated values is included as a parameter, these values are read (in order) into the columns of the new line. In this
case, the field names for the columns are not used to specify the data for the new line.

You can specify the line number using a calculation. However, if the parameter for the command is empty or evaluates to zero, the
current line is used, that is, the field values are inserted at the current line and all other lines are moved down one place.

If there is no current line (LIST.$line = 0), the field values are added at the end of the list. If the line is beyond the current end of the list
(for example, the LIST.$line given is greater than LIST.$linecount),Insert line in list is equivalent to Add line to list. The flag is cleared if
the list is already at its maximum size (LIST.$linemax).

Example

Insert 10 lines in between the 2 exisiting lines
Set current list lMyList
Define list {lName,lAge}
Insert line in list {('Fred',10)}
Insert line in list {('George',20)}
For lCount from 1 to 10 step 1
Insert line in list {2 ('Harry',22)}

End For
Alternatively, you can use the $addbefore() and $addafter() methods to add lines to a list
Do lMyList.$addbefore(1,'Harry',22)
Do lMyList.$addafter(2,'William',31)

Install menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Install menu class-name[/instance-name] [(parameters)]

Description

This command installs an instance of the specified menu class on the main menu bar and assigns an instance name. The default
instance name is the name of the menu class. The flag is set if the menu is installed.

You can choose themenu class from a list containing your ownmenus in the current library, and the standardmenus *File, *Edit, and
so on. When the menu instance is installed its $construct() method is called receiving any parameters passed.

If you use the Install menu command in a reversible block, the menu instance is removed from the menu bar when the method
terminates. However, the order of the menus on the menu bar may not necessarily be the same as before.

Example

Install the menu mView and pass the parameter
lView to its $construct method
Calculate lView as 'Large'
Install menu mView (lView)
mView $constuct method
Do $cinst.$objs.[pView].$checked.$assign(kTrue) ## Check the menu line pView
Alternatively, you can install a menu using $open
Do $clib.$menus.mView.$open()

160

../menus.html

Install toolbar

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Install toolbar {class[/instance][/dock-area/l/t][(params)]{defaults are class settings}}

Description

This command installs the specified toolbar class into the named docking area. You specify the docking area using one of the toolbar
constants: kDockingAreaTop, kDockingAreaBottom, kDockingAreaLeft,kDockingAreaRight, or kDockingAreaFloating. If you omit the
docking area name the toolgroup is installed into the docking area specified in the class. You can install multiple toolbars onto the
same docking area.

If the specified docking area is kDockingAreaFloating, then you can specify the left (/l) and top (/t) position of the toolbar instance in
pixels .

Example

show the left and right toolbar docking areas
Show docking area {kDockingAreaLeft}
Show docking area {kDockingAreaRight}
install a toolbar into each docking area
Install toolbar {tbMyToolbar/kDockingAreaLeft}
Install toolbar {tbMyOtherToolbar/kDockingAreaRight}
or you can install a toolbar notationally
Do $clib.$toolbars.tbMyToolbar.$open('*',kDockingAreaLeft) Returns lToolBarRef

Invert selection for line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Invert selection for line(s) ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command inverts the selection state of a line, that is, from selected to deselected or vice-versa. You can specify a particular line
in the list by entering either a number or a calculation. You can show the selection state on the window by invoking the Redraw
lists (Selection only) command.

The All lines option inverts the selection states of all lines of the current list. If no line number is given, the current line selection is
inverted. When a list is saved in the data file, the selection state of each line is stored. The following example selects all but themiddle
line of the list:

161

../toolbars.html
../list_lines.html
redraw_lists.html
redraw_lists.html

Example

Select list lines 2 and 4 and then invert the selection
so list lines 1,3 and 5 are selected
Set current list lMyList
Define list {lName,lAge}
Add line to list {('Fred',10)}
Add line to list {('George',20)}
Add line to list {('Harry',22)}
Add line to list {('William',31)}
Add line to list {('David',62)}
Select list line(s) {2}
Select list line(s) {4}
Invert selection for line(s) (All lines)

JavaScript:

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO NO YES All

Syntax

JavaScript: javascript-code

Description

Use this command to insert raw JavaScript code into the method in the client methods JavaScript file. Consequently, this command
cannot be run in a server method.

A JavaScript editor will pop up when you enter or edit a line of JavaScript code. You can also paste in a block of JavaScript code from
the clipboard.

You cannot insert an inline comment on any lines in a JavaScript: code block.

Javascript: alert("I am an alert box!");

Jump to start of loop

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Jump to start of loop

Description

This command jumps to the Until or While command at the beginning of the current loop, missing out all commands after the jump.
When used in a While–End While loop, Jump to start of loop jumps to the start of the loop so that Omnis can make the While test;
the loop continues or terminates depending on the result of this test, whereas, Break to end of loop automatically terminates the loop
regardless of the value of the condition. Placing a Jump outside a loop causes an error.

162

../calculations.html
../constructs.html
until_calculation.html
while_calculation.html
end_while.html
break_to_end_of_loop.html

Example

Only calculate lBalance if an account number has been entered
Calculate lBalance as 0
Repeat

Prompt for input Account Number Returns lAccountNumber (Cancel button)
If flag false ## cancel button

Break to end of loop
Else If len(lAccountNumber)=0 ## no account number entered

OK message {Please enter an account number}
Jump to start of loop

End If
Calculate lBalance as 100

Until lBalance>0

Launch program

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO All

Syntax

Launch program program-name|program-name,document-name Returns return-value ([Do not quit Omnis])

Options

Do not quit Omnis This option is ignored on platforms other than macOS. When running on macOS, specify this option to
prevent Omnis from closing after launching the program

Description

This command launches the specified program.

On Windows and Linux, this command behaves just like the command Start program normal, except that you can also wait for the
output from the program (see below). The Do not quit Omnis option is ignored.

OnWindows and Linux, you can run a command line program, and receive the output from the program via the Returns clause of the
command. If a variable is specified in the Returns clause, Omnis Studio waits for the executable to terminate before continuing, and
returns the output from the command in the variable.

OnWindows, you canomit theprogramname, and supply just thedocumentnameprefixedbya comma. Thiswill open thedocument
in the application associated with its file extension.

The rest of this command description applies only tomacOS. If you include a file name, the application is launched with the file name
as a document. If the specified file name represents a document which the program cannot understand, it will be ignored. Youmust
specify pathnames for the program and document, as shown in the example below.

You can reference either the application (with the .app suffix) or the executable in the bundle. For example, to launch iTunes you can
specify either :

/Applications/iTunes.app
or
/Applications/iTunes.app/Contents/macOS/iTunes

163

../operating_system.html
start_program_normal.html

The default action is to quit Omnis, but the Do not quit Omnis option lets you keep Omnis open. If you choose this option, Omnis will
continue to run in the background, concurrently with the new program. A new program launched by Omnis will always be opened
on top, even if Omnis is already in the background. The flag is set false if an error is detected, for example, if a program or file name
cannot be found. When you execute Launch program, control passes from your application to the operating system and there is no
automatic way of returning to Omnis.

Example

Launch the specified program
Launch program c:\windows\notepad.exe
If flag false
OK message (Icon,Sound bell) {Couldn't find notepad.exe}

End If

Optionally, you can pass one or more parameters to the target process separated by commas. For example:

Calculate lMyScript as "/Users/user_1/my_script.sh"
Launch program /System/Applications/Utilities/Terminal.app,[lMyScript] (Do not quit Omnis)

Line:

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

Line: line-text

Description

Adds a line of text to the text buffer for the current method stack. The Line: command supports leading and trailing spaces and can
contain square bracket notation, that is, you can include or add the contents of a variable to the text buffer. You build up the text block
using the Begin text block and any combination of one ormore Text: or Line: commands. The Carriage return and Linefeed options of
the Begin text block command specify the line delimiter added to the text buffer after the text added by the Line: command. When
you have placed one Line: command and you press Ctrl/Cmnd-N to create a new method line, a new Line: command is added. You
should end a block of text with the End text block command, and you can return the contents of the text buffer using the Get text
block command.

See the Text: command which can have line specific options, unlike Line:.

Load connected records

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Load connected records {file-name}

164

../text.html
begin_text_block.html
end_text_block.html
get_text_block.html
get_text_block.html
text_.html
../finding_data.html

Description

This command loads the connected records for the specified file. The Load connected records command ensures that the identity
of the current connected records for the current record is correct. As Omnis automatically loads connected records of the main file
into the current record buffer, this command is not usually required. However, in multi-user systems, this command ensures that,
if any other workstation makes changes to the way in which records are connected, these changes will be reflected at the current
workstation.

The flag is cleared if there is no current record for the specified file class, and in the event that no file class is specified, Omnis uses the
main file. This command does not clear the Prepare for updatemode but does causemulti-user semaphores to be set and should be
avoided when in Prepare for… mode.

If a parent record requires locking, another user is editing it, and the Wait for semaphores command is on, the lock cursor will be
displayed. If theuser cancels the lock, theflag is clearedand theparent record is not loaded. TheDonotwait for semaphores command
prevents the user from having to wait for the record and returns a flag false if the parent record is not available.

If placed in a reversible block, the parent record reverts to its former value when the method terminates. If you need to read in
grandparent records, you can add this command to the usual Next command:

Example

Use load connected records to load the grandparent record,

as only the parent record of the main file is loaded after a find
Set main file {fChild}
Find first
Load connected records {fParent}

Do $cinst.$redraw()

Load error handler

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers NO YES NO All

Syntax

Load error handler ([All libraries]) [name/]name (first-error-number, last-error-number)

Options

All libraries If specified, the error handler applies to errors encountered in all libraries, rather than just the calling library

Description

This command loads a specifiedmethodwhich handles errors whichmay occur within a library. You can specify a range of error codes
to be handled by the handler by giving the first and last error number. If no range is specified, the handler is called for all errors. Errors
are either Fatal or Warning.

Error codes such as kerrUnqindex, kerrBadnotation, kerrSQL, can also be used as parameters. The Catalog window lists all the con-
stants available in Omnis.

Fatal errors

A fatal error is one that normally stops method execution and drops into the debugger if available. The error code #ERRCODE is
displayed on the status line in the debugger and is greater than 100,000.

Warning errors

Awarning error is one that does not normally quit themethod nor report an error description. The error code #ERRCODE is displayed
on the status line in the debugger, if invoked, and is less than 100,000.

165

wait_for_semaphores.html
do_not_wait_for_semaphores.html
next.html
../error_handlers.html

The check box option All libraries is provided. If this is not checked, the handler is called only for errors encountered in the library
which loaded the error handler. This command leaves the flag unaffected and is reversible; that is, the handler is unloaded when the
command is reversed. An error handler remains loaded until it is unloaded or the library containing the handler method is closed.
Error handlers loaded within an error handler always unload when that error handler terminates.

An alternative to using the parameters passed to the error handler, is to use the variables #ERRCODE and #ERRTEXT. However, you
must copy the values of #ERRCODE and #ERRTEXT upon entry to the error handler, since commands you execute in the error handler
might change their values.

An error handler can use one of the Set error action commands (SEA) to set what it requires the next action to be. If the error handler
quits without making a Set error action and there is another handler capable of accepting the error, the second handler is called.
Otherwise, the default action for the error is carried out, depending on whether it is a fatal error or warning.

If an error occurs within an error handler, that error is handled in the usual way except that the original error handler will not be used
(even if it could handle that error). It is possible to load error handlers within an error handler; these are meant to deal with errors
within the handler and are unloaded automatically when the error handler completes execution.

Example

pCode is defined as a Long Integer

pText is defined as a character type
A typical error handler
If pCode=kerrBadnotation
handle error - pText contains a string describing the error

End If
The following example handles the error returned by the data manager when an attempt to

duplicate a unique index occurs on update:
Load error handler cMyErrorHandler/Errors
Prepare for edit
Enter data

Update files if flag set
In the method Errors of code class cMyErrorHandler
If pCode=kerrUnqindex
OK message Error (Icon) {You have entered a duplicate field value/'X' has been appended to your entry}
Calculate iValue as con(iValue,'X')
Enter data
If flag true

SEA repeat command
Else

SEA con execution
End If

End If

Load event handler

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES YES NO All

Syntax

Load event handler routine-name or library-name/routine-name (parameters)

166

sea_continue_execution.html
sea_continue_execution.html
../externals.html

Description

This command makes the specified external routine an event handler, enabling the routine to show its own windows, put its own
menus on the menu bar, act as its own event filter, and so on.

Event handlers are modules of code which, when loaded, form part of the Omnis event-processing loop. Events are passed to the
external before being handled by Omnis. As each call to the external takes place, it can identify whether to take appropriate action. If
the event handler returns a flag false, Omnis knows that the event was meant for Omnis and the external has ignored it.

You can enter the routine name as the parameter. If the library/resource is not in the EXTERNAL folder, the name of the file containing
the library/resource and the name of the library/resource within that file are given as parameters. If no file name is given, the current
dynamic link library/resource is searched for the specified routine name.

When the method is called, any existing event handler is not unloaded but continues to be called along with the new handler. The
flag is cleared if the routine cannot be loaded.

If you use Load event handler in a reversible block, the event handler is unloaded when the method containing the reversible block
terminates.

You can pass parameters to the external code by enclosing a comma-separated list of fields and calculations. If you pass a field name,
for example, Call external routine Maths1 (LVAR1,LVAR2), the external can directly alter the field value. Enclosing the field in brackets,
for example, Call external routine Maths1 ((LVAR1),(LVAR2)), converts the field to a value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with the predefined references Ref_parm1,
Ref_parm2, and so on, Ref_parmcnt gives the number of parameters passed. If the field name is passed as a parameter, you can
use SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field’s value.

Example

Load event handler myEventHandler

Load external routine

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES YES NO All

Syntax

Load external routine routine-name or library-name/routine-name (parameters)

Description

This command loads the specified external code intomemory. You can enter the routine nameas the parameter. If the library/resource
is not in the EXTERNAL folder, the name of the file containing the library/resource and the library/resource name within that file are
given as parameters.

If the library/resource is already loaded or is not found, the flag is cleared and no action is taken. If this command is included in a
reversible block, the library/resource is unloaded when the method terminates. If the library/resource is loaded in, it is called with the
mode set at ext_load.

You can pass parameters to the external code by enclosing a comma-separated list of fields and calculations. If you pass a field name,
for example, Call external routine Maths1 (LVAR1,LVAR2), the external can directly alter the field value. Enclosing the field in brackets,
for example, Call external routine Maths1 ((LVAR1),(LVAR2)), converts the field to a value and protects the field from alteration.

In the routine itself, the parameters are read using the usual GetFldVal or GetFldNval with the predefined references Ref_parm1,
Ref_parm2, and so on, Ref_parmcnt gives the number of parameters passed. If the field name is passed as a parameter, you can
use SetFldVal or SetFldNval with Ref_parm1, and so on, to change the field’s value.

Example

Load external routine MathsLib/sqr (iNumber,iNumber2)

167

call_external_routine.html
call_external_routine.html
../externals.html
call_external_routine.html
call_external_routine.html

Load from list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Load from list {line-number (variable-names) {default is current line}}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command transfers field values from the current list to the corresponding fields in the current record buffer. However, if you
include a list of fields, the values in the current list are transferred to the specified fields (see example). Each column value, taken in
the order it was defined, is copied to the corresponding field in the field list.

Field names parameter list

The command Load from listwith ‘(CVAR1„CVAR12)’ specified will load the first column of the current line of the list into CVAR1, ignore
the second column, and load the third column into LVAR12. If too few field names are specified, the other columns are not loaded. If
too many field names are specified, the extra fields are cleared. Any conversions required between data types are carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the values are loaded from the current line. If the
list is empty or if the line evaluates to a value greater than the total number of lines in the list, the flag is cleared and the fields in the
parameter list or in the list definition are cleared.

Example

Set current list lMyList
Define list {lName,lAge}
Add line to list {('Fred',10)}
Add line to list {('George',20)}
Add line to list {('Harry',22)}
Add line to list {('William',31)}

Add line to list {('David',62)}
Do lMyList.$line.$assign(4) ## set the current line
Load from list ## load the values from the current line into lName and lAge
Load from list {2} ## load the values from line 2 into lName and lAge
Load from list {4 (lTmpName,lTmpAge)}

load the values from line 2 into lTmpName and lTmpAge

Load page setup

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing NO YES NO All

Syntax

Load page setup

168

../list_lines.html

Description

This command loads the page setup from the current report class andmakes it the current page setup. Every report class has option-
ally a page setup stored with it, for use when the report is printed. The flag is set if there is a current report class and it contains a page
setup. When used in a reversible block the previous page setup is restored once the method has finished.

The stored page setup for a report class never becomes the current page setup unless a Load page setup command is issued.

Example

Load the page setup for rMyReport
Set report name rMyReport
Load page setup

Print report

MailSplit

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

MailSplit (message,headerlist,body{Char|Bin|MIME-List}) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

MAILSplit parses an Internet e-mail message. It can also decompose MIME content. It returns a Status value less than zero if an error
occurs. Possible error codes are listed in the Web Command Error Codes Appendix.

Message is an Omnis Binary or Character field containing the complete text of an Internet e-mailmessage, including the header. Mes-
sages in this formare returned in theMailList argumentof thePOP3Recv command, andby the commandsPOP3RecvMessageand IMAPRecvMes-
sage. You can also pass the headers returned by POP3RecvHeaders and IMAPRecvHeaders, in order to parse the headers.For correct
results with many of the encodings supported byMAILSplit you must use a Binary field to receive the message.

Example message:

Received: by omnis.net with SMTP; 12 Aug 1996 11:49:59 -0700
Received: (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)
id LAA09789; Mon, 12 Aug 1996 11:46:45 -0700
Date: Mon, 12 Aug 1996 11:46:45 -0700
From: someone@somedomain.com (PersonalName here)
Message-Id: <199608121846.LAA09789@netcom8.netcom.com>
To: someoneelse@somedomain.com
Subject: This is an e-mail subject
Hello from Omnis Software

HeaderList is an Omnis list with two character columns. The list receives the information from the e-mail message header as at-
tribute/value pairs. There is one row for each item in the header. For example, assuming the e-mail message above:

Attribute Value

Received by omnis.net with SMTP; 12 Aug 1996 11:49:59 –0700

169

../external_commands.html
web_error_codes.html
pop3recv.html
pop3recvmessage.html
imaprecvmessage.html
imaprecvmessage.html
pop3recvheaders.html
imaprecvheaders.html

Attribute Value

Received (from someone@localhost) by netcom8.netcom.com (8.6.13/Netcom)id LAA09789; Mon, 12 Aug 1996 11:46:45
–0700

Date Mon, 12 Aug 1996 11:46:45 –0700
From someone@somedomain.com (PersonalName here)
Message-Id <199608121846.LAA09789@netcom8.netcom.com>
To someoneelse@somedomain.com
Subject This is an e-mail subject

Note: Two header lines may have the same attribute name. This is within the RFC822 message header specification. In this case,
the HeaderList has two lines with the same Attribute name, as with Received in the above example. Long header lines that are split
and continued in the message header are concatenated into one line in the list, as with the second Received attribute in the above
example. The colon at the end of the attribute is stripped.

The Body parameter can be either an Omnis character field or an Omnis list.

If Body is an Omnis character field, MAILSplit returns the body of the e-mail message into this variable, minus the header. In the
example: Omnis Software. Note, however, that if the body contains MIME content, the HeaderList only receives headers up to and
excluding the MIME-Version header, and the body receives the rest of the message, starting with MIME-Version.

Alternatively, you canpass anOmnis list as theBodyparameter. In this case, theHeaderList receives all of the headers, and theBody list
receives either a single line containing the message body (if the message does not have MIME content), or a line for each MIME body
part in the message body (if the message has MIME content). We discuss how MIME content is handled in this way below.

Header Values Containing International Characters

MAILSplit supports RFC 2047, for the UTF-8 and ISO8859-N character encodings. When it encounters text in header values that is
encoded according to the RFC 2047 rules for the character encodings it supports, it converts the header value into its original value
before storing it in the HeaderList.

MIME Content

MIME content can be thought of as a tree, which has a single root node, the message. Each node in the tree has a MIME type and a
MIME subtype.

Non-leaf nodes have the type “multipart”, and these contain other nodes, which themselves can be multipart. A non-leaf node does
not contain data.

Leaf nodes have other types, such as “text” and “application”, and these contain data. The type “message” can also be considered a con-
tainer, but theMAILSplit (and SMTPSend) commands treat messages as leaf nodes. If you wish to decompose a message contained
in MIME content, you need to callMAILSplit again for that message.

Each node in the tree is referred to as a body part.

The Body list receives a representation of the MIME content tree, with a line for each body part. Before callingMAILSplit, define a list
with up to nine columns (the last three columns are optional):

Column Contains

Level A long integer which indicates the level of this node in the tree. The single root node has
level zero. The next level down is one, and so on. This will become clearer in some examples
below.

Content-type The type of this body part e.g. “text” or “multipart”
Content-subtype The sub-type of this body part e.g. “plain”
Filename The name of the file corresponding to this body-part. Used for leaf-nodes which are file

attachments.
Character data If the content-type is “text” or “message”, this column contains the data. Leaf nodes only.
Binary data If the content-type is not “text”, “message” or “multipart”, this column contains the data.

Leaf nodes only.
Character-set The character set of the data. The commands only understand us-ascii and iso-8859-1. The

latter is equivalent to the Ansi character set used on the Windows platforms. Character
data in any other character set will not be handled correctly.

170

smtpsend.html

Column Contains

Content-Transfer-Encoding How the data is encoded: “base64”, “quoted-printable”, “7bit” etc. The command handles
decoding from base64 and quoted-printable, meaning that the data in the character and
binary columns above has been decoded. On the Macintosh, character data in the
iso-8859-1 character set has been converted to the Macintosh character set. On all
platforms, the command replaces CRLFs with the Omnis newline character.

Content-disposition The content disposition of the body part. Either empty, “attachment” or “inline”. This is a
hint to the receiving application about how to handle the content. Inline body parts are
intended to be displayed when the message is displayed, whereas attachments are
considered separate from the main body of the mail message, and their display should not
be automatic.

Some example lists:

A message sent by a mailer such as Outlook Express, containing both text and HTML versions of the message text:

Lev Content-type Content-subtype File Char Bin Char-set Encoding Disposition

0 multipart Alternative
1 text Plain From Bob iso-8859-1 quoted-printable
1 text Html <!DOCTYPE HTML… iso-8859-1 quoted-printable

Amessage sent by amailer such as Outlook Express, containing both text and HTML versions of themessage text, and having a single
file attachment:

Lev Content-type Content-subtype File Char Bin Char-set Encoding Disposition

0 multipart mixed
1 multipart alternative
2 text plain From Bob iso-8859-1 quoted-printable
2 text html <!DOCTYPE HTML… iso-8859-1 quoted-printable
1 application octet-stream App.h This is my file data… base64 attachment

Example

Split and decompose pMessage as received from POP3Recv,POP3RecvHeaders,POP3RecvMessage,
IMAPRecvHeaders or IMAPRecvMessage
Return pDate, pFrom, pSubject and pBody (if message rather than headers) and save
any attachments in pEnclosurePath
Do lHeaderList.$define(lAttribute,lValue)
Do lMimeList.$define(lLevel,lContentType,lContentSubType,lFileName,lCharData,lBinData,lCharSet,lEncoding)
MailSplit (pMessage,lHeaderList,lMimeList)
extract header information
Do lHeaderList.$search(upp(lAttribute)='DATE'|upp(lAttribute)='FROM'|upp(lAttribute)='SUBJECT')
Do lHeaderList.$first(kTrue,kFalse) Returns lLineRef
While lLineRef
Do lHeaderList.$loadcols()
Switch upp(lAttribute)

Case 'DATE'
Calculate pDate as lValue

Case 'FROM'
Calculate pFrom as lValue

Case 'SUBJECT'
Calculate pSubject as lValue

End Switch
Do lHeaderList.$next(lLineRef,kTrue,kFalse)

End While
decompose the MIME content from lMimeList

171

For lMimeList.$line from 1 to lMimeList.$linecount step 1
Do lMimeList.$loadcols()
If lContentType='text'&(lContentSubType='plain') ## found body of e-mail in character format.

Calculate pBody as lCharData
End If
If lFileName<>'' ## found file attachment, write the file to the enclosures folder

Calculate lFilePath as con(pEnclosurePath,lFileName)
Do lFileOps.$createfile(lFilePath)
Do lFileOps.$openfile(lFilePath)
Do lFileOps.$writefile(lBinData) Returns lReturnFlag
Do lFileOps.$closefile()

End If
End For

Maximize window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Maximize window instancewindow-instance-name

Description

Maximizes the specified window instance.

Example

Maximize the window wMyWindow to full screen
Maximize window instance wMyWindow
Alternatively, you can do it like this
Do $cwind.$maximize()
Or like this
Do $iwindows.wTest.$bringtofront(kTrue) ## if kTrue, the window instance is brought to the front restoring position including maximize state

Merge list

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Merge list list-or-row-name ([Clear list][,Use search])

Options

Clear list If specified, the command empties the current list and defines it to match the specified list before executing
Use search If specified, the command uses the current search to select data

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

172

../windows.html
../lists.html

Description

This command adds the specified list to the end of the list previously specified as the current list. Once the list reaches its maximum
size, the command finishes and clears the flag. Omnis does not check that the same fields are stored in the two lists (which they
should be). If the same fields are not present, data is not transferred.

If you use the Clear list option, the current list is initially cleared and defined to hold the same fields as the specified list. This is the
same as copying a list.

If you use the Use search option, only lines matching the search class are merged or added to the current list. All lines match if there
is no current search class.

Example

To merge the list iList1 to the current list iList2
Set current list iList2
Set search name sMySearch
Merge list iList1 (Clear list ,Use search)
If flag true
Sort list

Else
OK message {Merge failed at line [iList1.$linecount]}

End If
To append only selected lines
Set current list iList2
Set search as calculation {#LSEL}
Merge list iList1 (Use search)
or do it like this
Do iList2.$merge(iList1)

Message timeout

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Message timeout {interval (seconds)}

Description

This command specifies the timeOmnis has to wait for DDE responses tomessages sent to other applications. There is a default value
of 30 seconds when Omnis is started.

The following general purpose method sets up a DDE channel by increasing the message timeout by 5 seconds until successful. You
pass three parameters to the method, that is, the initial timeout, the channel number and the program ‘name|document’.

Example

open dde channel
parameter pNum is short int
parameter pChannel is short int
parameter pProgDoc is character
Set DDE channel number {pChannel}
Repeat
Message timeout {pNum}
Open DDE channel {[pProgDoc]}
If flag false

173

../exchanging_data.html

Yes/No message {Give up 'Open DDE channel'?}
If flag true
Close DDE channel

End If
End If
Calculate pNum as pNum+5

Until flag true

Minimize window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO NO NO All

Syntax

Minimize window instancewindow-instance-name

Description

This commandminimizes the specified window instance:

• On Windows and Linux, the window is shown as an icon at the bottom of the Omnis application window.

• On macOS, the window is shown as an icon in the dock.

Example

Minimize the window wMyWindow to reduce it to an icon
Minimize window instance wMyWindow
Alternatively, you can do it like this
Do $cwind.$minimize()

Modify class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Modify class {class-name}

Description

This command opens a library class in design mode. Method execution continues and does not wait for the design window to be
closed.Modify class lets usersmodify new search and report classes created with the New class command. Opening a class in design
mode when one of its methods is running causes a Quit all methods to be carried out before the design window opens. If the class
does not exist, the command clears the flag.

Example

New class {Search Class/sOverDrawn}
Modify class {sOverDrawn}
now you can
Set search name sOverDrawn
Print report (Use search)

174

../windows.html
../classes.html
new_class.html
quit_all_methods.html

Modify methods

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Modify methods {class-name}

Description

This command opens themethod editor for the specified class. Method execution continues and does not wait for the designwindow
to be closed. Opening a method in design mode first causes a Quit all methods if one of the methods for that class is running. The
flag is cleared if the specified class does not exist, or if it is a file, search, or report class.

Example

New class {Window/wMyWindow}
open at the $construct() method for the window wMyWindow
Modify methods {wMyWindow}

Move file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Move file (from-path, to-path) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This commandmoves the file specified in from-path to the folder named in to-path. It returns an error code (See Error Codes), or zero
if no error occurs. The to-path is the path to destination folder into which the file will be moved. The command may fail if the to-
path directory contains a file with the same name as from-path filename.

Move file cannot move a file across volumes (disks). Use Copy file and Delete file instead.Move file cannot move directories.

Example

Prompt the user for a file to move together with a path
to move to and move the file
Do FileOps.$putfilename(lPathname,'Select a file for moving','') Returns lReturnFlag
If lReturnFlag
Do FileOps.$selectdirectory(lNewPath,'Path to move to') Returns lReturnFlag
If lReturnFlag

Move file (lPathname,lNewPath) Returns lErrCode
End If

End If

175

../classes.html
quit_all_methods.html
../external_commands.html
fileops_error_codes.html
copy_file.html
delete_file.html

New class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

New class {superclass-name or class-type/name}

Description

This commandcreates a newclasswith the specified type and class name. For example, you canuseNewclass in associationwithMod-
ify class to allow users to create new search and report classes. Attempting to create a class with the same name as one which already
exists clears the flag and displays an error message.

Example

New class {Window/wMywindow}
Modify class {wMyWindow}

Next

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Next on field-name ([Exact match][,Use search])

Options

Exact match If specified, the index value of the field in suitable records must equal the current value
Use search If specified, the command uses the current search to select data

Description

This command locates the next record using the current find table. The Next command works in the same way as the corresponding
option on the Commands menu but with no redraw, allowing you to work through a file. It is usually used after a Find command
which creates a find table of records.

If the Index field, Exactmatch and/or Search option used in theNext is incompatible with the preceding Find, a new find table is built.
Normally, the parameters in this command are left blank so that the current find table is used.

If the Next command does not follow a Find, a find table is built for the current main file before doing the Next.

If an indexed field is specified, Next on SU_NAME for example, the find table is just the index order for the field. The Use search option
creates a find table for the current main file in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.

Once the next record is located, the main and connected files are read into the current record buffer.

An error occurs whenever a Next on FIELD command is performed on a non-indexed field or if the field is not in the main file or its
connected files.

If the next record is found, the flag is set; if not, it is cleared.

If the Exact match option is chosen, the next record is loaded where the index value of the specified field matches the current value.

If you useNextwith a search, it builds a find table if necessary and finds the next record listed on the find table whichmeets the search
criteria.

176

../classes.html
modify_class.html
modify_class.html
../finding_data.html
find.html
find.html
find.html

Example

Add 5% to all account balances
Find first on fAccounts.Code
While flag true
Calculate fAccounts.Balance as fAccounts.Balance+((fAccounts.Balance/100)*5)
Update files
Next

End While

No/Yes message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes YES NO NO All

Syntax

No/Yes message title ([Icon][,Sound bell][,Cancel button]) {message}

Options

Icon If specified, the message displays an operating system specific icon
Sound bell If specified, the system bell sounds when the command displays the message
Cancel button If specified, the message has a cancel button

Description

This command displays a message box containing the specified message and provides a No and a Yes pushbutton. You can include
a Cancel button by checking the Cancel button option. When the message box is displayed method execution is halted temporarily;
it remains open until the user clicks on one of the buttons before continuing. The No button is the default button and can therefore
be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts and screen size. In the message text you
can force a break between lines (a carriage return) by using the notation “//”or the kCr constant enclosed in square brackets, e.g. ‘First
line[kCr]Second line’. Also you can add a short title for the message box.

For greater emphasis, you can select an Icon for the message box (the default “info” icon for the current operating system), and you
can force the system bell to sound by checking the Sound bell check box. Under Windows XP, you have to specify a system sound for
a ‘Question’ in the Control Panel for the Sound Bell option to work.

You can insert a No/Yes message at any appropriate point in a method. If the user clicks the No button, the flag is cleared; otherwise,
a Yes sets the flag. You can use the msgcancelled() function to detect if the user pressed the Cancel button.

Example

Open a No/Yes dialog and display the option selected
No/Yes message My Editor (Icon,Cancel button) {Do you wish to save the changes you have made ?}
If msgcancelled()
OK message My Editor {Cancel button pressed}

Else
If flag true

OK message My Editor {OK button pressed}
Else

OK message My Editor {Cancel button pressed}
End If

End If

177

../message_boxes.html

OK message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO YES All

Syntax

OK message title ([Icon][,Sound bell][,Cancel button]) {message}

Options

Icon If specified, the message displays an operating system specific icon
Sound bell If specified, the system bell sounds when the command displays the message
Cancel button If specified, the message has a cancel button

Description

This command displays the specified message and waits for the user to click the OK or Cancel button before continuing. Method
execution is halted temporarily while themessage box is displayed. Note: for JavaScript client-executedmethods this command uses
a standard alert() or confirm() dialog.

The number of message lines displayed depends on your operating system, fonts and screen size. In the message text you can
force a break between lines (a carriage return) by using the notation “//” or the kCr constant enclosed in square brackets, e.g. ‘First
line[kCr]Second line’. Also you can add a short title for the message box.

For greater emphasis, you can pass the Icon option to add an icon (the default “info” icon for the current operating system). If no icon
is specified, the default action on macOS is to show the application icon (applies to Big Sur or later). You can force the system bell to
sound by passing the Sound bell option.

The message box displayed by this command has an OK button by default, but you can add a Cancel button by passing the Cancel
button option. After executing an OK message, the flag is unchanged, but you can use the msgcancelled() function to detect if the
user pressed the Cancel button.

You can use square bracket notation in the message text to display the current value of fields and variables.

Example

‘omnis # Open a Ok messsage dialog, if cancel is pressed abort printing Calculate lUserName as 'My Name'
OK message My Editor (Icon,Cancel button) {Ready to print, press Ok to continue} If msgcancelled() OK
message My Editor {Printing aborted by user [lUserName]} Quit method End If1‘

On

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO YES All

Syntax

On event-code or codes (code1,code2,…)

178

../message_boxes.html
../events.html

Description

This command is used in an event handling method and marks the beginning of a code segment that executes when the specified
event (or one of a number events) is received by the current event handling method. An On command also marks the end of any
preceding On statement. You specify the event or list of events using the event constants.

When Omnis generates an event it sends the event information as a series of event parameters to the appropriate event handling
method. The first parameter is always an event constant. Further parameters, if any, depend on the event and further describe the
event. This event information is interpreted by theOn statements in the event handlingmethods. Window field events are sent to the
$event() method behind the field, then to the $control() method for the window instance, and then to the $control() method for the
current task. Events that occur in the window itself, such as a click on the window background, are sent to the class method called
$event(), then to the $control() method for the current task. A particular event is sent to the first On command which applies, and
when the next On command is encountered quits the method.

You should place any code which is to be executed for all events before the first On command. You cannot nest On commands or
put them in an If or Else statement. You can use On default to handle any events not handled by an earlier On event command.
The On commands must be in event handling methods only: if used elsewhere they are not executed. The function sys(86) at the
start of a method reports any events received by the object.

See also Quit event handler.

Example

This example shows typical event handling for a field
On evBefore
code to process an evBefore event

On evAfter
code to process an evAfter event

On evClick,evDoubleClick
code to process both evClick and evDoubleClick events

On default

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO YES All

Syntax

On default

Description

This command is used in an event handling method and handles any events not handled by the preceding On commands. You use
the On command to mark the beginning and end of an On statement. You should place any code which is to be executed for all
events before the first On command.

Example

“‘omnis On evClick # process code for evClick event

On default # handle all other events “‘

Open check data log

179

if_calculation.html
else.html
on_default.html
quit_event_handler.html
../events.html
on.html
on.html
on.html
on.html

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO YES NO All

Syntax

Open check data log ([Do not wait for user])

Options

Donotwait for user Unless this option is specified, the user must close the window before method execution
continues, and before doing anything else

Description

This command opens the check data log. If the Do not wait for user option is specified, execution continues with the next command,
otherwise execution stops until the user has closed the log. You use the check data log to manage the problems encountered in
a data file after the Check data command is run. The data log window lets you repair any problems listed in the window, print the
contents of the log, or clear the log.

Example

Check data (Check indexes)
Open check data log

Open data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Open data file ([Do not close other data][,Read-only][,No conversion by runtime][,Convert without user prompts][,Full Unicode conver-
sion]) {file-name[,internal-name] or odb://[address:port:]name[,internal-name]}

Options

Donot closeotherdataIf specified, the command does not close all open data files before opening the specified data file

Read-only If specified, the data file is opened in read-only mode
No conver-
sion by runtime

Omnis normally offers to convert data files created by an earlier version of Omnis. If this option is
specified, the runtime version of Omnis will not offer to convert the file, and the command will fail

Convert with-
out user prompts

If specified, and conversion is allowed, Omnis will immediately perform the conversion without
giving the user any prompts that require a response; also, the user cannot cancel the conversion

Full Unicode con-
version

Unicode Studio only. If specified, and convert without user prompts is specified, do full Unicode
conversion instead of quick conversion (quick conversion is only ok when you know all character
data in the file is 7 bit)

180

../data_management.html
check_data.html
../data_files.html

Description

This command opens the specified Omnis data file (.df1 file) and makes that file the “current” data file, using either the pathname of
the datafile, or the location of the datafile hosted via the Omnis Data Bridge (ODB). It clears the flag if the data file cannot be found
or opened. If the Do not close other data check box option is not specified, all existing data files are closed even if the command
fails. Opening a data file which is already open will close and reopen that data file. The Read-only Studio/Omnis 7 check box causes
the data file to be opened in read-only mode. This lets you open an Omnis 7 data file in read-only mode in Omnis Studio without
conversion taking place.

If you select the No conversion by runtime option, and the data file was created with a previous version of Omnis, then the runtime
version of Omnis will not convert the data file. The default is that an Omnis runtime will ask the user if they want to convert the data
file.

If an opened data file uses more than one segment, all segments are opened. The rules for finding the additional segments which
form part of the data file are as follows:

• Under Windows and Linux, the paths given in the Omnis environment variable are searched; if the file is not in any of these
locations, then Omnis searches the directory containing the first segment.

• Under macOS, root directories of all mounted volumes are searched as well as the folders containing the first segment and the
most recently opened library.

You can override the default internal name by specifying your own in the parameter for the command.

If the data file is to be accessed using the Omnis Data Bridge (ODB), then instead of using a pathname, you can specify the location
of the file using a special syntax:

• odb://[address:port:]name

where address:port is the TCP/IP address and port number of theODB server, e.g. 127.0.0.1:5900, and name is the name of a data file ac-
cessed using theODB server. You can omit address:port:, in which caseOmnis uses the address and port stored in the $odbserver root
preference. Note that the value of $odbserver is stored in the file odb.txt in the studio folder of the Omnis installation tree.

Example

Open data file {Sales.df1,Sales}
If flag true
Find first
If flag true

Open data file (Do not close other dat) {Purch.df1,Purchases}
If flag true
Calculate fPurchases.Field1 as fSales.Field1
Prepare for insert with current values
Enter data
Update files if flag set

End If
End If

End If

Example 2 - Transfer datafile 1 to datafile 2
Open data file {pOrders.df1,pOrders1}
If flag true
Set main file {fOrders}
Find first on fOrders.OrderNum
While flag true

Prepare for insert with current values
Open data file {pOrders2.df1,pOrders2}
Update files if flag set
Open data file {pOrders.df1,pOrders1}
Next on fOrders.OrderNum

End While
End If

181

Example 3 - Open a data file on a specific ODB server
Open data file {odb://127.0.0.1:5900:test}

Example 4 - Open a data file using the ODB server identified by $prefs.$odbserver
Open data file {odb://test}

Please note:

• When the Open data file command is used with an odb:// prefix and an internal-name parameter, a comma separator is still
required, for example:

Open data file odb://127.0.0.1:5900:test, myDatafile

• In Studio 10.0 and above, curly braces are not required around the command parameters.

Open DDE channel

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES YES NO Windows

Syntax

Open DDE channel {program-name | topic-name}

Description

This commandopens the current channel for exchangingdata. If there is a valid response, the flag is set and the channel is successfully
opened. If the channel is already open, the existing conversation is closed.

When entering the command in a method, you use the parameters to specify the program and the topic to which the message is to
be addressed. Note that the “pipe” (or vertical bar) between the program name and topic name is required.

This command is reversible, that is, a previous conversation will reopen if this command is contained within a reversible block.

When the command is used in a method containing a reversible block, and if a new conversation is initiated using the same channel
number as an existing conversation, the original continues to process incoming messages only, and at the end of the method, the
new conversation is stopped and the original becomes fully active.

Example

Set DDE channel number {2}
Open DDE channel {Omnis|Country}
If flag false
OK message {The Country library is not running}

Else
Do method TransferData
Close DDE channel
OK message {Update finished}

End If

Open file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

182

../exchanging_data.html
../external_commands.html

Syntax

Open file (path, refnum [,‘r’]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

Prompt the user for a file for opening
Do FileOps.$putfilename(lPathname,'Select a file','') Returns lReturnFlag
If lReturnFlag
Open file (lPathname,lRefNum)

End If

Open library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Open library ([Do not close others][,Enable conversion by runtime][,Do not open startup task][,Convert without user prompts]) library-
file-name,internal-name,password (parameters)

Options

Do not close oth-
ers

If specified, the command does not close all open libraries before opening the specified library

Enable conver-
sion by runtime

The development version of Omnis offers to convert libraries created by an earlier version of Omnis.
If this option is specified, the runtime version of Omnis will also offer to convert such libraries

Donot open startup taskIf specified, the command does not construct an instance of the startup task when it opens the
library

Convert with-
out user prompts

If specified, and conversion is allowed, Omnis will immediately perform the conversion without
giving the user any prompts that require a response; also, the user cannot cancel the conversion

Description

This command opens the specified library file and closes other libraries, if specified. You specify the library name (including path name
if required), internal name, password, and startup method parameters of the library to be opened. If the disk file with the specified
path name cannot be opened or is not a valid library, the flag is cleared and no libraries are closed.

If the internal name of an opened library is specified, a check is made to ensure the internal name is unique among the open libraries,
and a runtime error occurs if this is not the case. If no internal name is specified, the default internal name is the disk name of the file
with the path name and suffix removed. For example, the internal name for ‘hd:myfiles:testlib.lbs’ is ‘testlib’.

Do not close others

The Do not close others option lets you keep open all other libraries. Otherwise, all other open libraries are closed (see the Close
library command for the consequences of closing a library). If an attempt is made to open a library which is already open, that library
is closed and reopened.

Startup task

If the Do not open startup task option is specified, the startup task construct for the opened library is not called. Otherwise, the
startup task $construct() method is called and the parameters for it are passed. The startup task instance name will be either the
library name or the library internal name if it has one: it is not called Startup_Task.

183

fileops_error_codes.html
../libraries.html
close_library.html
close_library.html

Enable conversion by runtime

If you select the Enable conversion by runtime option, and the library was created with a previous version of Omnis, then the runtime
version of Omnis can convert the library if the user allows. The default is that an Omnis runtime will not ask the user if they want to
convert the library.

Passwords

If a password is specified, an attempt is made to open the library with that password. If it is not a valid password or no password is
specified, the library is opened in the usual way, that is, if the library does not need amaster password, it is opened at themaster level;
otherwise, the usual prompt for password dialog is opened (the library is closed and a flag false returned if this dialog is closedwithout
a password being entered).

Example

Open the library mylib.lbs from the root of your
omnis studio tree
Calculate lLibPath as con(sys(115),'mylib.lbs')
Open library (Do not close others) [lLibPath],MYLIB
If flag true
OK message {Library Opened!}

End If

Open lookup file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES YES NO All

Syntax

Open lookup file {lookup-name,data-file-name,file-class-name,index-field} Open lookup file lookup-name,data-file-name,file-class-
name,index-field (Studio 10 and later)

Description

This command opens an Omnis data file for use as a lookup file. You give each lookup file a reference name which you use in subse-
quent lookup() functions to select a particular data file and file class. You can open any Omnis data file as a lookup file, including any
data file accessed via the Omnis Data Bridge (ODB).

