
Contents

Extending Omnis 4

About This Manual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Chapter 1—Web Services 5

What is REST? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Creating a Web Services Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Creating your ownWeb Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Cross Origin Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

Chapter 2—OJSON 26

Data Structure and Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Static Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

JSON External Component Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Chapter 3—Java Objects 31

Setting Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Creating Java Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Subclassing Java Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Using Java Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Method Overloading and Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Calling Overloaded Methods Directly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Nested Object Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Modifying The System Package List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Overloaded Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 4—Omnis .NET Objects 51

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Software Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Setting up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Creating .NET Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Subclassing .NET Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Using .NET Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

.NET Objects example library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Method Method Overloading and Pattern Matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Nested Object Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Overloaded Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

1



Chapter 5—oXML 71

About oXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

What is XML? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Creating a Document Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Document Objects in oXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Manipulating XML Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Creating XML documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 6—oProcess 87

About oProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Using oProcess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Chapter 7—OW3Worker Objects 90

Example Apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Using the OW3Workers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

HTTP/2 support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Base Worker Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Base Worker Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Base Worker Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

OAUTH2Worker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

HTTPWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

SMTPWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

FTPWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IMAPWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

JavaScript Worker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

POP3Worker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

CRYPTOWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

HASHWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

LDAPWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

PythonWorker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

Java Worker Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

WebWorker Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

External Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

Chapter 8—Omnis Graphs 144

About Graph2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chart Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

Common Graph Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Common Graph Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

XY Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

2



Pie Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Polar Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Meter Charts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Graph Layers and the Prelayout Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

Graph Clicks and Drilldown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Changing the Color of Graph elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Adding Colored Zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Parameter Substitution and Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

Using Graphs in Reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Using Graphs in the Web client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Chapter 9—Remote Studio Applet 178

How does it work? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Object Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

Studio Remote Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Remote Studio Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Chapter 10—Automation 182

Instantiating an Automation Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

Automation Server Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Built-in Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Lifetime of an Automation Server Instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

Automation Event Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Automation to Omnis Variable Conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Automation Errors and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Automation Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

Chapter 11—Apple Events 188

Apple Events Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Apple Event Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 12—Omnis ODBC Driver 189

Enable ODBC Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

Download and Install the Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Configure ODBC DSNs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

Testing the DSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Using SQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Chapter 13—Blowfish Encryption 197

About Blowfish . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

Binary Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

String Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

3



Extending Omnis

Omnis Software Ltd

Released May 2023
Updated Jun 2023 Revision 35439
Updated Oct 2023 Revision 35659

About This Manual

This manual describes all the features in Omnis Studio that allow you to extend the capabilities of Omnis Studio for creating full-
featured enterprise andmulti-tier applications. For example, it covers topics as diverse asWeb Services, using the OJSON component,
and using the OW3Worker Objects.

You should read the Omnis Programming manual before this one, to learn about the general tasks and techniques required for cre-
ating Omnis applications. In addition to this manual, there are the Omnis Reference manuals, and a comprehensive Help system
describing the Omnis Studio commands, functions, and the notation, available from within the Omnis Studio development environ-
ment using the F1 key.

Copyright info

The software this document describes is furnished under a license agreement. The software may be used or copied only in accor-
dance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials and examples of this
manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a retrieval system or translated into
any language in any form by any means without the written permission of Omnis Software.

© Omnis Software, and its licensors 2023. All rights reserved.

Portions © Copyright Microsoft Corporation.

Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2023 The Apache Software Foundation. All rights reserved.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

Specifically, this product uses Json-smart published under Apache License 2.0 (http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2023 Python Software Foundation; All Rights Reserved.

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered trademarks, and
Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark of Apple, Inc.

4

01webservices.html#chapter-1web-services
02ojson.html#chapter-2ojson
07webcomms.html#ow3-worker-objects
/developers/resources/onlinedocs/Programming/00about.html


IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2023 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2023, The PostgreSQL Global Development Group

Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.

This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

Chapter 1—Web Services

The Web Services component provides support for RESTful web services for client and server. The component instantiates a Web
Worker Object with properties and methods based on the type of web service you are using. You must create the client interface
(remote forms or window classes etc) to the Web Service Object.

In addition, theWebServer plug-in allows theOmnis AppServer to expose yourOmnis code as aRESTfulWebService. This is described
under the Creating your ownWeb Services section.

In addition, there is a JSON external component, called OJSON, that allows JSON based objects returned from RESTful resources to
be manipulated: this is described in the OJSON chapter.

From Studio 8.1 onwards, you no longer need to serialize Omnis with a separate Web Services plug-in serial number in order to
develop a Web Services client or to consume aWeb Service. If you are creating your ownWeb Services, from your Omnis code, your
server will still require an Omnis App Server deployment license when you are ready to deploy your app.

Note that the oldWSDL-basedWeb Services component available in versions prior to Studio 8.x is no longer supported in Omnis and
has been removed.

5

02ojson.html


What is REST?

REST (Representational State Transfer) is the predominant architectural style that is used to consume and publish Web Services, and
is seen as an alternative to other distributed-computing specifications such as SOAP. A RESTfulWeb Service is identified by a URI, and
a client interacts with the resource via HTTP requests and responses using a fixed set of HTTP methods.

A RESTful Web Service follows the following rules to provide access to the resources represented by the server:

1. The resource must be identified by a URI, which is a string of characters similar to a web address, that points to the resource.

2. A client interacts with the resource via HTTP requests and responses using a fixed set of HTTP methods.

3. One or more representations of a resource can be returned and are identified by media types.

4. The content of a resource can link to further resources.

There are two sides to consider for RESTful Web Services:

1. a Client,which would be an Omnis library containing methods to consume a RESTful Web Service,

2. and the Server,where you can implement a RESTful Web Service by exposing the business logic (remote taskmethods) in your
Omnis library to be consumed by clients.

Example Library

There is an example library that demonstrates the capability of Omnis to consume a RESTful web service – the library is available with
a Tech Note: TNWS0002 which is available on the Omnis website.

The example library presents basic weather forecast information by consuming a web service provided by openweathermap.org. The
example is based on the free API service which you can use for the example.

API Key

To use the web service consumed in the example library, you must obtain a trial API key from openweathermap.org (which must not
be shared with other people): note that the API key we used to create and run the online demo has been removed from the example
library and you will need to obtain your own API key.

When you open the example Omnis library, you will be prompted to enter an API key. This value is stored in the remote task in the
tAPIKey task variable, and you should not be asked to enter it again.

If you reuse any portion of the example app for your own development and deployment, or create your own application using the
weather data from openweathermap.org, please remember to obtain a paid-for API key for your own or your clients use.

Testing the Example Library

To test the web service and display the weather forecast, open the example library, right click on the jsWeather remote form and
select ‘Test Form’ from the context menu. The form should open in your desktop web browser and show the current weather for
Saxmundham (the home town for the Omnis development team in the UK) – the same information can be accessed in a table format
by selecting the Table hyperlink. In the main remote form there is a pictorial summary of today’s weather with the maximum &
minimum expected temperatures, along with the forecast for the next four days. You can find the forecasts for other locations by
entering either the city name or zip/post code.

The World tab gives a summary forecast for 20 selected cities in the world. Since the example library uses the free version of the API,
all data is cached within the example library to prevent unnecessary calls back to the server. You can view the example app online on
our hosted server.

If you publish the form to a webserver, when the form opens, it will try to identify your location using the IP address returned from the
remote task. If this fails, it will revert to ‘Saxmundham’ as the default location.

6

https://www.omnis.net/developers/resources/technotes/tnws0002.jsp
https://openweathermap.org/
https://services.omnis.net/restweather/jsweather.htm


Queueing RESTful requests & Licensing

RESTful requests to the Omnis Server consume a web user license for the duration of the request. In versions prior to Studio 8.1, if all
licensed connections were in use when a new RESTful request came into the server, the client received an error. In Studio 8.1 onwards,
RESTful requests are now queued internally until they succeed. Note that requests will never be re-queued in a single threaded server
(a server where Start server has not been called) since everything executes sequentially.

In addition, there is a new sys function, sys(234), which returns a row of information containing statistics about RESTful requests to
the Omnis server. The row has three columns: column 1 is the count of successful calls; column 2 is count of calls resulting in an error;
and column 3 is the count of calls internally re-queued because there was not a free user.

Creating a Web Services Client

There are a few key requirements for creating a Web Services Client which are:

1. An HTTP client that allows resources to be submitted and received using various HTTP methods.

2. An HTTP client that allows HTTP headers to be specified for requests, and analysed for responses.

3. A means to manipulate the important media types for RESTful resources: XML or JSON.

4. Support for HTTPS, if required, which in a business environment is usually essential.

5. Support for HTTP basic and digest authentication.

The Web Services Client is implemented as an External Component Object. The External Objects group in Omnis Studio includes a
group called OW3Worker Objects: this contains a HTTPClientWorker object which is an HTTPWorker Object (along with FTP, SMTP
and IMAP objects). NOTE to existing users: in versions prior to Studio 8.1 you needed to install and configure Java in order to use the
HTTPClientWorker object in theWebWorker Objects group, but the newHTTPworker object in the OW3Worker Objects group does
not require Java.

The HTTP worker object functions in a similar manner to the DAM worker objects, although there is a simplification in the way they
handle re-use of the object when a request is currently in progress: see the notes about $init.

To use the HTTP worker object, you need to create an Object Class which is a subclass of HTTPClientWorker. Having created a new
Object class, set its $superclass property to the name of the HTTPClientWorker object by clicking on the dropdown list and selecting
the HTTPClientWorker object in the OW3Worker Objects group in the Select Object dialog.

In the object class, the methods $completed and $cancelled are inherited from the superclass (the HTTP worker object) which the
client worker calls with either the results of a request, or to say the request was cancelled.

You then need to create an Object instance variable in your JavaScript remote form (or window class) based on the new Object class
to instantiate the object and allow you to interact with the web service by running its methods.

Properties

The HTTPClientWorker object has the following properties:

$state

A kWorkerState… constant that indicates the current state of the worker object.

$errorcode

Error code associated with the last action (zero means no error).

$errortext

Error text associated with the last action (empty means no error).

7



Figure 1:

8



Figure 2:

9



$threadcount

The number of active background threads for all instances of this type of worker object.

$proxyserver

The URI of the proxy server to use for all requests from this object, e.g. http://www.myproxy.com:8080. Must be set before executing
$init for this object.

$timeout

The timeout in seconds for requests from this object. Zero means default to the standard timeout for the HTTP client. Must be set
before executing $init for this object.

$shareconnections

(Only applies to the old HTTPClientWorker object in theWebWorker Objects group) If true (default) the object shares connections to
HTTP servers with other HTTPClientWorker objects rather than managing its own set of connections (consider authentication when
setting this - different objects may need different authentication credentials, in which case you should not share connections). Must
be set before executing $init for this object.

Methods

The HTTPClientWorker object has the following methods:

$init()

$init(cURI,iMethod,lHeaders,vContent[,iAuthType,cUserName,cPassword,cRealm]) Initializes the worker object so that it is ready to
perform the specified HTTP request. Returns true if the worker was successfully initialized. The parameters are:

Parameter Description

cURI The URI of the resource, optionally including the URI scheme (http or https),
e.g. http://www.myserver.com/myresource. If you omit the URI scheme,
e.g. www.myserver.com/myresource, the URI scheme defaults to http

iMethod A kOW3httpMethod… constant that identifies the HTTP method to perform:
kOW3httpMethodDelete, kOW3httpMethodGet, kOW3httpMethodHead,
kOW3httpMethodOptions, kOW3httpMethodPatch, kOW3httpMethodPost,
kOW3httpMethodPut, kOW3httpMethodTrace

lHeaders A two column list where each row is an HTTP header to add to the HTTP
request. Column 1 is the HTTP header name, e.g. ‘content-type’ and column 2
is the HTTP header value, e.g. ‘application/json’

vContent A binary or character variable containing the content to send with the HTTP
request. If you supply a character variable, the worker converts it to UTF-8 to
send in the request. Content can only be sent with Patch, Post and Put
methods

iAuthType A kOW3httpAuthType… constant that specifies the type of authentication
required for this request. If you omit this and the remaining parameters, there
is no authentication (and this parameter defaults to
kOW3httpAuthTypeNone). Supported values are kOW3httpAuthTypeNone,
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

cUserName The user name to use with authentication types kOW3httpAuthTypeBasic
and kOW3httpAuthTypeDigest

cPassword The password to use with authentication types kOW3httpAuthTypeBasic and
kOW3httpAuthTypeDigest

cRealm The realm to use with authentication type kOW3httpAuthTypeDigest

NOTE: If you call $init when a request is already running on a background thread, the object will cancel the running request, and wait
for the request to abort before continuing with $init.

10



$run()

Runs the worker on the main thread. Returns true if the worker executed successfully. The callback $completed will be called with
the results of the request.

The following method is from the example library – the method initializes the Web Services object, having already setup the main
parameters for the $init() method, and calls the web service.

# iURI (Char) initialized as "http://api.openweathermap.org/data/2.5/weather"
# The full URI sent has the API key, location appended as well as an optional parameter to return the data in metric format
# iHTTPMethod (Int) set to kOW3httpMethodGet
# iHeadersList (List)
# iContentChar (Char)
Do iHeadersList.$define(iHeaderName, iHeaderValue)
Do iHeadersList.$add("content-type", "application/json")
# call the web service
Do iRestfulObj.$init(iURI, iHTTPMethod, iHeadersList, iContentChar)
Do iRestfulObj.$run() Returns lStatus

See $completed for handling the response from the web service.

Note: $run should not be used if you are hosting the RESTful service you are calling in the same instance of Omnis as your client. This
would prevent the server-side execution from running and hang Omnis.

$start()

Runs the worker on the background thread. Returns true if the worker was successfully started. The callback $completed will be
called with the results of the request, or alternatively $cancelled will be called if the request is cancelled.

$cancel()

If required, cancels execution of the worker on the background thread. Will not return until the request has been cancelled.

Method names

If you add further methods to your web services object you should avoid using names that may conflict with any possible reserved
words on your system.

Callbacks

The HTTPClientWorker object calls the following callbacks, which must be defined in your object class:

$cancelled

Called to report that the request has been cancelled.

$completed

Called to report completion of the request. It has a single row variable parameter with columns as follows, including the content
returned in the final column:

Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success, i.e. the HTTP request was issued and response received
- you also need to check the httpStatusCode to know if the HTTP
request itself worked

errorInfo A text string providing information about the error if any
httpStatusCode A standard HTTP status code that indicates the result received from the

HTTP server

11



Column Description

httpStatusText The HTTP status text received from the HTTP server
responseHeaders A row containing the headers received in the response from the HTTP

server. The header values are stored in columns of the row. The column
name is the header name converted to lower case with any - (hyphen)
characters removed, so for example the Content-Length header would
have the column name contentlength

responseContent A binary column containing the content received from the server

The following is the $completed method in the oRest object in the example library:

# called by the client worker with the results
Calculate iResponse as pRow
Calculate iResponseHeaders as pRow.responseHeaders
Do OJSON.$formatjson(pRow.responseContent) Returns iReturnStr
Do OJSON.$jsontolistorrow(pRow.responseContent) Returns iJSONRow

The JSON external component can be used to process the JSON output.

CA Certificates

To make your RESTful based connection secure, you need to add a certificate file (.crt) to the appropriate place on your operating
system. On Linux, the default installation for handling certificates is Open SSL; the CA certs are typically installed in /etc/ssl/certs/ca-
certificates.crt.

The client certificates are specifiedby the last three arguments of the $setsecureoptions()method (whichmust be calledbefore calling
$run or $start).

• $setsecureoptions()
Sets the options that affect how secure connections are established

$setsecureoptions([bVerifyPeer=kTrue,bVerifyHost=kTrue,cCertFile=‘’,cPrivKeyFile=’‘,cPrivKeyPassword=”])

The last three arguments are:

• cCertFile
Empty if client cert not required
For macOS, pathname of .p12 file containing client cert and private key, or its keychain name.
For Windows, certificate store path expression (CurrentUser\\MY\\<thumbprint>).
For Linux, pathname of client cert .pem file

• cPrivKeyFile (Only required for Linux)
The pathname of the private key .pem file. Empty if client certificate not required

• cPrivKeyPassword (Only required for Linux)
The private key file password. Empty if client certificate not required

You can find more information about valid certificate store path expressions on the CURL website (https://curl.haxx.se).

Creating your ownWeb Services

There is a Web Server plug-in which allows you to expose the code in your Omnis applications, in an Omnis RESTful remote task, and
provide them as Web Services for any clients to consume. The interface for the web services you can create and provide to clients is
exposed as an API or set of APIs. The key requirements for Omnis to act as a server or provider of RESTful based Web Services are:

• Allow an HTTP client to submit and retrieve resources using various HTTPmethods.

12



• Expose the HTTP headers that arrive with a request and allow headers to be specified for the response.

• A means to manipulate the important media types for RESTful resources: XML and JSON.

• Support for HTTPS, and for HTTP basic and digest authentication.

These requirements can be met with a combination of the Omnis App Server and a standard HTTPWeb Server.

There is a tech note and example library on the Omnis website to show how you can implement aWeb Service from your Omnis code:
TNWS0003: “Getting Started with RESTful Web Services, Tomcat and Swagger UI”.

To deploy your Omnis-based Web Service, you will need to setup the Omnis App Server, using the Web Services Server plug-in
(mod_OmnisREST.so) rather than the standard plug-in, which is detailed in the tech note: TNJS0003: “Setting Up The Omnis App
Server”.

A RESTful remote task can have a superclass in another library, provided that the superclass in the other library does not contain URIs.
This allows you to use framework libraries.

Omnis RESTful APIs

Omnis RESTful APIs (or ORAs) can be fully defined using a “Swagger” definition, which is the most widely used standard for defining
RESTful APIs. This section assumes you are using Swagger, but from Studio 10.2 you can use OpenAPI to define an Omnis RESTful API;
see OpenAPI definitions.

Omnis Studio supports Swagger 2.0 for RESTful web services. This only affects the Swagger files Omnis generates, and there is just
one definition per service. The Web Service Server library also has a link to save the Swagger file for a service to disk. The reasons for
choosing swagger include:

• It makes it easier to document and test them

• It has tools to generate clients for various languages using the swagger definition

• It simplifies the generation of RESTful APIs in Omnis, so you can concentrate on application logic rather than lower level protocol
related issues

Note however that there is nothing in the current implementation that requires a developer to use the Swagger definition in REST
based web services.

Omnis uses the first non-empty description it can find for a remote task in the service as the description of the service in the Swagger
file.

Web Services in the Omnis IDE

Omnis RESTful APIs are visible in the Studio Browser as children of the library node beneath the Web Service Server node (including
Swagger and OpenAPI definitions). Each ORA is shown a separate node icon in the tree, and various options or actions are shown as
hyperlinks when an ORA is selected. Omnis RESTful APIs have a method list and an error log that you can use to manage the service.

Omnis RESTful APIs have Swagger definitions that can be viewed using the IDE browser hyperlinks for the ORA. There is a hyperlink
for the top-level resource listing, and a separate hyperlink for each top-level URI component. Clicking on a link displays the relevant
Swagger data for the link (building it if necessary first). In the top of the panels is a read-only URL; you can select the text for the URL,
and paste it into a browser or into Swagger UI (in the latter case, the resource listing URL is the only URL you would use). Note that
you need to be aware of potential CORS issues when using these links in Swagger UI (see the later section on CORS).

Creating an Omnis RESTful API

To create aWeb Service or Omnis RESTful API you need to set some properties of a remote task and add some RESTful methods. The
remote task class has two properties to allow you to setup the Web Service:

• $restful
If true, the remote task is RESTful, it can have URI objects, and can be part of a RESTful API by setting $restfulapiname. This
property can only be set to kFalse when the remote task and superclasses have no URI objects

13

http://www.omnis.net/technotes/tnws0003.jsp
http://www.omnis.net/technotes/tnjs0003.jsp


• $restfulapiname
If not empty, this is the name of the RESTful API in the library containing the remote task (cannot equal $webservice for remote
tasks in lib). The RESTful API name in this property must start with an alphanumeric (a-z) and can only contain a-z, 0-9 and _

To create an Omnis RESTful API (ORA), set the $restful property of a remote task to kTrue, and provide a name in $restfulapiname (this
namewill appear in the Studio Browser when you have added somemethods). Note: the $restful property is an inherited property, so
if you create a subclass of a remote task with $restful set to kTrue, the subclass will also be $restful. Further note a remote task with
$restful set to kTrue is not yet a member of an ORA. For each remote task that is to belong to an ORA (meaning that it provides URIs
and methods for clients to call) set $restfulapiname. Note that all remote tasks in an ORA must be in the same library. The $restful
and $restfulapiname properties are available at runtime in remote task instances.

After setting $restful and $restfulapiname for a remote task class, the new ORA will not appear in the browser, because it has not
implemented any RESTful methods. Therefore, the next step is to open themethod editor for the remote task, in order to add objects
and methods.

When a remote task is RESTful, the remote task has a group of objects (named $objs). These objects are the URIs exposed by the
remote task to clients. Inheritance works with these objects and their methods in the same way that it works with other Omnis
classes that support inheritance. However, $cfield and $cobj are not resolved for URI objects.

URIs

A URI must have one or more components starting with /. Parameter place-holders can be included as component two or later as
{paramName} where paramName is unique (case-insensitive) in the URI. The URI cannot have a trailing / and cannot be duplicated.
For example:

• /users

• /user/{userId}

In the second case, userId is a parameter place-holder, meaning that the RESTful methods implemented for the URI must all have a
parameter named userId which Omnis populates with the userId from the addressed URI.

A URI is considered to be a duplicate (and therefore not allowed in the remote task) if it has the same number of components of
another URI in the remote task or one of its superclasses, and all components match; components match if neither is a parameter
place-holder and they have the same case-insensitive value, or if either of the components is a parameter place-holder.

HTTP methods

URIs are like other class objects in classes with instances, in that they can have their own methods. There are some special methods
supported for URIs, called HTTP methods. These correspond directly to the HTTP protocol methods used by a RESTful API, and they
are:

• $delete, $get, $head, $options, $patch, $post, $put

TheHTTPmethods are namedwith a leading $ (unlike theHTTPprotocolmethods) so that theyworkwith the usualOmnis inheritance
mechanism. URIs can also have other methods, but these are not HTTPmethods and are not part of the public ORA. The name is the
only property that determines if a URI method is an HTTP method, so renaming a method can make it become HTTP or non-HTTP
accordingly.

Query Parameters

HTTPmethods of aURI have some special features andproperties. The first parameter for all HTTPmethodsmust benamedpHeaders,
and defined as a Field reference. This references a row which contains the HTTP headers received in the RESTful request from the
server. The row has a column for each HTTP header. The column names are created by converting the HTTP header name to lower
case and removing any - characters e.g. Content-type becomes contenttype as a column name. If more than one header exists with
the same name, the headers are combined into a single comma-separated value.

For methods which accept content with the request ($patch, $post, $put) the second parameter must be named pContent,which is
a Field reference to the content received in the request.

14



When you create a new HTTP method, Omnis creates the parameters pHeaders and pContent automatically, and it also adds a char-
acter parameter for each parameter place-holder in the URI. In addition, you can add further parameters to the method (which must
be of type character, Boolean, integer or number). Each further parameter is then expected to be part of the query string in the full
URL used to make the RESTful call to the method; if you provide an initial value for the parameter, the parameter is optional in the
query string.

When the RESTful call reaches the remote task method, pHeaders, pContent, the place-holder parameters and the query string pa-
rameters are all automatically populated by Omnis.

Note that once you have created the method, you can delete parameters which are required at runtime, e.g. pHeaders. However,
Omnis will detect this and generate an error, either at the ORA level (see the error log in the browser) or when the client attempts to
call the method.

An HTTP method has some additional properties:

• Nickname
Anamewhichmust be unique in the set of all HTTPmethods for theORA. The nickname is used to uniquely identify themethod
in the Swagger definition for the RESTful API. Clients generated from the Swagger definition typically use the nickname as the
method name to call in the client interface. When you create a new HTTP method, Omnis automatically assigns a default
nickname

• Input type
Methodswhich accept contentwith the request ($patch, $post, $put) have aproperty called input type, where the value is oneof:

• empty if no content is to be supplied with the request

• a MIME type e.g. application/xml

• the name of an Omnis schema class in either the same library as the remote task, or another library. A schema input type is
identified by the absence of a / (forward slash), and the supplied content must be application/json.
The JSON input is automatically converted to an Omnis Row or List (based on the provided JSON, not the Schema).
The request is automatically denied if the JSON does not contain members named the same as columns in the Schema which
have No Nulls set to kTrue. The No Nulls check only happens for Columns at the Schema’s top level, Omnis doesn’t currently do
this validation on nested Schemas (e.g. if you have a List/Row column type).
You can use an empty Schema and Omnis will automatically convert the JSON to a List or Row. This may be preferable in many
cases over using ‘application/json’ as the Input Type.
Note that the columns in the schema class must be character, Boolean, integer, number, list or row, and when using list or row,
the list or rowmust have a schema class subtype which also conforms to these type rules
“application/x-www-form-urlencoded” content type, such as that generated by a form on a web page. Therefore, in addition
to URL place-holder parameters, you can populate parameters using either the query string or application/x-www-form-
urlencoded content. You cannot use both the query string and application/x-www-form-urlencoded content. To use
application/x-www-form-urlencoded, set the RESTful input type to application/x-www-form-urlencoded. Omnis then expects
application/x-www-form-urlencoded content containing each of the non-optional non-place-holder parameters. The raw
application/x-www-form-urlencoded content is also supplied in the pContent parameter of the RESTful method: application/x-
www-form-urlencoded content can only be used with HTTP methods that can send content to the server.

• Output type
This specifies the type of content returned by the method when it returns the HTTP status of 200 (OK). One of:

• empty if no content is to be returned

• a MIME type e.g. application/xml

• the name of an Omnis schema class in either the same library as the remote task, or another library. The notes regarding
schema classes and the input type also apply to the output type. To return an array of JSON objects you can use schema[] as
the RESTful output type, or the return type for one of the HTTP status codes, e.g. mySchema[]. The RESTful method must then
return a list defined from the schema rather than a row (see note below about $sendlistsasobjectarray)

15



• HTTP response codes
A list of codes which can be returned by the method. These are the application codes that can be significant to clients; in
addition, the Omnis server will return other codes such as internal server error, which should not be specified here. With each
code you can specify optional status text and an optional schema class used to specify some JSON that you will return when
the method returns this status code

The HTTP method properties affect how Omnis interacts with the HTTP method:

• When calling a method which accepts content with the request, then there are two possibilities:
The input type is either empty or a MIME type. pContent is a field reference to a binary variable containing the content if any.
The input type is a schema class. Omnis parses the JSON content and generates a row. In addition, Omnis checks that every
column marked as “No nulls” in the input type schema is present in the row. If parsing fails, or the column check fails, Omnis
returns an error to the client. Otherwise, pContent is a field reference to the row generated by parsing the JSON.

• When an HTTP method returns, the HTTP status code is set using $sethttpstatus; if it is not called, the status defaults to 200
(OK); the output type property determines the type of the output.
If the HTTP status code set using $sethttpstatus is another value, then Omnis looks up the status code in the HTTP response
codes, and uses the return type for the status code.

• Omnis uses the output type determined from the HTTP status code as follows:
If the output type is not empty, then there must be some returned content. Omnis automatically sets the content-type header
for the response to either the output type, or application/json if the output type is a schema. In addition, if the output type is a
schema, then the return value from the method can either be:
Binary (not recommended). Omnis looks at the first character of the content, and checks that it is {, as a sanity check to see if it
is probably JSON (if the check fails, the client receives an error).
A row (recommended). Omnis checks that the row is defined from a class with the same name (excluding the library) as the
output type (if the check fails, the client receives an error). Omnis then automatically converts the row to JSON.
If the output type is empty, then there can only be returned content if the method has already added a content-type header
using $addhttpresponseheader; otherwise Omnis returns an error to the client.

Object array output type

When $sendlistsasobjectarray is set to true, the JSON generated by Omnis for a returned row or list that contains lists, contains arrays
of objects rather than arrays of arrays (in this case the lists must only contain columns with simple types). There is one exception to
this rule. If the list to be converted to JSON has a single column named “<array>”, Omnis outputs the list as an array.

There is a checkbox on the RESTful panel for the HTTP method in the method editor, that allows you to select this option.

Note that this option applies to both rows returned by themethod, and lists returned by themethodwhen the return type is schema[].
In the latter case, the top-level array returned is always an array of objects, therefore you should note that the new option applies to
lists contained in the returned list.

Unknown Query String Parameters

RESTful methods can allow unknown query string parameters. The RESTful panel for a RESTful method in the Method Editor has a
checkbox option “Allow unknown query string parameters” (the default is unchecked). When checked, it means the RESTful server
will accept requests that contain query string parameters that are not specified in the method parameters. The remote task instance
can access these unknown parameters using the notation $cinst.$unknownquerystringparams. The properties are:

• $allowunknownquerystringparams
If true, the RESTful method allows query string parameters that are not present in the method parameters. You access these
unknown parameters using the property $unknownquerystringparams of the remote task instance.

• $unknownquerystringparams
If unknown query string parameters are allowed, then this property is a row with a character column for each unknown param-
eter (the column name is the parameter name in lower case and the column value is the parameter value).

Escaping String Parameters

The “Escape query string parameters” option allows you to control whether or not string parameters are URI escaped; it defaults to
true (replicating the behavior in versions prior to Studio 11), meaning that query string parameters are URI escaped. When turned off,
the query parameters are not URI escaped, allowing you to perform any character encoding conversion yourself. For example, if you
receive UTF-8 data instead of ASCII, you could turn this option off and escape the text using the ow3.escapeuritext() function.

16



Simple Types

In a schema class, a list column can have a so-called simple type as its sub-type. Valid values are <character>, <integer>, <boolean>
and <number>. These allow ORAs to define JSON that contains arrays of simple types.

Method Editor

The method editor has additional features for a RESTful remote task. There are menu items that allow you to:

• Insert a new URI

• Delete a URI

• Insert a new HTTP method

• Rename a URI

Thesemenu items are on the contextmenu for themethod tree, and also in themodifymenu in the toolbar, provided that themethod
tree has the focus.

In addition, when the currently selectedmethod is an HTTPmethod, the variables panel has two additional tabs: RESTful and RESTful
notes:

• RESTful allows you to set the input type, output type and HTTP response codes. The status code grid has a context menu you
can use to manage its entries.

• RESTful notes allows you to add documentation notes about the method which Omnis writes to the Swagger definition.

Find and replaceworkswith theRESTful properties; double clicking on aRESTful entry in the find and replace logwill open themethod
editor with the property selected.

The Code Assistant lists column names after you enter the name of a list or row variable with a schema or table class as its subtype.

Server Properties and URLs

The Server Configuration dialog allows two properties to be configured:

• RESTful URL
The base URL used to call Omnis RESTful Web Services, e.g. http://www.test.com/scripts/omnisrestisapi.dll Omnis uses this in
the Swagger definitions it generates. If empty, Omnis uses http://127.0.0.1:$serverport

• RESTful connection
[POOL,][IPADDR:][PORT]. Controls how theOmnisRESTfulWebServer plugin connects toOmnis. POOL is a load sharingprocess
pool name;IPADDR and PORT identify Omnis or load sharing process; if empty, defaults to $serverport

These properties are stored in the config.json file in the Studio folder of the Omnis tree. These properties affect the URLs stored in the
Swagger definitions for ORAs implemented in the server.

If you do not set these properties, then the API will be defined to connect directly to the built-in HTTP server in Omnis.

In order to make a call to an ORA, you need a URI. If you look at an ORA in the IDE browser, you can see how the URIs are constructed
by looking at the Swagger definition for a top-level URI path (using one of the hyperlinks immediately below the Resource listing
hyperlink). The base path will be something like:

http://localhost:8080/omnisrestservlet/ws/5988/api/phase2/myapi

The initial part of the URL (http://localhost:8080/omnisrestservlet) gets the request as far as the Web Server plugin. The next two
components of the URL (/ws/5988) tell the Web Server plugin how to connect to Omnis or the load sharing process. These two
components are optional, and can be replaced with the Omnis-server header property described in the Phase 1 documentation;
however, if you are likely to be doing cross-domain requests, then it is better to use the /ws/5988 form, since it is guaranteed to be
sent with an OPTIONS method request. (Note that the “ws” is a fixed value). The second component (5988) has the general syntax
definition:

17



• nnnn (a port number)

• or ipaddress:nnnn (IP address and port number)

• or serverpool,ipaddress:nnnn

The remaining components are forwarded to the Omnis server: /api/phase2/myapi. The first of these remaining components is a fixed
value, which tells the Omnis server that this is a call to an ORA (this first component can also have the fixed value swagger as part of
a URL to request a Swagger definition, or it can be of the form LIB.RT, as used in Phase 1 of the RESTful server implementation). The
next two components are the library name and the ORA name.

When connecting directly to the Omnis server, the base URL is something like:

http://localhost:5988/api/phase2/myapi

Finally, when combined with the URI in a remote task in the server, the URL used to call an HTTP method for URI /users/{id} (with no
query string parameters) is something like:

http://localhost:8080/omnisrestservlet/ws/5988/api/phase2/myapi/users/1234

ORA Properties and Methods

There are various properties and objects to support ORAs. As described earlier, the remote task has the properties $restful and $rest-
fulapiname. RESTful remote tasks have a $objs group. Specific methods in this group are:

• $add()
$add([cUri]) inserts a URI into a RESTful remote task and returns an item reference to it. cUri must be a valid remote task URI
starting with a /

• $remove()
$remove(rItem) delete the URI; rItem is an item reference to the URI to delete

HTTP methods in a RESTful remote task have the following properties:

• $httpnickname (note this was $httpoperationid in previous versions)
A simple name for the RESTful remote task method exposed via a URI and HTTPmethod; it must be unique in the RESTful API;
it cannot be empty, must start with an alpha character (a-z or A-Z) and can only contain a-z, A-Z, 0-9 and _

• $httpinputtype
Only applies to RESTful remote task HTTP methods. Empty if no input content is required, or the name of a schema class
describing the JSON input object if application/json input is required, or a MIME type if other input content is required

• $httpoutputtype
Only applies to RESTful remote task HTTP methods when they return HTTP OK (200). Either empty if no content is output, or
the name of a schema class that describes the output JSON object,or a MIME type for other output content

• $httpnotes
Applies to RESTful remote task HTTP methods only. Notes about the method functionality

In addition, HTTP methods have a group:

• $httpresponses
Applies to RESTful remote taskHTTPmethods only. The group of HTTP response objects that define the possible response codes
(not including 200 OK) for the HTTP method

To add a new response code to the group, use:

• $add(iCode[,cText,cType])
Adds a new HTTP response code definition for the method and returns an item reference to it

The members of the HTTP response codes group have properties as follows:

18



• $httpresponsecode
An HTTP response code, in the range 201-599 (informational status codes 100-199, plus 200, are not reported)

• $httpresponsetext
Text describing the HTTP response code

• $httpresponsetype
This is the name of a schema class that describes the JSON object to be returned as the result of a RESTful call to the HTTP
method which returns the associated response code. Empty means no content is returned

There are two properties in $root.$prefs (which are also in config.json):

• $restfulurl
The base URL used to call Omnis RESTful Web Services, e.g. http://www.test.com/scripts/omnisrestisapi.dll. Omnis uses this in
the Swagger definitions it generates. If empty, Omnis uses http://127.0.0.1:$serverport

• $restfulconnection
[POOL,][IPADDR:][PORT]. Controls how theOmnis RESTfulWeb Server plugin connects toOmnis.POOL is a load sharing process
pool name; IPADDR and PORT identify Omnis or load sharing process; if empty, defaults to $serverport

A RESTful remote task $construct method receives a row variable parameter with the following columns:

1. url or fullurl
url is the partial url starting with the Omnis library component, or
fullurl contains the full URL, starting with the path to the script, e.g. /omnisrest/ws/5988/api/…

2. method
the name of the HTTP method.

The host name used can be obtained from the host header. There is no way to determine if the request wasmade using http or https.

Swagger Definitions

Omnis populates the Swagger definitions using the properties of the remote task. The Swagger method summary is the Omnis
method description. A schema column with no nulls set to kTrue is marked as a required JSON member in the Swagger model
object.

The Swagger resource listing contains various fields that need to be populated e.g. API version number, contact email etc. In order to
do this, the Omnis tree contains a default template, and you can also create specific templates for specific ORAs. The default template
is the file ‘default.json’ in the folder clientserver/server/restful/swaggertemplates in the Studio tree. You can edit this, or alternatively
copy it and create an ORA specific template, which must have the name <restfulapiname>.json, and be stored in a sub-folder of
swaggertemplates named with the library name e.g.

clientserver/server/restful/swaggertemplates/lib/myapi.json

Omnis reads the template each time it generates a new resource listing. Omnis keeps the Swagger definitions in step with changes
in the environment e.g. when you save a remote task or relevant schema class, or change the RESTful URL or connection property.

You can use swagger-ui (https://github.com/wordnik/swagger-ui) with the built-in web server to test your ORAs. Take the dist folder
for swagger-ui, drop it into the webapps folder of your web server tree, and rename it swagger-ui. Restart the web server. You can
then use the URL http://localhost:8080/swagger-ui/index.html#!/path in a browser to open swagger-ui.

If you also place omnisrestservlet in web server ‘webapps’ folder (and restart the web server), and set Omnis server properties restful-
connection to your server port, and restful URL to http://localhost:8080/omnisrestservlet, you can use swagger-ui without any cross-
domain issues.

If you select your ORA in the Web Service Server node of the IDE browser, you can click on the Resource listing hyperlink, and copy
the URL from the top of the panel showing the Swagger definition. Paste the URL into swagger-ui and press Explore - you should see
your ORA.