In a lookup file, you can use the file classes to look up field values based on an indexed search. Each file class should consist of at least
two fields: the first is the index (usually a character field), the second is any field type. For example, the data file Lookup.df1 has a file
class called fCities with the following structure:

File name Field1 Field2

fPic Char Indexed Picture
fCities Char Indexed Char

The parameters forOpen lookup file are separated by “,”. The first parameter is a label that you create to become the reference to that
lookup “channel”. If you omit this label, Omnis assumes that youwill use only one lookup file whereupon you can use lookup() without
its first parameter. The label you give to each lookup is case-insensitive and if you use the same one twice, the previous lookup file is
closed. A flag true is returned if the data file is found and opened.

The example at the bottom opens a data file called Lookup.df1 and assigns the label “City” to the lookup channel. The City lookup
uses the file class fCities within that data file and uses the first index to search for the required data. The OKmessage uses lookup() to
search the first indexed field for an exact match with the value “I”. If the match is found, the value of field 2 in the matched record is
returned and displayed as part of the OKmessage. If no match is found, lookup() returns an empty value.

184

../data_files.html

Note that the index and field are specified as numbers because your particular librarymay not include the file class used in the lookup
data file. If you omit either number, the default is to use the first field as the index, and the second as the field value to be returned in
the lookup() function.

Omnis opens the data file using the following rules. Omnis first tries to open the file using the supplied data-file-name. If this fails,
and if the data-file-name does not contain any special characters used in pathnames (for example, under Windows ‘:’ and ‘\’), then
Omnis searches for the file.

Under Windows and Linux, Omnis searches the paths included in the Omnis environment variable. The Omnis environment variable
must contain a semicolon separated list of pathnames, for example:

C:\OMNIS\LOOKUPS#D:\OMNIS\LOOKUPS

Under macOS, Omnis searches the System folder, Omnis folder and then the root of each mounted volume, in that order.

The flag is set if the lookup is successful, that is, the data file is opened, the file slot exists and the indexed field is indeed indexed. The
lookup file is closed if the command is reversed (see Begin reversible block).

You can close lookup files using Close lookup file, but this is not necessary: all lookup files associated with a library are closed auto-
matically when the library quits.

You can maintain the data within the lookup file from within the library by:

• Adding the appropriate file classes to your library,

• Changing the data file to the lookup file using Open data file,

• Opening a window and editing/ inserting data in the usual way, and

• Returning to the original data file.

You can also load multiple data files with Open data file.

Example

Open lookup file {City,Lookup.df1,fCities,1}
If flag true
OK message {The city you require is [lookup('City','I',2)]}

End If
You can open more than one file class within a particular data file by assigning a different label to each lookup
Open lookup file {City2,Lookup.df1,fCities2}
Open lookup file {City,Lookup.df1,fCities}
Open lookup file {Country,Lookup.df1,fCountries}
You can also open a lookup file accessed using the Omnis Data Bridge (ODB)
Open lookup file {City,odb://127.0.0.1:5900:LookUpData,fCities,1}

Open runtime data file browser

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Open runtime data file browser

Description

185

begin_reversible_block.html
close_lookup_file.html
open_data_file.html
open_data_file.html
../data_management.html

Example

Open data file {Salaries.df1}
Set current data file {Salaries}
Open runtime data file browser

Open task instance

Command group Flag affected Reversible Execute on client Platform(s)

Tasks NO NO NO All

Syntax

Open task instance class-name[/instance-name] [(parameters)]

Description

This command opens the specified task and assigns an instance name. You can include a list of parameters which are sent to the
$construct() method in the task instance. Note that startup task instance is normally opened when the library opens: its namewill be
either the library name or the library internal name if it has one.

Example

Open task instance tkMyTask (1)
or do it like this
Do $tasks.tkMyTask.$open('*',1) ## * is the default instance name
Then in the $construct of tkMyTask
If pOpenWindow ## pOpenWindow is a boolean parameter variable
Open window instance wMyWindow

End If

Open trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Open trace log ([Clear trace log])

Options

Clear trace log If specified, the command clears the trace log

Description

This command opens the trace log. The trace log can also be opened via the Tools menu.

Example

open the trace log and clear any existing messages
Open trace log (Clear trace log)

186

../tasks.html
../debugger.html

Open window instance

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO YES NO All

Syntax

Open window instance class[/instance] [/l/t/r/b/cen/max/min/stk] [(params)]

Description

This command opens an instance of the specified window class. You can specify the position and size of the window instance (using
the left, top, right, bottom coordinates in pixels), and you can center, maximize, minimize, and stack the window. Furthermore, you
can send a list of parameters to the window’s $construct() method.

Open window instance lets you open multiple instances of the same window class. The default instance name for a window is the
class name, but if you want to open multiple instances of the same window class you must assign a unique name to each instance.
Window instance names are case-sensitive.

Window Position and Size

You can specify the position of the top-left corner of the window instance by adding the coordinates to the end of the window-
name/instance-name parameter, that is, window-name/instance-name/left/top. You specify the position in pixels, the origin being
/0/0, that is, under the menu bar. By providing all four coordinates, you can specify the position and size of the window instance.

Centering and Stacking Windows

The /CEN option automatically centers the window instance. You can include the four window size coordinates with the /CEN option
so the window is sized and centered.

The /STK option opens the window instance about 12 pixels (the stack offset) to the right and down from the current top window.
When a stacked window reaches the edge of the screen, it is placed back at the top of the stack, offset slightly from the first window.

Maximizing and Minimizing Windows

The /MAX option opens and maximizes the window instance. If you include the position and size coordinates with this option, the
window is opened with the specified position and size and then maximized.

The /MIN option opens and minimizes the window instance. If you include the position and size coordinates with this option, the
window is opened with the specified position and size and then minimized.

$construct() Method and Passing Parameters

When you open a window instance, the $construct() method for that instance is run. In this method, you place commands which set
up the conditions required by the window. For example, you may want to set the main file, build particular lists, and so on. Just as
with Do method and Do code method you can send parameters to the window using Open window instance.

Reversible blocks in the $construct() method do not reverse until the window instance is closed, unlike a normal method whose
reversible blocks reverse on termination of the method.

Example

Open 2 instances of the window wMyWindow stacked
Open window instance wMyWindow/wInst1/CEN
Open window instance wMyWindow/wInst2/STK

Alternatively, you can let Omnis assign enumerated names to
multiple instances by specifying ‘*’ as the instance name.
Open window instance wMywindow/*
Open window instance wMywindow/*
Specify the size and location when opening the window wMyWindow
Open window instance wMyWindow/*/10/10/100/100
Specify the size and location in variables

187

do_method.html
do_code_method.html

Calculate lLeft as 10
Calculate lRight as 100
Calculate lTop as 10
Calculate lBottom as 100
Open window instance wMyWindow/*/[lLeft]/[lTop]/[lRight]/[lBottom]
Open the window wMyWindow maximized
Open window instance wMyWindow/*/MAX
Open the window wMyWindow minimized
Open window instance wMyWindow/*/MIN
Open the window wMyWindow and pass the variables lMyVar1 and lMyVar2
to its $construct method
Open window instance wMyWindow/*/ (lMyVar1,lMyVar2)

Optimize method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO YES NO All

Syntax

Optimize method

Description

This command stores an optimized form of the method so when the method is executed for a second time it runs much faster. You
should position this command so that it is the first executable statement of the method, except when you put it in a reversible block.
Methods which are executed frequently, such as control methods and loops, are best optimized. The command is reversible and does
not change the flag.

Optimize method works immediately, therefore when it is executed for the first time it converts all of the subsequent lines of the
method being executed into its optimized form and continues execution. When the method terminates, the optimized form of that
method is kept in RAM; the optimized form is executed if the method is called again. If Optimize method is in a reversible block
the optimized form of the method is disposed of when the method terminates; so it will be rebuilt each time the method executes.
The optimized method is also discarded whenever the design window is open for the method or the method is modified using the
notation.

WARNING Optimizing too many methods will increase the memory used which may eventually result in a slowdown or worse.

Example

Build a list of invoices for the first overdrawn account
Optimize method
Set main file {fAccounts}
Set current list iInvoices
Define list {fInvoices}
Set search name sOverDrawn
Find first on fAccounts.Code (Use search)
While flag true
Single file find on fInvoices.AccCode (Exact match) {fAccounts.Code}
Add line to list
Next

End While

OR selected and saved

188

../methods.html

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

OR selected and saved ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This commandperforms a logical OR of the Saved selectionwith the Current selection. To allow sophisticatedmanipulation of data via
lists, a list can store two selection states for each line; the “Current” and the “Saved” selection. The Current and Saved selections have
nothing to do with saving data on the disk; they are no more than labels for two sets of selections. The lists may be held in memory
and never saved to disk: they will still have a Current and Saved selection state for each line but they will be lost if not saved. When a
list is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.

The OR selected and saved command performs a logical OR on the Saved and Current states and puts the result into the Current
selection. Hence, if either or both the Current and Saved states are selected, the Current state becomes selected, but if both states
are deselected, the resulting Current state will remain deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current State

S S S
D S S
S D S
D D D

The All lines option performs the OR on all lines of the current list. The following example selects all lines of the list.

Example

Lines 3 and 5 remain selected as line 3 is the
only line selected in the saved list and line 5 is
the only line selected in the current list
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) {3}
Save selection for line(s) (All lines)
Deselect list line(s) (All lines)
Select list line(s) {5}
OR selected and saved (All lines)

189

../list_lines.html

Paste from clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Paste from clipboard field-name ([Redraw field][,All windows])

Options

Redraw field If specified, the command reloads
affected window fields with the new
value of the data field, after it has
performed the operation; note that this
takes the ‘All windows’ option into
account

All windows If specified, the command applies to all
open window instances, rather than
just the top open window instance

Description

This command pastes the contents of the clipboard into the specified field, current selection or at the insertion point. When the field-
name parameter is specified, Paste from clipboard pastes the contents of the clipboard into the field replacing the contents of the
whole field. However, when the field-name parameter is not specified the command will paste the contents of the clipboard at the
current selection (a range of selected characters) or the insertion point within the current field.

Example

Copy one field to another then clear the first field
Copy to clipboard iName
Paste from clipboard iDeliveryName (Redraw field)
Clear data iName (Redraw field)

POP3Connect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3Connect (server,username,password[,stsproc,secure {Default zero insecure;1 secure;2 use STARTTLS},verify {Default kTrue}]) Re-
turns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3Connect establishes a connection to a POP3 server. If POP3Connect succeeds, it returns the socket opened to the POP3 server.
You can use this socket with the other POP3 commands which require a socket argument. If an error occurs, POP3Connect returns
an error code, which is less than zero. Possible error codes are listed in the Web Command Error Codes Appendix.

190

../clipboard.html
../external_commands.html
web_error_codes.html

Note that it is essential that you call POP3Disconnect when you have finished using the connection to the POP3 server.

Server is an Omnis Character field containing the IP address or hostname of a POP3 server that will serve e-mail to the client running
Omnis. For example: pop3.mydomain.com or 255.255.255.254. If the server is not using the default POP3 port (110, or 995 for a secure
connection), you can optionally append the port number on which the server is listening, using the syntax server:port, for example
pop3.mydomain.com:1234.

Username is an Omnis Character field containing the account that receives the mail on the designated server (usually an account
user name, for example, Webmaster).

Password is an Omnis character field containing the password for the account specified in the UserName parameter, for example,
Secret.

StsProc is anoptional parameter containing thenameof anOmnismethod thatPOP3Connect callswith statusmessages.POP3Connect calls
the method with no parameters, and the status information in the variable #S1. The status information logs protocol messages ex-
changed on the connection to the server.

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

POP3Connect also supports an alternative secure option, if you pass secure with the value 2, the connection is initially not secure, but
after the initial exchange with the server, POP3Connect issues the STLS POP3 command to make the connection secure if the server
supports it (see RFC 2595 for details). Authentication occurs after a successful STLS command.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Socket is an Omnis Long integer field which receives the socket for the new connection. If an error occurs, POP3Connect returns an
error code with a value less than zero. Possible error codes are listed in the Web Command Error Codes Appendix.

Example

Establish a connection to the POP3 server lServer for user
lUsername using the password lPassword
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket

POP3DeleteMessage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3DeleteMessage (socket,messagenumber[,stsproc]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3DeleteMessagemarks a message stored on a POP3 server for deletion. The POP3 server deletes messages marked for deletion
when you call POP3Disconnect. Before calling POP3Disconnect, you can call POP3UndoDeletes, to remove the deletion mark from
all messages.

191

pop3disconnect.html
web_error_codes.html
../external_commands.html
pop3disconnect.html
pop3undodeletes.html

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

MessageNumber is an Omnis Long Integer field which identifies the message to be marked for deletion. Message numbers are
assigned by the POP3 server, after you call POP3Connect, starting with 1 for the first message, 2 for the second, and so on.

StsProc is an optional parameter containing the name of an Omnis method that POP3DeleteMessage calls with status mes-
sages. POP3DeleteMessage calls the method with no parameters, and the status information in the variable #S1. The status
information logs protocol messages exchanged on the connection to the server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

Delete the first message for user lUsername from the POP3
server lServer
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
POP3DeleteMessage (iSocket,1)
POP3Disconnect (iSocket) ## message is not deleted until disconnect

POP3Disconnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3Disconnect (socket[,stsproc]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3Disconnect closes a connection to a POP3 server.

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

StsProc is an optional parameter containing the name of an Omnis method that POP3Disconnect calls with status mes-
sages. POP3Disconnect calls the method with no parameters, and the status information in the variable #S1. The status information
logs protocol messages exchanged on the connection to the server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

Close the connection to the POP3 server lServer
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
POP3Disconnect (iSocket)

192

pop3connect.html
pop3connect.html
web_error_codes.html
web_error_codes.html
../external_commands.html
pop3connect.html
web_error_codes.html
web_error_codes.html

POP3ListMessages

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3ListMessages (socket,messagenumber{0 to list all},list[,stsproc]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3ListMessages lists themessagesonaPOP3 server. Note that the list excludes anymessagesmarked for deletion (seePOP3DeleteMessage).
You can either list an individual message, or all messages not marked for deletion.

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

MessageNumber is an Omnis Long Integer field which identifies the message to be listed. Message numbers are assigned by the
POP3 server, after you call POP3Connect, starting with 1 for the first message, 2 for the second, and so on.

To list all messages, pass 0 as the MessageNumber argument. Otherwise, MessageNumber must identify a single message which is
not marked for deletion.

List is an Omnis list field defined to have 2 long integer columns. POP3ListMessages clears the list, and then adds a line to the list for
each message. Column 1 receives the message number, and column 2 receives the message size in bytes.

StsProc is an optional parameter containing the name of an Omnis method that POP3ListMessages calls with status mes-
sages. POP3ListMessages calls the method with no parameters, and the status information in the variable #S1. The status
information logs protocol messages exchanged on the connection to the server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

List details of all messages for user lUserName not marked for
deletion on the POP3 server lServer in lMailList
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
Do lMailList.$define(lMsgNum,lMsgSize)
POP3ListMessages (iSocket,0,lMailList) Returns lStatus

POP3MessageCount

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3MessageCount (socket[,stsproc]) Returnsmessagecount

193

../external_commands.html
pop3deletemessage.html
pop3connect.html
web_error_codes.html
web_error_codes.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3MessageCount returns the count of messages available on a POP3 server. The count includes messages marked for deletion
(see POP3DeleteMessage).

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

StsProc is an optional parameter containing the name of an Omnis method that POP3MessageCount calls with status mes-
sages. POP3MessageCount calls the method with no parameters, and the status information in the variable #S1. The status
information logs protocol messages exchanged on the connection to the server.

MessageCount is an Omnis Long Integer field which receives the number of messages. If an error occurs, the returned value is an
error code with a value less than zero. Possible error codes are listed in the Web Command Error Codes Appendix.

Example

Find out how many messages exist on the POP3 server lServer
for user lUserName
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
POP3MessageCount (iSocket) Returns lMessageCount

POP3Recv

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3Recv (server,user,pass,list[,delete,stsproc,maxmessages,secure {Default zero insecure;1 secure;2 use STARTTLS},verify {De-
fault kTrue}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3Recv retrieves Internet e-mail messages from a POP3 server into an Omnis list. If an error occurs, the command returns a value
less than zero to Status; in this case, all mailmay not have been received. The socket opened to the POP3 server is always closed before
the command returns. Possible error codes are listed in the Web Command Error Codes Appendix.

Server is an Omnis Character field containing the IP address or hostname of a POP3 (Post Office Protocol Level 3) server that will serve
e-mail to the client running Omnis. Examples: pop3.mydomain.com or 255.255.255.254. If the server is not using the default POP3
port (110, or 995 for a secure connection), you can optionally append the port number onwhich the server is listening, using the syntax
server:port, for example pop3.mydomain.com:1234.

User is an Omnis Character field containing the account that receives the mail on the designated server. Usually an account user
name, for example, Webmaster.

Pass is an Omnis Character field containing the password for the account specified in the User parameter, for example, Secret.

List is an Omnis list field defined to contain a single column of type binary or character. The column receives the Internet e-mail
messages, one per line. The column variable should be large enough to receive the e-mail message, including the header. Note that

194

pop3deletemessage.html
pop3connect.html
web_error_codes.html
../external_commands.html
web_error_codes.html

you can pass the message data stored in each row to MailSplit, in order to parse the message. For correct results with many of the
encodings supported by MailSplit you must define the list to have a binary column.

Delete is an Omnis Boolean field which, if true, indicates that the messages will be deleted from the server once they have been
downloaded into MailList. The default is false, so messages remain on the server if the argument is omitted.

StsProc is an optional parameter containing thenameof anOmnismethod thatPOP3Recv callswith statusmessages.POP3Recv calls
the method with no parameters, and the status information in the variable #S1. The status information logs protocol messages ex-
changed on the connection to the server.

MaxMessages is anoptional parameterwhich specifies themaximumnumber ofmessages tobedownloadedby this call toPOP3Recv.
If omitted, all available messages are downloaded.

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

POP3Recv also supports an alternative secure option, if you pass secure with the value 2, the connection is initially not secure, but
after the initial exchange with the server, POP3Recv issues the STLS POP3 command to make the connection secure if the server
supports it (see RFC 2595 for details). Authentication occurs after a successful STLS command.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Example

Retrieve all messages for user lUsername from the POP3 server
lServer and remove the messages from the server
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
Calculate lDelete as kTrue
Do lMailList.$define(lMessage)
POP3Recv (lServer,lUserName,lPassword,lMailList,lDelete) Returns lStatus

POP3RecvHeaders

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3RecvHeaders (socket,messagenumber,headers[,stsproc]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3RecvHeaders reads themessage headers for amessage stored on a POP3 server. Themessagemust not bemarked for deletion.

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

MessageNumber is anOmnis Long Integer fieldwhich identifies themessage forwhich the headers are to be read. Message numbers
are assigned by the POP3 server, after you call POP3Connect, starting with 1 for the first message, 2 for the second, and so on.

195

mailsplit.html
../external_commands.html
pop3connect.html

Headers is an Omnis Binary or Character field which receives the headers for the specifiedmessage. Note that you can pass the result
toMailSplit, in order to parse the headers. When callingMailSplit, pass an empty list variable as the body argument. For correct results
with many of the encodings supported by MailSplit you must receive into a Binary field.

StsProc is an optional parameter containing the name of an Omnis method that POP3RecvHeaders calls with status mes-
sages. POP3RecvHeaders calls themethodwith no parameters, and the status information in the variable #S1. The status information
logs protocol messages exchanged on the connection to the server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Note

POP3RecvHeaders uses an optional POP3 protocol command, so that it may not work with all POP3 servers.

Example

Read the header for the first message stored on the POP3 server
lServer for user lUserName
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
POP3RecvHeaders (iSocket,1,lHeaders) Returns lStatus

POP3RecvMessage

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3RecvMessage (socket,messagenumber,message[,stsproc]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3RecvMessage reads a message stored on a POP3 server. The message must not be marked for deletion.

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

MessageNumber is an Omnis Long Integer field which identifies the message to be read. Message numbers are assigned by the
POP3 server, after you call POP3Connect, starting with 1 for the first message, 2 for the second, and so on.

Message is an Omnis Binary or Character field which receives the message. Note that you can pass the result to MailSplit, in order to
parse the message. For correct results with many of the encodings supported by MailSplit you must receive into a Binary field.

StsProc is an optional parameter containing the name of an Omnis method that POP3RecvMessage calls with status mes-
sages. POP3RecvMessage calls the method with no parameters, and the status information in the variable #S1. The status
information logs protocol messages exchanged on the connection to the server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

196

mailsplit.html
mailsplit.html
mailsplit.html
web_error_codes.html
web_error_codes.html
../external_commands.html
pop3connect.html
web_error_codes.html
web_error_codes.html

Example

Read the first message stored on the POP3 server lServer for user
lUserName
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
POP3RecvMessage (iSocket,1,lMessage) Returns lStatus

POP3Stat

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3Stat (server,user,pass[,stsproc,secure {Default zero insecure;1 secure;2 use STARTTLS},verify {Default kTrue}]) Returns waiting-
messages

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3Stat retrieves the number of Internet e-mail messages waiting for a particular user on a specified POP3 server. If an error occurs,
the command returns a value less than zero to WaitingMessages. The socket opened to the POP3 server is always closed before the
command returns. Possible error codes are listed in the Web Command Error Codes Appendix.

Server is an Omnis Character field containing the IP address or hostname of a POP3 server that will serve e-mail to the client running
Omnis. For example: pop3.mydomain.com or 255.255.255.254. If the server is not using the default POP3 port (110, or 995 for a secure
connection), you can optionally append the port number on which the server is listening, using the syntax server:port, for example
pop3.mydomain.com:1234.

User is an Omnis Character field containing the account that receives the mail on the designated server (usually an account user
name, for example, Webmaster).

Pass is an Omnis character field containing the password for the account specified in the User parameter, for example, Secret.

StsProc is an optional parameter containing the name of an Omnismethod that POP3Stat calls with statusmessages. POP3Stat calls
the method with no parameters, and the status information in the variable #S1. The status information logs protocol messages ex-
changed on the connection to the server.

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

POP3Stat also supports an alternative secure option, if you pass secure with the value 2, the connection is initially not secure, but after
the initial exchange with the server, POP3Stat issues the STLS POP3 command to make the connection secure if the server supports
it (see RFC 2595 for details). Authentication occurs after a successful STLS command.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

WaitingMessages is an Omnis Long Integer field which receives an error status, or the number of e-mail messages waiting to be
collected on the specified server for the specified account.

197

../external_commands.html
web_error_codes.html

Example

Check to see if there is any e-mail waiting to be received for lUserName
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Stat (lServer,lUserName,lPassword) Returns lWaitingMessages
If lWaitingMessages>0
receive mail
End If

POP3UndoDeletes

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

POP3UndoDeletes (socket[,stsproc]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

POP3UndoDeletes removes the deletion mark from all messages on the POP3 server marked for deletion.

Socket is an Omnis Long Integer field containing a socket opened to a POP3 server using POP3Connect.

StsProc is an optional parameter containing the name of an Omnis method that POP3UndoDeletes calls with status mes-
sages. POP3UndoDeletes calls themethodwith no parameters, and the status information in the variable #S1. The status information
logs protocol messages exchanged on the connection to the server.

Status is an Omnis Long Integer field which receives the result of executing the command. Possible error codes are listed in theWeb
Command Error Codes Appendix.

Example

Remove the deletion mark from all messages currently marked for
deletion on the POP3 Server lServer
Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword) Returns iSocket
POP3UndoDeletes (iSocket) Returns lStatus

Popup menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES NO NO All

Syntax

Popup menumenu-name ([x-coordinate,y-coordinate,menu-constructor-parameters])

198

../external_commands.html
pop3connect.html
web_error_codes.html
web_error_codes.html
../menus.html

Description

This command installs the specifiedmenu as a popupmenu at the specified location. The location is the x,y screen coordinate relative
to the (0,0) position. Under Windows, the coordinate (0,0) is the point directly under the menu bar within the Omnis application
window. Under Linux and macOS, (0,0) is literally the top left corner of the screen. If you omit the x,y coordinates the menu pops up
at the current mouse/pointer position.

The mouseover() function returns the mouse/pointer position relative to the open window and not the Omnis application window.
Using this function to specify the x and y position of the popup menumay not produce the effect you want.

Popupmenu behavesmuch like Popupmenu from list except the source of the popup is a user-definedmenu. It clears the flag if the
user does not select a menu line, otherwise, the line selected from the popup is executed.

If desired, you can supply parameters after the x and y coordinates. The command passes these parameters to the constructor of
the user-defined menu instance. When passing constructor parameters, leave the x and y coordinate parameters as either empty or
#NULL to popup the menu in the current mouse position.

Example

Prevent the default context menu appearing and open the menu mView instead
$event of object on window class
On evRMouseDown ## requires the property $rmouseevents set to kTrue
Process event and continue (Discard event)
Popup menu mView

Popup menu from list

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES NO NO All

Syntax

Popup menu from list list-name at x-coordinate, y-coordinate

Description

This command installs the specified list as a popup menu at the specified x,y screen location. Under Windows, the coordinate 0,0 is
the point directly under the menu bar within the application area. Under Linux and macOS, 0,0 is literally the top left corner of the
screen. If you omit the x,y coordinate from this command the menu pops up at the current mouse/pointer position.

Popup menu from list behaves much like Popup menu except the source of the menu is a list. The specified list can contain any
number of rows but only the first column and a limited number of rows are displayed in the popup menu.

This command clears the flag if the user does not select a list line and LIST.$line is unaffected. After the command has executed you
can use lst() to return the line selected.

The mouseover() function returns the mouse/pointer position relative to the open window and not the Omnis application window.
Using this function to specify the x and y position of the popup menumay not produce the effect you want.

Example

Prevent the default context menu appearing and open a menu containing the lines defined in the list
lMenuLines
$event of object on window class
On evRMouseDown ## requires the property $rmouseevents set to kTrue
Process event and continue (Discard event)
Do lMenuLines.$define(lMenuLine)
Do lMenuLines.$add('Option 1')
Do lMenuLines.$add('Option 2')
Do lMenuLines.$add('Option 3')
Popup menu from list lMenuLines at

199

popup_menu_from_list.html
../menus.html
popup_menu.html

Prepare for edit

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

Syntax

Prepare for edit

Description

This command prepares Omnis for editing data. It brings records into memory ready for updating and rereads the current records
when in multi-user mode in case another user has made a change to a record since it was read in. Your method can then alter the
values of the records. The contents of the current record buffer are not written back to disk until Update files is encountered.

If there is a window open and you require data to be entered via that window, Enter data is required after the Prepare for edit.

Prepare for edit/insert mode is cleared only by a Cancel prepare for update, Update files or Quit all methods command. You can build
lists, print reports and change the main file in the middle of an update without cancelling the Prepare for… mode.

Multi-user considerations

Records in the current record buffer from Read/write files will be locked when Prepare for edit is executed, so as to prevent simulta-
neous editing of a record. The lock is removed by Update files or any command which cancels the Prepare for mode.

If Wait for semaphores is active, a Prepare for editwill wait for a record to become available if another workstation has locked it. If the
user presses Ctrl-Break/Ctrl-C/Cmnd-period while waiting for access, the command fails and processing halts. With Do not wait for
semaphores active, a record lock returns control to the method with the flag false.

In the following method, the Edit mode is used to process the whole of a file. Enter data is not used as no user intervention is re-
quired. Update files writes data to the disk and clears the Prepare for.. mode and record locks.

Example

The following example is equivalent to the 'edit record' on the commands menu which can be installed using 'Install menu *Commands'
Prepare for edit
Enter data
If flag true
Update files

Else
Clear main & con
Redraw {wMyWindow}

End If
In the following method, the Edit mode is used to process the whole of a file. Enter data
is not used as no user intervention is required. Update files writes data to the disk and
clears the Prepare for.. mode and record locks.
In ‘Wait for semaphores’ mode:
Set main file {fAccounts}
Find first on fAccounts.Code
While flag true
Prepare for edit
Calculate fAccounts.Balance as fAccounts.Balance-10
Update files
Next

End While
In ‘Do not wait for semaphores’ mode:
Set main file {fAccounts}
Find first on fAccounts.Code
While flag true
Repeat

200

../changing_data.html
update_files.html
enter_data.html
cancel_prepare_for_update.html
quit_all_methods.html
update_files.html
wait_for_semaphores.html
do_not_wait_for_semaphores.html
do_not_wait_for_semaphores.html
enter_data.html
update_files.html

Prepare for edit
Until flag true
Calculate fAccounts.Balance as fAccounts.Balance-10
Repeat
Update files

Until flag true
Next

End While
In the next Edit example, the Enter data command is included in the method so that the user
can edit the record from the keyboard. Again, the command Update files cancels the Prepare
for update mode and writes data to the disk.
Prepare for edit
Enter data
Update files if flag set
The next example has been written to control record locking by preventing Omnis from waiting
for a record lock. It takes the form of general purpose 'prepare for edit' which you can
call with a number which tells it how many times to try for a lock if the record is locked by
another user.
general Prepare for edit
declare Parameter lTries (Number Long Integer)
Do not wait for semaphores
Calculate lCount as 1
Repeat
Prepare for edit
Calculate lCount as lCount+1

Until #F|(lCount>lTries)
Keeps trying until flag true OR counter>TRIES
Wait for semaphores

Prepare for export to file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Prepare for export to file {export-format}

Export Formats

Delimited (commas)
Delimited (tabs)
One field per line
Omnis data transfer
Delimited (user delimiter)

Description

This commandprepares to export records to a file in one of the specified data formats. The filemust previously have been set using Set
print or export file name.

Example

export to a file called myExport.txt in the root of your omnis tree
Calculate lExportPath as con(sys(115),'myExport.txt')
Set print or export file name {[lExportPath]}
Prepare for export to file {Delimited (commas)}

201

../importing_and_exporting.html
set_print_or_export_file_name.html
set_print_or_export_file_name.html

Export data lExportList
End export
Close print or export file

Prepare for export to port

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Prepare for export to port {export-format}

Export Formats

Delimited (commas)
Delimited (tabs)
One field per line
Omnis data transfer
Delimited (user delimiter)

Description

This command prepares to export records to a port in one of the specified data formats. The file must previously have been set
using Set port name or Prompt for port name.

Example

export to port Com1
Set port name {COM1:}
Prepare for export to port {Delimited (commas)}
Export data lExportList
End export

Prepare for import from client

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO Windows

Syntax

Prepare for import from client {export-format}

Export Format

Delimited (commas)
Delimited (tabs)
One field per line
Omnis data transfer
Delimited (user delimiter)

Description

202

../importing_and_exporting.html
set_port_name.html
prompt_for_port_name.html
../importing_and_exporting.html

Example

Prepare for import from client {Delimited (commas)}
If flag true
Import data lImportList

End If
End import

Prepare for import from file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Prepare for import from file {export-format}

Export Formats

Delimited (commas)
Delimited (tabs)
One field per line
Omnis data transfer
Delimited (user delimiter)

Description

This command prepares Omnis for a series of Import data commands. Youmust specify the format for the import data as the param-
eter, otherwise an error will occur. The parameter can contain square bracket notation but must evaluate to a valid import format
name. You should use the Set import file name command to specify the name of the file to be read in.

If the data matches the specified import format, the flag is set. However, if the data does not match the import format, the flag is
cleared.

When data is imported via a method rather than the Utilitiesmenu, you must open a window which defines the fields in which the
incoming data must be placed. The example below shows a typical import data method.

You can use a $control() method in conjunction with the Import data command.

If there are too few fields on the window, imported fields will be lost. If there are too many, the extra fields are cleared. You can use
the Do not flush command to speed up the import when there is only one user logged into the data file.

Example

import from a csv file called myImport.txt in the root of your Omnis tree
Calculate lImportPath as con(sys(115),'myImport.txt')
Set import file name {[lImportPath]}
Prepare for import from file Delimited (commas)
Import data lImportList
End import
Close import file

Prepare for import from port

203

../importing_and_exporting.html
import_data.html
set_import_file_name.html
do_not_flush_data.html

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES NO NO All

Syntax

Prepare for import from port {export-format}

Export Formats

Delimited (commas)
Delimited (tabs)
One field per line
Omnis data transfer
Delimited (user delimiter)

Description

This command prepares Omnis for importing data from a port. It is similar to the Prepare for import from file command. The user can
cancel the import of data while Prepare for import from port is waiting for data from the port. If this happens, Omnis clears the flag.

Set port name defines which port is used. Under macOS, the choice is 1 (Modem port) or 2 (Printer port). Under Linux and Windows,
the choices are Com1:, Com2:, and so on.

Example

Set port name {COM1:}
Prepare for import from port {One field per line}
Repeat
Import field from file int lImportField

Until lImportField='start data'
Do method ImportData
Close import file

Prepare for insert

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

Syntax

Prepare for insert

Description

This command prepares Omnis for inserting new data into the main file. It clears the main file and prepares to insert a new record
into the main file. All Read/write non-main file records in the current record buffer are reread if a record has been changed. You can
edit data in all the read/write files in the buffer, other than the main file.

The Enter data command is required only if the user is to enter data via a window. Data is not written to the disk until Update files is
executed.

Prepare for edit/insert mode is cleared only by a Cancel prepare for update, Update files or a Quit all methods command. You can
build lists, print reports and change the main file in the middle of an insert without canceling the Prepare for… mode.

If the main file is changed while in Prepare for insert mode, the main file at the time of the Prepare for insert is used when Update
files is encountered.

In multi-user mode, the Prepare for… commands reread the current records from the data file if another user has edited a record.

204

prepare_for_import_from_file.html
set_port_name.html
../changing_data.html
enter_data.html
update_files.html
cancel_prepare_for_update.html
update_files.html
quit_all_methods.html
update_files.html
update_files.html

Example

The following example is equivalent to the 'insert record' on the commands menu which can be
installed using 'Install menu *Commands'
Prepare for insert
Enter data
If flag true
Update files

Else
Clear main & con
Redraw {wMyWindow}

End If

Prepare for insert with current values

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES YES NO All

Syntax

Prepare for insert with current values

Description

This command prepares Omnis for inserting new data into the main file using the values in the current record buffer as a starting
point. Prepare for insert with current values differs from Prepare for insert in that the fields in the main file are not cleared.

In multi-user mode, the Prepare for… commands reread the current records from the data file if another user has edited a record.

Example

Set main file {fAccounts}
Prepare for insert with current values
If flag false
Quit method kFalse

End If
Enter data
Update files if flag set

Prepare for print

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES YES NO All

Syntax

Prepare for print ([Ask for job setup][,Do not finish others]) {instance-name (parameters)}

Options

Ask for job setup If specified, the command opens the job setup dialog
Do not finish others If not specified, all reports in progress are terminated before the new report is started

205

../changing_data.html
prepare_for_insert.html
../reports_and_printing.html

Description

This command prepares Omnis for record-by-record report printing. You specify the report instance name and you can add a list of
$construct parameters for the report instance. The default instance name is the name of the report class itself.

You must put Prepare for print after any Set report name, Select destination…, Set port name, Set print or export file name, Set sort
field and Report parameter commands and before the first Print record command.

The Ask for job setup option opens the job setup dialog that lets you select the number of copies, paper trays, the printer, and so on,
for the current print job.

Prepare for printhas theDonot finish others optionwhichwhen checked allowsmultiple reports to be in progress at the same time. If
this is unchecked (the default) all reports in progress are terminated before the new report is started, which is compatible with earlier
versions of Omnis.

The flag is set if the command is successful, errors cause a message to be displayed. If placed in a reversible block, the Prepare for
printmode is canceled and the totals printed when the command is reversed.

All the Print commands give an error if no report is selected, or if the report is printed to a port and no port is selected.

When reports are printed record-by-record usingPrint record in a loop, the sort fields set up in the report class still trigger the subtotals.
No sorting takes place and, therefore, you must take care in the choice of index. You can trigger subtotals from the method by
including a variable on the first line of the report class, including it in the sort fields and then using the method to change its value
when required.

The Prepare for printmode is terminated or cancelled by End print. You must include an End print after a Prepare for print even if a
totals section is not required.

Example

Print report record by record
Prompt for destination
If flag true
Set main file {fAccounts}
Set report name rMyReport
Send to screen
Prepare for print
Find first on fAccounts.Code
While flag true

tVar1 is a sort field placed on line 1 of the report
class used to trigger subtotal section 1
Calculate tVar1 as fAccounts.Surname
Print record
Next

End While
End print

End If

Previous

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Previous on field-name ([Exact match][,Use search])

206

set_report_name.html
set_port_name.html
set_print_or_export_file_name.html
set_sort_field.html
set_sort_field.html
print_record.html
print_record.html
end_print.html
end_print.html
../finding_data.html

Options

Exact match If specified, the index value of the field in suitable records must equal the current value
Use search If specified, the command uses the current search to select data

Description

This command locates the previous record using the current find table. The Previous command works in the same way as the corre-
sponding option on the Commands menu but with no redraw, allowing you to work through a file. It is usually used after a Find com-
mand which creates a find table of records.

If the Index field, Exact match and/or Search option used in the Next is incompatible with the preceding Find, a new table is built.
Normally, the parameters in this command are left blank so that the current find table is used.

If the Previous command does not follow a Find, a find table is built for the current main file before doing the Previous.

If an indexed field is specified, Previous on SU_NAME for example, the find table is just the index order for the field. TheUse search op-
tion creates a table for the current main file in which the search specification is implicitly stored. Thus, changes to the search do not
affect the find table once it is created.

Once the previous record is located, themain and connected files are read into the current record buffer and the flag is set, otherwise,
the flag is cleared. An error occurs whenever Previous on FIELD is performed on a non-indexed field.

If the Exactmatch option is chosen, the previous recordwith the same index value is found, or the flag is cleared if no previous records
exist with the same index value.

If you use Previouswith a search, it finds the previous record listed on the index table which meets the search criteria.

Example

Find records in descending order
Find last on fAccounts.Code
While flag true
OK message {Found account [fAccounts.Code]}
Update files
Previous

End While

Print check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management NO NO NO All

Syntax

Print check data log

Description

This command prints the current contents of the check data log to the current report destination. There is no need for the log to be
open.

Example

Check data (Check indexes) ## all files
If flag true
Print check data log

Else
OK message {Check data only works if one user is logged on}

End If

207

find.html
next.html
find.html
../data_management.html

Print class

Command group Flag affected Reversible Execute on client Platform(s)

Classes NO NO NO All

Syntax

Print class {class-name}

Description

This command prints the field list and methods (if any) for the specified class. The example prints the field list and/or methods for all
the classes in the current library.

Example

generate list of all classes in the current library
Calculate iList as $clib.$classes.$makelist($ref.$name)
Do iList.$redefine(iClassName)
loop through the list and print the results
For lNum from 1 to iList.$linecount step 1
Do iList.[lNum].$loadcols()
Print class {[iClassName]}

End For

Print record

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Print record {instance-name}

Description

This commandprints a single record of the specified report instance. You use it when printing a report on a record-by-record basis and
usually within a loop. It provides greater control over the report generator than Print report. If you omit the report instance namePrint
record is applied to the most recently started report instance ($ireports.$first).

Each time Print record is encountered, a record section of the report is printed to the selected output using the data in the CRB. Any
page heading, subtotal heading and subtotal sections before the record section are printed where necessary.

Subtotal sections are printed whenever the sort fields change value, provided that the fields entered in the Sort Fields dialog
have Subtotals set to True.

The flag is cleared if:

• no Prepare for print is used, or

• the user cancels the report by pressing Ctrl-Break/Ctrl-C/Cmnd-period, or

• there is an error.

These errors will not cause Omnis to execute a Quit all methods. If the flag is cleared, Omnis will not execute any further Print
record commands until it encounters another Prepare for print.

208

../classes.html
../reports_and_printing.html
print_report.html
prepare_for_print.html
quit_all_methods.html
prepare_for_print.html

Example

Print report record by record
Set main file {fAccounts}
Set report name rMyReport
Send to screen
Prepare for print
Find first on fAccounts.Code
While flag true
Print record
Next

End While
End print

Print report

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Print report ([Ask for job setup][,Use search][,Do not finish others]) {instance-name (parameters)}

Options

Ask for job setup If specified, the command opens the job setup dialog
Use search If specified, the command uses the current search to select data
Do not finish others If not specified, all reports in progress are terminated before the new report is

started

Description

This command prints the specified report instance to the selected output. You specify the report instance name and you can add a
list of $construct parameters for the report instance. The default instance name is the name of the report class itself.

Subtotal sections are printed whenever the sort fields change value, provided that the fields entered in the Sort Fields dialog
have Subtotals set to True.

You specify sort fields and the main file or list as part of the report parameters. If the main file has not been set in the report class,
the current main file is used. You can override all the parameters in the class using the appropriate commands, for example, Set left
margin.

Print report does not use the current record buffer but a special memory buffer to load in and sort records. Thus Print report does
not affect Prepare for mode and does not lose current records. If the report is printed from a list, data is read directly from the report
main list, as specified in the parameters for the report. LIST.$line is unaffected.

The Ask for job setup option opens the job setup dialog that lets you select the number of copies, paper trays, the printer, and so on,
for the current print job.

All records are printed unless the Use search option is specified. In this case, only the records matching the current search class are
printed. It is not necessary to use Prepare for print before Print report.

TheDo not finish others option allowsmultiple reports to be in progress at the same time. If this is unchecked (the default) all reports
in progress are terminated before the new report is started, which is compatible with earlier versions of Omnis.

The flag is cleared if the report is cancelled before completion by the user or in the event of an error. Most errors will display amessage
but will not cause Omnis to Quit all methods.

209

../reports_and_printing.html
set_left_margin.html
set_left_margin.html
prepare_for_print.html
quit_all_methods.html

Example

Print the report rMyReport
Set report main file {fAccounts}
Set report name rMyReport
Clear sort fields
Set sort field fAccounts.Surname
Send to screen
Print report

Print report from disk

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Print report from disk {file-name}

Description

This command prints the contents of the specified disk file to the current report destination. The specified file must contain output
generated using the Disk printing device.

Example

Print the report rMyReport to disk and then print
the report from disk to screen
Calculate lFileName as con(sys(115),'myreport.rep')
Set report name rMyReport
Do $cdevice.$assign(kDevDisk)
Do $prefs.$reportfile.$assign(lFileName)
Print report
Close print or export file
Send to screen
Print report from disk {[lFileName]}

Print report from memory

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Print report from memory field-name

Description

This command prints the contents of the specified binary field or variable to the current report destination. The specified field or
variable must contain output generated using the Memory printing device.

210

../reports_and_printing.html
../reports_and_printing.html

Example

Print the report rMyReport to memory and then print
the report from memory to screen
Set report name rMyReport
Do $cdevice.$assign(kDevMemory)
Do $prefs.$reportdataname.$assign(iBinVar)
Print report
Send to screen
Print report from memory iBinVar

Print top window

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES NO NO All

Syntax

Print top window

Description

This command prints the top window to the current print destination.

Print top window scales the image if it is too big for the paper (or page preview). You can disable scaling by adding the “disablePrint-
TopWindowScaling” item to the “ide” section of the config.json file and setting it to true (if omitted, the setting is false by default and
scaling will occur).

Example

Print the current window to screen
Send to page preview
Print top window

Print trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Print trace log

Description

This command prints the contents of the trace log to the current print destination.