19



OpenAPI Definitions

OpenAPI is a more up to date version of the RESTful API description format, and Studio 10.2 now generates OpenAPI 3.0.0 definitions,
as well as Swagger 2.0 definitions.

When you select a RESTful service beneath the Web Service Server node in the browser, there are now two pairs of links:

• OpenAPI Definition, Save OpenAPI to File

• Swagger Definition, Save Swagger To File

The OpenAPI definition can be retrieved using a similar URL to that used to retrieve a Swagger definition by replacing ‘swagger’ in the
URL with ‘openapi’.

There is a new folder in clientserver/server/restful, named openapitemplates. The files in here have the same use as those in the
swaggertemplates folder, except that they apply to OpenAPI definitions.

In addition, cors.json has new OpenAPI members that have a similar purpose to the Swagger members.

In versions prior to Studio 10.2, you could provide a format by prefixing a description of a schema field or HTTPmethod parameter with
“<swagger-…>“. In Studio 10.2, you can now provide a format using the prefix of either “<format-…>“ or”<swagger-…>“.

Media types

HTTP responses for a RESTful method can now be defined to return media types other than application/json via a schema.

Note that if youdo this, the Swagger 2definition is incomplete, since Swagger 2doesnot allowmixed response content types. However,
the new OpenAPI 3 definition for the RESTful service does handle this correctly.

Managing Return Values

Theremay be occasionswhere RESTful API remote tasks are not able to generate their content as the return value of theHTTPmethod.
For these cases, content generation can be deferred until later, for example, until a threaded worker object completes, or to allow
push support, possibly using server sent events and text/event-stream content. In order to do this, there are additional steps. Before
returning from the HTTP method (where you would usually return content):

Calculate $cinst.$restfulapiwillclose as kFalse

This prevents the remote task from closing when you return, and it means that you are responsible for closing the remote task by
calling $close() at a later point, or by using the remote task timeout mechanism. Note that it is essential to close the remote task, so
that the data connection to the client is closed.

Note that setting $restfulapiwillclose to kFalse will be ignored if an error is detected by the Omnis server as part of request processing.

$restfulapiwillclose has the following definition: If true,the RESTful API remote task will close when the Omnis RESTful HTTP method
returns. Defaults to kTrue in a new RESTful API remote task. kFalse only applies when the method executes successfully; you must
eventually call $close().

After setting $cinst.$restfulapiwillclose to kFalse, you do not need to return any content, headers or status from the method. If you
do return content though, then you also need to set the HTTP status and add any response headers before returning the content.
Note that the Omnis server no longer automatically adds the content-length header - this becomes your responsibility if this header
is required (in many cases like this it is not).

Sending HTTP Content

The $sendhttpcontent() remote task method lets you send HTTP content back to the client:

• $sendhttpcontent()
$sendhttpcontent(xData) sends the next block of HTTP content (xData) to the client for a RESTful API remote task that did not
close

20



When you are ready to generate the response e.g. in a worker callback, call $sendhttpcontent. The xData parameter differs from
content returned from a RESTful HTTP method, in that it is always binary (meaning that you are responsible for generating JSON or
encoding characters for example).

You can call $sendhttpcontent more than once, to incrementally send content. However, before the first call, you must set the HTTP
status and supply the HTTP response headers (including content-length or transfer-encoding chunked if required).

When using $cinst.$restfulapiwillclose set to kFalse, the Omnis server does not attempt to validate the content returned as it does for
JSON content when using $cinst.$restfulapiwillclose set to kTrue.

$sendhttpcontent cannot be used in the initial RESTful API HTTP method call.

The $sendhttpcontent() method can be used to send character data (converted to UTF-8 before sending) and list or row data (con-
verted to JSON before sending). In addition, the method has an optional second argument, bChunk, which defaults to kFalse (the
current behaviour). When true, bChunk formats the data as a chunk (removing the need to call the formatchunk() function). This
improves performance a little, and also allows you to handle web servers which automatically chunk the response. A call to $send-
httpcontent with empty data and bChunk passed as kTrue must be used to terminate the content.

Transfer-encoding chunked

You can return content in multiple blocks using transfer-encoding chunked by using $sendhttpcontent. To facilitate this, there is a
built-in function:

• formatchunk()
formatchunk(data) formats the data as a chunk suitable for sending to the client using chunked transfer encoding.Data can be
character (which Omnis converts to UTF-8) or binary

Each data block to be sent can be sent with code such as:

$ctask.$sendhttpcontent(formatchunk(data))

These calls need to be followed by a call to send a zero-length chunk (which terminates) the content:

$ctask.$sendhttpcontent(formatchunk())

Server Sent Events

You can use $sendhttpcontent to handle a push connection from a client using Server Sent Events. To do this, set the output type for
a get method to text/event-stream. Note: you do not need a content-length header for this. You can then send events to the client
using $sendhttpcontent. To facilitate this, there is a built-in function:

• formatserversentevent()

formatserversentevent(fieldname,fielddata[,fieldname,fielddata]…): formats data suitable for sending as an event when gener-
ating text/event-stream content.Parameters can be character (which Omnis converts to UTF-8) or binary (UTF-8)

For example:

Do $ctask.$sendhttpcontent(formatserversentevent("id",1,"data","my event data"))

The protocol field names in the example are data and id, with values 1 and “my event data” respectively.

21



Date and Date-time values

Support for date and date-time values has been added to REST-based Web Services support. RESTful services typically use a subset
of ISO8601 to exchange date and date-time values, which are supported in Swagger which is used to define web services in Omnis.
ISO8601 represents the date or date-time as a character string. See http://swagger.io/specification/ and search for RFC3339 in the page
- a link from there takes you to http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14.

Swagger has two format specifiers for character string values: date and date-time. The Swagger generator has been enhanced so
that for fields (either in a schema or in the HTTP method parameters) of type character, the description can contain a swagger tag
that specifies the format, e.g. the description for query string parameter startDate could be “<swagger-date> This parameter is the
start date for the requested work”. When Omnis generates the swagger definition for the web service, it looks for these swagger tags,
and uses them to set the format for Swagger string types. This has the additional benefit that you can use other supported Swagger
string formats, e.g. password and byte.

Dates and date-time values are still exchanged as character values. The application code therefore needs to parse and generate the
ISO8601 date and date-time values. To support this, there are two new functions to manipulate ISO8601 dates, or at least the subset
of ISO8601 needed to work with Swagger and the Omnis RESTful server:

• iso8601toomnis()
iso8601toomnis(cISO8601,bNeedTime,bNeedTimeZone,cErrorText]) converts ISO8601 date/date-time string to Omnis date-time
and returns result (in UTC time if cISO8601 contains time and time zone).
Returns #NULL and sets cErrorText if an error occurs

• omnistoiso8601()
omnistoiso8601(dOmnisDateTime,bNeedTime[,cErrorText]) converts dOmnisDateTime (assumed to be in UTC) to an ISO8601
date or date-time string (depending on bNeedTime) and returns the result.Returns #NULL and sets cErrorText if an error occurs

Note that for a RESTful service, you should always use time zones for input date time values, so youwould always pass bNeedTimeZone
as kTrue to iso8601toomnis if you are passing bNeedTime as kTrue.

omnistoiso8601() always outputs the timezone using the “Z” UTC time indicator.

Web Services Functions

HTTP Headers

The following functions facilitate using date HTTP header values.

• parsehttpdate()
parsehttpdate(httpDate) parses a date value in HTTP header format (e.g. Sun, 06 Nov 1994 08:49:37 GMT) and returns an Omnis
date-time value (in UTC) or NULL if the value cannot be parsed successfully.

• formathttpdate()
formathttpdate(omnisDate) formats the Omnis date-time value (assumed to be in UTC) as an HTTP date header value and
returns the resulting string.

• parsehttpauth()
parsehttpauth(auth) parses the HTTP Authorization header value auth and returns a row variable containing the extracted
information. See Authorization section for more details.

BASE64 encoding

The following functions are for handlingBASE64 encodeddata. You are recommended to use thesewith RESTful requests that require
them, rather than the functions in OXML.

• bintobase64()
bintobase64(vData) encodes vData as BASE64 and returns the result. vData can be either binary or character. If vData is
character, Omnis converts it to UTF-8 before encoding it as BASE64.

• binfrombase64()
binfrombase64(vData) decodes the binary or character vData fromBASE64 and returns the resulting binary data. ReturnsNULL
if vData is not valid BASE64.

22



Cross Origin Resource Sharing

Cross Origin Resource Sharing (CORS) “is a mechanism that allows many resources (e.g., fonts, JavaScript, etc.) on a web page to be
requested from another domain outside the domain the resource originated from” (wikipedia). An Omnis RESTful API can handle
CORS by implementing the $options HTTP method, and by handling the Origin and other headers when processing other HTTP
methods (see above for details). In addition, youcanconfigure theOmnis Server (inboth thedevelopment and server runtimeversions)
to automatically handle CORS. This means that the Omnis Server can be configured to automatically send the response to OPTIONS,
and to add the correct CORS headers to the response buffer before passing a simple or actual request to the application.

The configuration of CORS for RESTful-based web services is stored in a separate configuration file, ‘cors.json’ which should be added
to the ‘Studio’ folder: there is no CORS configuration if the cors.json file is not present in the Studio folder. (In previous versions the
CORS configuration was stored in a “CORS” section in config.json which is now redundant: since it is a separate file you can edit it
while the Omnis Server is running.)

There is a template cors.json file containing the required settings located in the ‘templates’ folder in the Studio folder: you can make
a copy of this file and place the copy in the Studio folder, making any necessary changes.

The cors.json file can be changed while Omnis is open, but you need to inform Omnis of the change. This can be done using a button
on the server configuration dialog, “Reload CORS Config”.

The CORS object can have the following members (note that everything here is optional, and the most likely result of omitting data
is that a request will be passed to the application to handle, or a method not supported error will be returned to the client if the
application does not implement the method):

• originLists: Each member of originLists is a named list of origins, i.e. possible values for the HTTP Origin header. (Each list is an
array)

• headerLists: Each member of headerLists is a named list of HTTP headers (Each list is an array)

• exposedHeaderLists: Each member of exposedHeaderLists is a named list of HTTP headers (Each list is an array)

• APIS: This object has members as follows:
*: Server wildcard CORS entry. See below for the definition of CORS entry
Swagger: Server Swagger CORS entry
libraryname.apiname. Each library.api object has members as follows:
*: API wildcard CORS entry
Swagger: API Swagger CORS entry
CORS entries named using a URI string. These URI strings need to
match URI object names in the API

A CORS entry has members as follows:

• origins: This has either the value * (meaning that when this CORS entry is used, all origins are allowed), or the name of amember
of originLists (meaning that when this CORS entry is used, only the origins in the list are allowed).

• headers: This has either the value * (meaning that anyheader requestedby the client using theAccess-Control-Request-Headers
header is acceptable), or the name of a member of headerLists (meaning that only headers in this list can be requested by the
client using the Access-Control-Request-Headers header).

• exposedHeaders: The name of a member of exposedHeaderLists. Headers in this list will be returned using Access-Control-
Expose-Headers when handling a simple or actual request.

• supportsCredentials: If true, and the origin is allowed, the server adds Access-Control-Allow-Credentials with value true.

• maxAge: The number of seconds that a client is allowed to cache the result of an OPTIONS method.

CORS processing in the Omnis server occurs when a request with an Origin header arrives. The server tries to locate a CORS entry for
the request. There are two cases:

• When the client is requesting Swagger data, the server looks for the API Swagger CORS entry. If the API has no configuration,
or no API Swagger CORS entry, the server looks for the Server Swagger CORS entry.

23



• When the client is executing an API method (resulting in either the method call or an OPTIONS method call), the server looks
for the CORS entry exactlymatching the URI that will be used tomake the request; if that is missing, the server looks for the API
wildcard CORS entry; and if the latter is missing, the server looks for the Server wildcard CORS entry.

If the above processing does not locate a CORS entry, then the server does not carry out any CORS processing, and the request
continues as it would without CORS. If however the above processing locates a CORS entry:

• The serverwill attempt to generate the response toOPTIONS, provided that the logic in section 6.2 of theW3CRecommendation
referenced earlier applies.

• The server will add CORS headers to the response buffer for other requests, provided that the logic in section 6.1 of the W3C
Recommendation referenced earlier applies.

In order to understand what is going on, there is a new log type that you can specify in the datatologmember of the main Omnis log
configuration: “cors”. Using this will cause the server to log CORS issues thatmean the CORS processing in the server has not handled
the request, and is passing it on to the application if possible.

Logging

You canmonitor or debug REST requests and responses by adding the relevant items to the “log”member of the Omnis configuration
file (config.json) which is located in the ‘studio’ folder in the development and server versions of the Omnis tree. The REST request
and response items can be added to the “datatolog” array in the “log” member using the following format:

"log": {
"logcomp": "logToFile",
"datatolog": [

"restrequestheaders",
"restrequestcontent",
"restresponseheaders",
"restresponsecontent",
"tracelog",
"seqnlog",
"cors",
"headlessmessage",
"headlesserror",
"systemevent"

],
"overrideWebServicesLog": true,
"logToFile": {

"folder": "logs",
"rollingcount": 10

},
"windowssystemdragdrop": true

},

Note: when copying or editing sections in the config.json, you must be careful to include a single trailing comma when required to
separate items, i.e. include a comma if another item follows the item you are editing.

Including the “cors” item will cause the server to log CORS issues that mean the CORS processing in the server has not handled the
request, and is passing it on to the application if possible.

Further information about Logging in the Omnis Server is available in the Deployment chapter in the ‘Creating Web & Mobile Apps’
manual.

Authentication

You must be responsible for setting up authentication in your Omnis library. When using a real Web Server, rather than the built-in
web server, you can configure the URL for the web service to support basic or digest authentication. There is also the option of using
https, and also client certificates to further secure connections.

24

https://www.omnis.net/developers/resources/onlinedocs/WebDev/07Deployment.html#server-logging


The parsehttpauth(auth) function parses the HTTP Authorization header value auth and returns a row variable containing the ex-
tracted information. Column 1 of the returned row (named scheme) is the scheme (e.g. basic). Other columns are scheme dependent.
Examples for various auth header values:

• Basic
Returned row has three columns:
scheme: basic
username: Aladdin
password: open sesame

Basic QWxhZGRpbjpvcGVuIHNlc2FtZQ==

• Digest
Returned row has 10 columns:
scheme: digest
username: Mufasa
realm: testrealm@host.com
nonce: dcd98b7102dd2f0e8b11d0f600bfb0c093
uri: /dir/index.html
qop: auth
nc: 00000001
cnonce: 0a4f113b
response: 6629fae49393a05397450978507c4ef1
opaque: 5ccc069c403ebaf9f0171e9517f40e41

Digest username="Mufasa",realm="testrealm@host.com",nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093",uri="/dir/index.html",qop=auth,nc=00000001,cnonce="0a4f113b",response="6629fae49393a05397450978507c4ef1",opaque="5ccc069c403ebaf9f0171e9517f40e41"

• OAuth
Returned row has 9 columns:
scheme: oauth
realm: Example
oauth_consumer_key: 0685bd9184jfhq22
oauth_token: ad180jjd733klru7
oauth_signature_method: HMAC-SHA1
oauth_signature: wOJIO9A2W5mFwDgiDvZbTSMK%2FPY%3D
oauth_timestamp: 137131200
oauth_nonce: 4572616e48616d6d65724c61686176
oauth_version: 1.0

OAuth realm="Example",oauth\_consumer\_key="0685bd9184jfhq22",oauth\_token="ad180jjd733klru7",oauth\_signature\_method="HMAC-SHA1",oauth\_signature="wOJIO9A2W5mFwDgiDvZbTSMK%2FPY%3D",oauth\_timestamp="137131200",oauth\_nonce="4572616e48616d6d65724c61686176",oauth\_version="1.0"

• Bearer
Returned row has 2 columns:
scheme: bearer
token: 0b79bab50daca910b000d4f1a2b675d604257e42

Bearer 0b79bab50daca910b000d4f1a2b675d604257e42

• Any other scheme
Returned row has 2 columns:
scheme: scheme name in lower case
data: the rest of the header data

Web Server Configuration for Authentication

If you want to setup Basic and/or Digest authentication for your web services running on ApacheWeb Server or IIS, please refer to the
tech notes section on the Omnis website at: www.omnis.net/technotes

25



Manipulating Resources

The server can use the same mechanism for manipulating resources as the client, so refer to the sections above. Configuring and
logging the Omnis RESTful API server is achieved in the Omnis configuration file (config.json).

Chapter 2—OJSON

The OJSON external component allows you tomanipulate JSON based content in your Omnis applications – specifically it can be used
to handle content returned by REST based web services. JSON is a text form that allows you to transmit data objects consisting of
attribute–value pairs, and is an alternative to XML.

It is used in the Export Library to JSON option in Omnis, which provides a convenient way to store libraries and classes in a version
control environment such as GIT. In addition, JSON is used to store various Omnis configuration files, including the main config.json,
as well as the theme files.

The JSON component provides two ways to generate and parse JSON objects and documents:

1. A basic mechanism that simply maps directly between an Omnis list or row and JSON. This uses static methods in the OJSON
component.

2. A more structured mechanism that uses an external component object called JSON in the OJSON external component.

Data Structure and Addressing

JSONmaps on to a hierarchical Omnis list or row, with one exception, namely that it allows formixed types in arrays – Omnis can cater
for mixed types in list columns internally, but there is no support in the Omnis language for such a list column. Therefore:

1. you can map a JSON object to an Omnis row variable, where the column names are the JSON object member names.

2. you can map a JSON array where all of the members have the same primitive type (or null) to a single column Omnis list.

3. you canmap a JSON arraywhere themembers are arrays or objects, or where there ismore than one primitive type, to anOmnis
row variable with columns named___1, ___2, etc. Note that this restricts such arrays to a dimension of 32000 or less.

Note: Primitive types are string, integer, float and Boolean.

The external component JSON object implemented in OJSON uses a character string called the member id to address an entity in a
JSON document (an entity is essentially a node in the JSON document tree, so it can represent a primitive type, null, an array or an
object):

1. The member id of the root of the document is the empty character string.

2. The member id for other objects is the dot-separated path through the document to the entity e.g.

a. If the root is an object with members a, b and c, the member ids for the object members are: a b and c

b. If b is an array with two elements, the member ids of the array elements are b.[0] and b.[1]

c. If b.[1] is an object with string member c, then c has the member id b.[1].c

Using member ids you can directly address any entity in the JSON document. Note that the empty member id can only be used to
address the array or object which the root of the JSON document tree.

26



JSON Arrays

Omnis allows you tomanipulate JSON arrays of objects, mapping them to and fromOmnis list variables. There are two static functions
in the OJSON external, $objectarraytolist() and $listtoobjectarray(), that work with a single level JSON array, where each array element
is an object, and each object has members which are only simple types (integer, number, boolean, string).

When writing a list to an object array, OJSON validates the list, and returns an error if the Omnis data type of a column value is not
suitable.