Process event and continue

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

211

../windows.html
../debugger.html
../events.html

Syntax

Process event and continue ([Discard event])

Options

Discard event If specified, Omnis discards the active event (meaning that no further processing will
occur for that event)

Description

This command causes the current event to be processed immediately allowing the event handler method containing the command
to continue to execute. Normally, the default processing for an event takes place when all the event handler methods dealing with
the event have finished executing. It is not possible to have active unprocessed events when waiting for user input so the default
processing is carried out for any active events after an Enter data command has been executed or at a debugger break. Therefore
if required, you can use this command to override the default behavior and force events to be processed allowing the event handler
method to continue.

The Discard event option lets you discard the active event.

Example

This code would cause the OK event to be thrown away before the Enter Data starts
On evOK
Process event and continue (Discard event)
Open window instance wMyWindow
Enter data

Prompt for data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files YES NO NO All

Syntax

Prompt for data file ([Do not close other data][,Read-only][,No conversion by runtime][,Convert without user prompts][,Full Unicode
conversion]) {[internal-name] or odb://[address:port][,internal-name]}

Options

Do not close other data If specified, the command does not close all
open data files before opening the specified
data file

Read-only If specified, the data file is opened in read-only
mode

No conversion by runtime Omnis normally offers to convert data files
created by an earlier version of Omnis. If this
option is specified, the runtime version of
Omnis will not offer to convert the file, and the
command will fail

Convert without user prompts If specified, and conversion is allowed, Omnis
will immediately perform the conversion
without giving the user any prompts that
require a response; also, the user cannot
cancel the conversion

212

enter_data_cmd.html
../data_files.html

Full Unicode conversion Unicode Studio only. If specified, and convert
without user prompts is specified, do full
Unicode conversion instead of quick
conversion (quick conversion is only ok when
you know all character data in the file is 7 bit)

Description

This command prompts the user to enter the name of a data file. A dialog box is displayed that lets the user choose a data file. An
error message e.g. “Unable to find data file” is generated if the selected file cannot be opened, and the user is forced to select another
file name or Cancel. If the user selects Cancel, the flag is cleared and the original data file remains selected.

The selected file is opened in shared mode unless the volume does not support record locking.

The existing open data files remain open if the Do not close other data option is selected. In this case, the new data file becomes the
“current” data file and this becomes the default data file for file classes which have not been associatedwith a particular data file using
the Set default data file command. If theDo not close other data option is not specified, all other open data files are closed even if the
command fails.

If an attempt is made to open a data file which is already open, that data file is closed and reopened. The Read-only Studio/Omnis
7 check box causes the data file to be opened in read-only mode. This lets you open an Omnis 7 data file in read-only mode in Omnis
Studio without conversion taking place.

If you select the No conversion by runtime option, and the data file was created with a previous version of Omnis, then the runtime
version of Omnis will not convert the data file. The default is that an Omnis runtime will ask the user if they want to convert the data
file.

If the data file is to be accessed using the ODB (Omnis Data Bridge), then you indicate this using a special syntax:

odb://[address:port]

where address:port is the TCP/IP address and port number of the ODB server, e.g. 127.0.0.1:5900. Omnis opens a dialog that allows you
to select a data file handled by the ODB server. You can omit address:port, in which case Omnis uses the address and port stored
in the $odbserver root preference. Note that the value of $odbserver is stored in the file odb.txt in the studio folder of the Omnis
installation tree.

Example

Test if file exists {Orders.df1}
If flag true
Open data file {Orders.df1}

Else
Prompt for data file
If flag false

Quit method
End If

End If

Example 2 - Prompt for a data file on a specific ODB server
Prompt for data file {odb://127.0.0.1:5900}
Example 3 - Prompt for a data file using the ODB server identified by $prefs.$odbserver
Prompt for data file {odb://}

Prompt for destination

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations YES YES NO All

213

set_default_data_file.html
../report_destinations.html

Syntax

Prompt for destination

Description

This command displays the report destination window so that the user can select the destination for the report. The user can choose
from destinations including: printer, screen, page preview, file, port, and clipboard.

If the command is part of a reversible block, the destination reverts to its former identity when the method terminates. If the user
selects the Cancel button on the dialog, the flag is cleared.

Example

allow user choice to where to print report to
Set report name rMyReport
Prompt for destination
If flag true
Print report

End If

Prompt for import file

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES YES NO All

Syntax

Prompt for import file

Description

This commandprompts the user to select the nameof the import file. The flag is set if the import file is successfully selected, otherwise
a Cancel clears the flag, closes the current file and closes the dialog. You use the selected file in any subsequent Import data com-
mands.

If you use Prompt for import file in a reversible block, the import file is closed when the method containing the reversible block
terminates.

Example

Prompt for import file
Prepare for import from file {Delimited (commas)}
Import data lImportList
End import
Close import file

Prompt for input

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes YES NO NO All

Syntax

Prompt for input prompt/title/icon-id/max-chars Returns return-value ([Sound bell][,Cancel button][,Upper case only][,Password en-
try][,Prompt above entry])

214

../importing_and_exporting.html
import_data.html
../message_boxes.html

Options

Sound bell If specified, the system bell sounds when the
command displays the message

Cancel button If specified, themessage has a cancel button
Upper case only If specified, all input is converted to upper

case at the user interface
Password entry If specified, all input is displayed as ‘*’ or a

solid circle at the user interface
Prompt above entry If specified, the prompt is displayed above

the entry field rather than the default which
is to the left of the entry field

Description

This command opens a message box requesting a value from the user. You can specify the text for the prompt, title and icon for the
message box, and themaximumnumber of characters for the input. If the user enters a value and presses OK, the command sets the
flag and returns the user value. The command is not reversible.

The first parameter for the Prompt for input command is the prompt-text which is the prompt displayed to the left of the entry field
by default; you can place the prompt text above the entry field using the Prompt above entry option. You can also enter a title for
the message box. The prompt and title default to empty. Note that if you want to enter an empty title, you need to enter ‘/ /’ to avoid
ambiguity with the newline convention.

You can specify an icon for the message box using the icon-id of an icon from the OmnisPic or UserPic icon data file. Zero is the
default whichmeans no icon. You can use one of the icon size constants enclosed in square brackets with the icon id to specify a non-
default size, for example, [1710+k48x48]. You can specify the maximum number of characters that the user can enter in max-chars.
This defaults to the maximum length defined in your return field. The return-field can specify an initial value for the entry field on the
message box, and receives the value entered after the user clicks OK.

The Sound bell option causes the system beep to sound when the message box opens. The Cancel button option adds a Cancel
button to the message box. The flag returns false if the user presses the Cancel button. The Upper case only option forces all input to
be upper case, while the Password entry option hides the input, by displaying ‘*’ for each character entered.

Example

Prompt for a username and greet the user
Prompt for input Please enter your nam Returns lUserName (Sound bell ,Cancel button,Prompt above entry)
If len(lUserName)
OK message (Icon) {Hello [lUserName]}

End If

Prompt for library

Command group Flag affected Reversible Execute on client Platform(s)

Libraries YES NO NO All

Syntax

Prompt for library ([Do not close others][,Enable conversion by runtime][,Do not open startup task][,Convert without user prompts])
{internal-name (startup-parameters)}

Options

Do not close others If specified, the command does not close all open libraries
before opening the specified library

215

../libraries.html

Enable conversion by runtime The development version of Omnis offers to convert
libraries created by an earlier version of Omnis. If this
option is specified, the runtime version of Omnis will also
offer to convert such libraries

Do not open startup task If specified, the command does not construct an instance
of the startup task when it opens the library

Convert without user prompts If specified, and conversion is allowed, Omnis will
immediately perform the conversion without giving the
user any prompts that require a response; also, the user
cannot cancel the conversion

Description

This command prompts the user for a library file. You can specify the internal name and startup task construct parameters of the
library to be opened, together with the Do not close others, Do not open startup task, and Enable conversion by runtime options.

If the internal name of an opened library is specified, a check is made to ensure the internal name is unique among the open libraries;
a runtime error occurs if this is not the case. If no internal name is specified, the default internal name is the disk name of the file with
the path name and suffix removed. For example, the internal name for ‘hd:myfiles:testlib.lbs’ is ‘testlib’.

If an attempt is made to open a library which is already open, that library is closed and reopened. Refer to Close Library for the
consequences of closing a library. If the user cancels the Select Library dialog, the flag is cleared and no libraries are closed.

Do not close others

The Do not close others option lets you keep open all other libraries. If the Do not close others option is not selected, then all other
open libraries are closed when the user opens a new library, including the one containing the currently executing method.

Passwords

If the library does not need a master password, it is opened at the master level, otherwise the usual prompt for password dialog is
opened. The library is closed and a flag false returned if this dialog is closed without a password being entered.

Startup task

If theDonot open startup task option is specified, the startup task construct for the opened library is not called and there is no startup
task instance. Otherwise, the startup task $construct() method is called and the parameters for it are passed.

Enable conversion by runtime

If you select the Enable conversion by runtime option, and the library was created with a previous version of Omnis, then the runtime
version of Omnis can convert the library if the user allows. The default is that an Omnis runtime will not ask the user if they want to
convert the library.

Example

Prompt the user for a library path and open the selected
library
Prompt for library (Do not close others)
If flag true
OK message {Library Opened!}

End If

Prompt for page setup

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters YES NO NO All

Syntax

Prompt for page setup

216

close_library.html
../report_parameters.html

Description

This command displays the Printer page setup dialog box. This dialog allows the page size, orientation and printer’s effects to be
chosen before a report is printed. The flag is set if the dialog is closed by clicking on the OK pushbutton. Cancel clears the flag and
leaves the page parameters unchanged.

Example

Prompt for page setup before printing the
report rMyReport
Set report name rMyReport
Prompt for page setup
If flag true
Print report

End If

Prompt for port name

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations YES YES NO All

Syntax

Prompt for port name

Description

This command displays the Set port dialog box that lets the user select a port. The flag is set if the port is successfully selected; if the
user cancels, the flag is cleared and the port closed.

You can set the baud rate and other parameters for the port using Set port parameters.

If the command is in a reversible block, the port is closed when the method terminates.

Example

Prompt for port name
Prepare for import from port
If flag true
Import data lImportList

End If
End import
Close port

Prompt for print or export file

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations YES YES NO All

Syntax

Prompt for print or export file

217

../report_destinations.html
set_port_parameters.html
../report_destinations.html

Description

This command displays the Select Print or Export File dialog. The flag is set if the file is successfully selected. If the file exists already,
a further dialog lets you delete it. If the user cancels, the flag is cleared and the file is closed.

If the command is in a reversible block, the file is closed when the method terminates.

Example

Prompt for print or export file
If flag true
Send to file
Set report name rMyReport

End If
Print report

Prompted find

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Prompted find ([Exact match])

Options

Exact match If specified, the index value of the field in suitable records must equal the current value

Description

This command prompts the user to enter a value in an indexed field on the current window and locates the record whichmost closely
matches that value. The user can use the Tab key to select an indexed field. The Find field is the current field for the window when
the user clicks on the OK button.

Once the user enters a value in the Find field and clicks OK, Omnis locates the record most closely matching this value, the main and
connected files are read into the current record buffer and the flag is set. If the indexed field is in a connected file, the find continues
until a record connected to a valid main file record is located. The current index, as used by Next and Previous, is set to the Find field.

If the exact field value cannot be matched, the next highest value in the index is located. You use the Exact match option if you want
only the exact match.

Example

Find the record for an indexed value entered into
the current window instance
Prompted find
If flag true
Do $cinst.$redraw()

End If

Put file name

218

../finding_data.html
next.html
previous.html

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Put file name (path [,dialog-title] [,prompt] [,default]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command opens the standard Save as… dialog for the current Operating System, in order to obtain the path of a file from the user.
You would typically use this command to prompt the user for the path of a new file. If you want to prompt the user to enter the path
of an existing file, use the Get file name command instead.

You can pass a title for the dialog, in dialog-title. You can specify a default value for the entry field in default.

Put file name returns the full pathname of the file the user entered in path, or empty if no file was entered (that is, the Cancel button
was clicked). The named file is not opened or created.

It returns an error code (See Error Codes), or zero if no error occurs.

Example

prompt the user for a file name, default to myfile.txt
Put file name (lPathname,'select a file','','myfile.txt') Returns lErrCode
If len(lPathname)=0
cancel button pressed

Else
file name entered

End If

Queue bring to top

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue bring to topwindow-instance-name

Description

This command queues a “bring to top” event for the specified window instance as if the user had clicked on the window instance with
the mouse. The command brings the window instance to the fore and generates evWindowClick and evToTop events. If, at runtime,
the specified window instance does not exist, the command will do nothing.

Example

Open window instance wMyWindow/wInst1/STK
Open window instance wMyWindow/wInst2/STK
Queue bring to top wInst1 ;; brings the instance wInst1 to the top

Queue cancel

219

../external_commands.html
get_file_name.html
fileops_error_codes.html
../events.html

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue cancel

Description

This command queues a “cancel” event, as if the user had clicked on the Cancel button or pressed the escape key. The command
takes no parameters.

Example

Setup a timer call to cancel the edit after 120 seconds
Set timer method sec cGeneral/TimerSetup
Prepare for edit
Enter data
Update files if flag set
Code for cGeneral/TimerSetup
Send to trace log {No edit has occurred - Timed out}
Queue cancel

Queue click

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue click ([Shift][,Command/Ctrl]) {field-name (selection-range)}

Options

Shift If specified, the queued event behaves as if the shift key has been pressed
Command/Ctrl If specified, the queued event behaves as if the command/ctrl key has been pressed

Description

This command queues a “mouse click” event on a specified field, that is, it simulates a user-generated mouse click/drag operation on
a field. You must specify the name of the field as a parameter, including the click positions within the field (that is, Start Row, Finish
Row for lists and Start Character, Finish Character for text field selection). The specified field will get the focus.

There are options for including up to three modifier keys (that is, Shift, Ctrl/Cmnd) along with the click.

The field name parameter must be the name of a window field, not the name of the method associated with the field or the data
name ($name, not $dataname).

Queue clicks returns an error if the field cannot be found. You can turn off this error by setting the option “reportQueueCommand-
FieldNotFoundErrors” to false, located in the “defaults” section of config.json.

Queue click for pushbuttons

If the specified field is a pushbutton it is activated and an evClick event is generated as if the user had clicked on the button.

Queue click for Radio buttons and check boxes

220

../events.html
../events.html

If the specified field is a check box or set of radio buttons, the check box field or group of radio buttons is checked/unchecked accord-
ingly, and an evClick event is generated. Methods behind radio buttons and check boxes run as if the user had clicked on the window
fields.

Queue click for Radio groups

If the specified field is a radio group, you identify themember of the group that is to receive the click by setting the selection-range pa-
rameter to the value of$dataname that corresponds to the member. When the command executes, Omnis checks the member and
generates an evClick event. Event methods for the radio group run as if the user had clicked on the field.

Queue click on Edit fields

You can specify a range of characters. For example, the parameter field-name (2,5), highlights the characters within cursor positions 2
to 5 (that is, characters 3 to 5). Note that cursor position 0 is to the left of character 1, and cursor position 1 is to the right of character 1
(or to the left of character 2).

If Shift is selected and 5 is passed as the selection point, all characters between the current cursor position and cursor position 5 will
be highlighted.

As the Queue click examples for Edit show, the two parameters act as a “click on, drag to” key operation.

Queue click for lists

If the specified field is a window list box or grid, the range is interpreted as a range of list lines. For example, the parameter list-field-
name (2,5), selects the lines 2 to 5 (if $multipleselect for the list field is set), and the current line will be set to 2. An evClick event is
generated after the specified lines have been selected.

Example

Queue click for edit fields

highlight characters 3 to 7
Queue click {myEntryField (7,2)}

highlight characters 6 to 9
Queue click {myEntryField (5,7)}

assuming the current cursor is at position 15,
characters 9 to 15 are highlighted
Queue click (Shift) {myEntryField (8)}

assuming the current cursor is at position 15,
characters 16 to 22 are highlighted
Queue click (Shift) {myEntryField (22)}

assuming the current cursor is at position 15,
characters 10 to 15 are highlighted
Queue click (Shift) {myEntryField (7,9)}

assuming the current cursor is at position 15,
characters 8 to 15 are highlighted
Queue click (Shift) {myEntryField (9,7)}

Queue click for lists
lines 7 to 3 are selected and the current line set to 7
Queue click {myListField (7,3)}

lines 2 to 9 are selected and the current line set to 2
Queue click {myListField (2,9)}

the current line to line 12 are selected
the current line does not change
Queue click (Shift) {myListField (12)}

221

line 13 is selected and any lines currently selected remain selected
the current line does not change
Queue click (Shift,Command/Ctrl) {myListField (13)}

lines 4 to 8 are selected and any lines currently selected remain selected
the current line does not change
Queue click (Shift,Command/Ctrl) {myListField (4,8)}

Queue close

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue closewindow-instance-name

Description

This command queues a “close window” event for the specified window instance as if the user had selected the close option (system
menu under Windows and Linux, or close box under macOS).

The specified window instance is closed, and an evClose event is produced. If the specified window instance does not exist, the
command has no effect. If you omit the window instance name, the top window instance at the time of execution will be closed, and
an evClose event is generated.

Example

Open window instance wMyWindow/wInst1
Open window instance wMyWindow/wInst2
Queue close ## close wInst2, the top instance

Queue double-click

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue double-click ([Shift][,Command/Ctrl]) {field-name (selection-range)}

Options

Shift If specified, the queued event behaves as if the shift key has been pressed
Command/Ctrl If specified, the queued event behaves as if the command/ctrl key has been pressed

222

../events.html
../events.html

Description

This command queues a “double-click event” on the specified field, that is, it simulates a user-generated double-click event on the
field. A double-click event always generates an evClick before an evDoubleClick. Youmust specify the nameof the field as a parameter,
including the click positions within the field (that is, Start Row, Finish Row for lists and Start Character, Finish Character for text field
selection).

There are options for including up to three modifier keys (that is, Shift, Ctrl/Cmnd) along with the click.

The field name parameter must be the name of a window field, not the name of the method associated with the field or the data
name ($fieldname, not $dataname).

Queue double click returns an error if the field cannot be found. You can turn off this error by setting the option “reportQueueCom-
mandFieldNotFoundErrors” to false, located in the “defaults” section of config.json.

Queue double-click for edit fields

Double-clicks on text within an edit field will select the complete word. If a range was specified, all COMPLETE words falling within
the start and end positions will be highlighted.

Queue double-click for list fields

Double-clicks on list fields will generate an evClick followed by an evDoubleClick. The behavior in other ways is the same as described
for Queue click.

Queue double-click for other field types

Pushbuttons, radio buttons, radio groups and check boxes behave in the same way as described for Queue click. An evDou-
bleClick event is not generated.

Example

Example for edit fields
If the text in the field is:
Good books are the lifeblood of a master spirit
and the command is
Queue double-click {myEditField (7,23)}
The selected text is:
books are the lifeblood
Example for pushbutton - opens a new window while in Enter Data mode
and selects all the text in the field myField
On evClick
Open window instance wMyWindow
Queue double-click {myField}

On default
Quit event handler

Queue keyboard event

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue keyboard event {key-sequence or calculation}

Description

This command queues a “keyboard” event or series of events. It simulates keyboard entry by the user from within your methods. You
can enter the key sequence in several ways:

223

/queue_click.html
queue_click.html
../events.html

1. Recording a key sequence
When your cursor is positioned at the end of the command, you can press the Helper button (at the bottom left of the editor
panel), or press Alt-H on Windows or Cmnd+Opt+H on macOS to open the Key Sequence Recorder. You can use the Start
Recording and Stop Recording buttons to specify the keys to be generated. During the recording, all key events are echoed to
the Key sequence parameter field, and are not acted on by Omnis in any other way (for example, pressing Ctrl/Cmnd-Qwill NOT
suddenly quit Omnis). Click events, however, behave normally so you can click on Stop recording button.

2. Entering into the text field
You can enter the text representation manually to generate the keys. Syntax checking is done at design time. When recording
is off, you can edit the Key sequence parametermanually. This lets you delete key combinations or enter key sequences by hand.
Since spaces are used to automatically separate key presses, the special key name SPACE will have to be manually entered to
generate a “space key” event.

3. Specifying a calculation
You can enter a calculation like concatenating text fields, which will contain the text representation of the keys to be generated.
Syntax checking is done at runtime. Incorrect key sequence syntax will result in a runtime error. When you use a calculation,
the general calculation syntax applies, which is checked at design time.

Key names

Special keys or key combinations are represented using the names of the keys. When a given key combination is run on another
platform, a conversion is carried out internally so that, for example, alt-c underWindows becomes opt-c under MacOSX. The list below
summarizes the conversion:

Windows and Linux

Modifier Key names: shift-, alt-, ctrl-

Special Key names: Space, Up, Down, Left, Right, PgUp, PgDn, PgLeft, PgRight, Home, End, Tab, Return, Enter, Bkspc, Clear, Cancel,
Minus, Move, Del, Ins, Exit

MacOSX

Modifier Key names: shift-, opt-, com-

Special Key names: Space, Up, Down, Left, Right, PgUp, PgDn, PgLeft, PgRight, Home, End, Tab, Return, Enter, Bkspc, Clear, Cancel,
Minus, Move, Del.

Set current field

If queued key events are intended for an edit field or a list, it is advisable to queue a “set current field” event before generating the key
events. On the other hand, general key events, for example, menu accelerators or shortcut keys, do not require a specific current field.

Key event restrictions under Windows and Linux

Under Windows, you can use alt-<key> sequences to select menu options from the menu bar. Since the menu bar is handled by the
operating environment, and Queue keyboard event generates internal Omnis events, queuing alt-<key> events will NOT drive the
menu bar. Thus, for example, queuing alt-f will not drop the Filemenu.

As a consequence of the above restriction, evKey events are not generated for queued alt-<letter> sequences either.

A second situation where evKey events are not generated is when you queue alt-control-<letter> events. These key combinations are
normally used to produce accented characters, and this facility exists only in some but not all keyboards. Since Windows does not
generate character messages, these events do not generate evKey.

WARNINGWhen queuing events on pushbuttons there is a danger of recursion under Windows and Linux, but also under macOS if
buttons have been givenWindows behavior, that is, they get the focus. Normally, when the focus is on a pushbutton, you can activate
it by pressing the space bar. If that pushbutton receives an evClick event and has a queued space key event WITHOUT a set current
field, the space key event will be sent back to the pushbutton, thereby generating another evClick, which again activates the space
key event. Infinite recursion occurs, resulting in a crash.

Key event restriction under macOS

Under macOS, you use opt-<letter> to generate extended characters. When queued key events include such opt-<letter> se-
quences, evKey is not generated.

224

Example

button method
On evClick
Open window instance wMyWindow
Queue keyboard event {y o u r n a m e}

paste button
On evClick
Queue keyboard event {ctrl-V}

Queue OK

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue OK

Description

This command queues an “OK” event. It simulates the user clicking on the OK button or pressing the Enter key.

Example

trap a Tab event and issue an OK event from it
On evTab
Queue OK

Queue quit

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue quit

Description

This command queues a quit event. It simulates the user selecting the Exit/Quit option in the Filemenu. In enter datamode, a Queue
OK or Queue Cancel should precede a Queue quit to close the enter data correctly.

Example

button method to terminate data entry and quit
If flag true
Queue OK
Queue quit

Else
Queue cancel
Close top window

End If

225

../events.html
../events.html
queue_ok.html
queue_ok.html
queue_cancel.html

Queue scroll

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue scroll (Left|Right|Up|Down[,Page]) {field-name (units)}

Types

Left Scroll the field to the left
Right Scroll the field to the right
Up Scroll the field up
Down Scroll the field down

Options

Page If specified, scrolling occurs in pages rather than the units corresponding to the up and down arrows on the scroll bar

Description

This commandqueues a “scroll” event in the specified scrollable field, that is, it simulates amouse click or page key event on a scrollable
field. With this command you can scroll a field up or down, left or right provided the appropriate scroll bar is available. You cannot use
this command to scroll a window instance.

The field name parameter must be the name of a window field, not the name of the method associated with the field or the data
name ($fieldname, not $dataname).

Queue scroll returns an error if the field cannot be found. You can turn off this error by setting the option “reportQueueCommand-
FieldNotFoundErrors” to false, located in the “defaults” section of config.json.

The Units parameter specifies the number of lines to scroll up or down in a vertical scroll bar for a field; one unit represents one line.
For a horizontal scroll bar, the unit is approximately one character.

If the Page option is selected, the event simulates clicking above or below the “thumb” and is the same as using the Page up or Page
down key.

Example

scroll a list field by 5 lines
Queue scroll (Down) {myListField (5)}

Queue set current field

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue set current field {field-name}

226

../events.html
../events.html

Description

This command queues a “set current field” event in the specified field, that is, it simulates a user-generated click or tab to the specified
field. In enter data mode, the contents of the field is selected. The command does not generate an evClick. However it will produce
proper evBefore and evAfter events during Enter data.

The field name parameter must be the name of a window field, not the name of the method associated with the field or the data
name ($fieldname, not $dataname).

Queue set current field returns an error if the field cannot be found. You can turn off this error by setting the option “reportQueueCom-
mandFieldNotFoundErrors” to false, located in the “defaults” section of config.json.

Example

field method to jump to another field within the same window instance
On evAfter
Queue set current field {myField}

Queue tab

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO NO All

Syntax

Queue tab ([Shift])

Options

Shift If specified, the queued event behaves as if the shift key has been pressed

Description

This commandqueues a “tab” or “shift-tab” event. It simulates a user-generated tab event. With the Shift option, it simulates a shift-tab
keypress.

Example

Field method for a window field to simulate auto tab. When the 4th character is entered
a tab occurs. The field must have $keyevents turned on.
On evBefore iCount as 0
On evKey
Calculate iCount as iCount+1
If iCount>3

Queue tab
End If

Quick check

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Quick check ([Perform repairs])

227

enter_data.html
../events.html
../data_management.html

Options

Perform repairs If selected, repairs to the data file are automatically carried out

Description

This command performs a quick check on the current data file. It examines the status of the current data file by reading only the
internal tables in which records of any inconsistencies are stored. These records indicate corruption caused by either hardware or
software failure. No attempt is made to systematically check the entire data file for problems (you use the Check data command for
this purpose).

The command is not reversible: it sets the flag if it completes successfully and clears it otherwise.

If the Perform repairs option is specified, any repairs required are automatically carried out, otherwise the results of the check are
added to the check data log. The check data log is not opened by this command but is updated if it is already open. If the Perform
repairs option is specified, the following applies:

If you are not running in single user mode, Omnis automatically tests that only one user is logged onto the data file (the command
fails with flag false if not), and further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute and it is not possible to cancel execution even if a working message with cancel box is
open.

Example

Quick check
Yes/No message {View the Quick Check log?}
If flag true
Open check data log

End If

Quit all if canceled

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Quit all if canceled

Description

This command quits all methods that are running when the user clicks on a Cancel button inside a workingmessage dialog box. The
keyboard equivalent to the Cancel pushbutton is the Escape key underWindows and Linux, or Cmnd-period undermacOS. Note that
the test for cancel is carried out in Working message only if Disable cancel test at loops has first been executed.

Example

Quit the current and all other methods currently running
if the cancel button is pressed on the working message
Begin reversible block
Disable cancel test at loops

End reversible block
Repeat
Working message (Cancel button,Repeat count)
Quit all if canceled
Calculate iMyVar as iMyVar+1

Until iMyVar=500000

228

check_data.html
../methods.html
working_message.html
disable_cancel_test_at_loops.html

Quit all methods

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Quit all methods

Description

This command quits all methods that are running. If the command is executed during amethod which has been called, Omnis quits
both the current method and the calling method.

Example

Quit all methods so that OK message never gets shown
calling method
Do method QuitMethod
OK message {This never never gets shown}
method Quitmethod
Quit all methods

Quit event handler

Command group Flag affected Reversible Execute on client Platform(s)

Events NO NO YES All

Syntax

Quit event handler ([Discard event][,Pass to next handler])

Options

Discard event If specified, Omnis discards the active event (meaning that no further processing will occur for that event)
Pass to next handler If specified, Omnis will pass the event to the next level of handler (the window or task $control() method)

Description

This command is used to quit out of the currently executing event handling method and is only used to terminate an On clause. It is
not reversible and does not affect the flag.

If the Discard event option is checked, the event is thrown away and Omnis quits the event handling method.

If the Pass to next handler option is checked, the event is passed to the next level of handler such as the window $control() method
or task $control() method.

229

../methods.html
../events.html
on.html

Example

On evAfter
If iName=''

OK message {You must enter a name}
Queue set current field {myField}
Quit event handler (Discard event)

End If
$event for a window field, to pass all events to the window $control() method

On default
Quit event handler (Pass to next handler)

Quit method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO YES All

Syntax

Quit method return-value

Description

This command quits the currentmethod and returns control to the callingmethod, if any. If you supply a return-value, the command
returns this value to the calling method.

Example

Prompt the user to quit Omnis
Yes/No message {Do you want to quit Omnis?}
If flag true
Quit Omnis (Force quit) ## closes all instances and tasks, then quits Omnis

End If

Quit Omnis

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO NO NO All

Syntax

Quit Omnis ([Force quit])

Options

Force quit If specified, Omnis will force all instances to close even if they have $canclose methods that would prevent them (and therefore Omnis) from closing

Description

This command quits Omnis closing all libraries and data files. It is equivalent to the Exit/Quit option in the File menu. However, if
the Force quit option is not checked Quit Omniswill set the flag false and do nothing if an instance or library cannot be closed.

If the Force quit check box is checked Omnis will force any class instances to close so that the quit can take place, even if they have
custom $canclose logic which would normally prevent them from closing.

This command can also be executed in a Web Client method running on the client. It only does anything in the Omnis Web Client
running onWindows Mobile, where it quits the client application; the Force quit check box has no affect.

230

../methods.html
../methods.html

Example

Prompt the user to quit Omnis

Yes/No message {Do you want to quit Omnis?}
If flag true
Quit Omnis (Force quit) ## closes all instances and tasks, then quits Omnis
End If

Read entire file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Read entire file (path, binary-variable [,‘r’]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command reads an entire file into a binary field. If you specify ‘r’ as the third parameter, it opens the file in read-only mode. It
returns an error code, or zero if no error occurs. The returned binary value has the following format:

• 12 byte header containing the Type (4 bytes), Creator (4 bytes), and file length (4 bytes).

• File data.

The Type is always ‘TEXT’, and the Creator is always ‘mdos’.

Example

Prompt the user for a file and read it's entire contents into the
binary variable lBinFld
Do FileOps.$putfilename(lPathname,'Select a file','') Returns lReturnFlag
If lReturnFlag
Read entire file (lPathname,lBinfld) Returns lErrCode

End If

Read file as binary

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Read file as binary (refnum, binary-variable [,start-position] [,num-bytes]) Returns err-code

231

../external_commands.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command reads a file, or part of a file, into a binary variable. You specify the file reference number returned by the Open file com-
mand in refnum. The binary data read from the file is returned in binary-variable.

If you specify the start-position, the file is read at that absolute byte position (0 is the first byte in the file, 1 is the second byte in the file,
and so on), otherwise it begins at the current position (0 when the file is first opened). If you specify the number of num-bytes, only
that many bytes are read, otherwise the file is read until the end of the file is reached.

If you specify a start-position of 0 and num-bytes equal to 0, the file pointer is reset to byte position 0 in the file. If a start-position of
-1 is given, the file pointer is reset to the end of the file. For both cases an empty binary-variable buffer is returned.

It returns an error code (See Error Codes), or zero if no error occurs. Note the special case for end of file. In this case, the command
returns the error code –39, but may still have read some data.

Example

Prompt the user for a file and read its contents into the binary
variable lBinfld
Do FileOps.$putfilename(lPathname,'Select a file','') Returns lReturnFlag
If lReturnFlag
Open file (lPathname,lRefNum)
Read file as binary (lRefNum,lBinfld) Returns lErrCode
Close file (lRefNum)

End If

Read file as character

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Read file as character (refnum, character-variable [,start-position] [,num-characters]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command reads a file, or part of a file, into a character variable. You specify the file reference number returned by the Open
file command in refnum. The text read from the file is returned in character-variable.

If you specify the start-position, the file is read at that absolute character position (0 is the first character in the file, 1 is the second, and
so on), otherwise it begins at the current position (the first character when the file is first opened). If you specify num-characters, only
that many characters are read, otherwise the file is read until the end of the file is reached.

If you specify a start-position of 0 and num-characters equal to 0, the file pointer is reset to character position 0 in the file. If a start-
position of -1 is given, the file pointer is reset to the end of the file. For both cases an empty character-variable buffer is returned.

It returns an error code (See Error Codes), or zero if no error occurs. Note the special case for end of file. In this case, the command
returns the error code –39, but may still have read some data.

Example

Prompt the user for a text file and read its contents into the character
variable lCharVar
Do FileOps.$putfilename(lPathname,'Select a text file','*.txt') Returns lReturnFlag
If lReturnFlag

232

fileops_error_codes.html
../external_commands.html
fileops_error_codes.html

Open file (lPathname,lRefNum)
Read file as character (lRefNum,lCharVar) Returns lErrCode
Close file (lRefNum)

End If

ReadBinFile

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

ReadBinFile (pathname, binfld [, start [, length]]) Returns return-value

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

ReadBinFile reads binary data from the file system or data fork (not the resource fork).

Note for macOS Users: ReadBinFile andWriteBinFile are only useful for reading and writing the data fork of files.

Pathname is a character field containing the full path of the file to read.

Binfld is a binary field in which the data is stored.

Start is an optional parameter specifying an integer field that contains the byte position in the file where the command should start
reading. Defaults to 0 (zero), that is, the beginning of the file.

Length is an optional parameter specifying an integer field containing the number of bytes to read. If the parameter is not used, the
value defaults to the length of the file.

Return-value is a long Integer that is the number of bytes read, if no error occurs. Otherwise, it is an error code, one of:

Code

-1
-2
-10
-11
-12
-20
-100
-101
-998

Example

read the binary data from the file lPathname
Calculate lPathname as con(sys(115),'binfile')
ReadBinFile (lPathname,lBinfld) Returns lNumbytes
OK message {[lNumbytes] bytes read}

Redefine list

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO NO NO All

233

../external_commands.html
writebinfile.html
../lists.html

Syntax

Redefine list {list-of-field-or-file-names (F1,F2..F3,F4)}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command redefines the columns of the current list. No change is made to the data currently stored in the list, or to the data type
of each column; the command only changes the field name associated with each column. If you pass more field names to Redefine
list than the current number of columns, the extra names are ignored. List boxes on windows will no longer display the data in the
list unless you change their $calculation property to include the new variable or field name(s).

Example

Set current list iList1
Define list {iCol1Date,iCol2Num,iCol3Char}
Add line to list
redefine the 3rd column in the list to hold boolean values
Redefine list {iCol1Date,iCol2Num,iCol4Boolean}
the boolean field value is converted into a character field format 'YES' etc and then add to the list
Add line to list
or do it like this
Do ilist.$redefine(iCol1Date,iCol2Num,iCol4Boolean)

Redraw

Command group Flag affected Reversible Execute on client Platform(s)

Fields YES NO NO All

Syntax

Redraw ([Refresh now]) {list-of-field-or-window-names (Name1,Name2,…)}

Options

Refresh now If specified, the redraw occurs
before the command finishes
executing, rather than occurring at
a later indeterminate point

Description

This command redraws the specified field or window instance (or list of fields or window instances). The Refresh now option ensures
the redraw is completed when the command is executed. Without this option the redraw occurs when the method has finished
executing.

234

../fields.html

Example

Prepare for edit
Enter data
If flag true
Update files

Else
Clear main & con
Redraw {wDataEntry}

End If
alternatively you can use the $redraw(setcontents,refresh) method to redraw the
contents and/or refresh a field or window# setcontents defaults to true, refresh to false
Do $cfield.$redraw() ## redraw current field
Do $cwind.$redraw() ## redraw current window
Do $root.$redraw() ## redraw all window instances

Redraw lists

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO NO NO All

Syntax

Redraw lists ([All windows][,All lists][,Selection only])

Options

All windows If specified, the command applies
to all open window instances,
rather than just the top open
window instance

All lists If specified, the command applies
to all lists on the window
instance(s),rather than just the
current list

Selection only If specified, the command
redraws the lists without
reloading the data, in order to
show changes to the selection
state

Description

This command redraws the current list window field or all list fields. It lets you update the display of the current list field after you
delete, change, or insert a line, so that the screen list reflects the changes. When Omnis executes Redraw lists, the selected line is
scrolled into view and the visible lines recalculated.

Omnis can execute a Redraw lists command for all window instances and for all lists using the All windows, and All lists options. If
neither option is selected, only the fields on the top window instance which display the current list are redrawn.

The Selection only option causes the redraw to affect the highlighting of the selected lines, the contents are not redrawn.

Omnis also redraws any fields which are local to the list field so that they will display the new values. It also redraws the grid fields
associated with the current list.

235

../fields.html

Example

Begin reversible block
Set current list iList

End reversible block
Define list {iCol1,iCol2}
Calculate iCol1 as 42
Add line to list {(iCol1,chr(iCol1))}
Redraw lists

Redraw menus

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO NO NO All

Syntax

Redraw menus

Description

This command redraws all instances of your own custom menus. When executing Redraw menus, Omnis re-evaluates any square-
bracket notation contained in the menu titles and lines before redrawing the menu bar.

Example

Redraw the menus so that any with the title set to
[tMenuName] are updated with the new menu name
Calculate tMenuName as 'MyMenu'
Redraw menus

Redraw toolbar

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Redraw toolbar ([Droplists only]) {toolbar-instance}

Options

Droplists only If specified, the command will only redraw the droplists on the toolbar

Description

This command redraws the toolbar instance. You can redraw droplists only using the Droplists only option.

Example

Show docking area {kDockingAreaLeft}
Install toolbar {tbMyToolbar}
do something
then redraw the droplists displayed on the toolbar tbMyToolbar
Redraw toolbar (Droplists only) {tbMyToolbar}

236

../menus.html
../toolbars.html

Redraw working message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO NO All

Syntax

Redraw working message

Description

This command redraws the text in the workingmessage after evaluating any square bracket notation. Omnis does not increment the
working message count and does nothing if there is no open working message.

Example

Redraw the working message to update the record counter
Working message {Processing Record [lCount]}
For lCount from 1 to 20000 step 1
Redraw working message

End For

Register DLL

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows

Syntax

Register DLL (library, procedure, type-definition [,unregister {Default kFalse}]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command registers a procedure in a DLL, so that you can use Call DLL to call it.

The library is the name or pathname of the DLL containing the procedure specified by procedure. If you do not specify a pathname
for the library then the standard operating system search rules for DLLs will apply.

The type-definition specifies the data types of the return value and parameters required by procedure. type-definition is a character
string:

The first character identifies the data type of the return value of the procedure

The remaining characters (one for each parameter) identify the parameter data types

Register and Call DLL commands support 64-bit type specifiers. The following table lists the possible data type characters:

Character Description Pass By C declaration

A Logical Value short int
B IEEE 8 byte floating point Value double
C Null-terminated string Value TCHAR *
D Pascal string Value TCHAR *
E IEEE 8 byte floating point Reference double *
H Unsigned 16 bit integer Value unsigned short int
I Signed 16 bit integer Value short int

237

../message_boxes.html
../external_commands.html
call_dll.html

Character Description Pass By C declaration

J Signed 32 bit integer Value long int
L Logical Reference short int *
M Signed 16 bit integer Reference short int *
N Signed 32 bit integer Reference long int *
O Null-terminated 8-bit string: Encoded as

Ansi on Win32, MacRoman on macOS,
ISO-8859-1 on Linux

Value char *

P Signed integer of pointer size for the
current architecture (32 or 64 bit)

value Intptr_t

Q Signed integer of pointer size for the
current architecture (32 or 64 bit)

Reference Intptr_t *

R Signed 64-bit integer Value Int64_t
S Signed 64-bit integer Reference Int64_t *
V void (use if no return value) void
Z Cannot be used as a return value data

type. When passing the parameter,
behaves like data type C. Use Z to indicate
that the procedure sets the parameter to
a sequence of null-terminated
strings,terminated by an additional null
character. Call DLL sets the parameter to
the same sequence of strings,using
carriage returns instead of null
terminators

Value char *

Note that TCHAR represents the character type used for operating system API calls - for Windows it is 16 bit unsigned short.

When you have finished using the procedure, youmay wish to unregister the procedure; this allows Omnis to unload the DLL contain-
ing the procedure. To do this, pass the unregister parameter as kTrue. Note that the DLL will remain loaded until all the registered
procedures in the DLL have been unregistered; also, if the DLL is loaded into the Omnis process for another reason e.g. the DLL is
linked with the Omnis executable, then it will remain loaded even after the last procedure has been unregistered.

Example

Flash the Omnis window to attract the user's attention
Win32 API to get the main Omnis window: HWND GetActiveWindow(VOID)
Register DLL ('USER32.DLL','GetActiveWindow','J')
Call DLL ('USER32.DLL','GetActiveWindow') Returns lHWND
Win32 API to Flash a window: BOOL FlashWindow(HWND, BOOL)
Register DLL ('USER32.DLL','FlashWindow','JJJ')
Call DLL ('USER32.DLL','FlashWindow',lHWND,1) Returns lResult

This example creates a file and loads the contents:

Register DLL ("KERNEL32.DLL","CreateFileA","JCJJJJJJ")
Register DLL ("KERNEL32.DLL","CloseHandle","JJ")
Register DLL ("KERNEL32.DLL","ReadFile","J,J,C32768,J,N,J")
Call DLL ("KERNEL32.DLL","CreateFileA","c:\MYBIGFILE.TXT",-1073741824,3,0,3,268435584,0) Returns #1
Call DLL ("KERNEL32.DLL","ReadFile",#1,#S1,32767,#49,0) Returns #50
Call DLL ("KERNEL32.DLL","CloseHandle",#1) Returns #50
Calculate #1 as binlength(#S1)

Reinitialize search class

238

call_dll.html

Command group Flag affected Reversible Execute on client Platform(s)

Searches NO NO NO All

Syntax

Reinitialize search class

Description

This command reloads the current search definition into memory. Reinitialize search class is useful if square bracket notation has
been used in the search class. The square bracket expressions are re-evaluated using current field values before reloading the search
definition. Each find table keeps its own copy of the search conditions so you must re-issue the Find command if a search needs
reinitializing.

Example

This example assumes a search class sTown uses the comparison line TOWN Begins with [lStartsWith]
The window wStarts is used to allow the user to specify a value for #S5
Set search name sTown
Repeat
Open window instance wStarts/CEN
Enter data
Close window instance wStarts
If flag true

Reinitialize search class
Do method PrintReport

End If
Until flag false

Remove all menus

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Remove all menus

Description

This command removes all menu instances from the menu bar, excluding the standard Omnis menus such as File and Edit. If you
use Remove all menus in a reversible block, the menu instances are reinstalled when the method containing the block finishes.

Example

Remove all user defined menus from the main
omnis menubar
Begin reversible block
Remove all menus

End reversible block
OK message {Menus are now removed}

now all menu instances are reinstalled

239

../searches.html
find.html
../menus.html

Remove final menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Remove final menu

Description

This command removes the final or right-most menu instance from the menu bar, excluding the standard Omnis menus such
as File and Edit. If you use Remove final menu in a reversible block, the final menu instance is reinstalled when the method con-
taining the block terminates.

Example

Remove the last menu installed
Begin reversible block
Remove final menu

End reversible block
OK message {Menu is now removed}
now the final menu is reinstalled

Remove menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES YES NO All

Syntax

Remove menumenu-instance-name

Description

This command removes the specified menu instance from the menu bar and sets the flag. You can choose the menu name from a
list containing any custom and standard built-in menus, such as *File, *Edit, and so on.

If you use this command to remove a menu instance which has previously been installed in place of the standard File or Edit menu
(using the Replace standard Filemenu or Replace standard Edit menu command) the previously replaced standard File or Edit menu
is restored.

If you use Remove menu in a reversible block, the specified menu instance is reinstalled when the method containing the reversible
block terminates.

Example

If the menu mView is installed remove it
Test for menu installed {mView}
If flag true
Remove menu mView

End If
Alternatively, you can remove a menu using $close
Do $imenus.mView.$close()

240

../menus.html
../menus.html
replace_standard_file_menu.html
replace_standard_edit_menu.html

Remove toolbar

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Remove toolbar {toolbar-instance}

Description

This command removes the specified toolbar instance.

Example

Show docking area {kDockingAreaLeft}
Install toolbar {tbMyToolbar/kDockingAreaLeft}
do something
now remove the toolbar & docking area again
Remove toolbar {tbMyToolbar}
Hide docking area {kDockingAreaLeft}
or you do it like this
Do $itoolbars.tbMyToolbar.$close()
or if you used notation to install the toolbar
Do $clib.$toolbars.tbMyToolbar.$open('*',kDockingAreaLeft) Returns lToolBarRef
use the toolbar reference to close it
Do lToolBarRef.$close()

Rename class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Rename class ([Perform find and replace]) {class-name/new-name}

Options

Perform find and replace If specified, and the command
is executing in a development
version of Omnis, the
command opens the find and
replace dialog to allow the user
to replace the old class name
with the new class name

Description

This command renames the specified library class and can perform a find and replace. Errors, such as attempting to use a name that
is already in use, simply clear the flag and display an error message. You can rename a class which is in use.

When renaming a class, you can use the Perform find and replace option to search through all the classes in the library and replace
the references to the old class name with the new name.

241

../toolbars.html
../classes.html

Example

New class {Search Class/sMySearch} ## create new search class
Modify class {sMySearch} ## let user modify it
Delete class {sUser} ## delete the search class sUser
Rename class {sMySearch/sUser} ## rename the new search class to the old search
Set search name sUser
Print report (Use search)

Rename data

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Rename data {file-name/new-slot-name}

Description

This command renames the data for a specified file class in a data file so that the data will then belong to a file with a different name;
that is, it renames a slot. The existing file class name and the new slot name are specified as parameters.

The specified file class is disconnected from the data, and an empty slot and indexes for that file will be created as soon as that file is
accessed again.

If the specified file name does not include a data file name as part of the notation, the default data file for that file is assumed.

If the file is closed or memory-only, the command does not execute and returns flag false.

If you are not running in single user mode, Omnis automatically tests that only one user is logged onto the data file (the command
fails with flag false if this is not true), and further users are prevented from logging onto the data until the command completes.

This command sets the flag if it completes successfully and clears the flag otherwise. The command is not reversible.

Example

Rename data {fCustomers/fCustomersArchive}
If flag true
OK message {File archived}
Else
OK message {Cannot archive while more than 1 user is logged on}
End If

Reorganize data

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Reorganize data ([Test only][,Optimize][,Convert pictures][,Use true color when converting]) {list-of-files (F1,F2,..,Fn) (leave empty to
select all)}

242

../data_management.html
../data_management.html

Options

Test only If specified,the data file is
not updated; the command
purely tests to see if it
would update the data file
when executed without
this option specified,and
returns the flag set to true
if an update would occur

Optimize If specified,the command
also attempts to optimize
free space to make data
storage more efficient

Convert pictures If specified,the command
also converts (where
necessary) pictures to
shared (cross-platform)
picture format

Use true color when converting Only relevant when
‘Convert pictures’ is
specified.If
specified,pictures are
converted to the
recommended shared true
color format,rather than
the out of date shared 256
color format.

Description

This command reorganizes the data for the specified file or list of files. Reorganization is the process by which the data structures held
in the Omnis data file are brought into line with the file class definitions.

Reorganize data reorganizes the data for the specified list of files, and is equivalent to the option on the Slot menu in the Data File
Browser.

If you omit a file name or list of files, all the files with slots in the current data file are reorganized.

If a specified file name does not include a data file name as part of the notation, the default data file for that file is assumed. If the file
is closed or memory-only, the command does not execute and returns with the flag false.

If you are not running in single user mode, Omnis automatically tests that only one user is logged onto the data file (the command
fails with the flag false if this is not true), and further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute, and it is not possible to cancel execution even if a working message with cancel box is
open.

The command sets the flag if it completes successfully and clears the flag otherwise. The command is not reversible.

If the Test only checkbox option is specified, no reorganization is actually carried out. The flag is set if at least one file needs reorgani-
zation.

TheOptimize checkbox option specifies whether reorganize with optimize is to be carried out. This distributes the free space tomake
the data storage more efficient.

The Convert pictures checkbox option causes all pictures in the data to be converted to a shared picture format.

Example

Reorganize data (Test only) ## all files
If flag true

243

Yes/No message {Reorganize now?}
If flag true

Reorganize data
End If

Else
OK message {No reorganization required}

End If

Repeat

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Repeat

Description

This command repeats a command or series of commands that are contained in a loop closed by an Until command. Each time the
command is repeated, Omnis tests the condition attached to the Until command to ensure that the condition is true. If the condition
is true, the commands in the loop are not executed and the command after the Until is executed. However, if the condition is false,
Omnis jumps back to the first command following the Repeat command.

An error will result if there is a Repeat command without a matching Until command. Repeat loops always execute at least once.
The Repeat– Until logic test is carried out at the end of the loop, after the commands in the loop are executed, whereas theWhile–End
While logic test is carried out at the beginning of the loop.

Example

Repeat
Yes/No message {Press Yes to exit loop}

Until flag true
Repeat
No/Yes message {Press No to exit loop}

Until flag false
Repeat
Prompt for input Enter a value greater than 10 to exit loop Returns lValue

Until lValue>10

Replace line in list

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Replace line in list {line-number (values) {default is current line}}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

244

../constructs.html
until_calculation.html
while_calculation.html
end_while.html
end_while.html
../list_lines.html

Description

This command transfers field values from the current record buffer to the corresponding fields in the current list. Alternatively, it is
possible to specify a comma-separated list of values enclosed in brackets after the line number. In this case, the values stored in the
specified line of the list are set up from the values in the brackets and not from the variables specified when the list was defined.

Replace line in list {LIST.$linecount(‘abc’„LVAR12+3)}

will store ‘abc’ into the first column of the final line of the current list, leave the value of the second column unchanged, and load the
result of LVAR12+3 into the third column. If too few values are specified, the other columns will be left unchanged; if too many values
are specified, the extra values are ignored. Any conversions required between data types are carried out.

If the line number specified in the command line is empty, or if it evaluates to zero, the current line is used. If the list is empty or if the
line is beyond the current end of the list, the flag is cleared.

Example

Replace Harry with Arnold and increment
the age of everybody in the list by 1
Set current list lMyList
Define list {lName,lAge}
Add line to list {('Fred',10)}
Add line to list {('George',20)}
Add line to list {('Harry',22)}
Add line to list {('William',31)}
Add line to list {('David',62)}
Replace line in list {3 ('Arnold',47)}
For each line in list from 1 to lMyList.$linecount step 1
Load from list
Calculate lAge as lAge+1
Replace line in list {(,lAge)}

End For

Replace standard Edit menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Replace standard Edit menu {class-name[/instance-name] [(parameters)]}

Description

This command removes the standard built-in Edit menu from the menu bar and replaces it with a custom menu. You can assign
an instance name for the replacement menu. The default instance name of the replacement menu is the menu class name. If no
replacement menu name is specified, the Edit menu is reinstated.

The replacement menu will remain enabled even when commands such as Disable all menus are issued, or modal user-defined
windows are opened. The only time the replacement menu will not remain enabled is when a report is printed to screen with Send
to screen, and the check box option Do not wait for user is not checked (that is, Omnis is awaiting user input).

You can disable the Edit menu or its replacement menu by using Disable menu line.

Example

Replace the standard edit menu with the user
defined menu mMyEdit while in enter data
$construct of window

245

../menus.html
disable_all_menus_and_toolbars.html
send_to_screen.html
send_to_screen.html
disable_menu_line.html

Replace standard Edit menu {mMyEdit}
Enter data
Replace standard Edit menu ## put system Edit menu back

Replace standard File menu

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Replace standard File menu {class-name[/instance-name] [(parameters)]}

Description

This command removes the standard built-in File menu from the menu bar and replaces it with a custom menu. You can assign
an instance name for the replacement menu. The default instance name of the replacement menu is the menu class name. If no
replacement menu name is specified, the File menu is reinstated.

The replacement menu will remain enabled even when commands such as Disable all menus are issued, or modal user-defined
windows are opened. The only time the replacementmenuwill not remain enabled is when a report is printed to screenwith the Send
to screen command, and the check box option Do not wait for user is not checked (that is, Omnis is awaiting user input).

You can disable the File menu or its replacement menu by using Disable menu line.

Example

Replace the standard file menu with the user
defined menu mMyFile while in enter data
$construct of window
Replace standard File menu {mMyFile}
Enter data
Replace standard File menu ## put system File menu back

Request advises

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES YES NO Windows

Syntax

Request advises field-name {server-data-item-name}

Description

DDE command, Omnis as client. This command sends a request to the server asking to be advised of any changesmade to a specified
data item. An error occurs if the channel is not open. The command takes the Omnis field name and the server data item name as
parameters. The data item name can contain square bracket notation.

Whenever Omnis is advised of a change in field value, that value is changed providing your library is in enter data mode.

The flag is set if the command is successful.

You can use a control method to detect the arrival of data from the server using evSent.

246

../menus.html
disable_all_menus_and_toolbars.html
send_to_screen.html
send_to_screen.html
disable_menu_line.html
../exchanging_data.html

Example

Request advises iCompany {iCompany}
Request advises iAddress {iAddress}
Prepare for insert
Enter data
Update files if flag set

Request field

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES NO NO Windows

Syntax

Request field field-name {server-data-item-name}

Description

DDEcommand, Omnis as client. This command requests a data item from theDDE channel. An error occurs if the channel is not open.
The command takes the Omnis field name and the server data item name as parameters. The data item name can contain square
bracket notation. If the data item name is not specified, the Omnis field name is used. The flag is set if the command is successful.

Example

Set DDE channel number {1}
Calculate lAttempts as 1
keeps trying until conversation opened or number of attempts > 10
Repeat
Open DDE channel {Omnis|DDE2}
Calculate lAttempts as lAttempts+1

Until #F|lAttempts>10
Calculate iCommand as '[TakeControl]'
Send command {[iCommand]}
If flag false
OK message {Error: [iCommand], Open Attempts = [lAttempts]}

End If
Request field iCompany {iCompany}
Request field iAddress {iAddress}
Prepare for insert with current values
Enter data
Update files if flag set

Restore selection for line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Restore selection for line(s) ([All lines]) {line-number (calculation)}

247

exchanging_data.html
../list_lines.html

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command copies the Saved selection state to the Current selection state and sets the flag. To allow sophisticated manipulation
of data via lists, a list can store two selection states for each line; the “Current” and the “Saved” selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for two sets of selections. The lists may be
held in memory and never saved to disk: they will still have a Current and Saved selection state for each line but they will be lost if not
saved. When a list is stored in the data file, both sets of selections are stored.

The Restore selection for line(s) command allows the Saved selection state of the specified line (or All lines) to be copied into the
Current set. You can specify a particular line in the list either by entering a number or a calculation. You are required to redraw the list
to refresh the state of the displayed list field. The All lines option restores the selection states for all lines of the current list.

Example

Save and restore the selection after all
lines have been deselected
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) {3}
Select list line(s) {5}
Save selection for line(s) (All lines)
Deselect list line(s) (All lines)
Restore selection for line(s) (All lines)

Revert class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Revert class {class-name}

Description

This command reads the specified class from the library file ondisk intoRAM, so that any changesmade to that class using thenotation
are lost. The flag is set if the class is successfully re-read. A runtime error occurs if the specified class cannot be found.

Example

make change to a window class
Do $windows.wMyWindow.$objs.Field1.$visible.$assign(kFalse)
Open window instance wMyWindow
do something
Revert class {wMyWindow} ## reset the Field1 on the saved window (NOT the current instance) to be visible

248

Save class

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Save class {class-name}

Description

This commandwrites the specified class, which normally contains changesmade by notation, into the library file on disk. You use Save
class to make the changes permanent. The flag is set if the class is successfully saved. A runtime error occurs if the specified class
cannot be found.

Example

get a reference to a window in the current library
Set reference lWinRef to $windows.wMyWindow
create a pushbutton object on the window
Set reference lObjRef to lWinRef.$objs.$add(kPushbutton,5,5,23,120)
save the class
Save class {wMyWindow}
opens the window with the new button
Open window instance wMyWindow

Save selection for line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Save selection for line(s) ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command saves the selection state of the specified line(s) in memory and sets the flag. To allow sophisticated manipulation
of data via lists, a list can store two selection states for each line; the “Current” and the “Saved” selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for two sets of selections. The lists may be
held in memory and never saved to disk: they will still have a Current and Saved selection state for each line but they will be lost if not
saved. When a list is stored in the data file, both sets of selections are stored.

Save selection for line(s) allows the selection state of the specified line (or All lines) to be copied into the Saved set. You can specify a
particular line in the list by entering either a number or a calculation. If the line number is not specified, the current line selection is
saved. The All lines option saves the selection for all lines of the current list. This example selects the middle line of the list:

249

../classes.html
../list_lines.html

Example

Save and restore the selection after all an invert
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) {3}
Select list line(s) {5}
Save selection for line(s) (All lines)
Invert selection for line(s) (All lines)
Restore selection for line(s) (All lines)

SEA continue execution

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers NO NO NO All

Syntax

SEA continue execution

Description

This command continues method execution at the command following the command which called an error handler; SEA stands for
Set Error Action. Using it is, in effect, like saying “Error is acknowledged. Now, skip over the error line and proceedwith the succeeding
good lines.”

Using this command is similar to setting the go point in the debugger at L+1 where L is the error line. The command is always used
within an error handler.

Example

error handler to trap break key while waiting for semaphore
The edit method must test the flag to prevent an error on update
If #ERRCODE=kerrCantlock
OK message {User cancelled request for record lock}
SEA con execution

End If

SEA repeat command

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers NO NO NO All

Syntax

SEA repeat command

Description

This command attempts to repeat the command that caused an error; SEA stands for Set Error Action. This is most useful after an out
of memory condition. The command is always used within an error handler. It is your responsibility to ensure that an endless looping
situation between the error handler and the command is not created. Also, you must ensure that any side effects of the original
execution of the command which caused the error are taken into account.

250

../error_handlers.html
../error_handlers.html

Example

error handler traps an attempt to edit a locked record and the user presses the Break key
If #ERRCODE=kerrCantlock
Yes/No message {Do you want to cancel the edit?}
If flag true

Quit all methods
Else

SEA repeat command
End If

End If

SEA report fatal error

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers NO NO NO All

Syntax

SEA report fatal error

Description

This command causes the default action for a fatal error to occur; SEA stands for Set Error Action. If the debugger is available, it is
invoked, otherwise, execution halts with an error message. This command, like the other SEA commands, should only be used from
within an error handler. The SEA commands determine the behavior following fatal or warning errors.

Example

This causes a warning error to generate the same action as a fatal error
If #ERRCODE=kerrUnqindex
SEA report fatal error
your code...

End If

Search list

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Search list ([From start][,Only test selected lines][,Select matches (OR)][,Deselect non-matches (AND)][,Do not load line])

Options

From start If specified, the command starts
with the first line of the list rather
than the line immediately after
the current line

Only test selected lines If specified, the command only
operates on selected lines

251

../error_handlers.html
../lists.html

Select matches (OR) If specified, the command
processes all specified lines and
selects lines which match the
search; any lines selected before
the command executes remain
selected

Deselect non-matches (AND) If specified, the command
processes all specified lines and
deselects lines which do not
match the search

Do not load line If specified, the line found by the
search is not loaded into the
current record buffer; this is only
relevant when ‘Select matches
(OR)’ and ‘Deselect non-matches
(AND)’ are both not specified

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command searches the current list for field values that match the current search class or search calculation and loads them into
the Current Record Buffer. The search starts at the beginning of the list if From start is checked, otherwise at the line after the current
line.

If Omnis finds a line thatmatches the search class, that line number becomes the current line $line and the flag is set. If Omnis cannot
find amatching line, the $line is cleared and the flag is cleared. If there is no current search class, all lines are said tomatch and Omnis
sets the flag.

When checked, the Do Not Load Line option ensures the line found by the search is not loaded into the current record buffer.

The Only test selected lines option restricts the list scan to selected lines only. If the Select matches (OR) option is checked, the
command scans all the lines from the line after the current line to the end and selects all those that match the search; if you also use
the From start option, the whole of the list is scanned, that is, the search starts at line 1. Lines that are already selected before the
command is executed remain selected. This is equivalent to ORing the existing selected lines with the lines that match the search.
The current line is not affected.

If the Deselect non-matches (AND) option is used, the command scans all the lines from the line after the current line to the end
and deselects all those which do not match the search; if you also use the From start option, the whole of the list is scanned, that is,
the search starts at line 1. Lines which are already selected before the command is executed are deselected if they do not match the
search, that is, the only lines left selected are those which were already selected and which match the search. This is equivalent to
ANDing the existing selected lines with the lines which match the search. The current line is not affected.

Using the Select and the Deselect options together alters the selection state so that matching lines are selected, non-matching lines
are deselected. The current line is not affected.

Example

Set current list iList1
Define list {iColNum}
Calculate iColNum as 1
Repeat
Add line to list
Calculate iColNum as iColNum+1

Until iColNum=6
Set search as calculation {iColNum=3|iColNum=4}
Search list (From start) ## current line is now 3

252

Search list (Select matches (OR)) ## selects line 4
or do it like this
Do iList1.$search(iColNum=3|iColNum=4,kTrue,kFalse,kTrue,kFalse)
Do iList1.$first(kTrue)

Select list line(s)

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Select list line(s) ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command selects the specified list line. The specified line of the current list is selected and is shown highlighted (or checked on
popup lists) on any window list fields provided that the field has $multipleselect on. If the line number is not specified, the current list
line is selected. The All lines option selects all lines of the current list. The current line is not affected. When a list is saved in the data
file, the line selection is stored. The following example selects the middle line of the list:

Example

Select line 3 of the list
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) {lMyList.$linecount/2}
Alternatively, you can select a line by assigning its $selected property.
Do lMyList.1.$selected.$assign(kTrue)

Select printer

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Select printer ([Discard previous settings]) {printer-name}

253

../list_lines.html

Options

Discard previous settings If specified, the command reloads the
Omnis page setup with the default
system settings for the selected printer
(Windows platform only)

Description

This command allows the user to specify a printer to receive reports. You can choose the required printer from a list of all installed
printers. After this command has executed, the flag is set if the printer was selected successfully.

TheDiscard previous settings option causes Omnis to reload the Omnis page setup with the default system settings for the specified
printer.

You can use the function sys(101) to return the name of the current printer.

Example

Select the printer prior to printing
Select printer {MyPrinter}
If flag true
Set report name rMyReport
If flag true

Print report
End If

End If

Send advises now

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO NO NO Windows

Syntax

Send advises now

Description

DDE command, Omnis as server. This command advises the client applications of all the field values for all the fields for which Advise
requests have been received. The values are taken from the CRB.

Example

Set main file {fCustomers}
Find on fCustomers.CustomerID (Exact match) {iCustID}
Send advises now

Send command

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES NO NO Windows

254

../exchanging_data.html
../exchanging_data.html

Syntax

Send command {text}

Description

DDE command, Omnis as client. This command sends a command or a series of commands as text to the current channel.

The command-text syntax must conform to whatever syntax rules apply to the server program.

The DDE syntax dictates that the commands be enclosed in square brackets and Omnis attaches special meaning to them in strings.
Therefore, it may be necessary to put the command text into one of the Omnis string variables.

The flag is set if the server accepts the command(s).

Syntax and errors

When you send commands to Omnis, the syntax is defined by the text shown in the method editor. You can enter scripts in Omnis,
copy them to the clipboard and paste them into the client application. If the sent command returns an error to Omnis, the hash
variables #ERRCODE and #ERRTEXT store the error code and message.

Example

put your command text into the character variable lString
Calculate lString as '[your command]'
Send command {[lString]} ## send the command to the server
else you can enter the command directly into the command parameter by doubling the first set of brackets# eg
Send command {[[releasecontrol]}
Example
Set DDE channel number {2}
Open DDE channel {Omnis|Country}
If flag false
OK message {The Country library is not running}

Else
Calculate lString as "Ok Message {Hi, this is DDE magic'}"
Send command {[lString]}
Send command {'Next'}
Close DDE channel
OK message {Update finished}

End If

Send field

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES NO NO Windows

Syntax

Send field field-name {server-data-item-name}

Description

DDE command, Omnis as client. This command sends the value of an Omnis field to the current DDE channel. An error occurs if the
channel is not open. The command takes the Omnis field name and the server data item name as parameters. The data item name
can contain square bracket notation. If the data item name is not specified, the Omnis field name is used.

The flag is set if the server program accepts the value.

255

../exchanging_data.html

Example

Set DDE channel number {2}
Open DDE channel {Omnis|DDE2}
Calculate lString as '[TakeControl]'
Send command {[lString]}
If flag false
OK message {Error sending: [lString]}

End If
Send field iClient {sName}
Send field iTotal {sTotals}

Send to a window field

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO All

Syntax

Send to a window field {field-name}

Description

This command directs the output of a report to a window Screen Report field; you cannot print to any other type of window field.
When you print the report the field is changed into a standard screen report window that has all the features of the standard screen
report.

An error is generated if the field name is invalid for the current window. If you use Send to a window field in a reversible block, the
report destination reverts to its former setting when the method terminates.

Example

the $event method behind a pushbutton on a window
On evClick
Send to a window field {WindowReportField}
Set report name rMyReport
Print report ## prints the report in the window field

Send to clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO All

Syntax

Send to clipboard

Description

This command sends the output of any subsequent reports to the clipboard. The report is printed as a text-only file and all text
formatting is ignored. If two reports are sent to the clipboard, the second report overwrites the first. Once a report has been sent to
the clipboard, you can launch another program, such as a word processor, and paste the report into it.

If you use Send to clipboard in a reversible block, the report destination reverts to its former setting when the method terminates.
The contents of the clipboard are not altered by the command or its reversal.

If you want to copy pictures from a report to the clipboard, you can print the report to screen and use the mouse to select the area
required. The standard Edit menu Copy option will copy the graphic to the clipboard.

256

../report_destinations.html
../report_destinations.html

Example

Send to clipboard
Set report name rMyReport
Print report
now launch word processor and paste
Launch program NOTEPAD.EXE Returns lStatus
If lStatus
Paste from clipboard

End If

Send to DDE channel

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO Windows

Syntax

Send to DDE channel

Description

This command directs any subsequent reports to a DDE channel. The current channel is defined by Set DDE channel number. An
error occurs if the channel is not open or if the report is not printed with an export format.

Each record within the report is prepared and sent by Omnis as the data in a Poke message. The term “Poke” is defined by the DDE
protocol and refers to messages carrying data which set field values in the target program. The server’s item names, into which the
exported data is read, are defined by Set DDE channel item name.

The subsequent print commands will send to the channel number which is current at the time of the print command, not at the time
of the Send to DDE channel command.

If you use Send to DDE channel in a reversible block, the report destination reverts to its former setting when themethod terminates.

It may be the case that an export format for a particular Omnis report does not correspond to any of the formats supported by DDE.
If a mismatch occurs, there will be an error message at the Print report or Prepare for print command.

Example

Send to DDE channel
Set export format {Delimited (commas)}
Set report name rMyReport
Clear DDE channel item names
Set DDE channel item name {Name}
Set DDE channel item name {Telephone}
Print report
Close DDE channel

Send to file

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO All

Syntax

Send to file

257

../report_destinations.html
set_dde_channel_number.html
set_dde_channel_item_name.html
print_report.html
prepare_for_print.html
../report_destinations.html

Description

This command directs the report output to the currently selected print file. The report is sent as a text file (no text style or formatting)
with the appropriate line terminators. The print file is not closed when a report finishes so you can print multiple reports without
changing the destination or the name of the print file.

When you select the destination using the dialog window (see Prompt for destination), the Page size pushbutton lets you set up the
form feeds and lines per page. These settings are stored in the preferences file.

Set lines per page lets you specify page length from methods. If the Send form feed option is selected, the end of each page is
marked by a form feed character; otherwise, the pages are forced by sending multiple line feeds. You use Set print or export file
name to designate the file name.

If you use Send to file in a reversible block, the report destination reverts to its former setting when the method terminates.

Example

Send to file
Set lines per page {46}
Calculate lPrintFileName as con(sys(115),'myPrintedReport.txt')
Set print or export file name {[lPrintFileName]}
Print report

Send to page preview

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO All

Syntax

Send to page preview ([Do not wait for user][,Hide until complete]) title[/left/top/width/height/stk/cen/max]

Options

Do not wait for user Unless this option is specified,
the user must close the
window before method
execution continues and before
doing anything else

Hide until complete If specified, the report window
is not displayed until the report
has been completely generated

Description

This command sends the report instance to a page preview screen. This lets the user check the final page layout before printing. On
small screens, the text is Greeked, that is, each character is represented by a dot.

TheDo not wait for user option allows subsequentmethod lines to execute or lets the user do other things without closing the report;
the default is to gray out all menus while a screen report is displayed. Youmaywant to have several reports on the screen for reference
while doing some other work with the library. Without the option, the user must close the window before doing anything else.

The Hide until Complete option suppresses the output until all the report data is ready. Normally, you can view the first part of the
report before all the records have been prepared.

Title and Position

258

prompt_for_destination.html
set_lines_per_page.html
set_print_or_export_file_name.html
set_print_or_export_file_name.html
../report_destinations.html

You can give each page preview a title and control its position and size. The Left/Top/Right/Bottom values fix the positions of the four
corners to screen pixel resolution. The /STK parameter offsets the top left-hand corner from the last page preview and /CEN positions
the page preview in the middle of the screen.

The Page preview window can be opened maximized by specifying the /MAX parameter or in $windowprefs.

If you change the shape and size of the page preview window it will no longer reflect the paper size.

If you use Send to page preview in a reversible block, the report destination reverts to its former setting when themethod terminates.

Example

Example shows how to stack 2 page previews showing UK and US customers
Set report name rMyReport
Send to page preview (Do not wait for user) UK customers/STK
Set search as calculation {cCountry='UK'}
Print report (Use search,Do not finish others) {rInst1}
Send to page preview (Do not wait for user) USA customers/STK
Set search as calculation {cCountry='USA'}
Print report (Use search,Do not finish others) {rInst2}

Send to port

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO All

Syntax

Send to port

Description

This command directs the report output to the currently selected port. The report is sent as a stream of text with the appropriate line
terminators. The port is selected with the Set port name command.

If you use Send to port in a reversible block, the report destination reverts to its former setting when the method terminates.

Example

If platform()='X'
Set port name {2 (Printer port)} ## macOS

Else
Set port name {COM2:} ## Windows & Linux

End If
Send to port
Set port parameters {9600,n,70,0}
Print report

Send to printer

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations NO YES NO All

Syntax

Send to printer

259

set_port_name.html
../report_destinations.html

Description

This command sends the report to the current printer. You can choose the printer using the Select printer command.

If you use Send to printer in a reversible block, the report destination reverts to its former setting when the method terminates.

Example

Set report name rMyReport
Send to printer
Print report

Send to trace log

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO YES All

Syntax

Send to trace log ([Diagnostic message] [,Always log] [,Start diagnostic logging] [,Stop diagnostic logging]) text

Options

Diagnostic message If specified, the message will only
be added to the trace log, if the
trace log has been set to log
diagnostic messages

Always log If specified, always log the
message even if $nodebug is true
for the library or the local
debugger is disabled (this option
is ignored for a diagnostic
message)

Start diagnostic logging If specified, the command
switches on the Log Diagnostic
Messages trace log option, before
logging the message if the other
command options allow. Also, if
specified with an empty message
to log, the command does not log
an empty line

Stop diagnostic logging If specified, the command
switches off the Log Diagnostic
Messages trace log option, after
logging the message if the other
command options allow. Also, if
specified with an empty message
to log, the command does not log
an empty line

Description

This command sends a specified line of text to the trace log. The text can contain square bracket notation. You can use text styles
(generated using the style() function inside square brackets) to (for example) apply colors to sections of the logged text when it is
displayed in the trace log panel in the browser or the trace log window; such styles are stripped when writing the trace log line to the
text log file in the logs folder. The trace log renders the text styles if the entry traceLogUsesStyles in the defaults section of config.json

260

select_printer.html
../debugger.html

is set to true. Note that if you use styles other than kEscColor and kEscStyle, these styles are ignored when copying selected trace log
lines to the clipboard as HTML.

For JavaScript client-executed methods, this command sends the text to the JavaScript console (provided it is available). In this case,
text styles are not supported.

Example

send messages to the trace log
Open trace log (Clear trace log)
Send to trace log Current task is [$ctask().$name]
Send to trace log Current class is [$cclass().$name]
For lCount from 1 to 10 step 1

Send to trace log Value lCount is [lCount]
End For
Send to trace log End of For Loop

Set ‘About…’ method

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment NO YES NO All

Syntax

Set ‘About…’ method [name/]name

Description

This command changes the “About…” option by calling the specifiedmethod which you should set to open a different About window.
Omnis executes the specified method when this option is selected in exactly the same way as if it had been selected from a menu,
for example, standard windows are closed. If you use Set ‘About…’ method in a reversible block, the command is reversed when the
method terminates.

There are no restrictions on what you can do in the Set ‘About…’ method, that is, the method that is called. Extra care is needed to
ensure that the method does not alter any variables, lists or the status of the flag.

Example

Open the window wMyAbout instead of the standard Omnis about box
Set 'About...' method cMyCodeClass/AboutBox
method AboutLibrary in code class cMyCodeClass
Open window instance wMyAbout

Set advise options

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Set advise options ([Find/next/previous][,OK][,Redraw])

261

../omnis_environment.html
../exchanging_data.html

Options

Find/next/previous If specified,Omnis will send DDE
advise messages to the client
application,when
Find/Next/Previous or Clear
commands are executed (see
command Advise on
find/next/previous)

OK If specified,Omnis will send DDE
advise messages to the client
application,when an evOK event
occurs (see command Advise on
OK)

Redraw If specified,Omnis will send DDE
advise messages to the client
application,when a redraw
occurs (see command Advise on
redraw)

Description

DDE command, Omnis as server. This command determines when Omnis is permitted to send requested Advise messages to the
client application. When the Accept advise requests option is active, Omnis will accept Advise requests from the client program. By
default, the client program will only be advised of the values requested from Omnis when Send advises now is executed.

However, Set advise options specifies other events which will cause the values to be sent. There are three checkbox options available
for this command: Find/next/previous, OK, and Redraw.

The Find/next/previous option sends the requested Advise value whenever a Find/next/previous command or a Clear command is
executed. The OK option sends the requested Advise value whenever an Enter Data or Prompted Find ends with an OK. The Re-
draw option sends the requested Advise value whenever a Redraw is executed.

Each of these options in Set advise options has its command equivalent within the Exchanging Data… group, whose function is
identical. These commands are listed as Advise on Find/next/previous, Advise on OK, and Advise on redraw.

Example

Set server mode (Field requests,Advise requests)
Set advise options (Find/next/previous,OK)
OK message {Server mode for DDE enabled}

Set bottom margin

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set bottom margin ([Measurement in cms]) {measurement-in-inches/cms}

Options

Measurement in cms If specified ,the measurement parameter is a value in centimetres rather than inches

262

accept_advise_requests.html
send_advises_now.html
enter_data_cmd.html
prompted_find.html
advise_on_find_next_previous.html
advise_on_ok.html
advise_on_redraw.html
../report_parameters.html

Description

This command specifies the bottommargin for the current report class. It overrides the $bottommargin property until such time as
the current report is reset.

Example

Prompt user and set appropiate margins
Set report name rMyReport
Yes/No message {Print on metric A4 paper?}
If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}

Else
Set bottom margin {1.0}
Set top margin {1.0}
Default measurement is inches

End If
Print report
Set report name rMyReport ## the settings for rMyReport are now reverted

Alternatively, you can use notation to set the bottom margin
Do $clib.$reports.rMyReport.$bottommargin.$assign(1.0)

Set break calculation

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Set break calculation on field-name {calculation}

Description

This command stops method execution when the specified calculation evaluates to true; all values except zero are considered true.
You use Set break calculation after a Variablemenu command: Set break on calculation {field-name} command. The field used in the
command does not have to feature in the calculation but is used to “label” the break within Omnis.

At breakpoints, a method design window is opened with the current method loaded and the breakpoint command highlighted. You
can examine field values by right button/ Ctrl-clicking on the field or step through the remaining method.

Setting up calculated breakpoints slows down method execution considerably so you should use them sparingly. In runtime the
command does nothing.

Example

pause method execution when lMyBoolean=kTrue
Calculate lMyBoolean as kFalse
Variable menu command : Set Break On Calculation {lMyBoolean}
Set break calculation on lMyBoolean {lMyBoolean=kTrue}
For lCount from 1 to 10 step 1
If lCount=5

Calculate lMyBoolean as kTrue
End If

End For

263

../debugger.html
variable_menu_command.html

Set class description

Command group Flag affected Reversible Execute on client Platform(s)

Classes YES NO NO All

Syntax

Set class description {class-name/description}

Description

This command sets the description text for the specified library class. When a class is created, youmust specify a class name and also
an optional description of up to 255 characters. This command lets you set the description string for the specified library class. The
original description for the specified class is cleared if the description parameter is left blank (or evaluates to an empty string). The
flag is set if the description is changed.

Example

Calculate lString as 'My Class Description'
set the class desciption to the contents of the local variable lString
Set class description {sMySearch/[lString]}
show the new contents of the class description
OK message {[$clib.$classes.sMySearch.$desc]}

Set closed files

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Set closed files {list-of-files (F1,F2,..,Fn)}

Description

This command sets the file mode of the specified file(s), other than a main file, to closed. Closing a file prevents any data from being
read or changed in that file.

If you attempt to close the main file an error occurs. If you use Set closed files in a reversible block, the file mode is reset when the
method terminates. Set closed files does not cancel the Prepare for updatemode. Inmulti-user libraries, closing a file prevents Omnis
from locking it.

Closing a parent file when editing a child has the effect of protecting the connections from child to parent from change and saves
time when locating child records because the parent record is not loaded.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names to select multiple names.

Example

Prevent data from being read or changed in the files

fAccounts and fInvoices

Set closed files {fAccounts,fInvoices}

264

../classes.html
../files.html

Set current data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files NO YES NO All

Syntax

Set current data file {internal-name}

Description

This command sets the specified data file the “current” data file. If your methods refer to file class names without specifying the data
file, it is essential to make the appropriate data file current before setting a main file.

Example

Open data file {Archive.df1/DataFileA}
Open data file (Do not close other dat) {myData.df1/DataFileB}
Set current data file {DataFileA}
Set main file {fCustomers}
fCustomers.Field1 now refers to DataFileA.fCustomers.Field1

Set current list

Command group Flag affected Reversible Execute on client Platform(s)

Lists NO YES NO All

Syntax

Set current list list-or-row-name

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Note that you can create an instance variable of List data type, and such lists do not need to be made “current” since they are
instantiated automatically and made current in the context of the current method or instance.

Description

This command sets the current list, that is, the list to be processed in the subsequent list commands. You can make any type of list
the current list, including local, class, and library variables of list data type. If you use this command as part of a reversible block, the
current list reverts to its former value when the method containing the reversible block finishes.

See also Define list.

Example

Set current list iMyList
Define list {fCustomers}
Set main file {fCustomers}
Build list from file on fCustomers.CustomerID

265

../data_files.html
../lists.html
define_list.html

Set DDE channel item name

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES NO NO Windows

Syntax

Set DDE channel item name {server-data-item-name}

Description

DDE command, Omnis as client. This command specifies the server data item name to which you can send the exported report.
When transmitting a Send to DDE channel report, Omnis takes the channel item name and uses it as the server item name which is
to be sent.

The flag is cleared if the item name is too long, thus causing a memory allocation error to take place.

The item names set in the command accumulate over each use of the command until a Clear DDE channel item names is issued.

Within a client library, for example, a report class is created which sends the fields ClF1, ClF2…ClF5 to the current channel. At the server
end of the conversation, the fields are to be read into five fields server1, server2…server5. Before you can print the report, the method
must contain the following commands:

Example

Set report name rMyReport
Send to DDE channel
Set DDE channel number {1}
Open DDE channel {Omnis|myLibrary}
Send command {[[TakeControl]}
If flag true
Set DDE channel item nam {server1}
Set DDE channel item nam {server2}
Set DDE channel item nam {server3}
Set DDE channel item nam {server4}
Set DDE channel item nam {server5}
Print report

End If

Set DDE channel number

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data YES YES NO Windows

Syntax

Set DDE channel number {calculation}

Description

DDE command, Omnis as client. This command sets the channel number to be used in subsequent DDE commands. Each channel
number identifies a particular conversation.

The channels are numbered from 1 to 8, and the flag is cleared if an invalid channel number is used. If you omit the channel number,
it defaults to 1. The channel number selected can be the result of a calculation. All subsequent channel commands function on the
current channel number. To select another channel, you must use a new Set DDE channel number command.

266

../exchanging_data.html
send_to_dde_channel.html
clear_dde_channel_item_names.html
../exchanging_data.html

Example

Set DDE channel number {2}
Open DDE channel {Omnis|Country}
If flag false
OK message {The Country library is not running}

Else
Send command {Do method Invoice}
Do method TransferData

End If

Set default data file

Command group Flag affected Reversible Execute on client Platform(s)

Data files NO YES NO All

Syntax

Set default data file {list-of-files (F1,F2,..,Fn)}

Description

This command sets the default data file to be the current data file. Normally, file classes are associated with whatever the current data
file is, at the time of execution. You use Set current data file to change the identity of the current data file. As the current data file
changes, the file classes are associated with the changed current data file.

Set default data file sets the data file, for the specified file class or list of file classes, to be fixed at whatever is the current data file at the
time when the command executes. In other words, it creates an association between a list of file classes and the particular data file
that was current. For these file classes, the data file becomes fixed (that is, the “default” data file) and does not change whenever the
current data file changes. You can break the associationwith either a new Set default data file or a Floating default data file command.

When you close the default data file for a file, that file reverts to a floating state. Thismeans that the default data file for that file reverts
to the current data file and changes when the current data file changes.

Set default data file does not change the flag but is reversible, that is, when the command is reversed, the previous default data files
are restored. A runtime error occurs if there are no data files open when the command is executed.

Example

Open data file {myDataFile} ## open first datafile
Open data file (Do not close other dat) {myOtherDataFile} ## open second datafile
Set default data file {fCustomers,fOrders}
Set current data file {myDataFile}
Set main file {fCustomers}
This now refers to the myOtherDataFile NOT myDataFile which is the current data file

Set export format

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set export format {export-format}

267

../data_files.html
set_current_data_file.html
floating_default_data_file.html
../report_parameters.html

Export Formats

Delimited (commas)
Delimited (tabs)
One field per line
Omnis data transfer
Delimited (user delimiter)

Description

This command specifies the export format to be used with the current report. The Set export format command lets you to override
the parameters stored in the report class. You should use it after selecting a report class.

If you leave the name empty, the report is printed without an export format. An error occurs if the name is not a valid export format
name. The name specified for the command can contain square bracket notation.

Translation

Export format names are not tokenized and therefore are not understood by foreign language versions of Omnis. To avoid this porta-
bility problem, you can always build a list of export formats and use the list to select a format (see the second Example below).

Example

Ouput report rMyReport to a comma delemited file
Send to file
Set report name rMyReport
Set print or export file name {[con(sys(115),'output.txt')]}
Set export format {Delimited (commas)}
Print report
Close print or export file
Set the export format to the second in the list iExportFormatList
Set current list iExportFormatList
Do iExportFormatList.$define(iExportFormat)
Build export format list
Do iExportFormatList.$line.$assign(2) ## Delimited (tabs)
Do iExportFormatList.$loadcols()
Set export format {[iExportFormat]}

Set file read-only attribute

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Set file read-only attribute (path, read-flag) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command lets you set the read-only attribute of the file specified in path-name. If you set the read-flag parameter to kTrue the
file is set to read-only, or if kFalse the file is set to read/write.

It returns an error code (See Error Codes), or zero if no error occurs.

268

../external_commands.html
fileops_error_codes.html

Example

set the read-only attribute of lPathname to kTrue
Calculate lPathname as con(sys(115),'libraries',sys(9),'mylibrary.lbs')
Set file read-only attribute (lPathname,kTrue)

Set final line number

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Set final line number {line-number (calculation)}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command explicitly sets the value of LIST.$linecount by specifying a line number or a calculation. Omnis expands or contracts
any list as necessary andmaintains the value of the LIST.$linecount property as the last line number. If the number of lines in the list is
less than the number set for LIST.$linecount, Omnis adds empty lines to the end. If the number of lines is greater than LIST.$linecount,
Omnis shortens the list and reduces the memory needed by the list.

You can use Set final line number to speed up list handling by setting the final line number to shorten lists, for example. The list is
effectively cleared of data when the line number parameter is left blank (or evaluates to zero).

Example

Reduce the number of lines in the list from 100 to 50
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 100 step 1
Add line to list {lCol1}

End For
OK message {List has [lMyList.$linecount] lines}
Set final line number {50}
OK message {List now has [lMyList.$linecount] lines}

Set import file name

Command group Flag affected Reversible Execute on client Platform(s)

Importing and Exporting YES YES NO All

Syntax

Set import file name {file-name}

269

../list_lines.html
../importing_and_exporting.html

Description

This command specifies the name of the import file. The flag is set if the import file is successfully selected. You use the current import
file in any subsequent Import field from file commands.

If you use Set import file name in a reversible block, the import file is closed when the method containing the reversible block termi-
nates.

Example

import from a csv file called myImport.txt in the root of your omnis tree
Calculate lImportPath as con(sys(115),'myImport.txt')
Set import file name {[lImportPath]}
Prepare for import from file {Delimited (commas)}
Import data lImportList
End import
Close import file

Set label width

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set label width ([Measurement in cms]) {measurement-in-inches/cms}

Options

Measurement in cms If specified, the measurement parameter is a value in centimetres rather than inches

Description

This command specifies the width of the labels when printing labels. It overrides the value set in the report parameters dialog until
the current report is next reset. The width is measured from the edge of one label to the corresponding edge of the next.

You can set up the vertical spacing between labels using Set record spacing.

Example

Print labels with a width of 4.5 cms
Set report name rLabels
Set labels across page {4}
Set record spacing {3}
Set repeat factor {2} ## two of each label
Set label width (Measurement in cms) {4.5}
Print report ## default measurement is inches

Alternatively, you can use notation to set the label width
Do $clib.$reports.rLabels.$labelwidth.$assign(4.5)

Set labels across page

270

import_field_from_file.html
../report_parameters.html
set_record_spacing.html

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set labels across page {number}

Description

This command specifies the number of labels across the page for label printing. It overrides the setting in the report parameters dialog
for the current report class. The setting remains in force until the next Set report name command.

When labels are printed, the vertical spacing from the top of one label to the next is set up using the $recordspacing property or from
amethod using Set record spacing.

Example

Print 4 labels across a page
Set report name rLabels
Set labels across page {4}
Set record spacing {3}
Set label width {(Measurement in cms){4.5}}
Print report

Set left margin

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set left margin ([Measurement in cms]) {measurement-in-inches/cms}

Options

Measurement in cms If specified, the measurement parameter is a value in centimeters rather than inches

Description

This command specifies the left margin for the current report class. It overrides the left margin setting in the report properties until
such time as the current report is reset.