When parsing an array of objects, OJSON validates the data as it parses it, to make sure it is a single array of objects containing only
simple types. In addition, OJSON adds columns on the fly, and if a column already exists makes sure the data in the JSON is of the
same type as the already added column. This works best when all entries in the array are objects with identical members.

Static Methods

The OJSON object provides the following static methods:

OJSON.$jsontolistorrow()

OJSON.$jsontolistorrow(vData,[&cErrorText])
Parses the JSON array or object in vData (either binary (UTF8/16/32) or character) and returns a row or a list representing the JSON.
Returns NULL and cErrorText if an error occurs.

OJSON.$listorrowtojson()

OJSON.$listorrowtojson(vListOrRow [,iEncoding=kUniTypeUTF8, &cErrorText, iOptions=kOJSONoptionNone]) converts the list or row
to JSON. Returns JSON with specified encoding (UTF8, UTF16BE/LE, UTF32BE/LE or Char). Returns NULL and cErrorText for an error.

The iOptions parameter can be used tomake $listorrowtojson process all members of a top-level row, and discard empty or null values
appropriately, recursively descending into child lists and rows. The iOptions parameter can be one of the following constants, which
can be summed together to get the desired result:

1. kOJSONoptionNone (the default)
0 - No option specified - results in the old behavior

2. kOJSONoptionOmitEmpty
1 - Omit empty values, objects and arrays from the output JSON

3. kOJSONoptionOmitNull
2 - Omit NULL values from the output JSON

OJSON.$couldbearray()

OJSON.$couldbearray(vData)
Returns true if vData (either binary (UTF8/16/32) or character) could possibly be a JSON array because its first character is [.

OJSON.$couldbeobject()

OJSON.$couldbeobject(vData)
Returns true if vData (either binary (UTF8/16/32) or character) could possibly be a JSON object because its first character is {.

OJSON.$formatjson()

OJSON.$formatjson(vData)
Parses the JSON in vData (either binary (UTF8/16/32) or character) and returns a formatted representation (or error message if parsing
fails) suitable for use in a multi-line entry control.

The following static methods allow you to manipulate object arrays:

27



OJSON.$listtoobjectarray()

OJSON.$listtoobjectarray(lList[,iEncoding=kUniTypeUTF8,&cErrorText])
Writes a list with simple columns to an array of objects; returns JSONwith specified encoding (UTF8,UTF16BE/LE,UTF32BE/LE or Char-
acter). Returns NULL and cErrorText for an error.

OJSON.$objectarraytolist()

OJSON.$objectarraytolist(vData[,&cErrorText])
Parses vData (binary (UTF8/16/32) or character). vDatamust be a JSONarray of objects containingmemberswith simple types. Returns
a list representing JSON. Returns NULL and cErrorText for an error.

The following static methods allow you to manipulate an array of arrays:

OJSON.$listtoarrayarray()

OJSON.$listtoarrayarray(lList[,iEncoding=kUniTypeUTF8,&cErrorText]) writes a list with simple columns to an array of arrays; returns
the JSON with specified encoding (UTF8, UTF16BE/LE, UTF32BE/LE or Character). Returns NULL and cErrorText for an error.

OJSON.$arrayarraytolist()

OJSON.$objectarraytolist(vData[,&cErrorText]) parses vData (binary (UTF8/16/32) or character). vData must be a JSON array of arrays
containing members with simple types. Returns a list representing the JSON. Returns NULL and cErrorText for an error.

These methods only work with simple types as array members. $arrayarraytolist requires that each JSON array must have the same
number of elements, and each JSON array member at a particular index must be of the same data type.

JSON External Component Object

After constructing the OJSON object, it represents an empty JSON object. Themethods supported by the external component object
(with the exception of $getlasterror()) all set an error code and error text if an error occurs during their execution. In addition, you
can use the method $runtimerrors to set a flag that causes the component to generate a runtime error (entering the debugger if
applicable) when an error occurs - this can be useful when developing code that uses OJSON. The object provides the following
methods.

Note: in all of these descriptions, cMember is the member id of an entity in the JSON document tree:

$getjson([cMember,iEncoding=kUniTypeUTF8])

Returns the JSON for the OJSON object (when cMember is an empty string or omitted) or the specified array or object member
(cMember) using the specified encoding.

$setjson(cMember,vData)

Sets the OJSON object (when cMember is an empty string) or the specified array or object member (cMember) to the JSON supplied
in vData (either binary (UTF8/16/32) or character). Returns a Boolean, true for success.

$getlasterror([&cErrorText])

Returns the error code from the last OJSON object method executed; also optionally populates cErrorText with a description of the
error.If no error occurred, returns zero and the error text is empty.

$runtimeerrors(bGenerate)

Call with true to cause a runtime error when a method returns an error (so the debugger is entered if applicable), or false to stop
runtime errors. Returns previous value of bGenerate. Default is no runtime errors.

28



$listmemberids()

Returns a single column list of the member ids for all of the members.

$isobject(cMember)

Tests specified member. Returns true if the member is a JSON object.

$getobject(cMember)

Gets the specified object. Returns a row containing the object members or NULL if the member is not an object.

$setobject(cMember,wRow)

Sets the specified member to the object specified in wRow. Returns a Boolean, true for success.

$addmember(cMember,cNewMemberName,vValue)

Adds member cNewMemberName with value vValue to object cMember. Returns a Boolean, true for success.

$removemember(cMember,cMemberName)

Removes member cMemberName from object cMember. Returns a Boolean, true for success.

$hasmember(cMember,cMemberName)

Returns true if cMemberName is a member of object cMember.

$listmembers(cMember)

Returns a single column list which contains the member names of the object cMember. Returns NULL if cMember is not an object.

$isarray(cMember)

Tests specified member. Returns true if the member is a JSON array.

$getarray(cMember)

Gets the specified array. Returns NULL if the member is not an array, a single column list if the array elements all have the same
primitive type or are NULL, or for mixed arrays a row with one column per array element.

$getarraylength(cMember)

Returns the number of elements in the array cMember. Returns zero if cMember is not an array.

$setarray(cMember,vListOrRow)

Sets specified member to an array.Accepts either a single column list or a row where the columns are the array elements (the latter
allows for arrays of mixed types). Returns a Boolean, true for success.

$push(cMember,vValue)

Adds an element with value vValue to the end of the array cMember. Returns a Boolean, true for success.

29



$pop(cMember)

Removes the last element from the end of the array cMember and returns its value as a row variable. Returns NULL if cMember is not
an array or if cMember is empty.

$isstring(cMember)

Tests specified member. Returns true if the member is a JSON string.

$getstring(cMember)

Gets specified string member. Returns JSON string value (empty if member is not a string). Unescapes JSON syntax.

$setstring(cMember,cString)

Sets specified member to JSON string with value cString. Returns a Boolean, true for success.

$isbool(cMember)

Tests specified member. Returns true if the member is a JSON Boolean.

$getbool(cMember)

Gets specified Boolean member. Returns Boolean corresponding to JSON Boolean (false if member is not a Boolean).

$setbool(cMember,bBool)

Sets specified member to JSON Boolean with value bBool. Returns a Boolean, true for success.

$isinteger(cMember)

Tests specified member. Returns true if the member is a JSON integer.

$getinteger(cMember)

Gets specified integer member. Returns integer 64 bit (zero if member is not integer).

$setinteger(cMember,iInt)

Sets specified member to JSON integer with value iInt. Returns a Boolean, true for success.

$isfloat(cMember)

Tests specified member. Returns true if the member is a JSON floating point value.

$getfloat(cMember)

Gets specified floating point member. Returns number floating dp (zero if member is not floating point).

$setfloat(cMember,nNum)

Sets specified member to JSON floating point with value nNum. Returns a Boolean, true for success.

30



$isnull(cMember)

Tests specified member. Returns true if it is null.

$setnull(cMember)

Sets the specified member to null. Returns a Boolean, true for success.

Chapter 3—Java Objects

The Java Objects library allows you to use Java Objects fromOmnis code. Once a Java Object has been created in Omnis, its methods
can be called in the samemanner as any Omnis object.

This chapter assumes that you have both a basic knowledge of Omnis Studio notation and a good knowledge of the Java Language.

IMPORTANT NOTE: Oracle has changed the way it licenses Java. So in order for you to avoid the ongoing use of Java in connection
with Omnis Studio, we no longer provide various Java files in Omnis Studio 10 or above and consequently we have removed various
Omnis libraries or features that rely on Java: these files are available from support if you need them. Specifically, the javaobjs and
javacore libraries have been removed; the Reset Java Class Cache hyperlink in the Studio Browser is not shown, and will only appear
if the JavaObjs Library is put back in the Omnis tree and loaded.

Setting Up

To use Java Objects in Omnis, you must install the latest version of Java 8 which is now available from Oracle who acquired Sun
Microsystems and the Java technology.

For Studio 10 or above you need to install the javaobjs and javacore libraries, available from support.

Software Requirements

To use Java in Omnis Studio for development and deployment (such as Java Objects or the Web Services component, which uses
Java) you need to install and reference Java Version 8,which is available fromOracle: you can download the Java Developer Kit (JDK),
for Windows or macOS, or Java Runtime Environment (JRE), for Windows only, from the following location:

• http://www.oracle.com/technetwork/java/javase/downloads

Java Configuration

Having installed the latest JDK or JRE you need to configure the JVM, either using a new entry in the Omnis configuration file (con-
fig.json), or by setting an environment variable: OMNISJVM64 or OMNISJVM32 depending on whether you are running the 64-bit or
32-bit version of Omnis Studio. If you specify a value in config.json, it overrides the value in the environment variable.

To setup the JVM in the config.json file, add an entry named “jvm” in the “java” object in the configuration file, for example, onWindows:

"java": {
"jvmPath":"c:\\Program Files\\Java\\jre8\\bin\\server\\jvm.dll",
"resetClassCacheOnStartup": false

}

Or on macOS:

"java": {
"jvmPath":"/Library/Java/JavaVirtualMachines/jdk1.8.XXX.jdk/Contents/Home/jre/lib/server/libjvm.dylib",
"resetClassCacheOnStartup": false

}

You can set the JVM in the config.json file on a Linux server in a similar manner.

31

http://www.oracle.com/technetwork/java/javase/downloads


Current Restrictions

There are currently a number of restrictions imposed on Java Objects as follows:

• Java Events are not supported.

• The Java Objects component is non-visual and the use of awt/swing is not supported.

• Java Interface classes cannot be used directly in Omnis. To use an interface class, create a custom class which implements the
interface.

• J2SE/Java SE is currently supported, meaning that you will have access to a Java Virtual Machine and can run any Java Code on
this virtual machine with respect to “b”. However, J2EE is not supported.

• Java Objects under macOS are supported on version 10.3 (Panther) or above.

Java Example Library

Omnis Studio includes an example library called “example.lbs” that demonstrates the use of Java Objects. This library is referred to
throughout this chapter and is designed to be used in conjunction with the Java Package called ‘example’. Both the Omnis library
and the Java Package can be found in the \Java\JavaCode\example in the main Omnis folder.

Environment Variables

The following assumes that you are the System Administrator of the platform on which you are working, or that you have a basic
knowledge of setting environment variables on your respective platform.

To use JavaObjects inOmnis, youmust define or edit a number of environment variables, including theCLASSPATHandOMNISJVM64
OR OMNISJVM32 depending on whether you are running the 64-bit or 32-bit version of Omnis Studio. These variables are slightly
different for each platform and are described in the following sections.

You do not need to add the Omnis Java folder, ‘OSXX\ java\JavaCode’, or any of its sub-folders to the CLASSPATH environment variable
since this folder is registered by Omnis automatically. You can place your own Java classes in this folder or any of its sub-folders to
register them automatically. However if you want to use any Java classes anywhere on your system you need to include their location
in the CLASSPATH.

Supported Characters in CLASSPATH

When setting the CLASSPATH on Linux andmacOS, any folder names containing UTF-8 based extended characters should work, but
on Windows characters are restricted to extended ASCII only.

Windows

The environment variable OMNISJVM64 OR OMNISJVM32 should be defined to point to the installation of the Java Virtual Machine
that you wish to use. The Java Virtual Machine is normally located in the bin\client folder of your J2SE installation. For example:

OMNISJVM64 OR OMNISJVM32= C:\jdk8.XXX\jre\bin\client\jvm.dll

or

OMNISJVM64 OR OMNISJVM32= C:\Program Files\Java\jre8.XXX\bin\client\jvm.dll

The CLASSPATH environment variable should also be defined to point to folders that contain any custom classes that you wish to use
with Omnis. For example:

CLASSPATH=c:\java\myclass;c:\java\myclass1

Setting environment variables under Windows

In Windows, you can add or edit environment variables in the System Properties dialog in the Control Panel. On the Advanced tab,
click the Environment Variables button, then click New to define a new variable, or select the name of the User or System variable you
want to change and click Edit.

32



macOS

The CLASSPATH environment variable should be defined to point to folders that contain any custom classes that you wish to use with
Omnis. For example:

CLASSPATH=/Volumes/HD/classes/myclass:/Volumes/HD/classes/myclass1

Linux

The environment variable OMNISJVM64 OR OMNISJVM32 should be defined to point to the installation of the Java Virtual Machine
that you wish to use. The Java Virtual Machine is normally located in the lib/i386/client folder of your J2SE/Java SE installation. For
example:

OMNISJVM64 OR OMNISJVM32=/usr/java/jdk8.XXX/jre/lib/i386/client/libjvm.so
export OMNISJVM64 OR OMNISJVM32

The CLASSPATH environment variable should also be defined to point to folders that contain any custom classes that you wish to use
with Omnis. For example:

CLASSPATH=/classes/java/myclass:/classes/java/myclass1
export CLASSPATH

The PATH environment variable should bemodified to include the path to the bin folder of your J2SE/Java SE installation. For example:

PATH=/usr/java/jdk8.XXX/bin:$PATH
export PATH

The LD_LIBRARY_PATHenvironment variable should bemodified to point to the lib/i386 and lib/i386/client folders of your J2SE/Java SE
installation as follows:

LD_LIBRARY_PATH=/usr/java/jdk8.XXX/jre/lib/i386:
/usr/java/jdk8.XXX/jre/lib/i386
/client:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Object parameters

Java reflection requires that parameter objects exist on themain classpath. To ensure that objects or object references can be passed
to a Java method, place the path to the jar file in the CLASSPATH variable.

OMNISCLASSPATH environment variable

You can use theOMNISCLASSPATHenvironment variable to specify Java classes instead of CLASSPATH. This can increase performance
in situations where you have multiple Java applications installed that are not being used with Omnis. Under normal circumstances,
the classes for these applications will be added to the Omnis Class Cache, even though they are not being used. By using OMNIS-
CLASSPATH, you will be able to specify only the classes that you wish to use with Omnis.

If OMNISCLASSPATH is not defined, CLASSPATH will be used.

Getting and Setting Environment Variables in Omnis

There are three functions in Omnis that you can use to for manipulate environment variables.

Listing Environment Variables

The listenv() function returns a 2 column list of the Omnis process environment variables. Column 1 contains the variable name and
column 2 the variable value. The list is sorted by the variable name column, and is case insensitive. There is no need to define the list
first; the returned list has 2 character columns, name and value. For example:

33



Calculate lList as listenv()
# returns a list of environment variables on the current system

Setting an Environment Variable

Theputenv(name,value) function sets theOmnis process environment variablewith the specifiedname to the specified value. Creates
a new environment variable if necessary, and returns true for success, false for failure. For example:

Do putenv("OMNISCLASSPATH","C:\Program Files\OmnisSoftware\OSXX\java")
# Creates the environment variable OMNISCLASSPATH and sets its value to C:\Program Files\OmnisSoftware\OSXX\java

Getting the value of an Environment Variable

The getenv(name) function returns the value of the Omnis process environment variable with the specified name. For example:

Calculate lVar1 as getenv("OMNISJVM64 OR OMNISJVM32")
# Returns the location of the JVM, e.g. C:\jdk8.XXX\jre\bin\client\jvm.dll

Memory Allocation

There are some Omnis preferences that allow you to set the memory allocation for Java. You can set the properties on the Java tab of
the main Omnis preferences, visible in the Property Manager. The properties are:

• $usejavaoptions (boolean)
when kTrue, the Java Virtual Machine will use the options specified in $javaoptions Omnis preference; if set to kFalse, the JVM
will use its own internal memory settings.

• $javaoptions
You can use this property to specify any switches youwish to pass to the Java Virtual Machine, e.g. to set a systemproperty value,
specify -Dproperty=value

In version 8.0.1 and earlier, the $javaoptions preference was limited to 255 chars. This has been extended and the theoretical limit
is now the maximum length of an Omnis character variable. You can add the following parameters to the $javaoptions property,
assuming $usejavaoptions is set to true.

Original heap size To specify the original heap size for the JVM add “-Xms <heapsize>” to the $javaoptions property
Maximum heap size To specify the maximum heap size for the JVM add “-Xmx <maxheapsize>” to the $javaoptions property
Stack size To specify the stack size for the JVM add “-Xss <stacksize>” to the $javaoptions property—-

Note: The above options are for advanced users only. If you are unsure of what the settings for the above properties should be, you
should leave $usejavaoptions set to kFalse.

Note to existing users: the above options replace the Omnis $root preferences $javainitialheap, $javamaxheap and $javathreadstack.
The $javaother property was renamed to $javaoptions.

The Java Class Cache

Starting Omnis

Once you have configured your platform to run J2SE/Java SE, start Omnis. There may be a brief pause during startup. This is because
Omnis is starting the Java Virtual Machine and collecting information on Java System Classes. This procedure does not occur every
time you start Omnis as Java Class information is cached. However, this procedure will occur again if you reset the Omnis Class Cache
(see the Advanced Topics section for further details on resetting the Omnis Class Cache).

Quitting Omnis

When Omnis starts up, it scans all of the paths on the CLASSPATH environment variable and creates a cache of all available classes on
your system. When Omnis exits, any classes that you have added are appended to the internal Omnis Java class cache. When Omnis
is restarted, all classes are read from this class cache.

34



Reloading Classes

Omnis will detect that you are attempting to add an existing class and will not attempt to add the class a second time. This will not
produce an error in your code, whichmeans that you do not have toworry about implementing a “first time” flagwhen adding classes.

Resetting the Java Class Cache

To reset the Java class cache, you can either delete the cache file manually or use the Reset class cache option in the Studio Browser
(click on the Studio option in the treelist of the Studio Browser, then click on the Java option to show the Reset class cache option).
The cache file is called ‘jcache1.dat’ and can be found in the omnis\ java folder.

Creating Java Objects

Creating Java Objects is a two-stage process that is similar to the process of creating Automation Objects in Omnis. A Java Object is
first declared and then constructed using the $createobject() method. This process is described in the following sections.

Defining Java Objects

Java Objects can be manipulated in a similar manner to other Omnis Objects. A Java Object can be defined in a variety of ways:

• Declaring an object in the method editor and setting the object subtype to JavaObjs.

or

• Declaring an object reference and initializing it to point to a Java Object using notation.

or

• Declaring an object in the method editor that does not have a subtype and initializing it to a Java Object using notation.

It is not possible to use a Java Class that contains either the string ‘omnis’ or ‘javacore’ in its name.

Defining Java Objects via the Method Editor

To create a Java Object in the method editor, simply declare an object variable and set its subtype to the desired Java Objects Class.
The Java Class can be chosen from the “Select Object” dialog. To select a Class, navigate the Object Selection Tree until the desired
class is found, highlight the class and click OK. TheObject Selection Tree is split into two sections under the “JavaObjs” heading. These
are “ClassPath” and “System”. Any classes that have beenplaced in any of the folders that are specified in the CLASSPATHenvironment
variable will appear in the “ClassPath” section. All other available classes will appear in the “System” section.

Defining Java Objects using Object References

Object References are similar to object variables but you are responsible for the allocation and de-allocation of the object. Object
References are declared in the Method Editor but do not have a subtype. The Object that is associated with an Object Reference is
determined at runtime when it is allocated via notation:

To declare an Object Reference, simply declare a variable in the Method Editor and set its type to “Object Reference”.

To allocate an Object to an Object Reference, youmust use notation. As notation strings for Java Objects can be very long (due to the
large hierarchies that are present in some Java Packages) the “Object Selection Tree” is displayed as a helper window when entering
Java Objects notation. If a class is selected from this tree then a large portion of the notation is created for you.

All Java Object notation begins with $extobjects.JavaObjs Library.$objects. The remainder of the notation string is dependant on the
Java Class that is being used. For example:

$extobjects.JavaObjs Library.$objects.//JavaObjs\ClassPath\zipdemo\zipdemo//

35



As youcan see fromtheabove, theObject Selection Treehas completed thenotation stringbyadding JavaObjs\ClassPath\zipdemo\zipdemo.
In addition to this, a call to the $newref() method has to be added manually. This method is responsible for allocating an Object to
the Object Reference. The command reads as follows:

Calculate lzipreference as $extobjects.JavaObjs Library.$objects.//JavaObjs\ClassPath\zipdemo\zipdemo//.$newref()

When the above command is executed, a zipdemo Java Object will be created and assigned to the Object Reference lzipreference. It
is your responsibility to ensure that this Object is deleted using the $deleteref() method once it has served its purpose. For example:

Do lzipreference.$deleteref()

Defining Java Objects via Notation

Java Objects can also be defined using the object type via notation. To define a Java Object via notation, simply follow the instructions
in the previous section but use anObject type instead of anObject Reference type and call the $new()method instead of the $newerf()
method.

Constructing Java Objects

Once a Java Object has been declared, it needs to be constructed. Declaring a Java Object simply tells Omnis that the Object ex-
ists. Constructing a Java Object using $createobject() actually performs the work of constructing the Object inside the Java Virtual
Machine.

By default all Java Objects will have at least one $createobject() method which takes no parameters. This method can be used to
create a Java Object as follows:

Do lzipdemo.$createobject()

Other Java Objects may have more than one $createobject() method. In this case, each $createobject() method corresponds directly
to a Java Constructor for the class that is being used. For example, the java.lang.String class has the following constructors:

String()
String(String original)
String(byte[] ascii, int hibyte)
String(byte[] bytes)
String(char[] value)
String(byte[] bytes,int offset,int length,String enc)
String(StringBuffer buffer)
String(byte[] bytes,String enc)
String(char[] value,int offset,int count)
String(byte[] ascii,int hibyte,int offset,int count)
String(byte[] bytes,int offset,int length)

These are mirrored in Omnis by the following $createobject() methods:

Calling any of above $createobject() methods will invoke the corresponding Constructor in Java and create the Java Object in the
virtual machine. For example, calling:

Do mystring1.$createobject(mystring)

will invoke the String(String original) java.lang.String Constructor ifmystring is an Omnis Java Object with a java.lang.String subtype
that has been previously declared and created.

36



Figure 3:

Figure 4:

Figure 5:

37



Subclassing Java Objects

Java Objects can be subclassed by creating an Omnis Object class (using the New Class>>Object option in the Studio Browser) and
setting its $superclass property to the name of a Java Class using the Object Selection Tree.

As a result of the above, an object class called zipobject becomes a subclassed object of zipdemo and inherits all of its methods as
follows:

Subclassed Java Objects can be used to define Object and Object Reference types in the samemanner as Java Objects, described in
the previous section.

Using Java Objects

The following sections describe howOmnis Data Types are converted to Java Data Types, how to pass parameters fromOmnis to Java,
how to handle Return Values and how to retrieve data from Java Objects. Other topics such as Error Handling and Cache Control are
also discussed.

Parameter Data Types

To call Java Objects effectively, you need to know how Omnis Data Types are mapped to Java Data Types when passing parameters.
The following table shows howOmnis Data Types are converted to Java Data Types when used as parameters to Java Object Methods.

Omnis Type Converts to {Java Type)

Character* char or char[]
Binary* byte or byte[]
Number Long integer* Int, long or byte
Number Short integer short
Number floating dp* or Number dp float or double
Boolean Boolean
List Java Array
Object Java Object
Object Reference Java Object

Those marked ‘*’ are known as Overloaded Types as they are compatible with more than one Java Data Type.

As you can see from the above, most of the Data Types in Omnis can be coerced intomultiple Java Data Types. Although this coercion
happens automatically, it is useful to be aware of Overloaded Types as they provide you with greater flexibility when programming
with Java Objects. For example, if you wish to construct a java.lang.Byte object, you could define a binary variable, load the byte into
the variable and call $createobject() with this variable. However, it is much quicker to simply call $createobject() using the integer
value of the byte. For example:

Do mybyte.$createobject(65)

will create a Java Byte object whose value is 65.

Passing Parameters

Java Object Parameters can be categorized into two basic types. Simple Parameters and Complex Parameters. Simple parameters
are parameter types that are compatible with java base types. All other parameter types are considered to be Complex.

Java Object Simple Parameter Types

Omnis data type converts to (Java base type)

Character char/char[]
Binary byte/byte[]
Number Long integer int/long/byte

38



Omnis data type converts to (Java base type)

Number Short integer short
Number floating dp or Number dp float/double
Boolean Boolean

Java Object Complex Parameter Types

Omnis data type Can be converted to (Java type)

List an array of any Java type depending on list content
Object an Object of any Java type depending on content
Object Reference an Object of any Java Type depending on the content of the referenced Object

Passing Simple Parameter Types

Passing Simple Parameter types to a Java Object is relatively simple. You call the Java Object method with the parameter(s), as you
would call any object method in Omnis.

Figure 6:

In the above example, the Simple Parameter Type lpos is passed to the java.lang.String charat() function. This function returns the
character value ‘o’ (the letter o) as this character resides at index 4 of the Java String.

Passing Complex Parameter Types

Complex Parameter types such as lists and Objects can be passed to Java Objects as well. However, these Parameter types must be
initialized before being used.

List Types

Omnis lists must contain valid data before being passed to a Java Object. Note that if you use a list that has more than one column,
only the first columnwill be used. Omnis lists which do not contain valid data will cause Java Objects to return an error. See the Error
Handling section for more information.

Omnis converts Single Column Lists to Java Arrays based on the type of the data that is stored in the list. This conversion can be
described by the following table:

Omnis List Converts to (Java Array Type)

Omnis list containing Number Long integer c int[] or long[]
Omnis list containing Number floating dp types float[] or double[]
Omnis list containing Number Short integer types short[]
Omnis list containing Boolean types boolean[]
Omnis list containing Object Reference types Array of Java Objects

39



As you can see from the above,Overloaded Types are also supported by Omnis Lists. For an explanation ofOverloaded Types, see the
Parameter Data Types section. It should also be noted that char[] and byte[] are absent from the above. This is because Java char[]
and byte[] types are created directly from Omnis Character and Binary Variables.

Omnis will always attempt to determine the type of Array that you are trying to pass as a parameter by examining the data in the List.
If a list contains Java Objects, Omnis will attempt to determine the type of the objects in the list. If the type of all the objects is found
to be the same, it is assumed that you are passing a parameter of that type. For example, if you create an Omnis list of java.lang.String
Objects, Omnis will assume that you are passing a String Array Parameter to Java. However, if any of the Objects are found to be of
different types, Omnis will assume that you are passing a generic Object Array (java.lang.Object) to Java.

When calling Javamethods that take arrays as parameters, it is important tomake sure that theOmnis list that you pass to themethod
in question contains appropriate data. Lists which do not contain appropriate datawill cause the function call to fail with an error. (See
the Error Handling section.) For example, if you create an Omnis List with 12 java.lang.String Objects and add an extra java.lang.Byte
object by mistake, your method call will fail if you are attempting to call a Java Function that accepts a java.lang.String Array as a
parameter.

An example of how to use Omnis lists as parameters to Java can be found in the example.lbs Omnis library that accompanies Omnis
(in the Java\JavaCode folder). The window class arrayparams, which is part of this library, demonstrates how to call a Java method
that takes an Array of java.lang.String and an Array of int as parameters.

Important Note: When creating a list of Java Objects, Object References should be used. This is because standard objects cannot
be used in Omnis Lists. Once you have finished using your list of Object References, remember to delete each reference in the list
by calling $deleteref() for each reference. Please refer to OO Programming chapter in the Omnis Programming manual for further
information about Object References.

Object Types

Java Objects should be “created” using $createobject() before being passed as parameters to other Java Objects. Passing an unini-
tialised object to a Java Function will return an error. (See the Error Handling section.)

An example of how to use Java Objects as parameters to other Java methods can be found in the example.lbs Omnis library that
accompanies Omnis (in the Java\JavaCode folder). The window class objectparams in the example library demonstrates how to call a
Java method that takes a variety of Java Objects as parameters.

Returning Values From Java Methods

The following table shows how Java Return Types are converted to Omnis Data Types.

Java Type Converts to (Omnis Type)

char[] or char Character
byte[] or byte Binary
int or long Number Long integer
float or double Number floating dp or Number dp
short Number Short integer
Boolean Boolean
Java Arrays (except char[] and byte[]) List
Objects Object references

Note: this is a reversal of the table shown in the previous section.

To return a value from a Java Object method, use the Method Editor to specify the variable that will be used to hold the return value.
Youmust ensure that the Omnis variable that you are using is of the correct type to accept the value that will be returned from Java. If
this is not the case, an error will occur and the hash variables #ERRCODE and #ERRTEXT will be set accordingly (see Error Handling).

The following shows a String object being returned from Java. The object is created via the use of the Java String “substring” function
and is returned as an Object Reference.

Note: The $getobjectvaluemethod is used to retrieve the character value of the lstringref Object Reference. This method is described
in the next section.

40



Figure 7:

Data type mapping and performance

There is a Boolean library preference called $javareturnsnative that effects theway inwhich arrays of Java data types are returned from
Java to Omnis. When the property is set to kTrue, Java object methods called from the library return native Omnis types if a suitable
conversion exists, rather than an object reference to a Java object. For example, a method returning a Java String object returns an
Omnis Character value. Setting the value to kTrue also benefits from the improved performance.

Existing libraries have the $javareturnsnative property set to kFalse for backwards compatibility, but all new libraries will have a default
value of kTrue.

Note: If youwish to set the $javareturnsnative property to kTrue in an existing library, youmust change the types of theOmnis variables
used to return values from Java. For example, when a Java method that returns a java.lang.String is called from an Omnis library with
$javareturnsnative set as kFalse, the Omnis return type will be Object reference. Changing the $javareturnsnative property to kTrue
means that the return types for these methods need to be changed to the Omnis Character type.

Getting Values From Java Objects

All Java Objects in Omnis have the $getobjectvalue() method. The purpose of this method is to attempt to get the content of the
current Java Object and to convert this content into a format that Omnis understands. This is not always possible as many Java
Objects do not have a corresponding type in Omnis. However, most of the Objects in Java can usually be coerced into an object type
that can, in turn, be converted into an Omnis Data type using $getobjectvalue(). In addition to this, some Objects in Java have their
own versions of $getobjectvalue which are designed to convert object content. For example, the java.lang.Float class has functions
such as byteValue() and intValue() to coerce the float content to byte and int types.

$getobjectvalue can be used in the following manner:

Figure 8:

41



The above example creates a Java String Object with the value “Hello there”. The call to $getobjectvalue() extracts this value and
assigns it to the local variable lchar. The local variable ljerr is a long integer which is used for error handling. If $getobjectvalue() fails
to convert the Object value, ljerr will contain an error code, otherwise the value 1 (kJavaCoreOK) is returned.

The $getobjectvalue() method will accept all of the Simple Parameter Types as parameters. Therefore, the format of the $getobject-
value() method call is the same regardless of the type of data that is being returned. For example, the following is very similar to the
previous example:

Figure 9:

The $getobjectvalue() method uses the same process of data conversion that is used for Return Values. For a further explanation of
this process, see the Returning Values From Java Methods section.

Adding Java Classes at Runtime

When Omnis is started for the first time, it will create a cache file for all Java System and Class Path classes automatically. This cache
improves performance, as it removes the necessity to interrogate the Java Virtual Machine to find out which classes are available every
time Omnis starts up.

Once Omnis has started up, and loaded all the Java classes in your Omnis\Java folder and on your CLASSPATH and System, you can
load Java classes while Omnis is running using the $addclass() method. The syntax of this method is as follows:

Do JavaObjs Library.$addclass(classgroup, classfilename [,classpath])

The classgroup parameter

The classgroup parameter specifies the JavaObjects category or group in the JavaObjects class list that the loaded classwill be added
to. The group is one of the following constants:

kJavaObjsClassPathGroup: Specifies the classpath category.

kJavaObjsWebServicesGroup: Specifies the webservices category.

kJavaObjsWebServicesClientGroup: Specifies the webservices client category.

The classfilename parameter

The classfilename parameter can contain one of the following:

• A fully qualified pathname of the class file to be loaded.

• A fully qualified folder name that contains one or more class files.

• A fully qualified Jar filename.

42



If a single class is specified, only that class is loaded. If a folder is specified, then all class files within the folder are loaded. If a Jar file is
specified, all classes within the Jar file are loaded.

Note: Any classes that are specifiedmust already reside on the Java Classpath. To make the best use of $addclass(), your CLASSPATH
environment variable should include any paths that you may want to load classes from while Omnis is running. If you are loading
a Jar file that itself requires the use of other Jar files, you should ensure that these dependencies are also listed in your CLASSPATH
environment variable.

The classpath parameter

The classpath parameter specifies the particular classpath that your class resides on. You do not have to specify the entire contents
of the CLASSPATH environment variable in this parameter, it is only necessary to specify the classpath that contains the class that
you are adding. For example, if your CLASSPATH environment variable contains the path “C:\classes” and you are attempting to add
the class “c:\classes\zipdemo\zipdemo.class”, you only need to specify “c:\classes” as your classpath parameter. If you do not specify a
classpath parameter, the default classpath is used for the group that you have specified. For example, if you have specified a group
constant of “kJavaObjsWebServicesGroup”, Omnis will use the path of the Omnis Web services directory as the classpath.

The built-in classpath definitions for each group are represented by Omnis constants as follows:

kJavaObjsClassPathGroup: <Omnis Folder>\Java\JavaCode
kJavaObjsWebServicesGroup: <Omnis Folder>\Java\WebServices
kJavaObjsWebServicesClientGroup: <Omnis Folder>\Java\WebServices\client

Examples

The following code shows some examples of using the $addclass() method:

To load the class “zipdemo.class” that resides on the classpath “c:\classes”, use:

Do JavaObjs Library.$addclass(kJavaObjsClassPathGroup,"c:\classes\zipdemo\zipdemo.class","c:\classes")

The abovewill add zipdemo.class to the JavaObjs ClassPath group. To add the same class to theWeb Services group, use the following:

Do JavaObjs Library.$addclass(kJavaObjsWebServicesGroup,"c:\classes\zipdemo\zipdemo.class","c:\classes")

To load the class example.class from the Omnis JavaCode folder, use:

Do JavaObjs Library.$addclass(kJavaObjsClassPathGroup,"<insert your omnis installation folder pathname here>\Java\JavaCode\example\example.class")

To load all of the classes in the “myclass” folder on the classpath “c:\classes” use:

Do JavaObjs Library.$addclass(kJavaObjsClassPathGroup,"c:\classes\myclass","c:\classes")

Error Handling

JavaObjectsmakes full use of the#ERRCODEand#ERRTEXTOmnis variables. If an error occurswhile executing a JavaObjectMethod,
the error variables identify the error on return from the method. In addition to this, each Java Object has an error status which you
can examine using the $getlasterror() method.

The following example, which is in the example Omnis library, shows how to use $getlasterror() to retrieve the error status of an object.

#ERRCODE and #ERRTEXT can be used as follows:

Both #ERRCODE and $getlasterror will produce the value 1 (kJavaCoreOK) after a successful Javamethod call. If an error occurs while
calling a Java method, an error code is generated.

Error Codes

Java Objects inherits all of the error codes that are supported by the JavaCore. The JavaCore is the Omnis Java Engine which is
responsible for managing calls to the Java Virtual Machine. Both Java Objects and the JDBC DAM are clients of the JavaCore. All the
error codes supported by the JavaCore are listed in the Omnis Catalog (F9) under ‘JavaCore’. In addition, error codes specific to Java
Objects are also listed.

43



Figure 10:

Figure 11:

44



Development Tips

The following information may be useful when developing with Java Objects in Omnis.

Ensure that your Java Code is working correctly before calling it from Omnis. Java Exceptions can be very difficult to track down as
it is not possible to use a Java Debugger once a Java object is embedded in Omnis. Java Objects will report exceptions in Java Code.
However, because Java Objects uses introspection to call functions in your Java Class, it will only be able to tell you that an Exception
occurred while executing your method and the actual nature of the Exception will not be known.

Use Object References with care. Remember that any Java Object that is returned to Omnis is returned as an Object Reference and
it is your responsibility to delete this reference using the $deleteref() method. Also remember that arrays of Java Objects are returned
to Omnis as lists of Object References which also need to be deleted once they have been used.

It is possible to pass Nested Object Arrays to Java and have Java return Nested Object Arrays to Omnis. Nested Object Arrays are
passed to Omnis as a list of Omnis lists which in turn contain Java Objects. Nested Object Arrays are returned from Java in the same
format. See the Nested Object Arrays section for further information.

Method Overloading and Pattern Matching

Although Omnis Studio does not normally support the overloading of method names, Java Objects are an exception as method
overloading is usually unavoidable when dealing with even themost basic of Java Classes. The following sections discuss how Omnis
deals with overloaded methods and how it is possible to manually call an overloaded method directly from Omnis.

Pattern Matching

Omnis uses pattern matching in order to determine the overloaded method that you are trying to call. Put simply, Omnis examines
the parameters that you pass to a method and attempts to call the method whose parameters most closely match the parameters
that you are passing. For example, consider the following Java methods:

myfunc(int p1)
myfunc(float p1)

Calling myfunc from Omnis using an Omnis number type set to Long Integer will call myfunc(int p1). Calling myfunc from Omnis
using an Omnis number type set to Floating dp will call myfunc(float p2).