Example

Prompt user and set appropiate margins
Set report name rMyReport
Yes/No message {Print on A4 paper?}
If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}
Set left margin (Measurement in cms) {1.2}
Set right margin (Measurement in cms) {1.2}

Else
default measurement is inches

271

../report_parameters.html
set_report_name.html
set_record_spacing.html
../report_parameters.html

Set bottom margin {0.5}
Set top margin {0.5}
Set left margin {0.5}
Set right margin {0.5}

End If
Print report

Alternatively, you can use notation to set the left margin
Do $clib.$reports.rMyReport.$leftmargin.$assign(0.5)

Set lines per page

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set lines per page ([Send form feed]) {number}

Options

Send form feed If specified, Omnis outputs a form feed character at the end of each page of the report

Description

This command changes the number of lines per page for reports printed to file or port. You can send any report to a port or file using
the Report destination dialog. When the destination is selected in this window, the number of lines is automatically set to the default
number for the destination, so you must use Set lines per page after you have selected the report destination. The default lines per
page setting is stored in the configuration file.

The Send form feed option lets you send a form feed character at the end of each page of the report; otherwise, multiple line feeds
are sent.

Example

Set the number of lines for each page of the report
rMyReport to 66
Set report name rMyReport
Set lines per page (Send form feed) {66}
Print report

Set main file

Command group Flag affected Reversible Execute on client Platform(s)

Files NO YES NO All

Syntax

Set main file {file-name}

272

../report_parameters.html
../files.html

Description

This command selects the “main file” class. Set main file is an essential command which you must execute before manipulating any
data. You can insert or delete data only in the file designated as the main file. The designated file cannot be memory-only or closed.

The main file setting also determines which connected files are located when finding records with Find/Next/Previous, and which
connections are updated. As each main file record is read, the connected records are automatically read in and made available for
editing. When the main file is edited or inserted, all connections to its parent files are updated, unless the parent file is closed.

If Omnis attempts to execute a command which requires a main file before the main file is set, an error occurs. If the data file is not
opened when the main file is set, Omnis will try to open the default data file and, if this is unsuccessful, will display the Change data
file dialog box so that the user can select or create a data file.

Changing the main file after a Prepare for… command does not cancel Prepare for mode. When an update is encountered, the main
file set at the time of the last Prepare for is used. (See Prepare for edit, Prepare for insert.)

If you use Set main file in a reversible block, the main file is reset to its previous value when the method containing the reversible
block finishes.

Multiple open data files

If more than one data file is open, there is only onemain file setting shared by all open data files. If you do not qualify a file class name
with a data file, the current data file is assumed unless you have created an association between the file class and another data file
using the Set default data file command.

Example

Set the main file in a reversible block so it returns to
it's former setting once this method terminates
Begin reversible block
Set main file {fAccounts}

End reversible block
Prepare for insert
Calculate fAccounts.Code as 'AC01'
Calculate fAccounts.Surname as 'Smith'
Calculate fAccounts.Balance as 100
Update files

Set memory-only files

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Set memory-only files {list-of-files (F1,F2,..,Fn)}

Description

This command sets the file mode of the specified file(s), other than the main file, to memory-only. You can use the fields from a
memory-only file as global variables. To do this:

1. Create a file class with some fields of the required type (Character, Numeric, and so on).

2. Designate the file class as a memory-only file using this command.

3. Use the fields in your methods as temporary storage for data.

273

prepare_for_edit.html
prepare_for_insert.html
set_default_data_file.html
../files.html

When a memory-only file is changed to read/write, its fields are not cleared from the current record buffer. Similarly, when a file is
changed from read/write to memory-only, its records are not cleared. Memory-only fields are initialized as empty when the library is
launched.

If used in a reversible block, Set memory-only files is reversed when the method containing the block finishes. This command does
not clear the Prepare for update mode.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names to select multiple names.

Example

Use the fields in the file class fGlobals as temporary global variables
which do not get written to a datafile
Set memory-only files {fGlobals}
Calculate fGlobals.gMyGlobalVar as 'My Global Var'

Set Omnis window title

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment NO YES NO Windows,Linux

Syntax

Set Omnis window title {title}

Description

This command changes the title on the Omnis application window (available under Windows and Linux only). The title parameter
provides the new title which may contain square bracket notation. Unless reversed as part of a reversible block, the new title will
remain until Omnis is restarted.

Example

Set the Omnis window title to 'My Application'
Begin reversible block
Set Omnis window title {My Application} ## for Windows/Linux only

End reversible block

Set page width

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set page width {number}

Description

This command changes the width of reports printed to file or port. The default setting is stored in the preferences file and is selected
automatically when the destination is chosen. Set page width overrides this setting and must be used after selecting the report
destination.

274

../omnis_environment.html
../report_parameters.html

Example

Set the page width for the report rMyReport to 45
Set report name rMyReport
Send to file
Set print or export file name {[con(sys(115),'output.txt')]}
Set lines per page {66}
Set page width {45}
Print report
Close print or export file

Set port name

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations YES NO NO All

Syntax

Set port name {port-name (e.g. COMn: or LPTn:)}

Description

This command specifies the name of the port to be used with subsequent input or output via the port. The flag is set if the port is
successfully selected. The command should follow Send to port. You can set the baud rate and other parameters for the port using Set
port parameters.

Set port name is not reversible, but if you use it in a reversible block the specified port is closed when the method terminates.

If an error occurs, then this command sometimes generates a fatal error. You can use an error handler to intercept the fatal error;
see Load error handler for details.

Example

Set report name rMyReport
Send to port
If platform()='X'
Set port name {1 (Modem port)} ## macOS

Else
Set port name {COM1:} ## Windows & Linux

End If
Set port parameters {1200,n,7,2}
Print report

Set port parameters

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations YES NO NO All

Syntax

Set port parameters {profile-spec (<profile>,<cpi>,<lpi>) or parameters (e.g. 9600,n,8,1,x,10,6)}

275

../report_destinations.html
send_to_port.html
set_port_parameters.html
set_port_parameters.html
load_error_handler.html
../report_destinations.html

Description

This command sets the port parameters. When you use Select port in a method, the baud rate and other parameters are set to the
values configured for the system, or the values set by the last application to use the port. If you need to change the settings you can
do so with this command, which should follow a Send to port. The flag is set if the command is successful.

The first five parameters only apply to serial ports. The last three (CPI, LPI, timeout) apply to both serial and parallel ports.

You specify the flow control parameter as either X, H or R (in upper or lower case).

• X means XON/XOFF protocol

• H means hardware handshaking, using both RTS/DTR and CTS/DSR.

• R is only available on Windows, and means hardware handshaking, using just RTS/DTR.

Themaximumvalue for the transmit XON threshold and transmit XOFF threshold, in the flow control settings, is too large forWindows.
4096 works but in practice the value required will depend on what device is connected to the port.

The CPI and LPI parameters are numbers that specify characters and lines per inch. These are used by Omnis to justify fields in the
report, and are not sent as control characters to the printer.

The timeout specifies the time in seconds that Omnis will wait for data transfer activity on the port, before aborting the transfer; each
time there is new data transfer activity, Omnis restarts the timeout timer. If omitted, it defaults to the value stored in the report
destination parameters for the port destination. A value of zero means that operations will not time out.

You can use a port profile name instead of the port parameters as described above.

Example

example 1
set a baud rate of 9600, no parity, eight data bits and 1 stop bit
Set port parameters {9600,n,8,1}

example 2
The extra comma indicates no change to the handshake parameter (X/H/R)
Set port parameters {9600,n,8,1,,10,6}
set up the XON/XOFF handshale protocol
Set port parameters {9600,n,7,1,X}

example 3
Set report name rMyReport
Send to port
If platform()='X'
Set port name {1 (Modem port)} ## macOS

Else
Set port name {COM1:} ## Windows & Linux

End If
Set port parameters {1200,n,7,2}
Print report

Set print or export file name

Command group Flag affected Reversible Execute on client Platform(s)

Report destinations YES YES NO All

Syntax

Set print or export file name {file-name}

276

send_to_port.html
../report_destinations.html

Description

This command specifies the print file name to which printed output is to be directed. The flag is set if the print file is successfully
selected. If you use Set print or export file name in a reversible block, the print file is closedwhen themethod containing the reversible
block terminates.

Set print or export file name closes the current print or export file, if any, and then opens the specified file. The property
$root.$prefs.$appendfile determines how the file is opened. Either new data is appended to the current content, or the file is
truncated to zero length.

Once the file name has been specified, Send to file directs the report output to the file. As each report is printed, its output is added
to the end of the last report in the file.

If an error occurs, then this command sometimes generates a fatal error. You can use an error handler to intercept the fatal error;
see Load error handler for details.

Example

If platform()='X'
Set print or export file name {/Work/Output file2} ## macOS
Else
Set port name {C:\work\output2.prn} ## Windows & Linux
End If
Send to file
Set report name rMyReport
Print report
Close print or export file

Set read-only files

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Set read-only files {list-of-files (F1,F2,..,Fn)}

Description

This command sets the file mode of the specified file(s) to read-only. You can read but not write to a read-only file. Set read-only
files does not cancel the Prepare for update mode.

If you use this command in a reversible block, the file reverts to its original mode when the method containing the command block
terminates.

In multi-user systems, you use Set read-only files to prevent Omnis from locking certain files. When you make files read/write, they
are locked and re-read. In multi-user systems, records such as invoice numbers and totals, accessed by a number of users, should
be made read-only to prevent delays caused by record locking. You must return the file to read/write status momentarily while it is
updated.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names to select multiple names.

Example

Data from fAccounts may be read, but not changed
Set read-only files {fAccounts}
Set main file {fInvoices}
Prepare for insert
Enter data
Update files if flag set

277

send_to_file.html
load_error_handler.html
../files.html

Set read/write files

Command group Flag affected Reversible Execute on client Platform(s)

Files YES YES NO All

Syntax

Set read/write files {list-of-files (F1,F2,..,Fn)}

Description

This command sets the file mode of the specified file(s) to read/write. The read/write file mode is the default type of Omnis file; you
can read and write data to a read/write file. The other three file modes are read-only, closed and memory-only. If a file is changed to
read/write mode when in Prepare for update, the data for the file class is reread from disk. In multi-user systems, read/write files are
locked when a Prepare for… command is executed.

The file mode will revert to its former state if you use the command in a reversible block.

In the method editor, a list of files is displayed. You can Ctrl/Cmnd-click on the file names to select multiple names.

Example

Set the file fSequences to read/write so that we can get the next invoice number
Set read/write files {fSequences}
Set main file {fSequences}
Prepare for insert
Find first
Calculate fSequences.InvoiceNumber as fSequences.InvoiceNumber+1
Update files
Set read-only files {fSequences}

Set record spacing

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set record spacing ([Measurement in cms]) {measurement-in-inches/cms}

Options

Measurement in cms If specified, the measurement parameter is a value in centimetres rather than inches

Description

This command specifies the line spacing for the record section of the current report class. It overrides the setting in the record section
properties for the current report. The setting remains in force until the next Set report name.

278

../files.html
../report_parameters.html
set_report_name.html

Example

Set the record spacing for the report rMyReport to 5.2 cms
Set report name rLabels
Set labels across page {3}
Set record spacing (Measurement in cms) {5.2} ## default is inches
Print report

Alternatively, you can use notation to set the record spacing
Do $clib.$reports.rLabels.$recordspacing.$assign(5.2)

Set reference

Command group Flag affected Reversible Execute on client Platform(s)

Calculations NO NO YES All

Syntax

Set reference field-name to notation-or-calculation-for-an-item

Description

This command sets up and stores a reference to an item in a variable of type Item reference. It assigns an alias for an item of notation
that you do not want to type each time the item is referenced in the code.

Note - for JavaScript client-executed methods this command is equivalent to Calculate.

Example

declare local variable lRef of type Item reference in a window class
set the local item reference variable lRef to a Balance field on a Page Pane
Set reference lRef to $cinst.$objs.PagePane.$objs.Balance
now you can set the text color of the Balance field to red using lRef
Do lRef.$textcolor.$assign(kRed)

Set repeat factor

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set repeat factor {number}

Description

This command specifies the number of copies of the record section to be printed. It overrides the repeat factor specified in the report
properties for the current report. Set repeat factor is particularly useful when printing multiple labels. The setting remains in force
until the next Set report name. If the repeat factor is left blank (or evaluates to zero), the printing of the record sections of a report is
suppressed completely; all heading sections, totals and subtotals are still calculated correctly.

279

../calculations.html
calculate.html
../report_parameters.html
set_report_name.html

Example

Print 2 of each label
Set report name rLabels
Set labels across page {3}
Set repeat factor {2}
Set label width {3.4}
Print report

Alternatively, you can use notation to set the repeat factor
Do $clib.$reports.rLabels.$repeatfactor.$assign(2)

Set report main file

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set report main file {file-name}

Description

This command specifies themain file for the current report. When a report is printed, Omnis uses themain file set by the last Setmain
file. Set report main file overrides the main file setting by specifying a newmain file specifically for the report. The setting remains in
force until the next Set report name.

Printing connected files

When printing connected files, it is essential that the child file is made the main file. Only the main file and its connected parent files
are automatically read into the current record buffer.

If no sort fields are specified in the report class, the report generator steps through the records in the order defined by the record
sequencing number for the main file. Sort fields let you reorder the report records.

Example

Set the main file to fAccounts for the report rMyReport
Set report name rMyReport
Set report main file {fAccounts}
Clear sort fields
Set sort field fAccounts.Surname
Prompt for destination
Print report
Alternatively, you can use notation to set the main file
Do $clib.$reports.rMyReport.$mainfile.$assign('fAccounts')

Set report main list

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set report main list list-or-row-name

280

../report_parameters.html
set_main_file.html
set_main_file.html
set_report_name.html
../report_parameters.html

Description

This command specifies a list as the source for the data for the current report. When a report is printed, Omnis uses the main file
specified either in $mainfile or the file set by the last Set main file command. Set report main list lets you override the main file
setting by specifying a list, from which data is read for the next printed report.

A list-based report prints one record for each line in the list. The data file is not used unless the report contains auto find fields. Sorting,
searching, subtotals, and so on, continue to work the same way as for file-based reports. All field values are taken from the list and
records are read in list order.

When a Prepare for print command is encountered, the current list or file setting overrides the Main file setting used in the report
parameters dialog.

Example

Set the main list for the report rMyReport
Set report name rMyReport
Set report main list tMyList
Prompt for destination
Print report
Alternatively, you can use notation to set the main list
Do $clib.$reports.rMyReport.$mainlist.$assign('tMyList')

Set report name

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing NO YES NO All

Syntax

Set report name report-name

Description

This command selects a report class for use with subsequent Print… commands. It terminates any report in progress.

If you use Set report name in a reversible block, the previous report name will be restored when the method terminates.

Example

Print the report rMyReport to the selected
destination
Prompt for destination
If flag true
Set report name rMyReport
Print report

End If

Set right margin

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set right margin ([Measurement in cms]) {measurement-in-inches/cms}

281

set_main_file.html
prepare_for_print.html
../reports_and_printing.html
../report_parameters.html

Options

Measurement in cms If specified, the measurement parameter is a value in centimeters rather than inches

Description

This command specifies the right margin for the current report class. It overrides the right margin setting in the report properties
until such time as the current report is reset.

Example

Prompt user and set appropiate margins
Set report name rMyReport
Yes/No message {Print on A4 paper?}
If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}
Set left margin (Measurement in cms) {1.2}
Set right margin (Measurement in cms) {1.2}

Else
default measurement is inches
Set bottom margin {0.5}
Set top margin {0.5}
Set left margin {0.5}
Set right margin {0.5}

End If
Print report
Alternatively, you can use notation to set the right margin
Do $clib.$reports.rMyReport.$rightmargin.$assign(0.5)

Set search as calculation

Command group Flag affected Reversible Execute on client Platform(s)

Searches NO YES NO All

Syntax

Set search as calculation {calculation}

Description

This command sets the current search as the single line calculation specified. The calculation replaces the current search class if one
has been set. A subsequent report, Search list or a Find command with Use search will use the search calculation.

Search calculations allow the index optimization routine in Omnis to select a suitable index, provided that such an index is available.
Leaving the calculation blank has the effect of clearing the previous search calculation.

Example

Use Town index in fCustomers to find Londoners and then use search to locate Smiths.
Set main file {fCustomers}
Set search as calculation {fCustomers.Surname='Smith'}
Find on fCustomers.Town (Exact match,Use search) {'London'}
Do $cwind.$redraw()

example 2, moves selected lines only between lists

282

../searches.html
search_list.html
find.html

Set current list lList2
Set search as calculation {#LSEL}
Merge list lList1 (Use search)

Set search name

Command group Flag affected Reversible Execute on client Platform(s)

Searches NO YES NO All

Syntax

Set search name search-name

Description

This command sets the search class to be used with reports, Search list and Find (using search) commands. If no search class name
is included, the current search is cleared. Search classes allow subsets of the records to be printed or worked on.

A Find first (Use search) command reads in the first record which matches the current search criterion and creates a find table. Sub-
sequent Next commands print out the records in the table.

If used within a reversible block, the search name reverts to its former setting when the method terminates.

Example

example 1
Set search name sArea
Set report name rMyReport
Print report (Use search)

example 2
Set search name sArea
Set main file {fOrders}
Clear main & con
Prepare for print
create table of records which match
Find first (Use search)
While flag true
Print record
Next

End While
End print

Set server mode

Command group Flag affected Reversible Execute on client Platform(s)

Exchanging data NO YES NO Windows

Syntax

Set server mode ([Field requests][,Field values][,Advise requests][,Commands])

Options

283

../searches.html
search_list.html
find.html
find_first.html
next.html
../exchanging_data.html

Field requests If specified, Omnis will accept DDE field request commands (see command Accept field requests)
Field values If specified, Omnis will accept DDE field value commands (see command Accept field values)
Advise requests If specified, Omnis will accept DDE advise request commands (see command Accept advise requests)
Commands If specified, Omnis will accept DDE commands (see command Accept commands)

Description

This command sets Omnis to act as a DDE server and specifies which DDE commands it will accept. With one or more of the check
box options selectedOmniswill respond to the corresponding commands anddemands froma client. If none is selected, servermode
is deselected.

All four servermode check box options have equivalent DDE commandswhich are described separately: Accept field requests, Accept
field values, Accept advise requests and Accept commands.

Irrespective of themode selected, Omniswill only accept field values and commandswhen in enter datamode, andaccept commands
when no methods are running.

Omnis will only respond to a request to act as a server if the Initiatemessage from the client contains at least the name of the program,
that is, Omnis. If the client specifies a topic, it has to be equal to the Omnis library name without the .lbr extension. Omnis responds
with the current library name if the client does not specify the topic.

If no options are set, Omnis is disabled as a server except for the System Topic. If Omnis is already a server when the options under Set
server mode are disabled, one of two things will happen:

1. If the options have been disabled during a reversible block, the client sending the Initiate message will get busy acknowledg-
ments until the reversible commandmethod finishes. You cannot initiate any new conversations during this time.

2. Omnis will end the communication by sending the client a Terminate message.

All four servermode options have equivalent commandswhich are described separately: Accept field requests, Accept field values, Ac-
cept advise requests and Accept commands.

Example

Set server mode (Field requests)

Set sort field

Command group Flag affected Reversible Execute on client Platform(s)

Sort fields NO YES NO All

Syntax

Set sort field field-name ([Descending][,Upper case][,Subtotals][,New page])

Options

Descending If specified, data for the field is sorted in
descending order

Upper case If specified, data for the field is sorted in
a case-insensitive manner, converting
data to upper case before sorting

Subtotals If specified, the Subtotal section in a
report is printed when the value of the
sort field changes

284

accept_field_requests.html
accept_field_values.html
accept_field_values.html
accept_advise_requests.html
accept_commands.html
accept_field_requests.html
accept_field_values.html
accept_advise_requests.html
accept_advise_requests.html
accept_commands.html
../sort_fields.html

New page Only relevant if you specify the subtotals
option. If specified, Omnis starts a new
page in a report when the value of the
sort field changes

Description

This command specifies a field on which a list or report is to be sorted. The report generator systematically works through the records
in the main and connected files and prints them using the report class definition. You can use sort fields to sort the records into a
specific index order.

A report can be sorted on up to nine fields: you can specify sort fields in the report class or by using Set sort field. Since sort fields are
cumulative, use Clear sort fields first to clear any that already exist.

When a report name is selected, the report class sort fields are used but you can override these sort fields by clearing them and
specifying new sort ones with Set sort field. For nine sort fields, you use the Set sort field command nine times in succession. Using
this method, however, can be slower than sorting on fields that are already indexed.

You can set the sort fields for lists using Set sort field. The Sort list command sorts the current list in the order specified by the current
sort fields. Note that lists have to be explicitly redrawn before you can view the results of a sort.

If used within a reversible block, the sort field setting reverts when the method terminates.

The Descending option sorts the records in descending order. The Upper Case option converts lower case characters to upper case
for the purpose of sorting. The Subtotals option causes the Subtotal section in the report to be printedwhen the value of the sort field
changes. Thus, in the above example, when AREA changes, subtotals 1 is printed, when DEPT changes, subtotals 2 is printed, and so
on. The New Page option starts a new page when the field value changes.

Example

Sort the report on fields Surname,Balance
Set report name RCOMMISSION
Clear sort fields
Set sort field fAccounts.Surname
Set sort field fAccounts.Balance
Set report name rMyReport
Send to screen
Print report

Set timer method

Command group Flag affected Reversible Execute on client Platform(s)

Methods NO YES NO All

Syntax

Set timer method interval (seconds) sec [name/]name

Description

This command calls the specifiedmethod at regular intervals while waiting for a keyboard input; the calledmethod should preferably
be one contained in a code class. You could use this command for automatic telephone dialing, regular checks for electronic mail,
and so on.

The command specifies the timermethod and the interval in seconds between calls to the timermethod. This interval canbebetween
1 and 30,000 in the form “n sec” where n is the number of seconds. Omnis will start the next timer method when the method which
is currently executing, finishes. Timer methods cannot operate in real time as Omnis will not execute a timer method while another
method is running or when an OK or Yes/No message is displayed on the screen.

285

clear_sort_fields.html
sort_list.html
../methods.html
ok_message.html
yes_no_message.html

The timer method in your code class should not contain a Quit all methods as this will terminate any Enter data commands which
are running. You can also use an Enter data inside a timer method: if so and you do not clear the timer method, the timer method
continues to be active while Omnis carries out the Enter data part of the timer method.

You can use Set timermethod in a reversible block, inwhich case the timermethod is clearedwhen the executingmethod terminates.

Note that (from Studio 11 onwards) the timermethod runs in the context of the current task, therefore you can access its task variables
from the method. Note that the timer method will continue to run after the task closes.

Example

Call the method Timer every 5 seconds
Set timer method 5 sec Timer
method Timer
OK message {Timer method triggered}

Set top margin

Command group Flag affected Reversible Execute on client Platform(s)

Report parameters NO NO NO All

Syntax

Set top margin ([Measurement in cms]) {measurement-in-inches/cms}

Options

Measurement in cms If specified, the measurement parameter is a value in centimeters rather than inches

Description

This command specifies the top margin for the current report class. It overrides $topmargin until such time as the current report is
reset.

Example

Prompt user and set appropiate margins
Set report name rMyReport
Yes/No message {Print on metric A4 paper?}
If flag true
Set bottom margin (Measurement in cms) {2.34}
Set top margin (Measurement in cms) {1.2}

Else
Set bottom margin {1.0}
Set top margin {1.0}
Default measurement is inches

End If
Print report
Set report name rMyReport ## the settings for rMyReport are now reverted
Alternatively, you can use notation to set the top margin
Do $clib.$reports.rMyReport.$topmargin.$assign(1.0)

Set top window title

286

quit_all_methods.html
enter_data.html
../report_parameters.html

Command group Flag affected Reversible Execute on client Platform(s)

Windows NO YES NO All

Syntax

Set top window title {title}

Description

This command specifies the title for the top window instance. You can use square bracket notation within the window title. The title
of the top window instance is cleared if you omit the window title parameter (or it evaluates to an empty string). The title reverts to
the normal title if the window instance is closed and reopened. An error occurs if there is no window instance.

If you use Set top window title in a reversible block, the title reverts to its normal value when the method containing the reversible
block terminates.

Example

Use the value of lName in the window title
Prompt for input Name ? Returns lName
Set top window title {Messages for [lName]}

Show ‘About…’ window

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment NO NO NO All

Syntax

Show ‘About…’ window

Description

This command displays the standard “About…” window which is available as an option in the Help menu under Windows and Linux,
or the Apple menu under macOS. You can change the standard “About…” screen with the Set ‘About…’ method command.

Show docking area

Command group Flag affected Reversible Execute on client Platform(s)

Toolbars NO NO NO All

Syntax

Show docking area ([Show text][,Large Icons][,Variable Text Width]) {docking-area (e.g. kDockingAreaBottom)}

Options

Show text If specified, the docking area will display text for objects that
have an associated text string

Large Icons If specified, the docking area will display large icons (32x32)
rather than small icons (16x16)

287

../windows.html
../omnis_environment.html
set_about_method.html
../toolbars.html

Variable Text Width If specified, and ‘Show text’ is also specified, the docking area
will adjust the width of the objects according to the width of
the text

Description

This command opens the top, bottom, left, or right docking area into which toolbars may be installed. The docking area is specified
using one of the constants: kDockingAreaTop, kDockingAreaBottom, kDockingAreaLeft, kDockingAreaRight or kDockingAreaFloat-
ing.

When a toolbar is created each control may have a text label, for example, a Print buttonmay have the word “Print” associated with it.
The Show text option allows these text labels to be shown beneath the buttons.

Example

Show docking area {kDockingAreaLeft}
Install toolbar {tbMyToolbar/kDockingAreaLeft}
or you can use the notation
Do $root.$prefs.$dockingareas.$assign(kDockingAreaLeft)
Do $clib.$toolbars.tbMyToolbar.$open('*',kDockingAreaLeft) Returns lToolBarRef

Show fields

Command group Flag affected Reversible Execute on client Platform(s)

Fields NO YES NO All

Syntax

Show fields {list-of-field-names (Name1,Name2,…)}

Description

This command shows the specified window field or list of fields. You can hide fields with Hide fields or using the notation. Inactive
pushbuttons with the Do not gray attribute cannot be made visible with this or any other command.

If you use Showfields in a reversible block, the specified fields are hiddenwhen themethod containing the reversible block terminates.

Example

Yes/No message {Do you want to show fields?}
If flag true
Begin reversible block

Show fields {myField1,myField2}
End reversible block

End If
do something
Quit method
now this method ends and the fields are re-hidden as they are in a reversible block
To show a single field on the current window
Do $cwind.$objs.myField1.$visible.$assign(kTrue)
to show all fields on the current window
Do $cwind.$objs.$sendall($ref.$visible.$assign(kTrue))

Show Omnis maximized

288

../fields.html
hide_fields.html

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment NO NO NO Windows

Syntax

Show Omnis maximized

Description

This command showsOmnis at itsmaximumsizewithin the applicationwindow. This commandperforms the sameaction as theMax-
imize option in the Systemmenu and theMaximize button on the application window.

Example

Maximize Omnis after processing
Show Omnis minimized
For lCount from 1 to 100000 step 1
delay
End For
Show Omnis maximized

Show Omnis minimized

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment NO NO NO Windows

Syntax

Show Omnis minimized

Description

This commandminimizes Omnis which subsequently appears as an icon at the bottom of the screen.

Example

Minimize Omnis while processing
Show Omnis minimized
For lCount from 1 to 100000 step 1
delay

End For
Show Omnis maximized

Show Omnis normal

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment NO NO NO Windows

Syntax

Show Omnis normal

289

../omnis_environment.html
../omnis_environment.html
../omnis_environment.html

Description

This command showsOmnis at its normal sizewithin the applicationwindow. Icons for other applications are visible along the bottom
of the screen.

Example

Return Omnis to its original size after processing
Show Omnis minimized
For lCount from 1 to 100000 step 1
delay
End For
Show Omnis normal

Signal error

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers NO NO NO All

Syntax

Signal error {error-number, error-text (e.g. 5, ‘Error 5 occurred’)}

Description

This command reports a fatal error which can be either a user-defined error or a built-in Omnis error. A fatal error is any error that
normally halts method execution and reports an error (for example, syntax error, or an out of memory error). Built-in Omnis errors are
reported in #ERRCODE and #ERRTEXT, the latter is limited to 255 characters.

The fatal error is reported with the specified error code and text. Any error handler for that code will be invoked. If there is no error
handler or the error handler does not make a set error action (SEA), the debugger is invoked, if available. Otherwise, execution halts
with the error message.

This command is useful for trapping user-defined errors, and is a convenient tool for triggering an error situation inside Omnis for
whatever condition you may want to specify.

Example

Test for only one user
If flag false
Signal error {99,'Test for one user failed'}

End If

Single file find

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES YES NO All

Syntax

Single file find on field-name ([Exact match]) {calculation}

Options

290

../error_handlers.html

Exact match If specified, the index value of the field in suitable records must equal the current value

Description

This command locates a record in a single file only. It is similar to the standard Find command but is not dependent on the main file;
that is, the field used in Single file find does not have to belong to themain file and it does not read in the connected records. You can
specify a calculation for Single file find which determines the value used in the Find. The Exact match option with a blank calculation
indicates that the command is to be executed using the current value of the field, that is, the file is searched for a record whose index
value matches the current value of the specified field.

In multi-user systems, a Single file find while in Prepare for… mode causes additional semaphores to be set. If the record is already
locked, the user must wait for access to the record.

Example

Find account lMyAccCode
Prompt for input Account Code ? Returns lMyAccCode (Cancel button)
Wait for semaphores
Single file find on fAccounts.Code (Exact match) {fAccounts.Code=lMyAccCode}
If flag false
OK message {Can't find record}

End If

SMTPSend

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

SMTPSend (server,from,to,subj,body{Char|Bin|MIME-List}[,cc,bcc,name,stsproc,pri,xtrahdrs,user,pass,secure {Default zero insecure;1
secure;2 use STARTTLS},verify {Default kTrue}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

SMTPSend sends an Internet e-mail message via an SMTP server. It returns a Status value less than zero if an error occurs. Possible
error codes are listed in the Web Command Error Codes Appendix.

Server is an Omnis Character field containing the IP address or hostname of an SMTP server that will accept e-mail requests from
the client running Omnis, for example, smtp.server.com or 255.255.255.254. If the server is not using the default SMTP port (25 for
non-secure connections, or 465 for secure connections), you can optionally append the port number on which the server is listening,
using the syntax server:port, for example smtp.server.com:1234.

In addition, you can specify the argument of the HELO or EHLO command that will be sent to the server, via the Server parame-
ter - pass the HELO/EHLO argument as a second string, separated from the server address or hostname by a comma, for example
smtp.server.com:1234,www.mydomain.com. The argument of HELO or EHLO is typically the domain name of the sender.

From is an Omnis Character field containing the RFC 822 Internet e-mail address that will be placed in the header to identify the
sender. Recipients can reply to this address, for example, webmaster@omnis.net.

To is either an Omnis Character field or an Omnis list field. If the field is character, it contains the RFC 822 Internet e-mail address to
which the e-mail will be sent, for example, webmaster@omnis.net. If the field is a list, it has a single character column, which contains
one RFC 822 Internet e-mail address per row.

Subject is an Omnis character field containing the subject of the e-mail message.

Body is

291

find.html
../external_commands.html
web_error_codes.html

• either an Omnis Character or Binary field containing the body of the e-mail message; the text appears as the actual e-mail
message

• or an Omnis list containing MIME body-parts. See theMailSplit command for a definition of the list. Note that you do not need
to fill in the character set, content transfer encoding and content disposition columns. SMTPSendwill automatically use the ISO-
8859-1 character set for text, the 7bit encoding for message content, quoted-printable encoding for text content, and base64
encoding for all other content types. Also, SMTPSend assigns content disposition “attachment” to body parts with a file name.
If you wish to override the default behavior for these three columns, you can.

CC specifies the carbon-copy recipients for the message. You pass this parameter in the same way as the To parameter.

BCC specifies the blind carbon-copy recipients for the message. You pass this parameter in the same way as the To parameter.

Name is an Omnis Character field containing a personal name that will appear in the header to identify the user by amore descriptive
name than just the e-mail address, for example, Omnis Webmaster

StsProc is an optional parameter containing the name of an Omnismethod that SMTPSend calls with statusmessages as submission
of themessage to the SMTP server proceeds. Themethod can display a statusmessage to the user. SMTPSend calls themethod with
no parameters, and the status information in the variable #S1.

Pri is on Omnis Short Integer field that sets the priority of the e-mail. It accepts a single value in the range of 1 through 5, a 1 (one)
indicating the highest priority.

XtraHdrs is an optional parameter which enables you to specify some additional SMTP headers to be sent with the message. . It
is a 2 column list. Column 1 is the header name excluding the colon, and column 2 is the header value. For example, you could
place ‘Disposition-Notification-To’ in column 1, and an email address in column 2, to send a ‘Disposition-Notification-To’ header. Note
that SMTPSend does not validate the header, or attempt to filter out illegal duplicates.

User and Pass are required if SMTPSend is to use SMTP authentication when connecting to the server. If you omit the User parameter
(or pass a zero length string) then the command does not attempt to use authentication when connecting to the server; otherwise,
the commandwill use authenticationwhen connecting to the server, whereUser is the user name andPass is the password. Note that
whereas SMTP supports many different forms of authentication, SMTPSend only supports the commonly used CRAM-MD5, LOGIN
and PLAIN methods of authentication; if the server supports CRAM-MD5,then SMTPSend will use CRAM-MD5 if more than one of
these three methods is available, as this is the most secure method of the three it supports.

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

SMTPSend also supports an alternative secure option, if you pass secure with the value 2, the connection is initially not secure, but
after the initial exchange with the server, SMTPSend issues a STARTTLS SMTP command to make the connection secure if the server
supports it (see RFC 3207 for details). Authentication occurs after a successful STARTTLS command.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will
not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Header Values Containing International Characters

SMTPSend supports RFC 2047, and uses it to encode international characters in header values, using UTF-8 as the character encoding.

Example

Send email via the smtp server iOutServer from the email address iOutFrom to the email addresses in pToAddressList
If pEnclosureList.$linecount>0
if the new e-mail contains enclosures, compose and send as multipart MIME content
Do pEnclosureList.$redefine(lFileName,lFilePath)
Do lMimeList.$define(lLevel,lContentType,lContentSubType,lFileName,

lCharData,lBinData,lCharSet,lEncoding)
Do lMimeList.$add(0,'multipart','mixed')
Do lMimeList.$add(1,'text','plain',,pBody,,,)
For lLineInList from 1 to pEnclosureList.$linecount step 1

292

mailsplit.html

Do pEnclosureList.$line.$assign(lLineInList)
Do pEnclosureList.$loadcols()
Do lFileOps.$openfile(lFilePath)
Do lFileOps.$readfile(lFileBinData)
Do lFileOps.$closefile()
Do lMimeList.$add(1,'application','octet-stream',lFileName,,lFileBinData,,)

End For
SMTPSend (iOutServer,iOutFrom,pToAddresslist,pSubject,lMimeList,

pCCAddresslist,pBCCAddresslist,iOutFromName,pStatusCall,pPriority)
Returns lStatus
Else
send message with no enclosures
SMTPSend (iOutServer,iOutFrom,pToAddresslist,pSubject,pBody,

pCCAddresslist,pBCCAddresslist,iOutFromName,pStatusCall,pPriority)
Returns lStatus
End If

Sort list

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Sort list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command sorts the current list in the order specified by the current sort fields. You can use Set sort field to set the sort fields.
Note that lists have to be explicitly redrawn before you can view the results of a sort.

Example

Set current list iMyList
Define list {fCustomers}
Set main file {fCustomers}
Build list from file (Use search)
Clear sort fields
Set sort field fCustomers.Surname
Set sort field fCustomers.Town
Sort list
or do it like this
Do iMyList.$sort(fCustomers.Surname,kTrue,fCustomers.Town,kTrue)

Sound bell

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO YES All

293

../lists.html
set_sort_field.html
../message_boxes.html

Syntax

Sound bell

Description

This command sounds the system beep. You can sound the bell at any point in a method to draw attention to a particular method,
field, message, error, and so on.

Example

Sound the bell and open the window 'wMyErrorDialog'
Sound bell
Open window instance wMyErrorDialog

Split path name

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Split path name (path, drive-name, directory-name, file-name, file-extension) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command splits a full path name into its component parts: the drive name, directory and file name, and file extension. It returns
an error code (See Error Codes), or zero if no error occurs. The following examples show how Split path name operates.

Windows

Path Drive Directory Filename Extension

C:\TESTDIR\TESTSDIR\TESTFILE C: \TESTDIR\TESTSDIR\ TESTFILE
C:\TESTDIR\TESTFILE.EXT C: \TESTDIR\ TESTFILE .EXT
C:\TESTFILE C: \ TESTFILE

Linux

Path Drive Directory Filename Extension

/TESTDIR/TESTSDIR/TESTFILE /TESTDIR/TESTSDIR/ TESTFILE
/TESTDIR/TESTFILE.EXT /TESTDIR TESTFILE .EXT
/TESTFILE / TESTFILE

Example

split the path name lPathname
Calculate lPathname as 'c:\desktop\myfolder\mylibrary.lbs' ## Windows example using '\'
Split path name (lPathname,lDrive,lDirectory,lFileName,lExtension)
lDrive= 'c:'
lDirectory = '\desktop\myfolder\'
lFileName = 'mylibrary'
lExtension ='.lbs'

294

../external_commands.html
fileops_error_codes.html

Sta:

Command group Flag affected Reversible Execute on client Platform(s)

SQL Object Commands NO NO NO All

Syntax

Sta: {sql-script}

Description

This command appends script data to the SQL buffer for the current method stack. The Begin statement command clears the buffer
ready for a new statement.

The sql-script parameter is a text field which can contain square bracket and indirect square bracket notation (which you use to send
data to the server as a “bind” variable): note the Method Editor will enclose the complete text in curly brackets automatically, so these
do not need to be entered. A text editor will pop up when you enter or edit a Sta: line.

Multiple Sta: {sql-script} lines are added to the SQL buffer, and separated with the delimiter(s) specified by the Begin statement com-
mand. This allows you to split a SQL statement over more than one line, but note that literal values must not be split between lines.
The SQL buffer can contain more than one SQL statement provided you use the appropriate statement delimiter.

Text loaded into the buffer must be valid SQL, and must be understood by the server. You can use square brackets to load the buffer
with text obtained from Omnis functions, variables and calculations. Indirect bind variable notation of the form @[Field] is not evalu-
ated in Omnis but is handled by the DAM, and lets you pass field values to the server without the need for them to be included in the
text of a SQL statement.

You cannot insert an inline comment on any lines in a Sta: code block.

Example

Open a multi-threaded omnis sql connection to
the datafile mydatafile and create a statement to
delete rows from the table Customers
Calculate lHostname as con(sys(115),'mydatafile.df1')
Do iSessObj.$logon(lHostname,'','','MYSESSION')
Do iSessObj.$newstatement('MyStatement') Returns lStatObj
Begin statement
Sta: {Delete From Customers}
Sta: {Where Cust_ID > 100}
Sta: {And Cust_ID<110}
End statement
Do lStatObj.$execdirect()
Do lStatObj.$fetch(lMyList,kFetchAll)

Standard menu command

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO NO NO All

Syntax

Standard menu command command

Description

This commandperforms the standard functionality of anoption fromoneof the standardmenus suchas theFilemenu. This command
can prove useful when defining a newmenu class to replace a standardmenu using Replace standard file menu or Replace standard
edit menu.

295

../sql_object_commands.html
begin_statement.html
begin_statement.html
../menus.html
replace_standard_file_menu.html
replace_standard_edit_menu.html
replace_standard_edit_menu.html

Example

Execute the 'Open Library' option from
the standard edit menu
Standard menu command *File/11020 {Open Library...}

Start program maximized

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO Windows,Linux

Syntax

Start program maximized {program-name}

Description

This command starts up an application at its maximum screen size. The program namemust be the pathname of the executable file.
You can also specify the full pathname of a file, and other parameters, separated by a space from the program name. You can use this
command onWindows and Linux, although on Linux the command does not maximize the application.

The flag is set if the program is found.

Example

If the program lPath exists start it maximized
Calculate lPath as 'c:\program files\windows\accessories\wordpad.exe'
Test if file exists {[lPath]}
If flag true
Start program maximized {[lPath]}

End If

Start program minimized

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO Windows,Linux

Syntax

Start program minimized {program-name}

Description

This command starts up an application as a minimized icon. The program name must be the pathname of the executable file. You
can also specify the full pathname of a file, and other parameters, separated by a space from the program name. You can use this
command onWindows and Linux, although on Linux the command does not minimize the application. The flag is set if the program
is found.

Example

If the program lPath exists start it minimized
Calculate lPath as 'c:\program files\windows\accessories\wordpad.exe'
Test if file exists {[lPath]}
If flag true
Start program minimized {[lPath]}

End If

296

../operating_system.html
../operating_system.html

Start program normal

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO Windows,Linux

Syntax

Start program normal {program-name}

Description

This command starts up a Windows or Linux application at its normal screen size. The program name must be the pathname of the
executable file. You can also specify the full pathname of a file, and other parameters, separated by a space from the program name.

The flag is set if the program is found.

Example

If the program lPath exists start it in its normal screen size
Calculate lPath as 'c:\program files\windows\accessories\wordpad.exe'
Test if file exists {[lPath]}
If flag true
Start program normal {[lPath]}

End If

Start server

Command group Flag affected Reversible Execute on client Platform(s)

Threads YES NO NO All

Syntax

Start server {stack-initialization-method (parameters)}

Description

Start server starts the multi-threaded Web Client server. It creates the client method stacks and their associated threads, and starts
the thread which listens for client requests. You use the property $root.$prefs.$serverstacks to specify the number of method stacks
to be created.

Start server takes an optional stack-initialization-method and its parameter-list as parameters. If you specify the stack-initialization-
method, Start server pushes this method on to every client method stack and allows it to execute, so that it can be used to initialize
the state of the method stacks (so if $serverstacks is 5 it will execute five times).

The commandclears the flag if it is used in a single threadedOmnis, or the serial number does not allow clients to connect. It generates
a fatal error if for some other reason it is not possible to create the stacks and threads and start the listener.

Example

Start server
If flag false
OK message {Failed to start multithreaded server}

End If

297

../operating_system.html
../threads.html

Stop server

Command group Flag affected Reversible Execute on client Platform(s)

Threads YES NO NO All

Syntax

Stop server

Description

Stop server stops the server from responding to client requests. Once the server has been started (using Start server) it is recom-
mended that it is stopped before quitting the Studio program, before using the Studio program for anything apart from serving client
requests, and before opening or closing any datafiles or libraries.

Stop serverdisposes of all remote task and remote form instances. The resources usedby the client stacks and threads arenot released
but they will be reused by the next Start server command.

Stop server will fail and clear the flag, if you call it from a client method stack. In other words, you can only call Stop server from the
main method stack.

Example

Stop server
If flag false
OK message {Failed to stop multithreaded server}

End If

Swap lists

Command group Flag affected Reversible Execute on client Platform(s)

Lists YES NO NO All

Syntax

Swap lists list-or-row-name

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command swaps the definition and contents of the specified list with that of the current list and sets the flag. After this command,
the current list contains the fields and data which were held in the specified list, and the specified list contains the fields and data
which were in the current list.

This command cannot be used to copy lists. To do this use Calculate LIST2 as LIST1.