Overloaded Data Types

An extra level of complexity is added to Pattern Matching with the support of Overloaded Data Types. An Overloaded Data Type is an
Omnis Data Type that has more than one matching data type in Java. Overloaded Data Types are split into three groups as follows.

The Number Long Integer Type

The Omnis “Number Long Integer” type can be translated to the following Java Types.

• int

• long

• byte

If a Number Long Integer Omnis type is passed to an overloaded method, the following occurs:

• Omnis attempts to find an overloaded method that has the same number of “int” parameters that you are passing, i.e. if you
are calling a method with (int,boolean,int), Omnis will try to find an overloaded method which matches this Parameter Search
Pattern.

45



• If amatch is not found, Omnis searches for amethod that has amatchingnumber of “long” parameters, i.e. Omniswillmodify the
Parameter Search Pattern in an attempt to find amatch using combinations of int and long types. Therefore, if (int,boolean,int)
is not found, Omnis will look for the following:

(int,boolean,long)
(long,boolean,int)
(long,boolean,long)

• Finally, if this fails, Omnis searches for a method that has a matching number of “byte” parameters, i.e. Omnis will modify the
Parameter Search Pattern in an attempt to find amatch using combinations of int and byte types. Therefore, if ‘b’ does not find
a compatible method, Omnis will look for the following:

(byte,boolean,int)
(int,boolean,byte)
(byte,boolean,byte)

Note that any method that matches the “int” Parameter Search pattern will always be called if it is available. For example, consider
the following Java methods:

myfunc(int p1)
myfunc(long p1)
myfunc(byte p1)
myfunc(boolean p1)

calling myfunc using a long integer type will always call myfunc(int p1) in Java. If we remove this method:

myfunc(long p1)
myfunc(byte p1)
myfunc(boolean p1)

calling myfunc using a Long Integer type will always call myfunc(long p1), and so on.

The Number Floating dp Type

The Omnis Number Floating dp type can be translated to the following Java Types.

• float

• double

If a Number Floating dp Omnis type is passed to an overloaded method, the following occurs:

• Omnis attempts to find anoverloadedmethod that has the samenumber of “float” parameters that you are passing, i.e. if you are
calling a method with (float,boolean,float), Omnis will try to find an overloaded method which matches this Parameter Search
Pattern.

• If a match is not found, Omnis searches for a method that has a matching number of “double” parameters, i.e. Omnis will
modify the Parameter Search Pattern in an attempt to find a match using combinations of float and double types. Therefore, if
(float,boolean,float) is not found, Omnis will look for the following:

(float,boolean,double)
(double,boolean,float)
(double,boolean,double)

Note that any method that matches the “float” Parameter Search pattern will always be called if it is available. For example, consider
the following Java methods:

myfunc(float p1)
myfunc(double p1)
myfunc(boolean p1)

46



calling myfunc using a floating dp type will always call myfunc(float p1) in Java. If we remove this function:

myfunc(double p1)
myfunc(boolean p1)

calling myfunc using a floating dp type will always call myfunc(double p1).

The Java Object Type

The Omnis Java Object type can be translated to the following Java Types.

• < The object that you are attempting to pass as a parameter (e.g. java.lang.String)>

• java.lang.Object

When matching objects, Omnis will always try to find a method which takes an object parameter that matches the type of
the object that you are passing. So if you pass a java.lang.String object to an overloaded method, Omnis will look for a match
using java.lang.String as a search pattern. If Omnis fails to find a matching method, a method which takes the generic type
java.lang.Object as a parameter will be called, if such a method is available, i.e. if Omnis searches for a method using the Parameter
Search Pattern (String,boolean,String) and a matching method is not found, Omnis will look for (Object,boolean,String) followed by
(String,boolean,Object) followed by (Object,boolean,Object).

Note that any Javamethod that has a parameter list whichmatches the Objects that you are using as parameters will always be called
if it is available. For example, consider the following Java methods:

myfunc(String p1)
myfunc(Object p1)
myfunc(boolean p1)

callingmyfunc using an Omnis object whose subtype is set to “JavaObjs\System\java\lang\String” will always call myfunc(String p1) in
Java. If that function is removed:

myfunc(Object p1)
myfunc(boolean p1)

calling myfunc using an Omnis object whose subtype is set to “JavaObjs\System\java\lang\String” will always call myfunc(Object p1).

Char and Byte Pattern Matching

The following shows howOmnis converts Character and Binary data types to Java Data types when dealingwith overloadedmethods.

Omnis Java

character types (length > 1) are converted to char[]
binary types (length > 1) are converted to byte[]
character types (length <= 1) are converted to char
binary types (length <= 1) are converted to byte

As a result of the above, you should be aware that it is not possible for Omnis to call an overloaded Java function that takes char[] as a
parameter using a single character. This is demonstrated in the following example.

myfunc(char p1[])
myfunc(char p1)

Following the rules for data conversion, calling myfunc with a single character will call myfunc(char p1) while calling myfunc with a
string of characters will call myfunc(char p1[]). Thus, in this situation it is not possible to call myfunc(char p1[]) with a single character
as myfunc(char p1) will always be called if the length of the data that you are passing is 1. However, it is possible to force Omnis to call
myfunc(p1[]) with a single character if you call the overloaded method directly. The procedure for doing this is discussed in the next
section.

Note: If the length of an Omnis character type is 0, it will be converted into a Java char type whose value is 0. If the length of an Omnis
binary type is 0, it will be converted into a Java byte type whose value is 0.

47



Calling Overloaded Methods Directly

In some rare cases, it may be necessary to call overloaded methods directly. Consider the following example.

You are trying to call overloaded functions in the java.lang.String Class. The functions are defined in Java as follows:

valueof(float f)
valueof(double d)
etc..

You have created an Omnis Object for the String class and you are attempting to call valueof(double d) by passing an Omnis Floating
dp type as a parameter. However, because of the Pattern Matching and Data Type Matching rules previously discussed, valueof(float
f) is always called.

In situations such as this, it is necessary to call valueof(double d) directly. In order to do this, the method can be called by its “real
name”. All overloadedmethods have an associated real name. This consists of themethod name followed by a string of alpha numeric
characters and is used internally by Omnis for patternmatching purposes. The “real name” of an overloadedmethod can be found by
opening the Interface Manager for the Java Object (o open the Interface Manager, right-click on the object in the method editor and
select Interface Manager). From the Interface Manager, select the required overloaded method that you wish to call and click on the
description tab. This will display the “real name” of the overloaded method as follows:

Figure 12:

The above shows the interfacemanager for the “java.lang.String” class. If youwere to call the $valueofmethodusing anOmnisNumber
floating dp type, Omnis would always call $valueof(nFloat) as this is the closest possiblematch to the type of data that you are passing
to Java. If you wish to call $valueof(nDouble), youmust use the “real name” of this method which in this case is $valueof{n1457061552}.

Nested Object Arrays

Java Objects support Nested Object Arrays as parameters to Java methods and can also interpret Nested Object Arrays that are
returned from Java. A Nested Object Array is an array of type java.lang.Object that is capable of storing any Java Object or Array of Java
Objects.

To use anestedObject array youmust create anOmnis List variable anddefine it using aBinary variable. You can then add JavaObjects
and Lists of Java Objects to the list. Once your list is complete, youmay pass it to any Java method that accepts java.lang.Object array
as a parameter.

Nested Object Arrays can also be returned by Java methods. A Nested Object Array is returned to Omnis as a Binary list. This list may
contain both object references and embedded lists.

An example of how to use Nested Object Arrays can be found in the example.lbs Omnis library that accompanies Omnis (in the
Java\JavaCode folder). The window class nestedobjects demonstrates how to call a Java method using a Nested Object Array. The
example begins by creating an Omnis list that has the following structure:

48



Line Content

1 List of java.lang.String Objects
2 java.lang.Float Object
3 List of java.lang.Integer Objects

The above list is passed to the exnested Java method. This method copies the above list structure and adds another array of
java.lang.String objects to the end of the list. The content of each element is displayed in the nestedobjectsmain window.

Modifying The System Package List

Before attempting the following, the Java Object Cache should be cleared and Omnis should be shutdown if it is running. Modifying
the Omnis Studio System Package list may cause unpredictable behavior and is not supported by OmnisSoftware. The following is
simply provided for those readers who wish to experiment with extra functionality. Users attempting the following procedure should
make a copy of the “jfilter.txt” file before proceeding. This file can be found in the Java folder under the main Omnis folder.

Adding Extra System Packages

When Omnis starts up, the following default System Class packages are available for use with Java Objects:

java.lang
java.io
java.util
java.math

This list can be increased by editing the “jfilter.txt” file that can be found in the Java folder under the main Omnis folder. The default
content of this file is as follows:

System\\java\\lang;System\\java\\io;System\\java\\util;System\\java\\math

The above is a list of paths to Java SystemClass packages. Each path is separatedwith a semicolon. To add a package to the list, simply
insert it at the beginning as follows:

To add the java.net package to the list of available System Java Classes, replace the ‘.’ with a ‘\’ and prefix with “System\” so that

java.net

becomes

System\java\net

The above can then be added to the existing filters in the “jfilter.txt” file as follows:

System\java\net;System\java\lang;System\java\io;System\java\util;System\java\math

Removing System Packages

To remove a package, delete the relevant path from the path list. Note that deleting the “jfilter.txt” file completely will make all Java
System packages available. However, this will significantly worsen performance and is not recommended.

Overloaded Types

The following sections provide detailed descriptions of the Overloaded Types used by Java Objects.

The Omnis Character Type

The Omnis Character type can be converted into the following java types:

char
char[]

49



This allows you to call any Java object that takes either a char or char[] as a parameter with an Omnis Character variable. Youmay also
place Java return values that are of type char or char[] into an Omnis Character variable.

In the case of “char[]” parameters, the Omnis Character variable is automatically converted into a Java char array (or vice versa if you
are dealing with return values). This allows objects such as the Java String to be created easily from Omnis. For example:

Calculate mychar as "hello this is a test"
Do mystring.$createobject(mychar)

The above will invoke the Java String Constructor String(char[] value)

If you attempt to call a Java function that takes a single character as a parameter and theOmnis variable that you are passing contains
more than one character, Java will only receive the first character of the string.

The Omnis Binary Type

The Omnis Binary type can be converted into the following java types:

byte
byte[]

This allows you to call any Java object that takes either a byte or byte[] as a parameter with an Omnis Binary Variable. You may also
place Java return values that are of type byte or byte[] into an Omnis Binary variable.

In the case of “byte[]” parameters, the Omnis Binary Type is automatically converted into a Java byte array (or vice versa if you are
dealing with return values). This allows objects such as the Java String to be created easily from Omnis. For example:

Do mystring.$createobject(mybinval)
# where mybinval is a binary Omnis variable

The above will invoke the Java String Constructor String(byte[] bytes)

If you attempt to call a Java function that takes a single byte as a parameter and the Omnis variable that you are passing contains
more than one byte, Java will only receive the first byte of the data that you are passing.

The Omnis Number Long Integer Type

The Omnis Number Long Integer type can be converted into the following java types:

Int
long
byte

This allows you to pass Omnis Number Long integer variables to Java functions which accept these types.

When dealing with return values, Java int and long types can be converted into the Omnis Number Long integer type. However, all
byte return values are always converted to the Omnis Binary type.

The Omnis Number Floating dp Type

The Omnis Number Floating dp type can be converted into the following Java types:

Float
double

This allows you to pass Omnis Number floating dp variables to Java functions which accept these types.

50



Frequently Asked Questions

This section aims to answer some common questions about the Java installation and use with Omnis Studio.

Q. I have created an Omnis library which uses Java Objects and have moved this library to another machine. Now when I examine
Objects in the method editor using the interface manager, no methods are displayed. Why is this?

A. The Java Virtual Machine has failed to start on the machine that you are now using. This can be confirmed by looking at Omnis
Studio Trace Log. Make sure that you have correctly setup your OMNISJVM64 OR OMNISJVM32 environment variable. Also, if you are
running under Linux or Solaris, make sure that you have modified both the PATH and the LD_LIBRARY_PATH environment variables.
Further information on environment variable settings can be found at the beginning of this chapter.

Q. I have my own Java Package which I have placed on the class path. I have been using this package successfully with Java
Objects but I have just compiled and updated my code and Omnis has not recognized the changes. What could be wrong?

A. Omnis Studio caches Java classes and method names to improve performance. Once a java class has been loaded, it will not be
loaded again until Omnis is restarted. If you modify your Java Code while Omnis is running, the changes you make will not become
apparent until you restart Omnis.

Q. Does Omnis recognize jar files?

A. Omnis will recognize and load any jar files that are located in a folder which has been specified in the CLASSPATH environment
variable. All of the classes in your jar file will be available via the Object Selection Tree which is displayed when you create the object
variable in the method editor.

Chapter 4—Omnis .NET Objects

Support for Microsoft .NET is provided in Omnis Studio using the .NET Objects external component. You should note that this compo-
nent is now deprecated in Omnis Studio 10.x or above, and is currently only provided for backwards compatibility in existing Omnis
Studio libraries that use .NET. You should not use the .NET Objects external component for new applications in Omnis Studio 10.x or
above.

This chapter describes howyou can access .NETObjects using the .NETObjects component available in someeditions of Omnis Studio.
It assumes that you have both a basic knowledge of Omnis Studio notation, creating Object references, and a basic knowledge of the
.NET Language.

Introduction

The .NET Objects component for Omnis Studio allows you to integrate .NET functionality into your Omnis applications. You can cre-
ate Omnis Objects based on .NET core functionality or third-party class libraries and call their methods in your Omnis code further
extending the power and versatility of Omnis Studio. The Omnis .NET Objects component is available for the Microsoft Windows only
at present.

Why use .NET

The Microsoft .NET Framework provides a library of prepackaged functionality, including base classes and various APIs, that can be
reused and integrated into your Omnis applications. The base classes provide standard functionality such as input/output, string
manipulation, security management, and network communications.

In addition to the base classes provided in the .NET Framework, there are thousands of class libraries available from third-party devel-
opers providing a broad range of functionality, available to Omnis developers via the .NET Objects component. These can be located
in your .NET Framework folder and added into Omnis using a $addclass() method call.

Software Requirements

Omnis Studio

To use the Omnis .NET Objects component, you need Omnis Studio 4.3 or higher. The component is not supported in older versions
of Omnis Studio.

51



Microsoft .NET Framework

In order to use the .NETObjects component inOmnis Studio, youmust download and install theMicrosoft .NET framework: the version
of .NET framework must be appropriate for the version of Windows and Omnis Studio you are running.

See the Microsoft .NET web site for further details on system requirements for the .NET framework.

• https://dotnet.microsoft.com/

For further details about the .NET framework, for some useful tutorials, and to download the version you need, go to:

• https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework

Setting up

The Omnis .NET Objects component is installed as part of the standard Development version of Omnis Studio (Windows only). The
component itself is comprised of two DLLs:

1. OMDOTNET.DLL
The Omnis .NET Objects component is located in the root of your Omnis Studio folder (in Program Files), butmust be registered
with .NET; see below.

2. OMDNOBJS.DLL
This is an Omnis Studio external component and is located in the XCOMP folder within the Omnis Studio development tree.

Registering the component

The Omnis .NET Objects component (OMDOTNET.DLL) is installed into the root of your Omnis Studio folder, but it must be registered
with .NET in order to work. If you have Admin rights this can be done from a command line prompt (DOS box) using the Regasm
program and the following command:

REGASM “C:\Program Files\Omnis Software\<OS-version>\OMDOTNET.DLL”

If you have Admin rights you can run Regasm.exe from the Start>>Run command.

Regasm.exe is an application providedwith the .NET Framework and youmaybe required to locate it, if it isn’t on your PATH. It normally
resides in a folder called Microsoft.NET\Framework\<Version Number> which is held in the operating system folder C:\Windows.

You should enclose path name to the OMDOTNET.DLL file in quotes, especially if the pathname has spaces in it. For example:

C:\Windows\Microsoft.NET\Framework\<version-no>\RegAsm.exe "C:\Program Files\Omnis Software\<OS-version>\OMDOTNET.DLL"

Failure to have the Microsoft .NET Framework installed or failing to register OMDOTNET.DLL will result in an error, which will be re-
ported in the Omnis trace log. You can open the Trace log from the Omnis Toolsmenu – if a component fails to load, it will be reported
in the Omnis trace log.

Deployment

If you wish to deploy the Omnis .NET Objects component as part of your application, you must install both DLLs and register the
OMDOTNET.DLL file on any client machine, as described above.

The .NET Example Library

There is an example library showing how the .NET Objects component works. The example library, which monitors RSS feeds from
news web sites, is available under the Samples option in the HUBwhen you first launch Omnis (in the Studio Browser, press F2). Code
from the example library is used later in this section to show you how to use the component.

52

https://dotnet.microsoft.com/
https://dotnet.microsoft.com/learn/dotnet/what-is-dotnet-framework


Creating .NET Objects

Creating .NET Objects is a two-stage process that is similar to the process of creating Automation Objects or Java Objects in Omnis.
A .NET Object is first declared and then constructed using the $createobject() method. This process is described in the following
sections.

Defining .NET Objects

.NET Objects can be manipulated in a similar manner to other Omnis Objects. A .NET Object can be defined in a variety of ways:

• Declaring an Omnis Object variable in the Method Editor and setting the object subtype to a .NET Object class.

• Declaring an Omnis Object Reference variable and initializing it to point to a .NET Object class using notation.

• Declaring an Object variable in the Method Editor that does not have a subtype and initializing it to a .NET Object class using
notation.

Defining .NET Objects via the Method Editor

To create a .NET Object in the Omnis Method Editor, simply declare an Object variable (e.g. an instance variable) and set its subtype to
the desired .NET Objects Class. To do this, click the Subtype dropdown menu to open the “Select Object dialog, navigate the Object
Selection Tree, highlight the class your require and click OK. The Object Selection Tree is split into one or more sections under the
“NET” heading. These are “mscorlib” (basic .NET objects) and any classes that you have manually loaded (using $addclass).

The following shows a .NETObject beingdefined froma .NETClasswhich resides in the SOAPmodulewhichhas been loadedmanually.

Figure 13:

Defining .NET Objects using Object References

Object Reference variables are a relatively new feature, introduced in Omnis Studio 4.0. Object Reference variables are similar to
Object variables, but you are responsible for the allocation and de-allocation of the object concerned.

Object References are declared in the Method Editor, but do not have a subtype. To declare an Object Reference, simply declare a
variable in the Method Editor and set its type to “Object Reference”. You can set a subtype in order to view the object’s methods in
the Interface Manager, but the object associated with the reference has to be allocated using the $newref() method.

53



Figure 14:

The following shows both the lString object variable and the lStringRef Object Reference.