298

../threads.html
start_server.html
start_server.html
../lists.html
calculate.html

Example

Set current list iList1
Define list {fCustomers}
Build list from file
Swap lists iList2
Note: iList2 now contains the defintion and data from iList1 (the current list)
iList1 is now empty

Swap selected and saved

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Swap selected and saved ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command swaps the Saved selection state and the Current selection state and sets the flag. To allow sophisticatedmanipulation
of data via lists, a list can store two selection states for each line; the “Current” and the “Saved” selection. The Current and Saved
selections have nothing to do with saving data on the disk; they are no more than labels for two sets of selections. The lists may be
held in memory and never saved to disk: they will still have a Current and Saved selection state for each line but they will be lost if not
saved. When a list is stored in the data file, both sets of selections are stored.

Swap selected and saved allows the Saved selection state of the specified line (or All lines) to be swapped with the Current set. You
can specify a particular line in the list by entering either a number or a calculation. The All lines option swaps the selection status for
all lines of the current list. The following example selects the middle line of the list:

Example

Select all lines, save the selection, deselect all
lines and then swap the selected and saved lines
so all lines are selected
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) (All lines)
Save selection for line(s) (All lines)
Deselect list line(s) (All lines)
Swap selected and saved (All lines)

299

../list_lines.html

Switch

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Switch expression

Description

This command initiates a Switch method construct. You use a Switch statement to select a course of action from a set of options
based on the value of a variable, expression or calculation. It is similar to an If–Else If construct although the performance of a Switch
construct tends to be faster.

The first line of the construction contains theSwitch command. This defines the variable, expression or calculation onwhich the choice
of action will depend. Following the Switch command, the Case commands provide values which, if matched with the expression
supplied in the Switch line, cause the methods between case lines to be executed.

You can use the Break to end of switch command to jump out of the current Case statement and resumemethod execution after the
End Switch command. Note you cannot use the Break to end of loop command to break out of a Switch construct.

You can nest multiple Switch statements, and embed other conditional statements such as If–Else constructs.

Example

next button - only allow user to proceed to next page of a paged pane if the required information has been entered
Calculate lPage as $cwind.$objs.PagedPane.$currentpage
Switch lPage
Case 1

If len(iSerialNumber)=0
Calculate lErrorMsg as 'Please enter a serial number'

End If
Case 2

If len(iUserName)=0
Calculate lErrorMsg as 'Please enter your username'

End If
Case 3

If iAgreeFlag=kFalse
Calculate lErrorMsg as 'You may not proceed until you agree to the license agreement'

End If
End Switch

If len(lErrorMsg)
OK message {[lErrorMsg]}

Else
Do $cwind.$objs.PagedPane.$currentpage.$assign(lPage+1) ## go to next page

End If

TCPAccept

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPAccept (socket) Returns socket

300

../constructs.html
if_calculation.html
else_if_calculation.html
case.html
break_to_end_of_switch.html
if_calculation.html
else_if_calculation.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

You use TCPAccept to accept an incoming connection request from another application.

The Socket parameter is a socket which is listening for incoming connections on a particular port. You must create this socket us-
ing TCPSocket, bind a port (and implicitly the local machine’s IP address) to it using TCPBind, and start listening for connections by
calling TCPListen, before you can call TCPAccept to accept incoming connections using the socket.

TCPAccept is affected by the blocking state of the Socket parameter. If the Socket parameter is blocking, TCPAccept waits until an
incoming connection arrives, and then returns a new Socket for the connection to the remote application. If the Socket parameter
is non-blocking, TCPAccept will return a new Socket if an incoming connection request is already queued on the listening socket;
otherwise, it will return the error status –10035, which means that the call would block.

TCPAccept returns a long integer, which is either a new socket for the accepted connection, or an error code less than zero. The new
socket has the same blocking mode as the listening socket. The listening socket continues to listen for further incoming connection
requests.

Example

Accept incoming connections on port iPort
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPListen (iSocket) Returns lStatus
If lStatus=0
Repeat

TCPAccept (iSocket) Returns lConnectedSocket
Until lConnectedSocket>=0
client connected, get the whole message sent

End If
TCPClose (iSocket) Returns lStatus

TCPAddr2Name

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPAddr2Name (address) Returns hostname

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded,allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPAddr2Name is a domain name service command to resolve the hostname for a given IP address.

Address is an Omnis Character field containing the IP address to convert to a hostname. The IP address is of the form 255.255.255.254

Hostname is an Omnis Character field which receives a hostname which maps to the IP address. The hostname is of the form ma-
chine[.domainame.dom]

Note: This command fails if the address of a Domain Name Server has not been defined for your computer. Not all host IP Addresses
may be known to the Domain Name Server. If the Domain Name Server is busy or unavailable, the command times out and returns
an error. Defining often -used servers in a local host’s file or using a caching Domain Name Server increases performance of this
command.

301

tcpsocket.html
tcpbind.html
tcplisten.html
../external_commands.html

Example

Return the Hostname for pIPAddress
TCPAddr2Name (pIPAddress) Returns lHostName
Quit method lHostName

TCPBind

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPBind (socket,service|port) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPBind binds a socket created with TCPSocket to a particular local port.

Socket is an Omnis Long Integer field, containing the number of the socket.

Service/Port is either an Omnis integer field containing the number of the port to which the socket should be bound, or an Omnis
character field containing the name of a service which will be resolved to a port number by a local lookup.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes
are listed in the Web Command Error Codes Appendix.

Example

Get the next available socket and bind it to port iPort
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus

TCPBlock

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPBlock (socket,option {Zero for blocking; Non-zero for non-blocking}) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

The TCPBlock commandmakes a socket blocking or non-blocking.

The blocking state of a socket affects the commands TCPAccept, TCPReceive, TCPSend, andHTTPSend. If you use TCPBlock to change
the blocking state of sockets returned for FTP connections, this could result in undesirable behavior of the FTP commands.

302

../external_commands.html
tcpsocket.html
web_error_codes.html
../external_commands.html
tcpaccept.html
tcpreceive.html
tcpsend.html
httpsend.html

If a socket is blocking, the commands listed above wait until they can complete successfully; in other words, a receive waits until it has
received some data, a send waits until it has sent some data, and an accept waits until an incoming connection request arrives.

If a socket is non-blocking, the commands listed above will complete successfully if they can do so immediately; if not, they will return
the error code –10035, which means that the command needs to block before it can complete successfully.

Socket is an Omnis Long Integer field containing a number identifying a valid socket.

Option is an Omnis integer field. Non-zero means non-blocking and zero means blocking.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes
are listed in the Web Command Error Codes Appendix.

Note:

If the connection is secure (see TCPConnect) then calls to TCPSend will always be blocking, even if the socket is marked as non-
blocking.

Example

Listen for incoming connections with blocking off
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPBlock (iSocket,1) Returns lStatus
TCPListen (iSocket) Returns lStatus
If lStatus=0
Repeat

TCPAccept (iSocket) Returns lConnectedSocket
Until lConnectedSocket>=0
client connected

End If
TCPClose (iSocket) Returns lStatus

TCPClose

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPClose (socket[,option {Default zero for complete;1 for partial;2 for abort}]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPClose closes, and depending on the Option, releases a Socket. When the socket is connected, this will result in the closure of the
connection to the remote application. All new sockets returned by all Web commands, must eventually be released using TCPClose,
to avoid resource leakage.

Themostbrutal formof TCPClose is an abortive close. In this case, no consideration is given to the state of the connection, or exchanges
with the remote application, and the socket is closed and released immediately. This form of TCPClose is recommended for use in
error handling situations.

The mildest form of TCPClose is a partial close. In this case, the socket is not released, and you will need to call TCPClose again to
release the socket. A partial close initiates a disconnect of the TCP/IP connection, by sending a TCP/IP packet with the finish flag set.
This means that you can no longer send data to the remote application, but you can continue to receive data. The remote application
will be informed of the partial close, when it receives zero bytes; in the case of the TCPReceive command, it will return a received

303

web_error_codes.html
tcpconnect.html
tcpsend.html
../external_commands.html
tcpreceive.html

character count of zero. At this point, the remote application can continue to send data, and when it has finished, it issues a complete
close itself.

The remaining form of TCPClose is a complete close. In this form, TCPClose initiates a close of the connection if necessary, receives
data on the connection until nomore is available (to flush the connection), and releases the socket. This is recommended practice for
TCP/IP connections.

What does this mean in practice? Consider two applications A1 and A2, communicating using TCP/IP. A1 can either do a partial close
or a complete close. In both cases, A2 will receive zero bytes, indicating that disconnection has been initiated. A2 can continue to
send, and when it has finished, it issues a complete close. A1 can receive the data sent by A2 provided that it only issued a partial close.
Eventually A1 will receive zero bytes, at which point it issues a final complete close. At this point, the connection has been gracefully
closed, and the sockets used by both A1 and A2 have been released.

Socket is an Omnis Long Integer field containing a number representing a previously opened socket.

Option is an optional Omnis Integer field, which has the value zero for a complete close, 1 for a partial close, and 2 for an abortive close.
If omitted, it defaults to a complete close.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes
are listed in the Web Command Error Codes Appendix.

Example

Close the socket bound to iPort
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus

TCPClose (iSocket)

TCPConnect

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPConnect (hostname,service|port[,secure {Default kFalse},verify {Default kTrue}]) Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPConnect establishes a TCP/IP connection to a remote application, and returns a new socket representing that connection.

Hostname is an Omnis Character field containing the hostname or IP address of the system on which the remote application is
running.

Service/Port is either an Omnis integer field containing the number of the port on which the remote application is listening for new
connections, or an Omnis character field containing the name of a service which will be resolved to a port number by a local lookup.

Socket is an Omnis Long Integer field that receives either the number of the new socket, or an error code < 0. Possible error codes are
listed in the Web Command Error Codes Appendix.

Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a secure
connection, in which case the built-in security technology will be used, so onWindows ‘Secure Channel’ (Schannel) is used, onmacOS
‘Secure Transport’ is used, and on Linux OpenSSL is used.

Verify is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the installed SSL library to verify the server’s identity using its certificate; if the verification fails, then the connection will

304

web_error_codes.html
../external_commands.html
web_error_codes.html

not be established. You can pass Verify as kFalse, to turn off this verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor. In order to perform the verification, the installed SSL library uses the Certificate Authority
Certificates in the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign
certificates, you can place its certificate in the cacerts folder, and the installed SSL library will use it after you restart Omnis.

Notes:

This differs from themore standard implementation of the sockets connect call. Instead of creating a socketwith one command (such
as TCPSocket), then passing the socket to a connect command, TCPConnect creates the socket and returns the socket number in
one step.

When using a secure connection all calls to TCPSend are blocking.

Example

Connect to the server IP address iHostName on port iPort ready for
sending a message
Calculate iHostName as '0.0.0.0'
Calculate iPort as 6000
TCPConnect (iHostName,iPort) Returns iSocket
If iSocket>0
connected
End If

TCPGetMyAddr

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPGetMyAddr ([socket {Default 0}, ipv6 {Default kFalse}]) Returns address

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPGetMyAddr is a domain name service command to resolve the IP address of the local computer running Omnis: the command
may return a list of IP addresses in which case it uses the first address in the list. See Additional Notes below.

You can optionally pass a Socket, which corresponds to an open connection. In this case, the command returns the local IP address
bound to the local endpoint of the connection. There are two cases where this is useful.

• It is not a mandatory requirement that a WinSock API implementation can return the local IP address, without a socket for an
open connection. In this case it is likely that TCPGetMyAddrwill return 0.0.0.0.

• If the local machine hasmore than one IP address, passing a socket eliminates ambiguity, and returns the local IP address used
for the open connection.

Address is an Omnis Character field which receives the IP Address of the local host. The IP address is of the form 255.255.255.254

Possible error codes are listed in the Web Command Error Codes Appendix.

305

tcpsocket.html
tcpsend.html
../external_commands.html
web_error_codes.html

Additional Notes

When passing a socket to TCPGetMyAddr, the address returned is whatever the operating system API getsockname returns, and this
can be either IP v4 or v6, which depends on how the connection was established. The ip v6 parameter to TCPGetMyAddr has no effect
in this case.

When passing no socket to TCPGetMyAddr, the code uses the gethostname operating system API to obtain the name of the system,
and then uses the getaddrinfo operating system API to obtain a list of addresses for the host. There can several addresses in the list
returned, and TCPGetMyAddr uses the first address in the list that matches the request for ip v4 or v6.

Therefore, the information returned by this command is highly dependent on information exposed by operating system APIs, and
these are only cross-platform in terms of their calling interface – the information they return depends on both the Operating System
and the system configuration. In the case of getaddrinfo, the order of the returned items in the list is Operating system dependent.

Example

Return the IP address of this machine
TCPGetMyAddr Returns lIPAddress
Quit method lIPAddress

TCPGetMyPort

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPGetMyPort (socket) Returns port

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPGetMyPort is a command to return the number of the local TCP/IP port to which a given socket is bound.

Socket is an Omnis Long Integer field containing a connected socket, or a socket bound to a port.

Port is an Omnis Long Integer field which receives the port number, or an error code < 0. Possible error codes are listed in the Web
Command Error Codes Appendix.

Example

Bind iPort to iSocket and use TCPGetMyPort to return the
port to which iSocket is bound in lMyPort.
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPGetMyPort (iSocket) Returns lMyPort
TCPClose (iSocket) Returns lStatus

TCPGetRemoteAddr

306

../external_commands.html
web_error_codes.html
web_error_codes.html

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPGetRemoteAddr (socket) Returns address

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPGetRemoteAddr returns the IP address of the remote computer to which a given socket is connected.

Socket is an Omnis Long Integer field containing a connected socket.

Address is an Omnis Character field which receives the IP Address of the host to which the socket is connected. The IP address is of
the form 255.255.255.254

Possible error codes are listed in the Web Command Error Codes Appendix.

Example

Listen for a incoming connections on port iPort and get the IP
address iAddress of the remote computer
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPListen (iSocket) Returns lStatus
If lStatus=0
Repeat

TCPAccept (iSocket) Returns lConnectedSocket
Until lConnectedSocket>=0
TCPGetRemoteAddr (lConnectedSocket) Returns iAddress

End If
TCPClose (iSocket) Returns lStatus

TCPListen

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPListen (socket) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPListenputs a socket createdwith TCPSocket into listeningmode. Whena socket is in listeningmode, itwill acknowledge incoming
connection requests addressed to the port bound to the socket, and place them in a queue, ready to be accepted using TCPAccept.

Socket is an Omnis Long Integer field containing the number of a socket that has been bound to a port.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes
are listed in the Web Command Error Codes Appendix.

307

../external_commands.html
web_error_codes.html
../external_commands.html
tcpsocket.html
tcpaccept.html
web_error_codes.html

Example

Listen for a incoming connections on port iPort
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPListen (iSocket) Returns lStatus
If lStatus=0
Repeat

TCPAccept (iSocket) Returns lConnectedSocket
Until lConnectedSocket>=0
client connected

End If
TCPClose (iSocket) Returns lStatus

TCPName2Addr

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPName2Addr (hostname[,ipv6 {Default kFalse}]) Returns address

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPName2Addr is a domain name service command that returns the IP address for a given Hostname.

Hostname is an Omnis Character field containing a hostname to convert to an IP address. The hostname is of the form ma-
chine[.domainame.dom]

Address is an Omnis Character field which receives the IP Address corresponding to the given hostname. The IP address is of the form
255.255.255.254

Note: This command fails if the address of a Domain Name Server has not been defined in your computer. Not all host IP Addresses
may be known to the Domain Name Server. If the Domain Name Server is busy or unavailable, the command times out and returns
an error. Defining often-used servers to a local host’s file or using a caching Domain Name Server increases performance of this
command.

Example

Return the IP address for pHostName
TCPName2Addr (pHostName) Returns lIPAddress
Quit method lIPAddress

TCPPing

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPPing (hostname[,size,timeout]) Returnsmilliseconds

308

../external_commands.html
../external_commands.html

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPPing sends an ICMP request packet to a specified IP address or named host. It returns the round-trip packet time inmilliseconds.
If the host is unreachable or not available, the command will return a negative error code.

Hostname is an Omnis Character field containing the IP address or hostname of the host to ping.

Size is an optional parameter. It is an Omnis Long Integer field containing the size, in bytes, of the packet to ping the specified host.
Typical values are from 512 to 2,048 bytes. The command makes sure the size is between 1 and 16k bytes, and will force sizes outside
this range to the minimum or maximum, appropriately. If omitted, Size defaults to 256.

Timeout is an optional parameter. It is an Omnis Long Integer field containing the number of milliseconds to use as a timeout value
for the ping request. If the host is unavailable or does not respond in the specified number of milliseconds, the TCPPing function
cancels the ping request and returns -1. If omitted, Timeout defaults to 3000.

Milliseconds is an Omnis Long Integer field. When no error occurs, TCPPing returns the number of milliseconds that it took to receive
the ping response from the host. On very fast LANs, it is possible that the ping can complete so quickly that the valuemay be 0 (zero).
A value of -1 (minus one) is returned if the ping times out. All other negative values are error codes.

Example

Ping iHostName to see if it is available
Calculate iHostName as '0.0.0.0'
TCPPing (iHostName) Returns iMilliseconds
If iMilliseconds<0
If iMilliseconds=-1

OK message {Timeout}
Else

OK message {Error [iMilliseconds]}
End If

End If

TCPReceive

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPReceive (socket,buffer[,maxbytes]) Returns received-byte-count

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPReceive receives data on a connected socket.

Socket is a long integer field containing the socket number of a connected socket.

Buffer is a character or binary field into which TCPReceive places the received data. If the field is character, then the response must
be encoded in UTF-8; in this case, TCPReceive converts the received data from UTF-8 to character.

Maxbytes is an optional parameter which indicates the maximum number of bytes to be received. If you omit this parameter the
command receives available data with no practical limit.

309

../external_commands.html

TCPReceive receives data into the buffer, and then returns the number of received bytes to the long integer Received-byte-count. If
an error occurs, TCPReceive returns a negative error code. Note that zero can be returned to Received-byte-count when graceful
closure of the connection is initiated by the remote application, and there is no more data to receive. See TCPClose for details.

Notes

Non-blocking sockets return an error code of -10035 if no data is available. Some implementations of socket libraries may have limits
on the number of bytes you can receive at one time. Consult the documentation for your installed sockets libraries. You may have to
read data in multiple chunks to assemble an entire message. Always check the number of bytes returned to make sure there was no
error.

Using TCPReceive to receive into a character field will not produce sensible results if the end of the received data stops part way
through a UTF-8 encoded character.

Example

Listen for incoming connections, if a connection is made get the message sent
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPListen (iSocket) Returns lStatus
If lStatus=0
Repeat

TCPAccept (iSocket) Returns lConnectedSocket
Until lConnectedSocket>=0
client connected, get the whole message sent
Calculate lMessage as ''
Repeat

Calculate lBuffer as ''
TCPReceive (iSocket,lBuffer) Returns lMessageLength
Calculate lMessage as con(lMessage,lBuffer)

Until lMessageLength<=0
End If
TCPClose (iSocket) Returns lStatus

TCPSend

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPSend (socket,buffer) Returns sent-byte-count

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

Socket is a long integer field containing the socket number of a connected socket.

Buffer is a character or binary field containing the data to send on the socket. If you pass a character field, then TCPSendwill convert
the data to UTF-8, and then send the UTF-8.

TCPSend returns the number of bytes it sent to sent-byte-count, a long Integer field.

If the socket is in blocking mode, TCPSend always sends all of the data, unless an error occurs.

If the socket is in non-blocking mode, TCPSend sends as much data as it can without blocking.

310

tcpclose.html
../external_commands.html

If an error occurs, TCPSend returns a negative error code

Notes

If the connection is secure (see TCPConnect) then the send will always be blocking, even if the socket is marked as non-blocking.

Non-blocking sockets return an error code of -10035 if the socket cannot accept the data to send immediately. Some implemen-
tations of socket libraries may have limits on the number of bytes you can send at one time. Consult the documentation for your
installed sockets libraries. You may have to send a message in multiple chunks in order to send a very long message. Always
check sent-byte-count to determine howmuch of the buffer has actually been sent; if the value is less than the buffer size, you need
to call TCPSend again, to send the rest of the buffer.

It does notmake sense to send a character field on a non-blocking socket, because the sent-byte-count corresponds to the sent UTF-8
bytes.

Example

Connect to the server IP address iHostName on port iPort and send the message iMessage
Calculate iHostName as '0.0.0.0'
Calculate iPort as 6000
Calculate lMessage as 'Hello remote application'
TCPConnect (iHostName,iPort) Returns iSocket
If iSocket>0
connected
TCPSend (iSocket,lMessage) Returns lByteCount

End If

TCPSocket

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

TCPSocket () Returns socket

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

TCPSocket creates a new socket. The only use of such a socket is to bind a port to it using TCPBind, start listening on the port
using TCPListen, and then accept incoming connections using TCPAccept.

Socket is an Omnis Long Integer field which receives the number of the allocated socket. If an error occurs, the command returns a
negative number.

Example

Create a new socket, bind it to port 6000 and listen for an incoming client connection
Calculate iPort as 6000
TCPSocket Returns iSocket
TCPBind (iSocket,iPort) Returns lStatus
TCPListen (iSocket) Returns lStatus
If lStatus=0
Repeat

TCPAccept (iSocket) Returns lConnectedSocket

311

tcpconnect.html
../external_commands.html
tcpbind.html
tcplisten.html
tcpaccept.html

Until lConnectedSocket>=0
#; client con

End If
TCPClose (iSocket) Returns lStatus

Test check data log

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Test check data log ([Perform repairs])

Options

Perform repairs If selected, repairs to the data file are automatically carried out

Description

This command tests if there are any reports of nonrepaired damage in the check data log. If thePerform repairs option is not specified,
the flag is set if there are any reports of non-repaired damage.

If the Perform repairs option is specified, an attempt ismade to repair the damage. There is no need for the check data log to be open.
Furthermore, Omnis automatically tests that only one user is logged onto the data file (if not, the command fails with flag false), and
further users are prevented from logging onto the data until the command completes.

If a working message with a count is open while the command is executing, the count will be incremented at regular intervals. The
command may take a long time to execute, and it is not possible to cancel execution even if a working message with cancel box is
open.

The command sets the flag if it completes the data repair successfully and clears the flag otherwise. The command is not reversible.

Example

Quick check
Test check data log
If flag true
OK message {Problems found in data file}
Open check data log

End If

Test clipboard

Command group Flag affected Reversible Execute on client Platform(s)

Clipboard YES NO NO All

Syntax

Test clipboard field-name

Description

This command tests whether the data on the clipboard is suitable for pasting into the specified field or current selection. The com-
mand sets the flag to true if and only if there is data on the clipboard “suitable” for pasting into the specified or current field. “Suitability”
here is defined by the standard type conversion built into Omnis, that is, a text field has to be presented with some text, and a picture
field with something that can be handled as a picture, for example, a bitmap, metafile, PICT, OLE object, and so on.

312

../data_management.html
../clipboard.html

Example

Test clipboard iPicture
If flag true
Paste from clipboard iPicture (Redraw field)

End If

Test data with search class

Command group Flag affected Reversible Execute on client Platform(s)

Searches YES NO NO All

Syntax

Test data with search class

Description

This command tests the record in the CRB against the current search class. It sets the flag if the record passes the test or if there is no
current search class. If the data does not fit the current search class, the flag is cleared.

Test data with search class uses the current search as the condition of the test which has been set using Set search name or Set search
as calculation.

Example

Calculate lCode as 'RT'
Set search as calculation {len(lCode)>2}
Test data with search class
If flag false
OK message {Test failed, [lCode] invalid}

End If

Test for a current record

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES NO NO All

Syntax

Test for a current record {file-name}

Description

This command tests for the presence of a current record from a specified file class. The flag is set if a current record for the file is found
and cleared if not. The flag is also cleared if the selected file is a memory-only or a closed file. The test is carried out on the main file if
no other file class is specified.

Example

If a record for fAccounts does not exist in the current record buffer, get the first
Set main file {fAccounts}
Test for a current record {fAccounts}
If flag false
Find first

End If

313

../searches.html
set_search_name.html
set_search_as_calculation.html
set_search_as_calculation.html
../finding_data.html

Test for a unique index value

Command group Flag affected Reversible Execute on client Platform(s)

Finding data YES NO NO All

Syntax

Test for a unique index value on field-name

Description

This command tests the specified indexed field for a unique value. The flag is set if the current field value is a unique index value, and
cleared if the value duplicates an existing index value. In a multi-user situation, no account is made of field values in records held by
other work stations which are not yet updated to disk.

You use Test for a unique index value before storing a new value in a file. In the following example, the proposed new part number is
tested against the existing file.

Example

Insert account AC05 if it does not already exist
Set main file {fAccounts}
Prepare for insert
Calculate fAccounts.Code as 'AC05'
Test for a unique index value on fAccounts.Code
If flag true
Update files

End If

Test for field enabled

Command group Flag affected Reversible Execute on client Platform(s)

Fields YES NO NO All

Syntax

Test for field enabled {field-name}

Description

This command tests if the specified field on the top window instance is enabled, that is, if it is not currently disabled with Disable
fields or by setting $enabled to kFalse. The flag is always cleared if there are no window instances open or if the field does not exist.

Example

Test for field enabled {myField}
If flag true
Disable fields {myField}

Else
Enable fields {myField}

End If
or do it like this
If $cwind.$objs.myField.$enabled
Do $cwind.$objs.myField.$enabled.$assign(kFalse)

Else
Do $cwind.$objs.myField.$enabled.$assign(kTrue)

End If

314

../finding_data.html
../fields.html
disable_fields.html
disable_fields.html

Test for field visible

Command group Flag affected Reversible Execute on client Platform(s)

Fields YES NO NO All

Syntax

Test for field visible {field-name}

Description

This command tests whether a particular field is visible. If the specified field in the top window instance is visible, that is, $visible
is kTrue and the field has not been hidden with Hide fields, the flag is set. A field under another field or beyond the edge of the screen
may be reported as visible and the flag set. The flag is always cleared if there are no window instances open or if the field does not
exist.

Example

Test for field visible {myField}
If flag true
Hide fields {myField}

Else
Show fields {myField}

End If
or do it like this
If $cwind.$objs.myField.$visible
Do $cwind.$objs.myField.$visible.$assign(kFalse)

Else
Do $cwind.$objs.myField.$visible.$assign(kTrue)

End If

Test for menu installed

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES NO NO All

Syntax

Test for menu installed {menu-instance-name}

Description

This command tests whether the specified menu instance is installed on the menu bar. The flag is set if the menu instance is on the
menu bar and cleared if it is not, regardless of whether the menu instance is enabled or grayed out. The command does not apply to
hierarchical and popup menus.

Example

Install the menu mMyMenu if it is not already installed
Test for menu installed {mMyMenu}
If flag false
Install menu mMyMenu

End If

315

../fields.html
hide_fields.html
../menus.html

Test for menu line checked

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES NO NO All

Syntax

Test for menu line checked line or instance-name/line

Description

This command tests whether the specified line of a menu instance is checked. You specify the menu-instance-name and the line-
number of the menu line you want to test. The flag is set if the specified line of the menu instance is checked, and cleared if the line
is not checked. The flag is always cleared if the menu instance is not installed on the menu bar.

You can check menu lines using Check menu line. Uncheck menu line removes the check.

Example

Uncheck the menu line 'Large' if it is currently checked
Install menu mView
Check menu line mView/Large
Test for menu line checked mView/Large
If flag true
Uncheck menu line mView/Large

End If
Alternatively, you can see if a menu line is checked using notation
If $imenus.mView.$objs.Large.$checked
Do $imenus.mView.$objs.Large.$checked.$assign(kFalse)

End If

Test for menu line enabled

Command group Flag affected Reversible Execute on client Platform(s)

Menus YES NO NO All

Syntax

Test for menu line enabled line or instance-name/line

Description

This command tests whether the specified line of amenu instance is enabled. You specify themenu-instance-name and themethod-
number of the menu line you want to test. It sets the flag if the specified line of the menu instance is enabled. The flag is cleared if
the menu instance is not installed on the menu bar.

This command may still return false if the current user has no access to the menu line or if the line is disabled because there is no
current record, even after Enable menu line has been executed.

You can disable or enable menus using Disable menu line and Enable menu line.

Example

Install the menu mMyMenu if it is not already installed
Test for menu installed {mMyMenu}
If flag false
Install menu mMyMenu

End If

316

../menus.html
check_menu_line.html
uncheck_menu_line.html
../menus.html
enable_menu_line.html
enable_menu_line.html
enable_menu_line.html

Test for only one user

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Test for only one user ([All data files])

Options

All data files If specified, all data files are tested, rather than just the current data file

Description

This command tests whether the current data file is being used by a single user, and if so sets the flag.

If the All data files check box option is selected, all open data files are tested for a single user. The flag is cleared if any one data file
has more than one user.

If the flag is set, further workstations are prevented from logging on to the tested data file(s) until the method containing the test
command is terminated. The workstations will see a padlock cursor until the method terminates.

Omnis always sets the flag if the program is running in single user mode. Under Windows, this means that the data is on a DOS
volume without the SHARE command having been run.

Example

Test for only one user
If flag false
OK message {Sorry, option not allowed}
Quit method kFalse

End If
Do method Invoices/InsertNew

Test for program open

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO Windows,Linux

Syntax

Test for program open {program-name}

Description

This command tests whether the specified program is running. The flag is set if the specified program is running. You can use this
command under Windows and Linux.

The program name can be the Windows module name, or the full pathname for the program. Under Windows NT/2000, the file
PSAPI.DLL must be present in the Omnis directory or on the Windows path for this command to work. PSAPI.DLL is supplied in the
Omnis directory of the Windows NT/2000 version of Omnis Studio.

317

../changing_data.html

Example

Test to see if the program lPath is open
Calculate lPath as 'c:\program files\windows\accessories\wordpad.exe'
Test for program open {[lPath]}
If flag false
Start program normal {[lPath]}

End If

Test for valid calculation

Command group Flag affected Reversible Execute on client Platform(s)

Calculations YES NO NO All

Syntax

Test for valid calculation {calculation}

Description

This command lets you test a calculationbefore it is evaluated. It is essential to test strings tobeevaluatedby theeval(), evalf() andfld() func-
tions before doing the evaluation. The flag is set to kTrue if the calculation is valid.

Example

Calculate lCalculation as 'lBalance < 0'
Test for valid calculation {evalf(lCalculation)}
If flag true
Do lAccountsList.$search(evalf(lCalculation))

End If

Test for window open

Command group Flag affected Reversible Execute on client Platform(s)

Windows YES NO NO All

Syntax

Test for window open {window-instance-name}

Description

This command tests if the specified window instance is open. If the window instance is open, Omnis sets the flag, otherwise the flag
is cleared. Window instances are opened with Open window instance or the $open() method.

Example

Open the window wMyWindow if it is not already open
Test for window open {wMyWindow}
If flag false
Open window instance wMyWindow

End If

318

../calculations.html
../windows.html
open_window_instance.html

Test if file exists

Command group Flag affected Reversible Execute on client Platform(s)

Operating system YES NO NO All

Syntax

Test if file exists {file-name}

Description

This command tests if the specified file exists and can be opened. The flag is set if the file exists and can be opened. Otherwise, it is
cleared. You can use this command to prevent the user from overwriting existing files with print files, and so on. To perform the test,
the command opens the file in shared read mode, and then closes it, if the open was successful.

To just test for the existence of a file, without opening it, use the Fileops function FileOps.$doesfileexist.

You cannot use this command to check for the existence of a data file if the data file is in use by another workstation. Use Open data
file for this type of checking.

You can use this command to test for the existence of a data file that is to be accessed using the ODB (Omnis Data Bridge). Specify
the location of the file using the ODB syntax:

odb://[*address*:*port*:]*name*

where address:port is the TCP/IP address and port number of theODB server, e.g. 127.0.0.1:5900, and name is the name of a data file ac-
cessed using theODB server. You can omit address:port:, in which caseOmnis uses the address and port stored in the $odbserver root
preference. Note that the value of $odbserver is stored in the file odb.txt in the studio folder of the Omnis installation tree.

Example

If the file myfile already exists in the root of the studio tree show a ok message
Calculate lPath as con(sys(115),'myfile')
Test if file exists {[lPath]}
If flag true
OK message {The file [lPath] already exists}

Else
Create file ([lPath])

End If

Test if list line selected

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

Test if list line selected {line-number (calculation)}

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

319

../operating_system.html
open_data_file.html
open_data_file.html
../list_lines.html

Description

This command tests the specified line of the current list and sets the flag if it is selected. You can specify a particular line in the list by
entering either a number or a calculation. If the number is not specified, the test is performed on the current line of the list, that is,
the line number held in LIST.$line.

Example

If line 2 is selected show a message dialog
Set current list lMyList
Define list {lName,lBalance}
Add line to list {('Fred',100)}
Add line to list {('George',0)}
Add line to list {('Harry',50)}
Select list line(s) {2}
Test if list line selected {2}
If flag true
OK message {List line 2 is selected}

End If
Alternatively, you can check the $selected property
If lMyList.2.$selected
OK message {List line 2 is selected}
End If

Test if running in background

Command group Flag affected Reversible Execute on client Platform(s)

Omnis environment YES NO NO All

Syntax

Test if running in background

Description

This command tests if Omnis is running in the background, that is, it sets the flag if Omnis is not the top application window.

Windows, macOS, and Linux all provide multi-tasking facilities. When another program is running, with Omnis in the background,
you can continue with tasks such as importing data although the processor’s time becomes shared between the current tasks. You
can use this test to alter the behavior of the library when it becomes the background task.

Example

Bring Omnis back to the front when another application goes to top
Show Omnis minimized

Calculate #F as kFalse
While flag false
Test if running in background

End While
Show Omnis normal

Text:

320

../omnis_environment.html

Command group Flag affected Reversible Execute on client Platform(s)

Text NO NO YES All

Syntax

Text: {text} ([Carriage return][,Linefeed][,Platform newline])

Options

Carriage return If specified, the command appends a carriage
return, after it appends the text

Linefeed If specified, the command appends a line
feed, after it appends the text

Platform newline If specified, the command appends the
newline character sequence for the currently
executing platform after it appends the text

Description

This command adds text to the text buffer for the current method stack: note the Method Editor will enclose the complete text in
curly brackets automatically, so these do not need to be entered.

The Text: command supports leading and trailing spaces and can contain square bracket notation, that is, you can include or add the
contents of a variable to the text buffer. You build up the text block using the Begin text block and one or more Text: commands. A
text editor will pop up when you enter or edit a Text: line.

The Carriage return, Linefeed, and Platform newline options add the appropriate character(s) to the end of the current Text: line.
When you have placed one Text: line and you press Ctrl/Cmnd-N to create a newmethod line, the Text: command is selected and the
current carriage return and line feed options are copied to the new method line automatically. You should end a block of text with
the End text block command, and you can return the contents of the text buffer using the Get text block command.

You cannot insert an inline comment on any lines in a Text: code block.

You cannot insert “Text:(” because the Text: command can have options (unlike Line:). For the Text: command, when you type (at the
end of the code editor line, Omnis treats this as the start of the options, and the code assistant can then pop up the possible options.
As soon as you type another character after the (, Omnis treats this as text comprising (followed by the character. This restriction is
the best compromise that allows the code assistant to present the possible options, and allows text starting with (to be entered. As
a workaround, you can enter [“(”] if you want to add an open parenthesis to the text.

Trace off

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Trace off

Description

This command turns off the trace mode at a point in a method. See Trace on for more information about trace mode and using the
debugger.

321

../text.html
begin_text_block.html
end_text_block.html
get_text_block.html
line_.html
../debugger.html
trace_on.html

Example

Open trace log
#; the following lines are sent to the trace log ...
Trace on (Clear trace log)
For lCount from 1 to 5 step 1
OK message {Sent to trace log}

End For
Trace off
...and the following line is not
OK message {Not sent to trace log}

Trace on

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Trace on ([Clear trace log])

Options

Clear trace log If specified, the command clears the trace log

Description

This command sends all subsequent commands to the trace log and displays the current command in the method editor. It lets you
turn on tracemode at a point in amethodwhere you suspect that theremay be a problem, or some codewhich is difficult to follow. In
trace mode, the topmost method design window is continually changed to show the command being executed. Also when in trace
mode, a trace log is maintained; this contains the class name and method name in the Item column and the command line text in
the Data column, for all methods which are executed in tracemode or single-stepped. Error messages, breakpoints, and so on, which
occur in tracemode are also entered in the trace log. The Clear trace log option deletes all existing entries before new lines are added
to the log.

The trace log window is opened and brought to top either via the Tools menu or by the Open trace log command. This window allows
the trace log to be viewed, cleared or printed, and lets you alter the maximum number of lines in the log. Double-clicking on a line in
the trace log causes amethod design window to be opened or brought to the top with the appropriate command displayed. If Shift is
pressed when double-clicking, a newmethod design window is opened in preference to changing the identity of the class displayed
in the existing method design window.

If the double-clicked line in the log is a field value line, the value window for that field is opened. The trace log is not adjusted when
methods are modified. This means that trace log lines may point to the wrong command or no command if the class containing that
method has been modified.

Example

Open trace log
the following lines are sent to the trace log ...
Trace on (Clear trace log)
For lCount from 1 to 5 step 1
OK message {Sent to trace log}

End For
Trace off
...and the following line is not
OK message {Not sent to trace log}

322

../debugger.html
open_trace_log.html

Transmit text to port

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Transmit text to port ([Add newline]) {text}

Options

Add newline If specified, the command sends a newline character sequence after sending the text

Description

This command sends text to a port; for example, you can send printer control characters. To transmit control characters, you can use
the chr() function inside square brackets. For example, [chr(27,14)] sends escape 14.

The Add newline option enables you to send end of line characters after each line of text.

An error occurs and the flag is cleared if the port has not been selected or if the user presses Ctrl-Break/Ctrl-C/Cmnd-period while
waiting for the output buffer to be emptied.

When you use a printer connected to the port, this command lets you send escape codes to control print characteristics.

Example

Send text followed by the report rMyReport to a port
Set port name {1 (Modem port)}
Set port parameters {1200,n,7,2}
Transmit text to port (Add newline) {This is my report}
Set report name rMyReport
Send to port
Print report
Close port

Transmit text to print file

Command group Flag affected Reversible Execute on client Platform(s)

Reports and Printing YES NO NO All

Syntax

Transmit text to print file ([Add newline]) {text}

Options

Add newline If specified, the command sends a newline character sequence after sending the text

Description

This command sends text to a print file, for example, you can send printer control characters. To transmit control characters, you can
use the chr() function inside square brackets. For example, [chr(27,14)]sends escape 14.

The Add newline option causes Omnis to add end of line characters after each line of text.

An error occurs if no print file has been selected.

323

../reports_and_printing.html
../reports_and_printing.html

Example

Create a file containing the text 'This is my report' together with the report rMyReport
Set print or export file name {[con(sys(115),'output.txt')]}
Transmit text to print file (Add newline) {This is my report}
Set report name rMyReport
Send to file
Print report
Close print or export file

Truncate file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Truncate file (refnum [,end-position] [,end-position-is-character]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command truncates a file. You specify the file reference number returned by Open file in refnum. The file is truncated at the
current position of the file pointer or the specified end-position if given. The end-position parameter represents a byte position, unless
you pass end-position-is-character as a non-zero value, in which case it represents an operating system character position (a byte
position when running on Linux, or a 16-bit character position when running onWin32 or macOS).

It returns an error code (See Error Codes), or zero if no error occurs.

Example

write the contents of the character variable 'lCharVar' to a text file named 'charfile.txt' in the root of the omnis tree and then truncate the contents to 8 bytes sys(115) returns the full path to the Omnis executable
Calculate lPathname as con(sys(115),'charfile.txt')
Create file (lPathname) Returns lErrCode
Open file (lPathname,lRefNum)
Calculate lCharVar as 'Truncate the contents of this file'
Write file as character (lRefNum,lCharVar) Returns lErrCode
Truncate file (lRefNum,8) Returns lErrCode
Close file (lRefNum)

Uncheck menu line

Command group Flag affected Reversible Execute on client Platform(s)

Menus NO YES NO All

Syntax

Uncheck menu line line or instance-name/line

Description

This command removes the check mark on the specified line of a menu instance. No action is taken if there is no check mark or the
menu instance is not installed. You specify the menu-instance-name and the line-number of the menu line you want to uncheck.

If you use Uncheck menu line in a reversible block, the specified menu line is checked again when the method terminates.

324

../external_commands.html
open_file.html
fileops_error_codes.html
../menus.html

Example

Test whether a line in the menu instance is checked and
either check or uncheck it accordingly.
Install menu mView
Test for menu line checked mView/Large
If flag true
Uncheck menu line mView/Large

Else
Check menu line mView/Large

End If
Alternatively, you change the $checked property of a line
in the menu instance using notation
Do $imenus.mView.$objs.Large.$checked.$assign(kFalse)

Unload error handler

Command group Flag affected Reversible Execute on client Platform(s)

Error handlers YES NO NO All

Syntax

Unload error handler [name/]name

Description

This command unloads the specified error handler (a method is taken as its parameter). If there are multiple error handlers at that
method, they are all unloaded. The flag is set if an error handler is unloaded. See Load error handler for more information about error
handlers.

Example

Unload error handler cMyErrorHandler/Errors
Load error handler cMyErrorHandler/Error2Handler

Unload event handler

Command group Flag affected Reversible Execute on client Platform(s)

Externals NO NO NO All

Syntax

Unload event handler routine-name or library-name/routine-name (parameters)

Description

This commandunloads the specified event handler or, if no handler is specified, all event handlers. If none exists, no action is taken. An
event handler is always unloaded when the library is closed or when the program quits. See Load event handler for more information
on event handlers.

Example

unload the event handler, myEventHandler
Unload event handler myEventHandler

325

../error_handlers.html
load_error_handler.html
../externals.html
load_event_handler.html

Unload external routine

Command group Flag affected Reversible Execute on client Platform(s)

Externals YES NO NO All

Syntax

Unload external routine routine-name or library-name/routine-name (parameters)

Description

This command unloads the specified external code frommemory. If it is not already loaded or is not found, the flag is cleared and no
action takes place. If no external is specified, all externals are unloaded. All loaded external routines are unloaded when the library is
closed or when the program quits. See Load external routine for more information on external routines.

Example

Unload external routine** MathsLib/sqroot

Until break

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO NO All

Syntax

Until break

Description

This command terminates a repeat loop if the user requests a cancel by either clicking on a working message Cancel button, or by
pressing Ctrl-Break under Windows, Ctrl-C under Linux, or Cmnd-period under macOS. Note that the user cannot request a cancel
(and therefore cause Until break to terminate the repeat loop) if Disable cancel test at loops has been executed. Note that you can
also terminate a repeat loop using Break to end of loop within the loop, or by using one of the alternative Until… commands.

Example

only way out of this loop is to enter a value greater than 10
Disable cancel test at loops
Repeat
Prompt for input Enter a value greater than 10 to exit loop Returns lValue
If lValue>10

Break to end of loop
End If

Until break

Until calculation

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

326

../externals.html
load_external_routine.html
../constructs.html
disable_cancel_test_at_loops.html
break_to_end_of_loop.html
../constructs.html

Syntax

Until calculation

Description

This command terminates a Repeat-Until conditional loop specifying a calculation as the condition. The calculation is evaluated at
the end of the loop that continues if the derived value is zero.

Example

Calculate lCount as 1
Repeat ## Repeat loop
Calculate lCount as lCount+1

Until lCount>=3
OK message {Count=[lCount]} ## prints 'Count=3'

Until flag false

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Until flag false

Description

This command terminates the Repeat–Until conditional loop if the flag is false; execution continues with the command following
the Until. If the flag is true, execution continues with the command following the Repeat.