To allocate an Object to an Object Reference, you must use the notation. As notation strings for .NET Objects can be very long (due
to the large hierarchies that are present in some .NET packages) the Notation Inspector can be displayed as a helper window when
entering the notation for .NET Objects. You need to navigate the $extobjects.DNet.$objects group to find the .NET class you wish to
reference. You can drag and drop the notation from the Notation Inspector to the Method Editor, and the full notation is created for
you, such as the following:

Omnis will enclose the object string in double forward slashes since it does not recognize it as a variable or method name All .NET
Object notation begins with $root.$extobjects.DNet.$objects (although you can omit $root and $extobjects), and the remainder of
the notation string is dependant on the .NET class being used. The complete notation for a String object is as follows:

$root.$extobjects.DNet.$objects.//NET\mscorlib\System\String//

Now you have to add a call to the $newref() method manually. This method is responsible for allocating an Object to the Object
Reference. Therefore, the complete method to allocate the String object would be as follows:

Calculate lStringRef as DNet.$objects.//NET\mscorlib\System\String//.$newref()

When the above method is executed, a String .NET Object will be created and assigned to the Object Reference lStringRef. It is your
responsibility to ensure that this Object is deleted using the $deleteref() method once it has served its purpose. To de-allocate the
variable, you can use:

Do lStringRef.$deleteref()

For further information about Object References, refer to Omnis Programmingmanual.

Defining .NET Objects via Notation

.NET Objects can be defined using the Object type via notation. To define a .NET Object via notation, simply follow the instructions in
the previous section but use an Object type variable instead of an Object Reference type and call the $new()method instead of the
$newref method.

Constructing .NET Objects

Once a .NET Object has been declared, it needs to be constructed. Declaring a .NET Object simply tells Omnis that the Object exists.
Constructing a .NET Object using the $createobject() method actually performs the work of constructing the Object inside the .NET
Virtual Machine.

By default all .NET Objects will have at least one $createobject() method which takes no parameters. This method can be used to
create a .NET Object as follows:

Do lStringRef.$createobject()

54



Figure 15:

55



Other .NET Objects may have more than one $createobject() method. In this case, each $createobject() method corresponds directly
to a .NET Constructor for the class that is being used. For example, the .NET.System.String class has the following constructors:

String(char* value)
String(char[] value)
String(sbyte* bytes)
String(char c,int count)
String(char* value,int startindex,int length)
String(char[] value,int startindex,int length)
String(sbyte* value,int startindex,int length)
String(sbyte* value,int startindex,int length, int Encoding)

These are mirrored in Omnis by the following $createobject() methods:

Figure 16:

Calling any of above $createobject() methods will invoke the corresponding Constructor in .NET and create the .NET Object in the
Virtual Machine. For example, calling:

Do mystring1.$createobject(mystring)

will invoke the String(char[] value).

Subclassing .NET Objects

.NET Objects can be subclassed by creating an Object class (using the “New Empty Class” option in the Studio Browser followed by
the “Object” option) and setting its “Super Class” property ($superclass) via the Property Manager and the Object Selection Tree. For
example, you can create an Object class and set its $superclass property to “.DNet.NET\mscorlib\System\String” via the Select Object
dialog, as follows:

In this case, the oString object class becomes a subclassed object of String and inherits all of its methods as follows:

Subclassed .NET Objects can be used to define Object and Object Reference variables in the samemanner as .NET Objects. Defining
.NET Object variables is described in the previous section.

Using .NET Objects

The following sections describe how Omnis Data Types are converted to .NET Data Types, how you can pass parameters from Omnis
to .NET, how you handle Return Values, and how you can retrieve data from .NET Objects. Other topics, such as Error Handling and
Cache Control, are discussed later.

56

http://java.sun.com/j2se/1.3/docs/api/java/lang/String.html#String(java.lang.String)


Figure 17:

57



Figure 18:

58



Please check the Tech Notes on the Omnis web site (www.omnis.net) for supplementary information about using the .NET Objects
component with complex data types.

Parameter Data Types

The following table shows howOmnis Data Types are converted to .NET Data Types when used as parameters to .NET Objectmethods.
The Omnis Data Types marked with a ‘*’ are known as Overloaded Types as they are compatible with more than one .NET Data Type.

Omnis Type .NET Type

Simple types
Character char or char[]
Binary byte or byte[]
Number Long integer int, long or byte
Number Short integer short
Number floating dp or Number <n> dp float or double
Boolean boolean
Complex types
List .NET Array
Object .NET Object
Object Reference .NET Object

As you can see from the above, most of the Data Types in Omnis can be coerced intomultiple .NET Data Types. Although this coercion
happens automatically, it is useful to be aware of Overloaded Types as they provide you with greater flexibility when programming
with .NET Objects. For example, if you wish to construct a .NET.System.Byte object, you could define a Binary variable, load the byte
into the variable and then call $createobject() with this variable. However, it is much quicker to simply call $createobject() using the
integer value of the byte. For example:

Do mybyte.$createobject(65)

will create a .NET Byte object whose value is 65.

For a further explanation of Overloaded Types, see the Appendix.

Passing Parameters

In order to call .NET Objects effectively, it is necessary to know how Omnis Data Types are mapped to .NET Data Types when passing
parameters. .NET Object Parameters can be categorized into two basic types:

• Simple Parameters
Simple parameters are parameter types that are compatible with .NET base types

• Complex Parameters
All other parameter types are considered to be Complex

Simple Parameter Types

• Character
converts to .NET base type char/char[]

• Binary
converts to .NET base type byte/byte[]

• Number Long integer
converts to .NET base type int/long/byte

• Number Short integer
converts to .NET base type short

59



• Number floating dp or Number <n> dp
converts to .NET base type float/double

• Boolean
converts to .NET base type boolean

Complex Parameter Types

• List
can be converted to an array of any .NET type depending on list content

• Object
can be converted to an Object of any .NET type depending on content

• Object Reference
can be converted to an Object of any .NET Type depending on the content of the referenced Object

Passing Simple Parameter Types

Passing simpleparameter types is relatively easy. You can call the .NETObjectmethodwithparameter(s), as youwould call anymethod
inOmnis. In the following example, the simple parameter type lpos is passed to the .NET.System.String charAt() function. This function
returns the character value ‘l’ as this character resides at index 3 of the .NET String.

Figure 19:

Passing Complex Parameter Types

Complex Parameter types such as lists and Objects can be passed to .NET, however these Parameter types must be initialised before
being used.

List Types

Omnis lists must contain valid data before being passed to a .NET Object. Note that if you use a list that has more than one column,
only the first column will be used. Omnis lists which do not contain valid data will cause .NET Objects to return an error. For a further
explanation of error handling, see the Error Handling section.

Omnis converts Single Column Lists to .NET Arrays based on the type of the data that is stored in the list. This conversion can be
described by the following table:

60



Omnis List .NET Array Type

Omnis List containing Number Long integer Types int[] or long[]
Omnis List containing Number floating dp Types float[] or double[]
Omnis List containing Number Short integer Types short[]
Omnis List containing Boolean Types boolean[]
Omnis List containing Object References Array of .NET Objects

As you can see from the table above, Overloaded Types are also supported by Omnis Lists. For an explanation of Overloaded Types,
see the Appendix. It should also be noted that char[] and byte[] are absent from the above table. This is because .NET char[] and byte[]
types are created directly from Omnis Character and Binary variables.

Omnis will always attempt to determine the type of Array that you are trying to pass as a parameter by examining the data in the List.
If a list contains .NETObjects, Omnis will attempt to determine the type of the objects in the list. If the type of all the objects is found to
be the same, it is assumed that you are passing a parameter of that type. For example, if you create anOmnis list of .NET.System.String
Objects, Omnis will assume that you are passing a String Array Parameter to .NET. However, if any of the Objects are found to be of
different types, Omnis will assume that you are passing a generic Object Array (.NET.System.Object) to .NET.

When calling .NET methods that take arrays as parameters, you should make sure that the Omnis list that you pass to the method in
question contains appropriate data. Listswhich donot contain appropriate datawill cause the function call to fail with an error (see the
ErrorHandling section). For example, if you create anOmnis Listwith 12 .NET.System.StringObjects and add an extra .NET.System.Byte
object by mistake, your method call will fail if you are attempting to call a .NET function that accepts a .NET.System.String Array as a
parameter.

Important Note: When creating a list of .NET Objects, Object References should be used. This is because standard objects cannot
be used in Omnis Lists. Once you have finished using your list of Object References, remember to delete each reference in the
list by calling $deleteref for each reference. Please refer to the Omnis Programming manual for further information about Object
References.

Object Types

.NET Objects should be “created” using $createobject() before being passed as parameters to other .NET Objects. Passing an uninitial-
ized object to a .NET function will return an error.

Returning Values From .NET Methods

The following table shows how .NET Return types are converted to Omnis data types.

.NET Type Omnis Type

char[] or char Character
byte[] or byte Binary
int or long Number Long integer
float or double Number Floating dp or Number dp
short Number Short Integer
Boolean Boolean
.NET Arrays (except char[] and byte[]) List
Objects Object References

As you can see from the table above, this is merely a reversal of the Omnis to .NET table shown in the previous section.

To return a value from a .NET object method, use the Method Editor to specify the variable that will be used to hold the return value.
Youmust ensure that the Omnis variable that you are using is of the correct type to accept the value that will be returned from .NET. If
this is not the case, an errorwill occur and the hash variables #ERRCODE and#ERRTEXTwill be set accordingly (see the Error Handling
section later in this manual).

Important: If a .NET object returns a base object type, such as String, this will be returned as a base Omnis type. For example, the
string object has amethod called $substring which returns a character variable and not an object string. This is due to the fact that
it would be otherwise impossible to get the contents of a string object if only a string object was returned.

61



Obtaining constant (or Enum) values

Due to the numerous .NET classes available, constants (enums) are not added to the Omnis constants as shown in the Catalog (F9).
To obtain the value of a particular constant, you can call the $getenum function with the fully qualified .NET class. For example, to
open an existing stream object you can call:

Do oStream.$createobject( myFile,DNet.$getenum("System.IO.FileMode.Open"))

Adding .NET Classes

Additional .NET classes can be added by calling DNET.$addclass() with the location of the filename. For example, to add SOAP classes
you can execute:

Calculate #S1 as con(DNet.$basefolder(),sys(9), "System.Runtime.Serialization.Formatters.Soap.dll")
Do DNet.$addclass(#S1) Returns #1

The first line of themethod obtains the installation folder of the .NET framework and appends the soap filename. The second line adds
the class (or classes if the string hasmore than one filename separated by commas) to the Omnis .NET classes which are available; the
value returned is the number of files added, in this case 1. The .NET objects in the class are then available in the Select Object dialog
when creating object variables.

Figure 20:

It’s not necessary to restart Omnis after adding classes, but remember that this information is not persistent between sessions, so you
will need to add the classes into Omnis each time the application starts up or a window is opened.

62



Error Handling

.NET Objects makes full use of the #ERRCODE and #ERRTEXT variables in Omnis. If an error occurs while executing a .NET object
method, these variables will report the error code and text on return from the method. #ERRCODE will produce the value 0 after a
successful .NET method call.

.NET Objects example library

There is an example library showing how the .NET Objects component works. The example library, which monitors RSS feeds from
newsweb sites, is available under the Examples link in theWelcomewindowwhen you first launchOmnis – you can open this window
by clicking on the New Users button in the main Omnis toolbar.

Figure 21:

The example library has a number of pre-defined feeds from world-wide news organizations. After selecting a feed from the droplist,
double-click a story headline to view the story detail. If you haveMicrosoft Internet Explorer ActiveX installed, this will be shownwithin
an Omnis window, otherwise your default browser is used.

You can examine the code in the library to see how the .NET Objects component can be used in Omnis applications to access .NET
functionality.

The RSS feed component

The RSS feed application comprises an Omnis library and a DLL which are located in the \welcome\examples folder under the main
Omnis folder. The rssreader.dll contains the compiled C# code and provides Omnis with a single .NET object with three properties
and two methods.

The first method in the RSS feed object, getdocument(), retrieves the XML source from the specified address in the rssUrl property.
Thereafter it parses out the XML in the ‘channel’ node and sets it to the channelNode property. This is of type System.Xml.XmlNode
and allows Omnis to call its member functions to determine title, language, and so on, of the RSS feed. Lastly it retrieves a list of all
the ‘item’ or story XML nodes within the channel node itself. The property numberOfTags is derived from the number of ‘item’ nodes
within the XML source.

The secondmethod, getItemTags(), allowsOmnis access to the nth story XmlNode determined by the function argument. Once again,
calls to member functions can further extract XML from the XmlNode object and provide information such as Story Headline, Feed
Description and Publish Date.

The RSS feed library

To discover howOmnis uses the .NET object you should examine the code in the RSS feed library. The Startup_Task in the library opens
the RSS window and creates the object. The code for the $construct() method of the RSS window is as follows. The first part of the
method loads the rssreader.dll and adds its .NET classes to Omnis using the $addclass() method.

63



Do FileOps.$splitpathname(sys(10),lDrive,lPath,,)
Calculate lPath as con(lDrive,lPath,'rssreader.dll')
Do DNet.$addclass(lPath)

Note the DNet object is part of the $root.$extobjects group. The next part of the method loads the System.Xml library and adds this
to Omnis. You can use the $basefolder() method to return the folder containing your .NET Framework:

Do DNet.$basefolder Returns lPath
# lPath is something like C:\WINNT\Microsoft.NET\Framework\<version>
Calculate lPath as con(lPath,'\System.Xml.dll')
Do DNet.$addclass(lPath) Returns #F

The next part sets up and builds a list containing the list of RSS feeds and loads the first one in the list:

Do iItemList.$define(iItemTitle,iItemDes,iItemLink,iItemPubDate)
Do method $buildurllist
Do iUrlList.$first()
Do iUrlList.$loadcols()

The next part of the window $construct() method creates an instance of the getRssFeed object and constructs the object in .NET
using the $createobject() method. Finally, a class method is called to retrieve the feed.

Do $root.$extobjects.DNet.$objects.//NET\rssreader\rssreader\getRssFeed//.$newref() Returns iFeedObject
Do iFeedObject.$createobject()
Do method $getfeed

You can use the Interface Manager to examine the properties and methods of a .NET object. For example, this is the iFeedObject
object created in the RSS feed window.

Figure 22:

The $buildurllist and $getfeedmethods are contained in the window class and are called from the window $construct() method. The
$buildurllist method builds a list containing a single column of RSS feed URLs which in this case are loaded from a static list of URLs,
but could have been constructed from a database.

Do iUrlList.$define(iFeedLink)
Do iUrlList.$add('http://feeds.foxnews.com/foxnews/latest?format=xml')
# and so on...

64



The $getfeed method retrieves the XML source file for the current RSS feed and extracts the relevant information to display in the
window.

# $getfeed method
Do iItemList.$clear()
Calculate iFeedObject.$rssurl as iFeedLink
Working message Waiting/-1073735814,-1073735810;50;0;60 {Retreiving RSS Feed} ## message while object is retrieved
Do iFeedObject.$getdocument() ## the XML source is retrieved
# Get the channel XmlNode and extract the channel information
Calculate lXmlNodeObject as iFeedObject.$channelnode
Do method $getchannelinfo (lXmlNodeObject)
For lItemNumber from 1 to iFeedObject.$numberofitemtags step 1
Do iFeedObject.$getitemtags(lItemNumber) Returns lXmlNodeObject
Do method $getiteminfo (lXmlNodeObject)
End For

The $getchannelinfo method retrieves the title, language, and description for the RSS document while the $getitemtags method
returns the information about each news story listed in the RSS feed including the URL, title, description, and publication date.

# Local var: lSubNode (Object) subtype NET\Xml\System\Xml\XmlNode
Do pRssItemNode.$selectsinglenode("link") Returns lSubNode
Calculate iItemLink as lSubNode.$innertext
Do pRssItemNode.$selectsinglenode("title") Returns lSubNode
Calculate iItemTitle as lSubNode.$innertext
Do pRssItemNode.$selectsinglenode("description") Returns lSubNode
Calculate iItemDes as lSubNode.$innertext
# ignore all html tags
If pos('<',iItemDes)<>0
Calculate iItemDes as left(iItemDes,pos('<',iItemDes)-1)
End If
Do pRssItemNode.$selectsinglenode("pubDate") Returns lSubNode
Calculate iItemPubDate as lSubNode.$innertext
Do iItemList.$add(iItemTitle,iItemDes,iItemLink,iItemPubDate)
Calculate iItemPubDate as ''
Calculate iItemDes as ''

When you double-click on a news story in the RSS feed window, Omnis uses the URL stored in iItemLink (loaded from the iItemList)
to launch a browser window and display the news story.

Method Method Overloading and Pattern Matching

Although Omnis Studio does not normally support the overloading of method names, the .NET Objects component is an exception
as method overloading is usually unavoidable when dealing with even the most basic of .NET classes. The following sections discuss
how Omnis deals with overloaded methods and how it is possible to manually call an overloaded method directly from Omnis.

Pattern Matching

Omnis uses patternmatching in order to determine the overloadedmethod that you’re trying to call. In simple terms, Omnis examines
the parameters that you pass to a method and attempts to call the method whose parameters most closely match the parameters
that you are passing. For example, consider the following .NET methods:

myfunc(int p1)
myfunc(float p1)

Calling myfunc from Omnis using an Omnis Number type set to Long Integer will call myfunc(int p1). Calling myfunc from Omnis
using an Omnis Number type set to Floating dp will call myfunc(float p2).

65



Overloaded Data Types

An extra level of complexity is added to Pattern Matching with the support of Overloaded Data Types. An Overloaded Data Type is an
Omnis data type that has more than one matching data type in .NET. Overloaded Data Types are split into three groups, described in
the following sections.

Number Long Integer types

The Omnis Number Long Integer type can be translated to the following .NET types:

• int

• long

• byte

If a Number Long Integer type is passed to an overloaded method, the following occurs:

• Omnis attempts to find an overloaded method that has the same number of “int” parameters that you are passing. Therefore,
if you are calling a method with (int,boolean,int), Omnis will try to find an overloaded method which matches this Parameter
Search Pattern.

• If amatch is not found, Omnis searches for amethod that has amatchingnumber of “long” parameters, that is, Omniswillmodify
the Parameter Search Pattern in an attempt to find a match using combinations of int and long types. Thus, if (int,boolean,int)
is not found, Omnis will look for the following:

(int,boolean,long)
(long,boolean,int)
(long,boolean,long)

• Finally, if this fails, Omnis searches for a method that has a matching number of “byte” parameters, that is, Omnis will modify
the Parameter Search Pattern in an attempt to find a match using combinations of int and byte types. Thus, if ‘2’ does not find
a compatible method, Omnis will look for the following:

(byte,boolean,int)
(int,boolean,byte)
(byte,boolean,byte)

Note that any method that matches the “int” Parameter Search pattern will always be called if it is available. For example, consider
the following .NET methods:

myfunc(int p1)
myfunc(long p1)
myfunc(byte p1)
myfunc(boolean p1)

calling myfunc using a Long Integer type will always call myfunc(int p1) in .NET. If this method is removed:

myfunc(long p1)
myfunc(byte p1)
myfunc(boolean p1)

calling myfunc using a Long Integer type will always call myfunc(long p1), and so on.