Example

loop until 'No' is pressed
Repeat
No/Yes message {Press No to exit loop}

Until flag false

Until flag true

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

Until flag true

Description

This command terminates the Repeat–Until conditional loop if the flag is true; execution continues with the command following
the Until command. If the flag is false, execution continues with the command following the Repeat command.

327

repeat.html
../constructs.html
repeat.html
repeat.html
../constructs.html
repeat.html
repeat.html

Example

loop until 'Yes' is pressed
Repeat
Yes/No message {Press Yes to exit loop}

Until flag true

Update data dictionary

Command group Flag affected Reversible Execute on client Platform(s)

Data management YES NO NO All

Syntax

Update data dictionary ([Test only]) {list-of-files (F1,F2,..,Fn) (leave empty to select all)}

Options

Test only If specified, the data file is not
updated; the command purely
tests to see if it would update the
data file when executed without
this option specified, and returns
the flag set to true if an update
would occur

Description

This command updates the data dictionary for the specified file or list of files. The data dictionary is a copy of the file class field
definitions and is stored in the data file. The command lets you write minor file class changes to the data dictionary. These minor
changes do not require data reorganization, and include changes such as adding new fields, altering field names and altering field
lengths. You can only update the data dictionary if you are the only user logged on to the data file.

Update data dictionary updates the data dictionary for the specified list of file classes. If you omit a file name or list of files, all the files
with slots in the current data file are updated.

If a specified file name does not include a data file name as part of the notation, the default data file for that file is assumed. If the file
is closed or memory-only, the command does not execute and returns with flag false.

If the Test only option is specified, no updating is actually carried out, and the flag is set if at least one file in the data dictionary needs
updating.

Certain changesmade to a file class (that is, changes in indexes, field type changes and changes in file connections) require data reor-
ganization. In this case, using Update data dictionary to keep the file class and the data file “in step” will be inappropriate. Reorganize
data lets you test whether a data file needs reorganization as well as to reorganize it if necessary.

Example

Update data dictionary (Test only) ## all files
If flag true
Update data dictionary ## all files

End If

Update files

328

../data_management.html
reorganize_data.html
reorganize_data.html

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Update files ([Do not cancel pfu])

Options

Do not cancel pfu If specified, Omnis remains in prepare for
update mode after the command finishes,
meaning that multi-user locks remain in
place, and you can perform further updates

Description

This command writes the records in the current record buffer to disk and cancels the Prepare for… mode. You must execute the
command when Omnis is in a Prepare for update mode otherwise an error occurs.

If a warning error code kerrUnqindex or kerrNonull is returned during the execution of this command, the Prepare for update mode
is not canceled. This means that you can check for these errors and recover without losing the data the user has already typed in. In
fact, if you issue a new Prepare for… command, Omnis will reread records, and any data that is already in the CRB will be lost.

The Do not cancel pfu option prevents the command from canceling Prepare for update mode. Thus, you can make more changes
to the data, the multi-user locks remain in place, and another Update files can be executed.

The Update files command causes the indexes in the files to be re-sorted. Thus, in multi-user mode, the files are locked while Update
files is executing. You can control this file locking by running Do not wait for semaphores. When Do not wait for semaphores is
active, Update files returns flag false and does nothing if the file is locked.

Example

The following example inserts an invoice in the parent file and a list of
related invoice items in the child file. The Do not cancel pfu option ensures
that the parent record remains locked until complete.
Set main file {fInvoice}
Prepare for insert
Enter data
Update files (Do not cancel pfu)
Set main file {fItems}
For lInvoiceItems.$line from 1 to lInvoiceItems.$linecount step 1
Prepare for insert
Load from list
Update files (Do not cancel pfu)

End For
Update files
In multi-user mode you can control file locking using Do not wait for semaphores, for example
Wait for semaphores
Prepare for edit
Enter data
Do not wait for semaphores
If flag true
Repeat

Working message {Waiting for file locks}
Update files

Until flag true
End If

329

../changing_data.html
do_not_wait_for_semaphores.html
do_not_wait_for_semaphores.html

Update files if flag set

Command group Flag affected Reversible Execute on client Platform(s)

Changing data YES NO NO All

Syntax

Update files if flag set ([Do not cancel pfu])

Options

Do not cancel pfu If specified, Omnis remains in prepare for
update mode after the command
finishes, meaning that multi-user locks
remain in place, and you can perform
further updates

Description

This command writes the current values in the current record buffer to disk if the flag is set to kTrue. This is a variation on the Update
files command and is equivalent to:

If flag true
Update files

End If

When the command follows Enter data, the Prepare for update mode is cancelled, and the record is stored on disk if the user clicks
OK or presses the Return/Enter key.

UUDecode

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

UUDecode (stream,decoded-stream) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

UUDecode turns Uuencoded information back into text or binary information. It is the inverse of UUEncode. Uuencoded information
is commonly sent over the Internet in a manner that preserves binary information.

Stream is an Omnis Character or Binary field containing the information to UUDecode.

Decoded-Stream is an Omnis Character or Binary field that receives the resulting Uudecoded representation of the Stream argument.
Because Uuencoding is generally used for binary information, a Binary field is the norm.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes
are listed in the Web Command Error Codes Appendix.

330

../changing_data.html
update_files.html
update_files.html
enter_data.html
../external_commands.html
uuencode.html
web_error_codes.html

Example

encode the contents of the character variable lString to get lEncodedString
and decode lEnclodedString to get lString back
Calculate lString as 'This is my character string to encode'
UUEncode (lString,lEncodedString) Returns lErrCode
Calculate lString as ''
UUDecode (lEncodedString,lString) Returns lErrCode

UUEncode

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

UUEncode (stream,encoded-stream) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

UUEncode turns a stream into an encoded stream of ASCII characters. The encoded version is approximately 1.25 times larger than
the original and can be decoded using UUDecode.

Stream is an Omnis Character or Binary field containing the information to UUEncode.

Encoded-Stream is anOmnis Character or Binary field that receives the resulting Uuencoded representation of the Streamparameter.

Status is an Omnis Long Integer field which receives the value zero for success, or an error code < 0 for failure. Possible error codes
are listed in the Web Command Error Codes Appendix.

Example

encode the contents of the character variable lString to get lEncodedString
Calculate lString as 'This is my character string to encode'
UUEncode (lString,lEncodedString) Returns lErrCode

Variable menu command

Command group Flag affected Reversible Execute on client Platform(s)

Debugger NO NO NO All

Syntax

Variable menu command: command {list-of-field-or-file-names (F1,F2..F3,F4)}

331

../external_commands.html
uudecode.html
web_error_codes.html
../debugger.html

Commands

Set Break On Variable Change
Clear Break On Variable Change
Set Break On Calculation
Clear Break On Calculation
Store Min & Max
Do Not Store Min & Max
Add To Watch Variables List
Remove FromWatch Variables List
Send Value To Trace Log
Send Minimum To Trace Log
Send Maximum To Trace Log
Send All To Trace Log
Open Value Window
Open Values List…

Description

This command performs one of the Variable context menu options on the specified field or list of fields. You can specify one of the
following Variable menu options:

Set break on variable change sets a variable change breakpoint for each variable in the list.

Clear break on variable change clears any variable change breakpoint for each variable in the list. If no variable names list is specified,
all current variable change breakpoints are cleared.

Set break on calculation sets a calculationbreakpoint for each variable in the list. You can set the calculation for each variable using Set
break calculation. Setting calculation breaks for more than a very few variables will cause methods to run very slowly.

Clear break on calculation clears any variable change breakpoints for each variable in the list. If no variable names list is specified, all
current calculation breakpoints are cleared.

Store min & max causes minimum andmaximum values to be stored for each variable in the list.

Do not store min & max clears ‘Store min and max’ mode for each variable on the list. If no variables are specified, all current ‘Store
min and max’ are cleared.

Add to watch variables listmarks each variable on the list as a watch variable.

Remove fromwatch variables listmarks each variable on the list as not watched. If no variables are specified, all variables are marked
as not watched. Note that variables with breakpoints or with ‘Store min and max’ mode set always appear in the watch variables list.

Send value to trace log adds a line to the trace log for each variable on the list. If no variables are specified, all values for all variables
on the watch variables list are sent to the trace log.

Sendminimum to trace log adds a line to the trace log for each variable on the list for which ‘Store min andmax’ is set. If no variables
are specified, the minimum values for all variables for which ‘Store min and max’ is set are sent to the trace log.

Sendmaximum to trace log adds a line to the trace log for each variable on the list for which ‘Storemin andmax’ is set. If no variables
are specified, the maximum values for all variables for which ‘Store min and max’ is set are sent to the trace log.

Send all to trace log adds a value line to the trace log for each variable on the list, and addsminimumandmaximum line(s) to the trace
log for each variable on the list for which ‘Store min and max’ is set. If no variables are specified, this is carried out for all appropriate
variables on the watch variables list.

Open value window opens a value window for each variable on the list, or for every variable on the watch variables list if no variables
are specified. There is a limit on the number of windows that you can open at once.

Open values list opens the values list for each of the variable types given in the command parameters. For example, Variable menu
command: open values list {lValue, iCount} opens two values lists, one for Local variables, the other for Instancel variables. There is
one values list for each file class, so if more than one variable name in a particular file class is specified the values list for that file will
only be opened once. There is also a limit on the number of windows that you can open at once.

332

Example

pause method execution when the value of iValue changes
Calculate iValue as 5
Variable menu command : Set Break On Variable Change {iValue}
Calculate iValue as 2
Variable menu command : Clear Break On Variable Change {iValue}
open two variable windows one showing the value of lCount and the other the value of iValue
Calculate lCount as 10
Variable menu command : Open Value Window {lCount,iValue}

Wait for semaphores

Command group Flag affected Reversible Execute on client Platform(s)

Changing data NO YES NO All

Syntax

Wait for semaphores

Description

This command causes all the commands which set semaphores to wait with a lock cursor until the semaphores for the required
records are available.

When a library is first selected,Wait for semaphores is automatically selected to ensure compatibility with existing libraries. It causes
all the commands which set semaphores to wait with a lock cursor until the semaphore is available then return with the flag set, or
to wait until the user cancels with a Ctrl-Break/Ctrl-C/Cmnd-period then return with a flag clear.

Semaphores

Semaphores are internal flags or indicators set in the data file to show other users that the record has been required elsewhere for
editing. Semaphores are set only when running in multi-user mode, that is, the data file is located on a networked server, a Mac
volume or on a DOSmachine on which SHARE has been run.

The commandswhich set semaphores arePrepare for edit, Prepare for insert, Update files andDelete, and also, if pfumode is on, Single
file find, Load connected records, Next, Previous and Set read/write files. Auto finds on windows always wait for semaphores.

The Edit/Insert commands from the Commands menu always wait for a semaphore as do automatic find entry fields.

Example

Wait for semaphores
Prepare for edit ## waits for record if locked by another user
Enter data
Do not wait for semaphores
If flag true
Update files
If flag false

OK message {File was locked, update failed}
End If

End If

Web Command Error Codes

Error codes marked with * are received in responses from the FTP server, and then returned as the result of FTP command execution.

333

../changing_data.html
prepare_for_edit.html
prepare_for_insert.html
update_files.html
delete.html
single_file_find.html
single_file_find.html
load_connected_records.html
next.html
previous.html
set_read_write_files.html

Error Code Error Text

-501 Incorrect parameter type
-502 Error getting information about a

parameter
-503 Incorrect number of parameters
-504 The command can only decode streams of

characters (in a character variable)
-506 Unrecognised command
-507 Error locking handle
-508 Bad list generated by command
-509 Bad socket passed to command
-511 No address specified
-512 Could not open ICMP handle
-513 Could not start timer
-516 The end-user cancelled the request
-517 Bad option passed to TCPClose
-522 Timeout while waiting for response or

request
-523 Badly formatted response from server
-524 Response from server is too short
-525 Response from server has incorrect syntax
-1010 Out of memory
-1012 Unix TCPPing requires a raw socket: only

processes with an effective user id of zero
or the CAP_NET_RAW capability are
allowed to open raw sockets

-1013 Cannot do TCPPing onWin32 without
icmp.dll

-1014 Attempt to perform secure operation on
non-secure connection

-1015 Attempt to make an already secure
connection secure

-1016 Cannot load wesecure.so/dll. Perhaps
OpenSSL is not installed

-1017 A required function is missing from
wesecure.so/dll

-1018 Cannot request a partial closure of a secure
connection

-1019 Error setting up secure library threading
-1020 Error seeding Pseudo Random Number

Generator
-1021 The OpenSSL library returned an error; call

WebDevGetSecureError for more
information

-1022 Invalid secure object passed to wesecure
-1023 Unknown error returned by OpenSSL

library
-1024 Unable to get a suitable Omnis folder for

CA certificates
-1025 Cannot open cacerts.pem
-1026 Cannot get find handle to list CA

certificates
-1027 cacerts folder does not contain any CA

certificates
-1028 Error getting next certificate file
-1029 Unable to open CA certificate
-1030 Wesecure initialization failed
-1031 Error establishing secure connection

334

Error Code Error Text

-1032 Buffer overflow would occur because a field
is too long

-1033 Connection gracefully closed
-1034 Attempt to connect timed out
-1035 Unknown error
-1036 InitSecurityInterface failed
-1037 Internal error with received data buffer
-1038 Internal error with extra data buffer
-1039 Could not find decryption output buffer
-1040 Unable to resume session for data

connection
-1105* Need FTP account for storing files
-1106* Requested FTP action aborted: page type

unknown
-1107* Requested FTP file action aborted.

Exceeded storage allocation (for current
directory or dataset)

-1108* Requested FTP action not taken. File name
not allowed

-1109* Requested FTP action aborted: local error
in processing

-1110* FTP file not found, or no access to file
-1116 Parameter passed to FTP command is too

long
-1117 Parameter passed to FTP command

contains invalid characters
-1119* FTP Restart marker reply
-1120* FTP serviceready in nnn minutes
-1121* FTP data connection already open; transfer

starting
-1122* FTP file status okay; about to open data

connection
-1123* FTP user name okay, need password
-1124* Unrecognised FTP positive preliminary

reply
-1125* Unrecognised FTP positive intermediate

reply
-1126* Unrecognised FTP transient negative

completion reply
-1127* Unrecognised FTP permanent negative

completion reply
-1129 Could not extract server IP address and

port from response to FTP command PASV
-1130 FTP transfer type must be zero (for ASCII) or

one (for binary)
-1131 FTP could not open local file
-1132 Error while FTP was reading or writing the

local file
-1134* Need account for FTP login
-1135* Requested FTP file action pending further

information
-1136* FTP service not available, closing control

connection
-1137* Cannot open FTP data connection
-1138* FTP connection closed; transfer aborted
-1139* Requested FTP file action not taken. File

unavailable (e.g., file busy)

335

Error Code Error Text

-1142* Requested FTP action not taken.
Insufficient storage space in system

-1143* Syntax error: FTP command unrecognized
or too long

-1144* Syntax error in FTP parameters or
arguments

-1145* FTP command not implemented
-1146* Bad sequence of FTP commands
-1147* FTP command not implemented for that

parameter
-1148* Not logged in to FTP server
-1149* Unrecognised response from FTP server
-1150 Must use passive FTP when the connection

is secure
-1151 FTP server response to AUTH TLS

command does not allow a secure
connection to be established

-1154 Unable to determine end of HTTP header
-1161 Incomplete HTML tag
-1180 Parameter passed to HTTP command is too

long
-1181 Post with CGI parameters sends CGI

parameters as content: cannot supply
content-type/length header in header list

-1182 Received HTTP request is badly formatted
-1183 Received HTTP request does not contain

the HTTP version
-1184 Received HTTP request contains badly

formatted CGI parameters
-1185 Invalid HTTP status code - must be 1-999
-1186 The client HTTP application closed the

connection
-1187 The client HTTP application did not send a

Content-Length header
-1188 The maximum response size specified in

the call to HTTPRead was exceeded
-1189 Proxy server rejected CONNECT method
-1190 Invalid HTTP authentication type
-1191 No HTTP method specified
-1192 The connection to the server has closed

(this can occur for example due to the
server timing out the connection)

-1202 SMTP: the server response to the STARTTLS
command was incorrect

-1203 SMTP: the server does not support the
STARTTLS command, so a secure
connection cannot be established

-1204 SMTP: the secure parameter to SMTPSend
is invalid

-1205 SMTP: 435 Unable to authenticate at
present

-1206 The SMTP server does not support
authentication

-1207 SMTP: 535 Incorrect authentication data
-1208 SMTP: 432 A password transition is needed
-1209 SMTP: 534 The authentication mechanism

is too weak

336

Error Code Error Text

-1210 SMTP: 538 Encryption is required for
requested authentication mechanism

-1211 SMTP: 454 Temporary authentication
failure

-1212 SMTP: 530 Authentication is required
-1213 Unexpected response from server during

authentication
-1214 SMTP: OK Authenticated
-1215 SMTP: continue command
-1216 Required type of authentication (PLAIN or

LOGIN) not supported by SMTP server
-1217 The response to the EHLO command could

not be parsed
-1218 Parameter passed to mail command is too

long
-1219 SMTP: Unrecognised response from SMTP

server
-1220 SMTP: 211 System status, or system help

reply
-1221 SMTP: 214 Help message
-1222 SMTP: 220 <domain> Service ready
-1223 SMTP: 221 <domain> Service closing

transmission channel
-1224 SMTP: 250 Requested mail action okay,

completed
-1225 SMTP: 251 User not local; will forward to

<forward-path>
-1226 SMTP: 354 Start mail input; end with

<CRLF>.<CRLF>
-1227 SMTP: 421 <domain> Service not available,

closing transmission channel
-1228 SMTP: 450 Requestedmail action not taken:

mailbox unavailable [E.g., mailbox busy]
-1229 SMTP: 451 Requested action aborted: local

error in processing
-1230 SMTP: 452 Requested action not taken:

insufficient system storage
-1231 SMTP: 500 Syntax error, command

unrecognized
-1232 SMTP: 501 Syntax error in parameters or

arguments
-1233 SMTP: 502 Command not implemented
-1234 SMTP: 503 Bad sequence of commands
-1235 SMTP: 504 Command parameter not

implemented
-1236 SMTP: 550 Requested action not taken:

mailbox unavailable
-1237 SMTP: 551 User not local; please try

<forward-path>
-1238 SMTP: 552 Requested mail action aborted:

exceeded storage allocation
-1239 SMTP: 553 Requested action not taken:

mailbox name not allowed
-1240 SMTP: 554 Transaction failed
-1241 Error decoding quoted printable or base 64

encoded data
-1242 Body part list is inconsistent - cannot build

MIME content

337

Error Code Error Text

-1243 Header name is empty
-1244 POP3: error received from server
-1245 POP3: could not extract message size from

response to LIST command
-1246 POP3: message received from server is too

large (does not match size in LIST
command response)

-1247 POP3: the secure parameter is invalid
-1260 IMAP: invalid response received from server

-1261 IMAP: invalid tag received from server
-1262 IMAP: invalid greeting message received

from server
-1263 IMAP: connection rejected by server (BYE

received in greeting message)
-1264 IMAP: the server does not support plain or

CRAM-MD5 authentication
-1265 IMAP: the server does not support the

STARTTLS command, so a secure
connection cannot be established

-1266 IMAP: the server response to the
CAPABILITY command was incorrect

-1267 IMAP: the server must support IMAP4rev1,
but it does not indicate that in its
CAPABILITY response

-1268 IMAP: the server response to the STARTTLS
command was incorrect

-1269 IMAP: parameter passed to command is
too long

-1270 IMAP: login was rejected because the user
name or password was incorrect

-1271 IMAP: the server response to the LOGIN
command was incorrect

-1272 IMAP: the server response to the LOGOUT
command was incorrect (network
connection has been closed)

-1273 IMAP: the secure parameter to
IMAPConnect is invalid

-1274 IMAP: the server response to the
AUTHENTICATE CRAM-MD5 command was
incorrect

-1275 IMAP: error decoding base64 response to
AUTHENTICATE CRAM-MD5 command

-1276 IMAP: the server response to the LIST or
LSUB command was incorrect

-1277 IMAP: the server response to the SELECT
command was incorrect

-1278 IMAP: missing output list parameter
-1279 IMAP: the server response to the

SUBSCRIBE command was incorrect
-1280 IMAP: the server response to the

UNSUBSCRIBE command was incorrect
-1281 IMAP: the server response to the STORE

command was incorrect
-1282 IMAP: the server response to the RENAME

command was incorrect
-1283 IMAP: the server response to the EXPUNGE

command was incorrect

338

Error Code Error Text

-1284 IMAP: the server response to the DELETE
command was incorrect

-1285 IMAP: the server response to the CREATE
command was incorrect

-1286 IMAP: the server response to the COPY
command was incorrect

-1287 IMAP: Incorrect FETCH response message
sequence number when listing messages

-1288 IMAP: the server response to the FETCH
command was incorrect when listing
messages

-1289 IMAP: No flags returned in FETCH response
when listing messages

-1290 IMAP: No size returned in FETCH response
when listing messages

-1291 IMAP: No UID returned in FETCH response
when listing messages

-1292 IMAP: Flags in response are not terminated
by close parenthesis

-1293 IMAP: Invalid integer value in FETCH
response when listing messages

-1294 IMAP: FETCH response not terminated with
close parenthesis when listing messages

-1295 IMAP: No INTERNALDATE returned in
FETCH response when listing messages

-1296 IMAP: INTERNALDATE returned in FETCH
response when listing messages is not
correctly enclosed in double quotes

-1297 IMAP: FETCH response incomplete
-1298 IMAP: the server response to the FETCH

command was incorrect when receiving a
message or headers

-1299 IMAP: bad message length in FETCH
response

-1300 IMAP: unrecognized data item in response
when FETCHing message or headers

-1301 IMAP: the server response to the NOOP
command was incorrect

-1302 IMAP: the server response to the CHECK
command was incorrect

-1303 IMAP: The length of the additional headers
requested is too long

-1304 IMAP: FETCH response invalid
-1305 IMAP: Selected headers not returned in

FETCH response when listing messages
-1306 IMAP: Invalid header line in FETCH

response
-1307 IMAP: Received a header that was not

requested in a FETCH response
-10004 Socket error: Interrupted function call
-10009 Socket error: Bad file descriptor
-10013 Socket error: Permission denied
-10014 Socket error: Bad address
-10022 Socket error: Invalid argument
-10024 Socket error: Too many open files
-10035 Socket error: The command would block
-10036 Socket error: Operation now in progress
-10037 Socket error: Operation already in progress

339

Error Code Error Text

-10038 Socket error: Socket operation on
non-socket

-10039 Socket error: Destination address required
-10040 Socket error: Message too long
-10041 Socket error: Protocol wrong type for

socket
-10042 Socket error: Bad protocol option
-10043 Socket error: Protocol not supported
-10044 Socket error: Socket type not supported
-10045 Socket error: Operation not supported
-10046 Socket error: Protocol family not supported
-10047 Socket error: Address family not supported

by protocol family
-10048 Socket error: Address already in use
-10049 Socket error: Cannot assign requested

address
-10050 Socket error: Network is down
-10051 Socket error: Network is unreachable
-10052 Socket error: Network dropped connection

on reset
-10053 Socket error: Software caused connection

abort
-10054 Socket error: Connection reset by peer
-10055 Socket error: No buffer space available
-10056 Socket error: Socket is already connected
-10057 Socket error: Socket is not connected
-10058 Socket error: Cannot send after socket

shutdown
-10059 Socket error: Too many references; cannot

splice
-10060 Socket error: Connection timed out
-10061 Socket error: Connection refused
-10062 Socket error: Too many levels of symbolic

links
-10063 Socket error: File name too long
-10064 Socket error: Host is down
-10065 Socket error: No route to host
-10066 Socket error: Directory not empty
-10067 Socket error: Too many processes
-10068 Socket error: Too many users
-10069 Socket error: Disk quota exceeded
-10070 Socket error: Stale NFS file handle
-10071 Socket error: Too many levels of remote in

path
-10091 Socket error: Network subsystem is

unavailable
-10092 Socket error: WINSOCK.DLL version out of

range
-10093 Socket error: Successful WSAStartup() not

yet performed
-10101 Socket error: Graceful shutdown in

progress
-11001 Lookup error: Host not found
-11002 Lookup error: Non-authoritative host not

found
-11003 Lookup error: This is a non-recoverable

error

340

Error Code Error Text

-11004 Lookup error: Valid name, no data record of
requested type

WebDevGetSecureError

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

WebDevGetSecureError () Returns errortext

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

If you are using, or attempting to use, a secure connection to a server, the installed SSL library (that provides the ability to estab-
lish secure connections) may return useful error text. When this occurs, the Web command returns the error code -1021. You can
useWebDevGetSecureError to return this error text.

Omnis maintains a separate copy of the secure error text, for each thread in the multi-threaded server.

Example

Calculate lServer as 'my.pop3.server'
Calculate lUserName as 'myusername'
Calculate lPassword as 'mypassword'
POP3Connect (lServer,lUserName,lPassword,"",kTrue) Returns iSocket
If iSocket=-1021
WebDevGetSecureError Returns lSecureErrorText

End If

WebDevSetConfig

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

WebDevSetConfig ([errorproc,commstimeout]) Returns status

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This Web command is multi-threaded, allowing another thread to execute in the multi-threaded server while it runs. Note that the
same socket cannot safely be used concurrently by more than one thread.

WebDevSetConfig allows you to set some configuration options for the WEB commands. The WEB commands are the commands
with names prefixed by CGI, FTP, HTTP, POP3, TCP, and UU, and the MailSplit and SMTPSend commands.

ErrorProc is theWebDevError method. WebDevError is an Omnis method which ALL of the otherWEB commands call when an error
occurs. WEB command execution is as follows:

341

../external_commands.html
../external_commands.html

• Attempt to execute command

• If no error occurs, return successful status.

• If an error occurs, and there is no WebDevError method, return the error code.

• If an error occurs, and there is a WebDevError method, call the WebDevError method, and then return the error code.

ErrorProc is an Omnis Character field containing the name of theWebDevError method, for example MYLIBRARY.MYCODE/MYPROC.

When a WEB command calls the WebDevError method, it passes it three parameters:

• A character parameter containing an error message.

• A long integer containing the error code.

• A character parameter containing the WEB command name.

To clear the WebDevError method, either pass no parameters, or an empty first parameter, toWebDevSetConfig.

You can also optionally pass CommsTimeout to this command. CommsTimeout is a long integer, which specifies the number of
seconds that WEB commands will wait to connect, or wait to receive data, before deciding that the remote application is not going
to respond. Note: this time-out does not apply to TCPReceive.WebDevSetConfig multiplies this value by 60, to generate a value in
1/60th second ticks, and stores the resulting unsigned long integer. If you pass zero, this will set the time-out to the default value of
60 seconds. If you do not pass a CommsTimeout parameter, the time-out remains unchanged. A negative value will also cause the
command to ignore server Blocking errors; in this case, the timeout will be the negated value of the parameter.

TheWebDevSetConfig command returns a long integer Status. Zero for success, or less than zero if an error occurs. Possible error
codes are listed in the Web Command Error Codes Appendix.

Example

call method $error in the current window instance a web error occurs

$construct
WebDevSetConfig (con($cinst().$name,'.$error'))
$error method
OK message Error executing [pCommand] {[pErrorCode] : [pErrorMsg]}

$event of push button - force error so $error gets called
FTPConnect ('ftp.unknownserver.net','Username','Password') Returns lFTPSocket

While calculation

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

While calculation

Description

This command starts a While–End While loop that continues while a calculated condition remains true. When the condition is not
satisfied the method jumps out of the loop and the first command after the closing End While is executed. A loop that begins with
a While commandmust terminate with an EndWhile otherwise an error occurs.

342

web_error_codes.html
../constructs.html
end_while.html
end_while.html
end_while.html

Example

Calculate lCount as 1
While lCount<=3 ## While loop
Calculate lCount as lCount+1

End While
OK message {Count=[lCount]} ## prints 'Count=4'

While flag false

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

While flag false

Description

This command starts aWhile–EndWhile loop that continues while the flag is false. While the condition is false, a command or a series
of commands is executed until the condition becomes true, at which time the first command after the closing EndWhile is executed.
A loop that begins with a While commandmust terminate with an EndWhile, otherwise an error occurs.

Example

loop until 'Yes' is pressed
Calculate #F as kFalse
While flag false
No/Yes message {Do you wish to stop looping}

While flag true

Command group Flag affected Reversible Execute on client Platform(s)

Constructs NO NO YES All

Syntax

While flag true

Description

This command starts aWhile–EndWhile loopwhich continueswhile the flag is true. While the condition is true, a commandor a series
of commands is executed until the condition becomes false, at which time the first command after the closing EndWhile command
is executed. A loop that begins with a While commandmust terminate with an EndWhile, otherwise an error occurs.

Example

loop until 'No' is pressed
Calculate #F as kTrue
While flag true
Yes/No message {Do you wish to continue looping ?}

End While

343

../constructs.html
end_while.html
end_while.html
end_while.html
../constructs.html
end_while.html
end_while.html
end_while.html

Working message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes NO NO NO All

Syntax

Working message title ([Cancel button] [,Repeat count] [,Do not auto close]) {message}

Options

Cancel button If specified, the message has a
cancel button

Repeat count If specified, the message
displays a numeric repeat
count (an internal value that
increments during method
execution)

Do not auto close If specified, open a modal
working message that does not
automatically close when the
method ends. While the
message is open, subsequent
workingmessage calls with this
option increment the message
and ignore the other
parameters

Description

This command displays a window, usually to indicate that Omnis is working or waiting for input. The window displays a sequence
of changing icons to indicate that Omnis is actively working. A working message automatically closes when the method quits, and
control returns to the user.

The title parameter contains a title for the working message window, together with parameters that configure the behavior and
appearance of the window. The method editor has a Configure Working Message Helper button below the code entry field that you
can use to easily set these parameters. The title parameter has the following syntax:

<*Title
text*> / <*size*(16|32|48)> : <*color*> : *id1,id2,...,idN* ; <*speed*> ; <*progress
bar range*>;<*display delay*>

The size specifies the width and height of the icons, and can be either 16, 32 or 48.

The color specifies the color to be applied to each icon, when the icon is a themed SVG icon. To specify a color, use either the name of
an Omnis color constant e.g. kRed, or a 7 character hex encoding of the color, in the form #RRGGBB e.g. #0000FF is blue.

id1,id2,…,idN is a comma separated list of icon ids, that specifies the sequence of icons to be displayed in the workingmessagewindow.
These icons can come froman icon set accessible to the library containing themed SVG icons (or for legacy apps #ICONS for the library,
or an icon data file such as OmnisPic).

speed indicates the time, in 1/60th second units, for which an icon in the sequence is displayed.

progress bar range specifies the range of a progress bar. If you specify a non-zero value, then the working message window displays
a progress bar, and each call to the Working message command increases the length of the bar until it reaches the range.

display delay specifies the time in 1/60th second units, that must elapse before the working message window becomes visible. This
allows you to use theWorkingmessage command in situations where the processing is sometimes very rapid, and in that case avoid
the message displaying and disappearing almost immediately.

344

../message_boxes.html

If a working message is placed in a loop with a Cancel button, pressing Ctrl-break/Ctrl-C/Cmnd-period or clicking on Cancel quits all
methods. However, if you first execute Disable cancel test at loops, you can implement an orderly exit. If Disable cancel test at loops is
executed before the loop, the cancel is detected only on executing the Working message.

A Repeat count option is available withWorking message, and displays the value of an internal counter which indicates the number
of times a particularWorking message has been encountered. If the command is in a Repeat loop, the counter increments at each
pass of the loop.

Example

Working message with orderly exit
Begin reversible block
Disable cancel test at loops

End reversible block
Working message (Cancel button) {Processing Record [lCount]}
For lCount from 1 to 20000 step 1
Redraw working message
If canceled

Break to end of loop
End If

End For
OK message {All done}

Write entire file

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Write entire file (path, binary-variable) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This commandwrites an entire file from a binary field, previously populated by using Read entire file. It returns an error code (See Error
Codes), or zero if no error occurs. The Binary value is in the following format:

• 12 byte header containing the Type (4 bytes), Creator (4 bytes), and File length (4 bytes).

• File data.

Example

read and then write the binary contents of mypicture.jpg
sys(115) returns the full path to the Omnis executable
Calculate lPathname as con(sys(115),'mypicture.png')
Read entire file (lPathname,lBinfld) Returns lErrCode
Write entire file (lPathname,lBinfld) Returns lErrCode

Write file as binary

345

disable_cancel_test_at_loops.html
disable_cancel_test_at_loops.html
repeat.html
../external_commands.html
fileops_error_codes.html
fileops_error_codes.html

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Write file as binary (refnum, binary-variable [,start-position]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This command writes the contents of the specified binary-variable to a file. You specify the file reference number returned by Open
file in refnum.

If you specify the start-position, writing begins at that byte (0 is the first byte in the file, 1 is the second byte, and so on), otherwise it
begins at the current position (the first byte when the file is first opened).

It returns an error code (See Error Codes), or zero if no error occurs.

Example

write the binary class data of the window class 'MyWindow' to a file named
'binfile' in the root of the omnis tree, path returned in sys(115)
Calculate lPathname as con(sys(115),'binfile')
Create file (lPathname) Returns lErrCode
Open file (lPathname,lRefNum)
Calculate lBinfld as $clib.$windows.MyWindow.$classdata
Write file as binary (lRefNum,lBinfld) Returns lErrCode
Close file (lRefNum)

Write file as character

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO Windows,Linux

Syntax

Write file as character (refnum, character-variable [,start-position]) Returns err-code

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

This commandwrites the contents of the specified character-variable to a file. You specify the file reference number returnedbyOpen
file in refnum.

If you specify the start-position, writing begins at that absolute character position (0 is the first character in the file, 1 is the second
character, and so on), otherwise it begins at the current position (the first character when the file is first opened).

It returns an error code (See Error Codes), or zero if no error occurs.

Example

write the contents of the character variable 'lCharVar' to a text file
named 'charfile.txt' in the root of the omnis tree
Calculate lPathname as con(sys(115),'charfile.txt')
Create file (lPathname) Returns lErrCode
Open file (lPathname,lRefNum)

346

../external_commands.html
open_file.html
open_file.html
fileops_error_codes.html
../external_commands.html
open_file.html
open_file.html
fileops_error_codes.html

Calculate lCharVar as 'The contents of this file was written using the command Write file as character'
Write file as character (lRefNum,lCharVar) Returns lErrCode
Close file (lRefNum)

WriteBinFile

Command group Flag affected Reversible Execute on client Platform(s)

External commands YES NO NO All

Syntax

WriteBinFile (pathname, binfld [, start [, length]]) Returns return-value

Description

Note: The flag is set according to whether Omnis was able to make a call to this external command.

WriteBinFilewrites binary data to the file system or data fork (not the resource fork).

Note for macOS Users: ReadBinFile andWriteBinFile are useful for reading and writing documents but not system and application
files.

Pathname is a character field containing the full path of the file to which to write. If the output file does not already exist,WriteBin-
File creates it.

Binfld is a binary field from which to write the data.

Start is an integer field specifying the byte position in the file where writing should begin. If the parameter is not used, the command
defaults to 0 (zero), that is, the beginning of the file. To append data to an existing file, set Start to -1 (minus one).

Length is an integer field containing the number of bytes to write. If the parameter is not used, the value defaults to the length of the
Binary field.

Return-value is an integer field that is the number of bytes written if no error code is returned. Otherwise, it is an error code, one of:

-1: End of file

-2: Out of memory

-10: File not found

-11: Bad file name

-12: Volume not found

-20: IO error

-100: Incorrect number of parameters

-101: Bad parameter value

-998: File too large

Example

write the binary class data of the window class 'MyWindow' to a file named
'binfile' in the root of the omnis tree sys(115) returns the full path to
the Omnis executable
Calculate lPathname as con(sys(115),'binfile')
Calculate lBinfld as $clib.$windows.MyWindow.$classdata
WriteBinFile (lPathname,lBinfld) Returns lNumbytes
OK message {[lNumbytes] bytes written}

347

../external_commands.html
readbinfile.html

XOR selected and saved

Command group Flag affected Reversible Execute on client Platform(s)

List lines YES NO NO All

Syntax

XOR selected and saved ([All lines]) {line-number (calculation)}

Options

All lines If specified, the command affects all the lines in the list

Deprecated Command

This command has been deprecated and is no longer visible in the Code Assistant in the Code Editor (it will not appear when you type
the first few characters), although it is still present in Omnis Studio and will continue to function if used in legacy code. You can show
this command by disabling the appropriate Command Filter in theModifymenu in the Code Editor.

Description

This command performs a logical XOR of the Saved selection with the Current selection. To allow sophisticated manipulation of data
via lists, a list can store two selection states for each line; the “Current” and the “Saved” selection. The Current and Saved selections
have nothing to do with saving data on the disk; they are no more than labels for two sets of selections. The lists may be held in
memory and never saved to disk: they will still have a Current and Saved selection state for each line but they will be lost if not saved.
When a list is stored in the data file, both sets of selections are stored.

You can specify a particular line in the list by entering either a number or a calculation.

The XOR selected and saved command performs a logical XOR (exclusive OR) on the Saved and Current state and puts the result into
the Current selection. Hence, if either of the Current and Saved states is selected, the Current state becomes selected, but if both
states are equal, the resulting Current state will become deselected.

Logic Table (S=selected, D=deselected)

Saved Current Resulting Current State

S S D
D S S
S D S
D D D

The All lines option performs the XOR for all lines of the current list. The flag is set by this command. The following example selects
the middle line of the list:

Example

Leave line 3 selected
Set current list lMyList
Define list {lCol1}
For lCol1 from 1 to 6 step 1
Add line to list {lCol1}

End For
Select list line(s) (All lines)
Save selection for line(s) (All lines)
Invert selection for line(s) {3}
XOR selected and saved (All lines)

348

../list_lines.html

Yes/No message

Command group Flag affected Reversible Execute on client Platform(s)

Message boxes YES NO NO All

Syntax

Yes/No message title ([Icon][,Sound bell][,Cancel button]) {message}

Options

Icon If specified, the message displays an operating system specific icon
Sound bell If specified, the system bell sounds when the command displays the message
Cancel button If specified, the message has a cancel button

Description

This command displays a message box containing the specified message and provides a Yes and a No pushbutton. You can include
a Cancel button, and add a short title for the message box. For greater emphasis, you can select an Icon for the message box (the
default “info” icon for the current operating system), and you can force the system bell to sound by checking the Sound bell check box.
Under Windows XP, you have to specify a system sound for a ‘Question’ in the Control Panel for the Sound Bell option to work.

When themessage box is displayedmethod execution is halted temporarily; it remains open until the user clicks on one of the buttons
before continuing. The Yes button is the default button and can therefore be selected by pressing the Return key.

The number of lines displayed in the message box depends on your operating system, fonts and screen size. In the message text you
can force a break between lines (a carriage return) by using the notation ‘//’or the kCr constant enclosed in square brackets, e.g. ’First
line[kCr]Second line’.

You can insert a Yes/No message at any appropriate point in a method. If the user clicks the Yes button, the flag is set; otherwise, it is
cleared. You can use the msgcancelled() function to detect if the user pressed the Cancel button.

Example

Open a Yes/No dialog and display the option selected
Yes/No message My Editor (Icon,Cancel button) {Do you wish to save the changes you have made ?}
If msgcancelled()
OK message My Editor {Cancel button pressed}

Else
If flag true

OK message My Editor {OK button pressed}
Else

OK message My Editor {Cancel button pressed}
End If

End If

Yield to other threads

Command group Flag affected Reversible Execute on client Platform(s)

Threads NO NO NO All

Syntax

Yield to other threads

349

../message_boxes.html
../threads.html

Description

Yield to other threads is only applicable to the multithreaded server.

This command is a hint that the executing thread is waiting for other threads and is prepared to yield its processor time. It can be
used when waiting for semaphores (since with the multithreaded server another client stack could be holding the semaphore).

Example

Do not wait for semaphores
Repeat
Prepare for edit
If flag true

Break to end of loop
End If
Yield to other threads

Until break

Calculations

Commands

Calculate Do Do
default

Do
inherited

Do
redirect

JavaScript: Set refer-
ence

Test for
valid cal-
culation

Changing data

Commands

The Changing Data commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type
the first few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by
disabling the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps only, not web or mobile apps.

Cancel
prepare
for
update

Delete Delete
with
confir-
mation

Do not
flush
data

Do not
wait for
semaphores

Flush
data

Flush
data
now

Prepare
for edit

Prepare
for insert

Prepare
for insert
with
current
values

Test for
only one
user

Update
files

Update
files if
flag set

Wait for
semaphores

350

Commands_A-Z/calculate.html
Commands_A-Z/do.html
Commands_A-Z/do_default.html
Commands_A-Z/do_default.html
Commands_A-Z/do_inherited.html
Commands_A-Z/do_inherited.html
Commands_A-Z/do_redirect.html
Commands_A-Z/do_redirect.html
Commands_A-Z/javascript.html
Commands_A-Z/set_reference.html
Commands_A-Z/set_reference.html
Commands_A-Z/test_for_valid_calculation.html
Commands_A-Z/test_for_valid_calculation.html
Commands_A-Z/test_for_valid_calculation.html
Commands_A-Z/cancel_prepare_for_update.html
Commands_A-Z/cancel_prepare_for_update.html
Commands_A-Z/cancel_prepare_for_update.html
Commands_A-Z/cancel_prepare_for_update.html
Commands_A-Z/delete.html
Commands_A-Z/delete_with_confirmation.html
Commands_A-Z/delete_with_confirmation.html
Commands_A-Z/delete_with_confirmation.html
Commands_A-Z/delete_with_confirmation.html
Commands_A-Z/do_not_flush_data.html
Commands_A-Z/do_not_flush_data.html
Commands_A-Z/do_not_flush_data.html
Commands_A-Z/do_not_wait_for_semaphores.html
Commands_A-Z/do_not_wait_for_semaphores.html
Commands_A-Z/do_not_wait_for_semaphores.html
Commands_A-Z/flush_data.html
Commands_A-Z/flush_data.html
Commands_A-Z/flush_data_now.html
Commands_A-Z/flush_data_now.html
Commands_A-Z/flush_data_now.html
Commands_A-Z/prepare_for_edit.html
Commands_A-Z/prepare_for_edit.html
Commands_A-Z/prepare_for_insert.html
Commands_A-Z/prepare_for_insert.html
Commands_A-Z/prepare_for_insert_with_current_values.html
Commands_A-Z/prepare_for_insert_with_current_values.html
Commands_A-Z/prepare_for_insert_with_current_values.html
Commands_A-Z/prepare_for_insert_with_current_values.html
Commands_A-Z/prepare_for_insert_with_current_values.html
Commands_A-Z/test_for_only_one_user.html
Commands_A-Z/test_for_only_one_user.html
Commands_A-Z/test_for_only_one_user.html
Commands_A-Z/update_files.html
Commands_A-Z/update_files.html
Commands_A-Z/update_files_if_flag_set.html
Commands_A-Z/update_files_if_flag_set.html
Commands_A-Z/update_files_if_flag_set.html
Commands_A-Z/wait_for_semaphores.html
Commands_A-Z/wait_for_semaphores.html

Classes

Commands

These commands are for desktop apps only, not web or mobile apps.

Close all
designs

Close
design

Delete
class

Duplicate
class

Modify
class

Modify
methods

New
class

Print
class

Rename
class

Revert
class

Save
class

Set class
descrip-
tion

Clipboard

Commands

These commands are for desktop apps only, not web or mobile apps.

Clear
data

Copy to
clip-
board

Cut to
clip-
board

Paste
from clip-
board

Test clip-
board

Constructs

Commands

Comment Begin reversible
block

Break to end of
loop

Break to end
of switch

Case Default Disable cancel
test at loops *

Else

Else If
calculation

Else If flag false Else If flag true Enable
cancel test
at loops *

End For End If End reversible
block

End Switch

EndWhile For each line in list For field value If calculation

If canceled If flag false If flag true Jump to
start of loop

Repeat Switch Until break Until
calculation

Until flag
false

Until flag true While calculation While flag
false

While flag
true

*These commands are for desktop apps only, not web or mobile apps.

Data files

Commands

The Data File commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type the first
few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by disabling
the appropriate Command Filter in the Modify menu in the Code Editor.

351

Commands_A-Z/close_all_designs.html
Commands_A-Z/close_all_designs.html
Commands_A-Z/close_design.html
Commands_A-Z/close_design.html
Commands_A-Z/delete_class.html
Commands_A-Z/delete_class.html
Commands_A-Z/duplicate_class.html
Commands_A-Z/duplicate_class.html
Commands_A-Z/modify_class.html
Commands_A-Z/modify_class.html
Commands_A-Z/modify_methods.html
Commands_A-Z/modify_methods.html
Commands_A-Z/new_class.html
Commands_A-Z/new_class.html
Commands_A-Z/print_class.html
Commands_A-Z/print_class.html
Commands_A-Z/rename_class.html
Commands_A-Z/rename_class.html
Commands_A-Z/revert_class.html
Commands_A-Z/revert_class.html
Commands_A-Z/save_class.html
Commands_A-Z/save_class.html
Commands_A-Z/set_class_description.html
Commands_A-Z/set_class_description.html
Commands_A-Z/set_class_description.html
Commands_A-Z/clear_data.html
Commands_A-Z/clear_data.html
Commands_A-Z/copy_to_clipboard.html
Commands_A-Z/copy_to_clipboard.html
Commands_A-Z/copy_to_clipboard.html
Commands_A-Z/cut_to_clipboard.html
Commands_A-Z/cut_to_clipboard.html
Commands_A-Z/cut_to_clipboard.html
Commands_A-Z/paste_from_clipboard.html
Commands_A-Z/paste_from_clipboard.html
Commands_A-Z/paste_from_clipboard.html
Commands_A-Z/test_clipboard.html
Commands_A-Z/test_clipboard.html
Commands_A-Z/aaacomment.html
Commands_A-Z/begin_reversible_block.html
Commands_A-Z/begin_reversible_block.html
Commands_A-Z/break_to_end_of_loop.html
Commands_A-Z/break_to_end_of_loop.html
Commands_A-Z/break_to_end_of_switch.html
Commands_A-Z/break_to_end_of_switch.html
Commands_A-Z/case.html
Commands_A-Z/default.html
Commands_A-Z/disable_cancel_test_at_loops.html
Commands_A-Z/disable_cancel_test_at_loops.html
Commands_A-Z/else.html
Commands_A-Z/else_if_calculation.html
Commands_A-Z/else_if_calculation.html
Commands_A-Z/else_if_flag_false.html
Commands_A-Z/else_if_flag_true.html
Commands_A-Z/enable_cancel_test_at_loops.html
Commands_A-Z/enable_cancel_test_at_loops.html
Commands_A-Z/enable_cancel_test_at_loops.html
Commands_A-Z/end_for.html
Commands_A-Z/end_if.html
Commands_A-Z/end_reversible_block.html
Commands_A-Z/end_reversible_block.html
Commands_A-Z/end_switch.html
Commands_A-Z/end_while.html
Commands_A-Z/for_each_line_in_list.html
Commands_A-Z/for_field_value.html
Commands_A-Z/if_calculation.html
Commands_A-Z/if_canceled.html
Commands_A-Z/if_flag_false.html
Commands_A-Z/if_flag_true.html
Commands_A-Z/jump_to_start_of_loop.html
Commands_A-Z/jump_to_start_of_loop.html
Commands_A-Z/repeat.html
Commands_A-Z/switch.html
Commands_A-Z/until_break.html
Commands_A-Z/until_calculation.html
Commands_A-Z/until_calculation.html
Commands_A-Z/until_flag_false.html
Commands_A-Z/until_flag_false.html
Commands_A-Z/until_flag_true.html
Commands_A-Z/while_calculation.html
Commands_A-Z/while_flag_false.html
Commands_A-Z/while_flag_false.html
Commands_A-Z/while_flag_true.html
Commands_A-Z/while_flag_true.html

These commands are for desktop apps using Omnis data files only, not web or mobile apps.

Close
data file

Close
lookup
file

Create
data file

Floating
default
data file

Open
data file

Open
lookup
file

Prompt
for data
file

Set
current
data file

Set
default
data file

Data management

Commands

The Data Management Commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type
the first few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by
disabling the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps using Omnis data files only, not web or mobile apps.

Build indexes Check data Clear check data log Close check data log
Delete data Drop indexes Open check data log Open runtime data file browser
Print check data log Quick check Rename data Reorganize data
Test check data log Update data dictionary

Debugger

Commands

Breakpoint Clear
trace log

Close
trace log

Open
trace log

Print
trace log

Send to
trace log

Set
break
calcula-
tion

Trace off

Trace on Variable
menu
com-
mand

Enter data

Commands

These commands are for desktop apps only, not web or mobile apps.

Disable
enter &
escape
keys

Enable
enter &
escape
keys

Enter
data

Error handlers

Commands

352

Commands_A-Z/close_data_file.html
Commands_A-Z/close_data_file.html
Commands_A-Z/close_lookup_file.html
Commands_A-Z/close_lookup_file.html
Commands_A-Z/close_lookup_file.html
Commands_A-Z/create_data_file.html
Commands_A-Z/create_data_file.html
Commands_A-Z/floating_default_data_file.html
Commands_A-Z/floating_default_data_file.html
Commands_A-Z/floating_default_data_file.html
Commands_A-Z/open_data_file.html
Commands_A-Z/open_data_file.html
Commands_A-Z/open_lookup_file.html
Commands_A-Z/open_lookup_file.html
Commands_A-Z/open_lookup_file.html
Commands_A-Z/prompt_for_data_file.html
Commands_A-Z/prompt_for_data_file.html
Commands_A-Z/prompt_for_data_file.html
Commands_A-Z/set_current_data_file.html
Commands_A-Z/set_current_data_file.html
Commands_A-Z/set_current_data_file.html
Commands_A-Z/set_default_data_file.html
Commands_A-Z/set_default_data_file.html
Commands_A-Z/set_default_data_file.html
Commands_A-Z/build_indexes.html
Commands_A-Z/check_data.html
Commands_A-Z/clear_check_data_log.html
Commands_A-Z/close_check_data_log.html
Commands_A-Z/delete_data.html
Commands_A-Z/drop_indexes.html
Commands_A-Z/open_check_data_log.html
Commands_A-Z/open_runtime_data_file_browser.html
Commands_A-Z/print_check_data_log.html
Commands_A-Z/quick_check.html
Commands_A-Z/rename_data.html
Commands_A-Z/reorganize_data.html
Commands_A-Z/test_check_data_log.html
Commands_A-Z/update_data_dictionary.html
Commands_A-Z/breakpoint.html
Commands_A-Z/clear_trace_log.html
Commands_A-Z/clear_trace_log.html
Commands_A-Z/close_trace_log.html
Commands_A-Z/close_trace_log.html
Commands_A-Z/open_trace_log.html
Commands_A-Z/open_trace_log.html
Commands_A-Z/print_trace_log.html
Commands_A-Z/print_trace_log.html
Commands_A-Z/send_to_trace_log.html
Commands_A-Z/send_to_trace_log.html
Commands_A-Z/set_break_calculation.html
Commands_A-Z/set_break_calculation.html
Commands_A-Z/set_break_calculation.html
Commands_A-Z/set_break_calculation.html
Commands_A-Z/trace_off.html
Commands_A-Z/trace_on.html
Commands_A-Z/variable_menu_command.html
Commands_A-Z/variable_menu_command.html
Commands_A-Z/variable_menu_command.html
Commands_A-Z/variable_menu_command.html
Commands_A-Z/disable_enter_escape_keys.html
Commands_A-Z/disable_enter_escape_keys.html
Commands_A-Z/disable_enter_escape_keys.html
Commands_A-Z/disable_enter_escape_keys.html
Commands_A-Z/enable_enter_escape_keys.html
Commands_A-Z/enable_enter_escape_keys.html
Commands_A-Z/enable_enter_escape_keys.html
Commands_A-Z/enable_enter_escape_keys.html
Commands_A-Z/enter_data_cmd.html
Commands_A-Z/enter_data_cmd.html

Load
error
handler

SEA
continue
execu-
tion

SEA
repeat
com-
mand

SEA
report
fatal
error

Signal
error

Unload
error
handler

Events

Commands

These commands are for handling events in web or mobile apps.

On On
default

These commands are for desktop apps only, not web or mobile apps.

Process
event
and
continue

Queue
bring to
top

Queue
cancel

Queue
click

Queue
close

Queue
double-
click

Queue
key-
board
event

Queue
OK

Queue
quit

Queue
scroll

Queue
set
current
field

Queue
tab

Quit
event
handler

Exchanging data

Commands

The Exchanging Data commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type
the first few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by
disabling the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps only, not web or mobile apps.

Accept
advise
requests

Accept
com-
mands

Accept
field
requests

Accept
field
values

Advise
on
find/next/previous

Advise
on OK

Advise
on
redraw

Cancel
advises

Clear
DDE
channel
item
names

Close
DDE
channel

Message
timeout

Open
DDE
channel

353

Commands_A-Z/load_error_handler.html
Commands_A-Z/load_error_handler.html
Commands_A-Z/load_error_handler.html
Commands_A-Z/sea_continue_execution.html
Commands_A-Z/sea_continue_execution.html
Commands_A-Z/sea_continue_execution.html
Commands_A-Z/sea_continue_execution.html
Commands_A-Z/sea_repeat_command.html
Commands_A-Z/sea_repeat_command.html
Commands_A-Z/sea_repeat_command.html
Commands_A-Z/sea_repeat_command.html
Commands_A-Z/sea_report_fatal_error.html
Commands_A-Z/sea_report_fatal_error.html
Commands_A-Z/sea_report_fatal_error.html
Commands_A-Z/sea_report_fatal_error.html
Commands_A-Z/signal_error.html
Commands_A-Z/signal_error.html
Commands_A-Z/unload_error_handler.html
Commands_A-Z/unload_error_handler.html
Commands_A-Z/unload_error_handler.html
Commands_A-Z/on.html
Commands_A-Z/on_default.html
Commands_A-Z/on_default.html
Commands_A-Z/process_event_and_continue.html
Commands_A-Z/process_event_and_continue.html
Commands_A-Z/process_event_and_continue.html
Commands_A-Z/process_event_and_continue.html
Commands_A-Z/queue_bring_to_top.html
Commands_A-Z/queue_bring_to_top.html
Commands_A-Z/queue_bring_to_top.html
Commands_A-Z/queue_cancel.html
Commands_A-Z/queue_cancel.html
Commands_A-Z/queue_click.html
Commands_A-Z/queue_click.html
Commands_A-Z/queue_close.html
Commands_A-Z/queue_close.html
Commands_A-Z/queue_double-click.html
Commands_A-Z/queue_double-click.html
Commands_A-Z/queue_double-click.html
Commands_A-Z/queue_keyboard_event.html
Commands_A-Z/queue_keyboard_event.html
Commands_A-Z/queue_keyboard_event.html
Commands_A-Z/queue_keyboard_event.html
Commands_A-Z/queue_ok.html
Commands_A-Z/queue_ok.html
Commands_A-Z/queue_quit.html
Commands_A-Z/queue_quit.html
Commands_A-Z/queue_scroll.html
Commands_A-Z/queue_scroll.html
Commands_A-Z/queue_set_current_field.html
Commands_A-Z/queue_set_current_field.html
Commands_A-Z/queue_set_current_field.html
Commands_A-Z/queue_set_current_field.html
Commands_A-Z/queue_tab.html
Commands_A-Z/queue_tab.html
Commands_A-Z/quit_event_handler.html
Commands_A-Z/quit_event_handler.html
Commands_A-Z/quit_event_handler.html
Commands_A-Z/accept_advise_requests.html
Commands_A-Z/accept_advise_requests.html
Commands_A-Z/accept_advise_requests.html
Commands_A-Z/accept_commands.html
Commands_A-Z/accept_commands.html
Commands_A-Z/accept_commands.html
Commands_A-Z/accept_field_requests.html
Commands_A-Z/accept_field_requests.html
Commands_A-Z/accept_field_requests.html
Commands_A-Z/accept_field_values.html
Commands_A-Z/accept_field_values.html
Commands_A-Z/accept_field_values.html
Commands_A-Z/advise_on_find_next_previous.html
Commands_A-Z/advise_on_find_next_previous.html
Commands_A-Z/advise_on_find_next_previous.html
Commands_A-Z/advise_on_ok.html
Commands_A-Z/advise_on_ok.html
Commands_A-Z/advise_on_redraw.html
Commands_A-Z/advise_on_redraw.html
Commands_A-Z/advise_on_redraw.html
Commands_A-Z/cancel_advises.html
Commands_A-Z/cancel_advises.html
Commands_A-Z/clear_dde_channel_item_names.html
Commands_A-Z/clear_dde_channel_item_names.html
Commands_A-Z/clear_dde_channel_item_names.html
Commands_A-Z/clear_dde_channel_item_names.html
Commands_A-Z/clear_dde_channel_item_names.html
Commands_A-Z/close_dde_channel.html
Commands_A-Z/close_dde_channel.html
Commands_A-Z/close_dde_channel.html
Commands_A-Z/message_timeout.html
Commands_A-Z/message_timeout.html
Commands_A-Z/open_dde_channel.html
Commands_A-Z/open_dde_channel.html
Commands_A-Z/open_dde_channel.html

Request
advises

Request
field

Send
advises
now

Send
com-
mand

Send
field

Set
advise
options

Set DDE
channel
item
name

Set DDE
channel
number

Set
server
mode

External commands

The HTTP, IMAP, POP3, FTP & some File Commands in the OWEB external have been deprecated in Studio 11, and you should use the
equivalent methods in the OW3Worker Object (if available).

These commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you type the first few
characters), although they are still present in Studio 11 andwill continue to function. You can show theExternal Commandsbydisabling
the appropriate Command Filter in the Modify menu in the Code Editor.

Calling External Code

Call DLL Register
DLL

Email Commands

IMAPCheck IMAPConnectIMAPCopyMessageIMAPCreateMailbox

IMAPDeleteMailboxIMAPDisconnectIMAPExpungeMessagesIMAPListMailboxes

IMAPListMessagesIMAPListSubscribedMailboxesIMAPNoOp IMAPRecvHeaders

IMAPRecvMessageIMAPRenameMailboxIMAPSelectMailboxIMAPSetMessageFlags

IMAPSubscribeMailboxIMAPUnsubscribeMailboxMailSplit POP3Connect

POP3DeleteMessagePOP3DisconnectPOP3ListMessagesPOP3MessageCount

POP3Recv POP3RecvHeadersPOP3RecvMessagePOP3Stat

POP3UndoDeletesSMTPSend

FTP Commands

FTPChmod FTPConnectFTPCwd FTPDelete

FTPDisconnectFTPGet FTPGetBinaryFTPGetLastStatus

FTPList FTPMkdir FTPPut FTPPutBinary

FTPPwd FTPReceiveCommandReplyLineFTPRenameFTPSendCommand

FTPSetConfigFTPSite FTPType

TCP Commands

354

Commands_A-Z/request_advises.html
Commands_A-Z/request_advises.html
Commands_A-Z/request_field.html
Commands_A-Z/request_field.html
Commands_A-Z/send_advises_now.html
Commands_A-Z/send_advises_now.html
Commands_A-Z/send_advises_now.html
Commands_A-Z/send_command.html
Commands_A-Z/send_command.html
Commands_A-Z/send_command.html
Commands_A-Z/send_field.html
Commands_A-Z/send_field.html
Commands_A-Z/set_advise_options.html
Commands_A-Z/set_advise_options.html
Commands_A-Z/set_advise_options.html
Commands_A-Z/set_dde_channel_item_name.html
Commands_A-Z/set_dde_channel_item_name.html
Commands_A-Z/set_dde_channel_item_name.html
Commands_A-Z/set_dde_channel_item_name.html
Commands_A-Z/set_dde_channel_number.html
Commands_A-Z/set_dde_channel_number.html
Commands_A-Z/set_dde_channel_number.html
Commands_A-Z/set_server_mode.html
Commands_A-Z/set_server_mode.html
Commands_A-Z/set_server_mode.html
Commands_A-Z/call_dll.html
Commands_A-Z/register_dll.html
Commands_A-Z/register_dll.html
Commands_A-Z/imapcheck.html
Commands_A-Z/imapconnect.html
Commands_A-Z/imapcopymessage.html
Commands_A-Z/imapcreatemailbox.html
Commands_A-Z/imapdeletemailbox.html
Commands_A-Z/imapdisconnect.html
Commands_A-Z/imapexpungemessages.html
Commands_A-Z/imaplistmailboxes.html
Commands_A-Z/imaplistmessages.html
Commands_A-Z/imaplistsubscribedmailboxes.html
Commands_A-Z/imapnoop.html
Commands_A-Z/imaprecvheaders.html
Commands_A-Z/imaprecvmessage.html
Commands_A-Z/imaprenamemailbox.html
Commands_A-Z/imapselectmailbox.html
Commands_A-Z/imapsetmessageflags.html
Commands_A-Z/imapsubscribemailbox.html
Commands_A-Z/imapunsubscribemailbox.html
Commands_A-Z/mailsplit.html
Commands_A-Z/pop3connect.html
Commands_A-Z/pop3deletemessage.html
Commands_A-Z/pop3disconnect.html
Commands_A-Z/pop3listmessages.html
Commands_A-Z/pop3messagecount.html
Commands_A-Z/pop3recv.html
Commands_A-Z/pop3recvheaders.html
Commands_A-Z/pop3recvmessage.html
Commands_A-Z/pop3stat.html
Commands_A-Z/pop3undodeletes.html
Commands_A-Z/smtpsend.html
Commands_A-Z/ftpchmod.html
Commands_A-Z/ftpconnect.html
Commands_A-Z/ftpcwd.html
Commands_A-Z/ftpdelete.html
Commands_A-Z/ftpdisconnect.html
Commands_A-Z/ftpget.html
Commands_A-Z/ftpgetbinary.html
Commands_A-Z/ftpgetlaststatus.html
Commands_A-Z/ftplist.html
Commands_A-Z/ftpmkdir.html
Commands_A-Z/ftpput.html
Commands_A-Z/ftpputbinary.html
Commands_A-Z/ftppwd.html
Commands_A-Z/ftpreceivecommandreplyline.html
Commands_A-Z/ftprename.html
Commands_A-Z/ftpsendcommand.html
Commands_A-Z/ftpsetconfig.html
Commands_A-Z/ftpsite.html
Commands_A-Z/ftptype.html

TCPAccept TCPAddr2NameTCPBind TCPBlock

TCPClose TCPConnectTCPGetMyAddrTCPGetMyPort

TCPGetRemoteAddrTCPListen TCPName2AddrTCPPing

TCPReceive TCPSend TCPSocket

Web Commands

CGIDecode CGIEncode HTTPClose HTTPGet

HTTPHeaderHTTPMethodHTTPOpen HTTPPage

HTTPParse HTTPPost HTTPRead HTTPSend

HTTPServer HTTPSetAuthenticationHTTPSetProxyServerHTTPSplitHTML

HTTPSplitURLUUDecode UUEncode WebDevGetSecureError

WebDevSetConfig

File Commands

Change
working
directory

Close file Copy file Create
directory

Create
file

Delete
file

Does file
exist

Get file
info

Get file
name

Get file
read-
only
attribute

Get files Get
folders

Get
working
directory

Move file Open file Put file
name

Read
entire
file

Read file
as binary

Read file
as char-
acter

ReadBinFile

Set file
read-
only
attribute

Split
path
name

Truncate
file

Write
entire
file

Write file
as binary

Write file
as char-
acter

WriteBinFile

Externals

Commands

355

Commands_A-Z/tcpaccept.html
Commands_A-Z/tcpaddr2name.html
Commands_A-Z/tcpbind.html
Commands_A-Z/tcpblock.html
Commands_A-Z/tcpclose.html
Commands_A-Z/tcpconnect.html
Commands_A-Z/tcpgetmyaddr.html
Commands_A-Z/tcpgetmyport.html
Commands_A-Z/tcpgetremoteaddr.html
Commands_A-Z/tcplisten.html
Commands_A-Z/tcpname2addr.html
Commands_A-Z/tcpping.html
Commands_A-Z/tcpreceive.html
Commands_A-Z/tcpsend.html
Commands_A-Z/tcpsocket.html
Commands_A-Z/cgidecode.html
Commands_A-Z/cgiencode.html
Commands_A-Z/httpclose.html
Commands_A-Z/httpget.html
Commands_A-Z/httpheader.html
Commands_A-Z/httpmethod.html
Commands_A-Z/httpopen.html
Commands_A-Z/httppage.html
Commands_A-Z/httpparse.html
Commands_A-Z/httppost.html
Commands_A-Z/httpread.html
Commands_A-Z/httpsend.html
Commands_A-Z/httpserver.html
Commands_A-Z/httpsetauthentication.html
Commands_A-Z/httpsetproxyserver.html
Commands_A-Z/httpsplithtml.html
Commands_A-Z/httpspliturl.html
Commands_A-Z/uudecode.html
Commands_A-Z/uuencode.html
Commands_A-Z/webdevgetsecureerror.html
Commands_A-Z/webdevsetconfig.html
Commands_A-Z/change_working_directory.html
Commands_A-Z/change_working_directory.html
Commands_A-Z/change_working_directory.html
Commands_A-Z/close_file.html
Commands_A-Z/copy_file.html
Commands_A-Z/create_directory.html
Commands_A-Z/create_directory.html
Commands_A-Z/create_file.html
Commands_A-Z/create_file.html
Commands_A-Z/delete_file.html
Commands_A-Z/delete_file.html
Commands_A-Z/does_file_exist.html
Commands_A-Z/does_file_exist.html
Commands_A-Z/get_file_info.html
Commands_A-Z/get_file_info.html
Commands_A-Z/get_file_name.html
Commands_A-Z/get_file_name.html
Commands_A-Z/get_file_read-only_attribute.html
Commands_A-Z/get_file_read-only_attribute.html
Commands_A-Z/get_file_read-only_attribute.html
Commands_A-Z/get_file_read-only_attribute.html
Commands_A-Z/get_files.html
Commands_A-Z/get_folders.html
Commands_A-Z/get_folders.html
Commands_A-Z/get_working_directory.html
Commands_A-Z/get_working_directory.html
Commands_A-Z/get_working_directory.html
Commands_A-Z/move_file.html
Commands_A-Z/open_file.html
Commands_A-Z/put_file_name.html
Commands_A-Z/put_file_name.html
Commands_A-Z/read_entire_file.html
Commands_A-Z/read_entire_file.html
Commands_A-Z/read_entire_file.html
Commands_A-Z/read_file_as_binary.html
Commands_A-Z/read_file_as_binary.html
Commands_A-Z/read_file_as_character.html
Commands_A-Z/read_file_as_character.html
Commands_A-Z/read_file_as_character.html
Commands_A-Z/readbinfile.html
Commands_A-Z/set_file_read-only_attribute.html
Commands_A-Z/set_file_read-only_attribute.html
Commands_A-Z/set_file_read-only_attribute.html
Commands_A-Z/set_file_read-only_attribute.html
Commands_A-Z/split_path_name.html
Commands_A-Z/split_path_name.html
Commands_A-Z/split_path_name.html
Commands_A-Z/truncate_file.html
Commands_A-Z/truncate_file.html
Commands_A-Z/write_entire_file.html
Commands_A-Z/write_entire_file.html
Commands_A-Z/write_entire_file.html
Commands_A-Z/write_file_as_binary.html
Commands_A-Z/write_file_as_binary.html
Commands_A-Z/write_file_as_character.html
Commands_A-Z/write_file_as_character.html
Commands_A-Z/write_file_as_character.html
Commands_A-Z/writebinfile.html

Build
externals
list

Call
external
routine

Load
event
handler

Load
external
routine

Unload
event
handler

Unload
external
routine

Fields

Commands

These commands are for desktop apps only, not web or mobile apps.

Disable
fields

Enable
fields

Hide
fields

Redraw

Redraw
lists

Show
fields

Test for
field
enabled

Test for
field
visible

Files

Commands

These commands are for desktop apps using Omnis data files only, not web or mobile apps.

Build
field
names
list

Build file
list

Clear all
files

Clear
main &
con-
nected

Clear
main file

Clear
range of
fields

Clear
selected
files

Set
closed
files

Set main
file

Set
memory-
only files

Set read-
only files

Set
read/write
files

Finding data

Commands

The FindingData commands are no longer visible in the Code Assistant in the Code Editor (theywill not appearwhen you type the first
few characters), although they are still present in Studio 11 and will continue to function. You can show these commands by disabling
the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps using Omnis data files only, not web or mobile apps.

Clear
find
table

Disable
rela-
tional
finds

Enable
rela-
tional
finds

Find

Find first Find last Load
con-
nected
records

Next

Previous Prompted
find

Single
file find

Test for a
current
record

356

Commands_A-Z/build_externals_list.html
Commands_A-Z/build_externals_list.html
Commands_A-Z/build_externals_list.html
Commands_A-Z/call_external_routine.html
Commands_A-Z/call_external_routine.html
Commands_A-Z/call_external_routine.html
Commands_A-Z/load_event_handler.html
Commands_A-Z/load_event_handler.html
Commands_A-Z/load_event_handler.html
Commands_A-Z/load_external_routine.html
Commands_A-Z/load_external_routine.html
Commands_A-Z/load_external_routine.html
Commands_A-Z/unload_event_handler.html
Commands_A-Z/unload_event_handler.html
Commands_A-Z/unload_event_handler.html
Commands_A-Z/unload_external_routine.html
Commands_A-Z/unload_external_routine.html
Commands_A-Z/unload_external_routine.html
Commands_A-Z/disable_fields.html
Commands_A-Z/disable_fields.html
Commands_A-Z/enable_fields.html
Commands_A-Z/enable_fields.html
Commands_A-Z/hide_fields.html
Commands_A-Z/hide_fields.html
Commands_A-Z/redraw.html
Commands_A-Z/redraw_lists.html
Commands_A-Z/redraw_lists.html
Commands_A-Z/show_fields.html
Commands_A-Z/show_fields.html
Commands_A-Z/test_for_field_enabled.html
Commands_A-Z/test_for_field_enabled.html
Commands_A-Z/test_for_field_enabled.html
Commands_A-Z/test_for_field_visible.html
Commands_A-Z/test_for_field_visible.html
Commands_A-Z/test_for_field_visible.html
Commands_A-Z/build_field_names_list.html
Commands_A-Z/build_field_names_list.html
Commands_A-Z/build_field_names_list.html
Commands_A-Z/build_field_names_list.html
Commands_A-Z/build_file_list.html
Commands_A-Z/build_file_list.html
Commands_A-Z/clear_all_files.html
Commands_A-Z/clear_all_files.html
Commands_A-Z/clear_main_connected.html
Commands_A-Z/clear_main_connected.html
Commands_A-Z/clear_main_connected.html
Commands_A-Z/clear_main_connected.html
Commands_A-Z/clear_main_file.html
Commands_A-Z/clear_main_file.html
Commands_A-Z/clear_range_of_fields.html
Commands_A-Z/clear_range_of_fields.html
Commands_A-Z/clear_range_of_fields.html
Commands_A-Z/clear_selected_files.html
Commands_A-Z/clear_selected_files.html
Commands_A-Z/clear_selected_files.html
Commands_A-Z/set_closed_files.html
Commands_A-Z/set_closed_files.html
Commands_A-Z/set_closed_files.html
Commands_A-Z/set_main_file.html
Commands_A-Z/set_main_file.html
Commands_A-Z/set_memory-only_files.html
Commands_A-Z/set_memory-only_files.html
Commands_A-Z/set_memory-only_files.html
Commands_A-Z/set_read-only_files.html
Commands_A-Z/set_read-only_files.html
Commands_A-Z/set_read_write_files.html
Commands_A-Z/set_read_write_files.html
Commands_A-Z/set_read_write_files.html
Commands_A-Z/clear_find_table.html
Commands_A-Z/clear_find_table.html
Commands_A-Z/clear_find_table.html
Commands_A-Z/disable_relational_finds.html
Commands_A-Z/disable_relational_finds.html
Commands_A-Z/disable_relational_finds.html
Commands_A-Z/disable_relational_finds.html
Commands_A-Z/enable_relational_finds.html
Commands_A-Z/enable_relational_finds.html
Commands_A-Z/enable_relational_finds.html
Commands_A-Z/enable_relational_finds.html
Commands_A-Z/find.html
Commands_A-Z/find_first.html
Commands_A-Z/find_last.html
Commands_A-Z/load_connected_records.html
Commands_A-Z/load_connected_records.html
Commands_A-Z/load_connected_records.html
Commands_A-Z/load_connected_records.html
Commands_A-Z/next.html
Commands_A-Z/previous.html
Commands_A-Z/prompted_find.html
Commands_A-Z/prompted_find.html
Commands_A-Z/single_file_find.html
Commands_A-Z/single_file_find.html
Commands_A-Z/test_for_a_current_record.html
Commands_A-Z/test_for_a_current_record.html
Commands_A-Z/test_for_a_current_record.html

Test for a
unique
index
value

Importing and Exporting

Commands

The Importing and Exporting commands are no longer visible in the Code Assistant in the Code Editor (they will not appear when you
type the first few characters), although they are still present in Studio 11 and will continue to function. You can show these commands
by disabling the appropriate Command Filter in the Modify menu in the Code Editor.

These commands are for desktop apps using Omnis data files only, not web or mobile apps.

Build
export
format
list

Close
import
file

Enclose
exported
text in
quotes

End
export

End
import

Export
data

Export
fields

Import
data

Import
field
from file

Import
field
from
port

Import
fields

Prepare
for
export to
file

Prepare
for
export to
port

Prepare
for
import
from
client

Prepare
for
import
from file

Prepare
for
import
from
port

Prompt
for
import
file

Set
import
file
name

Libraries

Commands

Change
user
pass-
word *

Close
library

Create
library

Open
library

Prompt
for
library *

*These commands are for desktop apps only, not web or mobile apps.

357

Commands_A-Z/test_for_a_unique_index_value.html
Commands_A-Z/test_for_a_unique_index_value.html
Commands_A-Z/test_for_a_unique_index_value.html
Commands_A-Z/test_for_a_unique_index_value.html
Commands_A-Z/build_export_format_list.html
Commands_A-Z/build_export_format_list.html
Commands_A-Z/build_export_format_list.html
Commands_A-Z/build_export_format_list.html
Commands_A-Z/close_import_file.html
Commands_A-Z/close_import_file.html
Commands_A-Z/close_import_file.html
Commands_A-Z/enclose_exported_text_in_quotes.html
Commands_A-Z/enclose_exported_text_in_quotes.html
Commands_A-Z/enclose_exported_text_in_quotes.html
Commands_A-Z/enclose_exported_text_in_quotes.html
Commands_A-Z/end_export.html
Commands_A-Z/end_export.html
Commands_A-Z/end_import.html
Commands_A-Z/end_import.html
Commands_A-Z/export_data.html
Commands_A-Z/export_data.html
Commands_A-Z/export_fields.html
Commands_A-Z/export_fields.html
Commands_A-Z/import_data.html
Commands_A-Z/import_data.html
Commands_A-Z/import_field_from_file.html
Commands_A-Z/import_field_from_file.html
Commands_A-Z/import_field_from_file.html
Commands_A-Z/import_field_from_port.html
Commands_A-Z/import_field_from_port.html
Commands_A-Z/import_field_from_port.html
Commands_A-Z/import_field_from_port.html
Commands_A-Z/import_fields.html
Commands_A-Z/import_fields.html
Commands_A-Z/prepare_for_export_to_file.html
Commands_A-Z/prepare_for_export_to_file.html
Commands_A-Z/prepare_for_export_to_file.html
Commands_A-Z/prepare_for_export_to_file.html
Commands_A-Z/prepare_for_export_to_port.html
Commands_A-Z/prepare_for_export_to_port.html
Commands_A-Z/prepare_for_export_to_port.html
Commands_A-Z/prepare_for_export_to_port.html
Commands_A-Z/prepare_for_import_from_client.html
Commands_A-Z/prepare_for_import_from_client.html
Commands_A-Z/prepare_for_import_from_client.html
Commands_A-Z/prepare_for_import_from_client.html
Commands_A-Z/prepare_for_import_from_client.html
Commands_A-Z/prepare_for_import_from_file.html
Commands_A-Z/prepare_for_import_from_file.html
Commands_A-Z/prepare_for_import_from_file.html
Commands_A-Z/prepare_for_import_from_file.html
Commands_A-Z/prepare_for_import_from_port.html
Commands_A-Z/prepare_for_import_from_port.html
Commands_A-Z/prepare_for_import_from_port.html
Commands_A-Z/prepare_for_import_from_port.html
Commands_A-Z/prepare_for_import_from_port.html
Commands_A-Z/prompt_for_import_file.html
Commands_A-Z/prompt_for_import_file.html
Commands_A-Z/prompt_for_import_file.html
Commands_A-Z/prompt_for_import_file.html
Commands_A-Z/set_import_file_name.html
Commands_A-Z/set_import_file_name.html
Commands_A-Z/set_import_file_name.html
Commands_A-Z/set_import_file_name.html
Commands_A-Z/change_user_password.html
Commands_A-Z/change_user_password.html
Commands_A-Z/change_user_password.html
Commands_A-Z/change_user_password.html
Commands_A-Z/close_library.html
Commands_A-Z/close_library.html
Commands_A-Z/create_library.html
Commands_A-Z/create_library.html
Commands_A-Z/open_library.html
Commands_A-Z/open_library.html
Commands_A-Z/prompt_for_library.html
Commands_A-Z/prompt_for_library.html
Commands_A-Z/prompt_for_library.html

	Omnis Command Reference
	About this Manual
	Command information
	Command Groups
	Client Commands
	Error Codes
	Obsolete Commands
	Command Filters
	Copyright info
	# Comment
	Accept advise requests
	Accept commands
	Accept field requests
	Accept field values
	Add line to list
	Advise on find/next/previous
	Advise on OK
	Advise on redraw
	AND selected and saved
	Begin critical block
	Begin print job
	Begin reversible block
	Begin statement
	Begin text block
	Break to end of loop
	Break to end of switch
	Breakpoint
	Bring window instance to front
	Build export format list
	Build externals list
	Build field names list
	Build file list
	Build indexes
	Build installed menu list
	Build list columns list
	Build list from file
	Build menu list
	Build open window list
	Build report list
	Build search list
	Build window list
	Calculate
	Call DLL
	Call external routine
	Cancel advises
	Cancel async method
	Cancel prepare for update
	Case
	CGIDecode
	CGIEncode
	Change user password
	Change working directory
	Check data
	Check menu line
	Clear all files
	Clear check data log
	Clear class variables
	Clear data
	Clear DDE channel item names
	Clear find table
	Clear line in list
	Clear list
	Clear main & connected
	Clear main file
	Clear method stack
	Clear range of fields
	Clear search class
	Clear selected files
	Clear sort fields
	Clear timer method
	Clear trace log
	Close all designs
	Close all windows
	Close check data log
	Close data file
	Close DDE channel
	Close design
	Close file
	Close import file
	Close library
	Close lookup file
	Close other windows
	Close port
	Close print or export file
	Close task instance
	Close top window
	Close trace log
	Close window instance
	Close working message
	Context help
	Copy file
	Copy list definition
	Copy to clipboard
	Create data file
	Create directory
	Create file
	Create library
	Cut to clipboard
	Default
	Define list
	Define list from SQL class
	Delete
	Delete class
	Delete data
	Delete file
	Delete line in list
	Delete selected lines
	Delete with confirmation
	Deselect list line(s)
	Disable all menus and toolbars
	Disable cancel test at loops
	Disable enter & escape keys
	Disable fields
	Disable menu line
	Disable relational finds
	Do
	Do async method
	Do code method
	Do default
	Do inherited
	Do method
	Do not flush data
	Do not wait for semaphores
	Do redirect
	Does file exist
	Drop indexes
	Duplicate class
	Else
	Else If calculation
	Else If flag false
	Else If flag true
	Enable all menus and toolbars
	Enable cancel test at loops
	Enable enter & escape keys
	Enable fields
	Enable menu line
	Enable relational finds
	Enclose exported text in quotes
	End critical block
	End export
	End For
	End If
	End import
	End print
	End print job
	End reversible block
	End statement
	End Switch
	End text block
	End While
	Enter data
	Export data
	Export fields
	FileOps error codes
	Find
	Find first
	Find last
	Floating default data file
	Flush data
	Flush data now
	For each line in list
	For field value
	FTPChmod
	FTPConnect
	FTPCwd
	FTPDelete
	FTPDisconnect
	FTPGet
	FTPGetBinary
	FTPGetLastStatus
	FTPList
	FTPMkdir
	FTPPut
	FTPPutBinary
	FTPPwd
	FTPReceiveCommandReplyLine
	FTPRename
	FTPSendCommand
	FTPSetConfig
	FTPSite
	FTPType
	Get file info
	Get file name
	Get file read-only attribute
	Get files
	Get folders
	Get statement
	Get text block
	Get working directory
	Go to next selected line
	Hide docking area
	Hide fields
	HTTPClose
	HTTPGet
	HTTPHeader
	HTTPMethod
	HTTPOpen
	HTTPPage
	HTTPParse
	HTTPPost
	HTTPRead
	HTTPSend
	HTTPServer
	HTTPSetAuthentication
	HTTPSetProxyServer
	HTTPSplitHTML
	HTTPSplitURL
	If calculation
	If canceled
	If flag false
	If flag true
	IMAPCheck
	IMAPConnect
	IMAPCopyMessage
	IMAPCreateMailbox
	IMAPDeleteMailbox
	IMAPDisconnect
	IMAPExpungeMessages
	IMAPListMailboxes
	IMAPListMessages
	IMAPListSubscribedMailboxes
	IMAPNoOp
	IMAPRecvHeaders
	IMAPRecvMessage
	IMAPRenameMailbox
	IMAPSelectMailbox
	IMAPSetMessageFlags
	IMAPSubscribeMailbox
	IMAPUnsubscribeMailbox
	Import data
	Import field from file
	Import field from port
	Import fields
	Insert line in list
	Install menu
	Install toolbar
	Invert selection for line(s)
	JavaScript:
	Jump to start of loop
	Launch program
	Line:
	Load connected records
	Load error handler
	Load event handler
	Load external routine
	Load from list
	Load page setup
	MailSplit
	Maximize window instance
	Merge list
	Message timeout
	Minimize window instance
	Modify class
	Modify methods
	Move file
	New class
	Next
	No/Yes message
	OK message
	On
	On default
	Open check data log
	Open data file
	Open DDE channel
	Open file
	Open library
	Open lookup file
	Open runtime data file browser
	Open task instance
	Open trace log
	Open window instance
	Optimize method
	OR selected and saved
	Paste from clipboard
	POP3Connect
	POP3DeleteMessage
	POP3Disconnect
	POP3ListMessages
	POP3MessageCount
	POP3Recv
	POP3RecvHeaders
	POP3RecvMessage
	POP3Stat
	POP3UndoDeletes
	Popup menu
	Popup menu from list
	Prepare for edit
	Prepare for export to file
	Prepare for export to port
	Prepare for import from client
	Prepare for import from file
	Prepare for import from port
	Prepare for insert
	Prepare for insert with current values
	Prepare for print
	Previous
	Print check data log
	Print class
	Print record
	Print report
	Print report from disk
	Print report from memory
	Print top window
	Print trace log
	Process event and continue
	Prompt for data file
	Prompt for destination
	Prompt for import file
	Prompt for input
	Prompt for library
	Prompt for page setup
	Prompt for port name
	Prompt for print or export file
	Prompted find
	Put file name
	Queue bring to top
	Queue cancel
	Queue click
	Queue close
	Queue double-click
	Queue keyboard event
	Queue OK
	Queue quit
	Queue scroll
	Queue set current field
	Queue tab
	Quick check
	Quit all if canceled
	Quit all methods
	Quit event handler
	Quit method
	Quit Omnis
	Read entire file
	Read file as binary
	Read file as character
	ReadBinFile
	Redefine list
	Redraw
	Redraw lists
	Redraw menus
	Redraw toolbar
	Redraw working message
	Register DLL
	Reinitialize search class
	Remove all menus
	Remove final menu
	Remove menu
	Remove toolbar
	Rename class
	Rename data
	Reorganize data
	Repeat
	Replace line in list
	Replace standard Edit menu
	Replace standard File menu
	Request advises
	Request field
	Restore selection for line(s)
	Revert class
	Save class
	Save selection for line(s)
	SEA continue execution
	SEA repeat command
	SEA report fatal error
	Search list
	Select list line(s)
	Select printer
	Send advises now
	Send command
	Send field
	Send to a window field
	Send to clipboard
	Send to DDE channel
	Send to file
	Send to page preview
	Send to port
	Send to printer
	Send to trace log
	Set About… method
	Set advise options
	Set bottom margin
	Set break calculation
	Set class description
	Set closed files
	Set current data file
	Set current list
	Set DDE channel item name
	Set DDE channel number
	Set default data file
	Set export format
	Set file read-only attribute
	Set final line number
	Set import file name
	Set label width
	Set labels across page
	Set left margin
	Set lines per page
	Set main file
	Set memory-only files
	Set Omnis window title
	Set page width
	Set port name
	Set port parameters
	Set print or export file name
	Set read-only files
	Set read/write files
	Set record spacing
	Set reference
	Set repeat factor
	Set report main file
	Set report main list
	Set report name
	Set right margin
	Set search as calculation
	Set search name
	Set server mode
	Set sort field
	Set timer method
	Set top margin
	Set top window title
	Show About… window
	Show docking area
	Show fields
	Show Omnis maximized
	Show Omnis minimized
	Show Omnis normal
	Signal error
	Single file find
	SMTPSend
	Sort list
	Sound bell
	Split path name
	Sta:
	Standard menu command
	Start program maximized
	Start program minimized
	Start program normal
	Start server
	Stop server
	Swap lists
	Swap selected and saved
	Switch
	TCPAccept
	TCPAddr2Name
	TCPBind
	TCPBlock
	TCPClose
	TCPConnect
	TCPGetMyAddr
	TCPGetMyPort
	TCPGetRemoteAddr
	TCPListen
	TCPName2Addr
	TCPPing
	TCPReceive
	TCPSend
	TCPSocket
	Test check data log
	Test clipboard
	Test data with search class
	Test for a current record
	Test for a unique index value
	Test for field enabled
	Test for field visible
	Test for menu installed
	Test for menu line checked
	Test for only one user
	Test for program open
	Test for valid calculation
	Test for window open
	Test if file exists
	Test if list line selected
	Test if running in background
	Text:
	Trace off
	Trace on
	Transmit text to port
	Transmit text to print file
	Truncate file
	Uncheck menu line
	Unload error handler
	Unload event handler
	Unload external routine
	Until break
	Until calculation
	Until flag false
	Until flag true
	Update data dictionary
	Update files
	Update files if flag set
	UUDecode
	UUEncode
	Variable menu command
	Wait for semaphores
	Web Command Error Codes
	WebDevGetSecureError
	WebDevSetConfig
	While calculation
	While flag false
	While flag true
	Working message
	Write entire file
	Write file as binary
	Write file as character
	WriteBinFile
	XOR selected and saved
	Yes/No message
	Yield to other threads