66



Number Floating dp types

The Omnis Number Floating dp type can be translated to the following .NET types:

• double

• float

• decimal

If a Number Floating dp Omnis type is passed to an overloaded method, the following occurs:

• Omnis attempts to find an overloaded method that has the same number of “double” parameters that you are passing. There-
fore, if you are calling amethod with (double,boolean,double), Omnis will try to find an overloadedmethod whichmatches this
Parameter Search Pattern.

• If a match is not found, Omnis searches for a method that has a matching number of “float” parameters, that is, Omnis will
modify the Parameter Search Pattern in an attempt to find a match using combinations of double and float types. Thus, if
(double,boolean,double) is not found, Omnis will look for the following:

(double,boolean,float)
(float,boolean,double)
(float,boolean,float)

• Finally, if this fails, Omnis searches for amethod that has amatching number of “decimal” parameters, that is, Omnis will modify
the Parameter Search Pattern in an attempt to find a match using combinations of double and decimal types. Thus, if ‘2’ is not
found, Omnis will look for the following:

(double,boolean,decimal)
(decimal,boolean,double)
(decimal,boolean,decimal)

Note that anymethod thatmatches the “double” Parameter Search patternwill always be called if it is available. For example, consider
the following .NET methods:

myfunc(double p1)
myfunc(float p1)
myfunc(decimal p1)
myfunc(boolean p1)

calling myfunc using a Number Floating dp type will always call myfunc(double p1) in .NET. If this method is removed:

myfunc(float p1)
myfunc(decimal p1)
myfunc(boolean p1)

calling myfunc using a Floating dp type will always call myfunc(float p1), and so on.

.NET Object types

The Omnis .NET Object type can be translated to the following .NET Types:

• < The object that you are attempting to pass as a parameter, e.g. .NET.System.String >

• .NET.System.Object

67



When matching objects, Omnis will always try to find a method which takes an object parameter that matches the type of the ob-
ject that you are passing. So if you pass a .NET.System.String object to an overloaded method, Omnis will look for a match using
.NET.System.String as a search pattern. If Omnis fails to find a matching method, then Omnis will call a method which takes the
generic type .NET.System.Object as a parameter, if such a method is available. Therefore, if Omnis searches for a method using the
Parameter Search Pattern (String,boolean,String) and a matching method is not found, Omnis will look for (Object,boolean,String)
followed by (String,boolean,Object) followed by (Object,boolean,Object).

Note that any .NETmethod that has a parameter list whichmatches theObjects that you are using as parameters will always be called
if it is available. For example, consider the following .NET methods:

myfunc(String p1)
myfunc(Object p1)
myfunc(boolean p1)

calling myfunc using an Omnis object whose subtype is set to “.NETObjs\System\.NET\lang\String” will always call myfunc(String p1)
in .NET. If this function is removed:

myfunc(Object p1)
myfunc(boolean p1)

calling myfunc using an Omnis object whose subtype is set to “.NETObjs\System\.NET\lang\String” will always call myfunc(Object p1).

Char and Byte Pattern Matching

The following table shows how Omnis converts Character and Binary data types to .NET data types when dealing with overloaded
methods.

Omnis .NET

character types (length > 1) char[]
binary types (length > 1) byte[]
character types (length <= 1) char
binary types (length <= 1) byte

As a result of these conversions, you should be aware that it is not possible for Omnis to call an overloaded .NET function that takes
char[] as a parameter using a single character. This is demonstrated in the following example. Consider the following:

myfunc(char p1[])
myfunc(char p1)

Following the rules for data conversion, calling myfunc with a single character will call myfunc(char p1) while calling myfunc with a
string of characters will call myfunc(char p1[]). Thus, in this situation it is not possible to call myfunc(char p1[]) with a single character
as myfunc(char p1) will always be called if the length of the data that you are passing is 1. However, it is possible to force Omnis to call
myfunc(p1[]) with a single character if you call the overloaded method directly. The procedure for doing this is discussed in the next
section.

Note: If the length of an Omnis Character type is 0, it will be converted into a .NET char type whose value is 0. If the length of an Omnis
Binary type is 0, it will be converted into a .NET byte type whose value is 0.

Calling Overloaded Methods Directly

In some rare cases, it may be necessary to call overloadedmethods directly. Consider the following example: youmay be trying to call
overloaded functions in the .NET.System.String Class. The functions are defined in .NET as follows:

compareto(Character c)
compareto(Object o)

68



Figure 23:

If you want to call a particular method directly, you can do so from the Omnis Interface Manager, by selecting the desired overloaded
method that you wish to call and clicking on the description tab. This will display the “real name” of the overloaded method.

The following screenshot shows the Omnis Interface Manager for the “.NET.System.String” class. If you were to call the $compareto()
method using an Omnis “object” type, you must use the “real name” of this method which, in this case, is $valueof{o}.

Note: Each parameter is separated by an underscore (_).

The naming convention for these parameters are as follows:

.NET Type Abbreviated to (Omnis type)

Char “c”
boolean “b”
Decimal “d”
Float “f4”
Double “f8”
Unsigned Byte “u1”
Signed Byte “i1”
Unsigned Short “u2”
Signed Short “i2”
Unsigned Int “u4”
Signed Int “i4”
Unsigned Long “u8”
Signed Long “i8”
Object “o”
Object of known type “”
Enum “ | | Void | “v” |

An additional ‘p’ character means pointer (or *) and an ‘a’ character means an array.

Nested Object Arrays

The .NET Objects component supports Nested Object Arrays as parameters to .NET methods, and it can also interpret Nested Object
Arrays returned from .NET. A Nested Object Array is an array of type .NET.System.Object that is capable of storing any .NET Object or
Array of .NET Objects.

To use a Nested Object Array, you must create an Omnis List variable and define it using a Binary variable. You can then add .NET Ob-
jects and lists of .NETObjects to the list. Once your list is complete, you can pass it to any .NETmethod that accepts .NET.System.Object
array as a parameter.

Nested Object Arrays can also be returned by .NET methods. A Nested Object Array is returned to Omnis as a Binary list. This list may
contain both Object References and embedded Lists.

69



Overloaded Types

The following sections provide detailed descriptions of the Overloaded Types used by the .NET Objects component.

Omnis Character types

The Omnis Character type can be converted into the following .NET types:

Char

char[]

This allows you to call any .NET object that takes either a char or char[] as a parameter with an Omnis Character variable. Youmay also
place .NET return values that are of type char or char[] into an Omnis Character variable.

In the case of “char[]” parameters, the Omnis Character variable is automatically converted into a .NET char array (or vice versa if you
are dealing with return values). This allows objects such as the .NET String to be created easily from Omnis. For example:

Calculate mychar as "hello this is a test"
Do mystring.$createobject(mychar)

The above will invoke the .NET String Constructor String(char[] value)

Note: If you attempt to call a .NET function that takes a single char as a parameter and theOmnis variable that you are passing contains
more than one character, .NET will only receive the first character of the string.

Omnis Binary types

The Omnis Binary type can be converted into the following .NET types:

Byte

byte[]

This allows you to call any .NET object that takes either a byte or byte[] as a parameter with an Omnis Binary variable. You may also
place .NET return values that are of type byte or byte[] into an Omnis Binary variable.

In the case of “byte[]” parameters, the Omnis Binary Type is automatically converted into a .NET byte array (or vice versa if you are
dealing with return values). This allows objects such as the .NET String to be created easily from Omnis. For example:

Do mystring.$createobject(mybinval)
# where mybinval is a binary Omnis Variable

The above will invoke the .NET String Constructor String(byte[] bytes)

Note: If you attempt to call a .NET function that takes a single byte as a parameter and theOmnis variable that you are passing contains
more than one byte, .NET will only receive the first byte of the data that you are passing.

Omnis Number Long Integer types

The Omnis Number Long Integer type can be converted into the following .NET types:

Int

long

byte

This allows you to pass Omnis Number Long integer variables to .NET functions which accept these types.

Note: When dealingwith return values, .NET int and long types can be converted into the Omnis Number Long integer type. However,
all byte return values are always converted to the Omnis Binary type.

70



Omnis Number Floating dp types

The Omnis Number Floating type can be converted into the following .NET types:

Float

double

This allows you to pass Omnis Number floating dp variables to .NET functions which accept these types.

Chapter 5—oXML

This chapter describes the Omnis XML object (oXML), an external component which allows you to parse and manipulate XML docu-
ments in Omnis using the standard Document Object Model (DOM) API. This chapter does not provide an exhaustive description of
XML or the DOM, since this can be gained frommany other sources.

For further information about XML, you can look up XML-related web sites, and read one or two of the many books available on the
subject. Here are one or two resources we found very useful:

• XML and DOM standards
www.w3.org has the official XML standards and a lot of good general information; also includes a full definition of the DOM API.
A look at the DOM Level 2 definition is very useful, whereas studying the XML specification is not necessary.

• Information and Tutorials
www.xml.com has background information on XML and news;
www.w3schools.com/xml has some useful XML tutorials & information.

• Omnis Tech Note: you may also like to read the Omnis Technical Note TNXM0001: Creating XML documents with oXML which
includes an example library to download.

About oXML

The interface to XML documents is implemented in Omnis Studio using the standard Document Object Model (DOM) API as an
external component which must be instantiated via an Omnis Object Variable. The oXML component addresses the most basic XML
requirement, namely the ability to parse and extract information from an XML document, and to generate new XML documents. The
oXML component allows you to parse and manipulate XML documents using a standard set of methods provided by the DOM level
2 API, plus some additional methods that speed up the process of building a document. The oXML component also allows you to
display an XML document in the tree list component, which is well suited to displaying the hierarchical structure contained in XML
documents.

oXML Availability

oXML is available as a built-in component in most editions of Omnis Studio and is therefore installed and ready to use. In previous
versions of Omnis Studio (pre Studio 6) the oXML component was available as a separate plug-in which had to be purchased and
installed separately.

What is XML?

To use oXML to access your XML documents, you need a working knowledge of XML and the DOM. This section provides a short
introduction to XML and the DOM. If you are already familiar with these technologies, and/or you have read one of the many sources
of information about XML and DOM, then you may like to skip this section.

XML (eXtensible Markup Language) allows you to store, exchange and display data or information in a structured and efficient way.
In this respect it is no different from most existing data formats, except that XML provides a higher degree of standardization and
flexibility than many other proprietary technologies, opening up many new and exciting opportunities in business computing and
information technology. XML has already revolutionized contentmanagement, information publishing, and news syndication, as well
as other B2B markets, while the adoption of XML across many other industry sectors seems to be gathering pace.

XML allows you to store structured documents or data as text and provides you with a way of manipulating, transforming, and pre-
senting your data in many different formats. For example, information or data stored in an XML document can be displayed in a web
browser using a Cascading Style Sheet (CSS). In addition, when XML documents are stored in a database they can be queried and
retrieved much like any other data source.

71

http://www.w3.org
http://www.xml.com
http://www.w3schools.com/xml
https://omnis.net/developers/resources/technotes/tnxm0001.jsp


What are the Benefits of using XML?

The business benefits of using XML and XML-based systems are well documented in the IT industry and media. XML, or rather tech-
nologies that use XML as their basis, promise to provide the IT industry with greater standardization, interoperability, efficiency, and
present the potential for many new technologies. If you are an application developer, you will no doubt be asked some time in the
future to create applications that will “handle XML”.

• Platform Independent and Reusable
XML is machine and platform independent so it can be exchanged between one system or network and another. Plus, once
information is in XML format it can be reused for many different purposes for digital and printed publication.

• Worldwide Standard
XML is a standard language defined and ratified by the W3C consortium so it is not controlled or owned by any one company.
This ensures the future of XML as an open standard employed by the whole IT industry.

• Information exchange
Since XML is an agreed standard it affords a high degree of information exchange, in particular between networks, businesses
and other interdependent organizations.

• New Business opportunities
The standardization and flexibility of XML mean that many existing business problems can be solved more efficiently, while
many new business opportunities will arise that take advantage of XML. For example, XML has already revolutionized Content
management, publishing & news syndication, and will transform many other areas of business, particularly those suited to
automation.

Elements

XML is verymuch like HTML, but it differs in one or two important ways. Like HTML, XML uses tags to define the “elements” (content or
data holders) within a document, but unlike HTML, XML tags only describe the data or content, they do not contain any information
about the display or formatting of the content or document as a whole. Each element must have a start and an end tag, and tag
names are case-sensitive.

HTML conforms to a standard set of tags, whereas XML element names can be anything you like providing a better description of
each piece of data or the content in your document. For example, to create a file to store the contents of a bookstore you can create
an element called <bookstore> to contain the information about all the books. XML documents are often described as having “meta-
data” since the information in the tags describes the data within the tag itself. In this case, someone looking at the file containing the
tag <bookstore> can see immediately that the information relates to a bookstore.

Elements within a document are often nested in a hierarchical structure, building a more detailed or structured picture of the thing
or things being described in the document. Therefore, individual elements are referred to as “nodes”. The top level element in a
document is called the “root node”, which has an ID of 0, and all elements inside it are called “child nodes” which have unique IDs
identifying them. Carrying on the book example, the <bookstore> element or root node could contain elements for <book>, <title>,
<author>, <publisher>, and <isbn>, plus you can further describe the <author> element using <firstname> and <lastname> child nodes.
An XML document with these elements or nodes would have the following structure:

<?xml version="1.0"?>
<bookstore>

<book>
<title>Essential XML for Web Professionals</title>
<author>
<firstname>Dan</firstname>
<lastname>Livingstone</lastname>

</author>
<publisher>Prentice Hall PTR</publisher>
<isbn>0130662542</isbn>
<price>34.99</price>

</book>
<book>
<title>Professional XML (Programmer to Programmer)</title>
<author>
<firstname>Mark</firstname>

72



<lastname>Birbeck</lastname>
</author>
<publisher>Wrox Press, Inc</publisher>
<isbn>1861005059</isbn>
<price>59.99</price>

</book>
</bookstore>

Note the <firstname> and <lastname> elements are nested inside the <author> element, while all sub-nodes are contained in the
<bookstore> root node. Also note the obligatory XML declaration at the beginning of the document which defines the XML version of
the document; this is a processing instruction that gets sent to the XML parser.

Attributes

Like HTML, elements can have “attributes” (properties) that further describe the element, but again they do not provide any informa-
tion about the display of the data. For example, the <book> element in our sample xml above could have the attribute “genre” which
is written like this:

<book genre=”Computing”>

Note that genre is a general characteristic of a book and is therefore considered an attribute of a book (i.e. many books may be in the
same genre), whereas the title of a book is unique to each book and is therefore described in an element as part of an individual book.

Entities

Entities let you represent a single character, a number of characters, or a string of words using a short alias name. There is a range
of ISO approved entities that have reserved name and number codes to represent specific characters, such as & for ampersand, <
for lesser than, > for greater than, ” for double quotation mark, ’ for apostrophe, and € for the Euro symbol, and so on. You can also
define your own custom entities in your XML documents in the document template, either internally quoted in the DTD (Document
Type Definition: see below) or they can be listed in an external file. For example, you could represent a publisher name by declaring
<!ENTITY ph “Prentice Hall PTR”>, therefore writing the publisher name as &ph; in the body of your document.

Entities that hold text, like those described above, are called parsed entities. You can also create entities for non-text data or files, such
as image files, video, binary files, or even other applications, and these are called unparsed entities, but they are also referred to as
notations.

DTDs

When a document has all the correct start and end tags and is properly nested, it is described as “well-formed”. XML documents
are processed through an XML parser which checks for correct syntax or “well-formedness”. Documents can be further validated
against a template or Document Type Definition (DTD), or a schema. A DTD is itself a text document which contains a description
of the elements and entities for a particular type of XML document, in other words, it specifies what type of data or content the
document can contain. The DTDwould contain a list of elements allowed in the XML document, defining the name and data type for
each element. The DTD for an XML document can be included inline, as part of the XML document itself, or it can be a separate file
referenced in the XML document.

<!DOCTYPE BOOKS [
<!ENTITY PH "Prentice Hall PTR">
<!ELEMENT book (TITLE,AUTHOR,PUBLISHER,ISBN)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (FIRSTNAME,LASTNAME)>
<!ELEMENT firstname (#PCDATA)>
<!ELEMENT lastname (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT isbn (#PCDATA)>
]>

Most of the time you will need to use an industry standard DTD, rather than creating your own. Using standard DTDs ensures the
portability of your data or documents across many different applications and between organizations.

73



Schemas

Increasingly, DTDs are being superceded by schemas, or w3c schemas as they are sometimes called. oXML supports the use of
schemas to validate XML documents. Like DTDs, schemas define the structure and types of data allowed in documents but they
provide greater control over the structure and types of data in your XML documents. Schemas use XML namespaces to define the
elements and attributes in your XML documents. Namespaces are unique names that identify element types and attribute names.

Schemas are themselves written in XML so you can create andmanipulate them using oXML. Schemas aremore powerful than DTDs
since you can define the type and constraints on the data in your documents. Schemas can contain a number of built-in data types,
such as, xs:string, xs:decimal, xs:date, xs:anyURI, and you can create your own custom types. Like DTDs, schemas can be referenced
externally in your XML documents: see below.

The differences between DTDs and Schemas become apparent when you compare one with the other, for example, the following
DTD called note.dtd describes the structure of a very simple XML document.

<!ELEMENT note (to, from, heading, body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>

The DTD defines the ‘note’ root node as having four child nodes (to, from, heading, body). The DTD is placed in the XML document
itself or referenced externally.

A simple schema called note.xsd can be used to define the same structure:

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="note">
<xs:complexType>

<xs:sequence>
<xs:element name="to" type="xs:string"/>
<xs:element name="from" type="xs:string"/>
<xs:element name="heading" type="xs:string"/>
<xs:element name="body" type="xs:string"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The schema defines the ‘note’ complex element that contains four simple elements (to, from, heading, body).

Using Schema Files for Validation

The XML DOM Document object has some properties to allow you to specify and use an external schema file (XSD) for validation.

• $fullschemavalidation
If true, and $parservalidates is also true, and the parser will validate against a schema, the parser performs additional checks
against the schema.

You should set $fullschemavalidation to true unless performance is an issue.

The other new properties allow an external schema to be specified:

• $nonamespaceschemalocation
if specified, this property becomes the noNamespaceSchemaLocation attribute for the document being parsed.

• $schemalocation
if specified, this property becomes the schemaLocation attribute for the document being parsed.

74



The schemas specified in these properties need to be referenced by a pathname to the schema file.

For example, to use an external schema, turn on $fullvalidation (without this, the absence of the schema file is an unreported and
ignored warning), and set $schemalocation to:

"urn:books c:\dev\studio60orfc\oxml\test\books.xsd"

where the second component is the path to the schema file on your system.

If an XSD is in the same directory as the XML, you can use:

"urn:books books.xsd"

XML Parser

An XML parser or processor is a software module that checks your documents for “well-formedness” and performs validation against
a DTD. The XML parser provided with oXML, called Xerces (called ‘xerces-c_3_1.dll’ under Windows), is a validating parser that allows
you to read and write documents as well as perform validation against a DTD or schema. The Xerces parser is in the root of the Omnis
Studio folder, in the same location as the Omnis.exe program. Under macOS, the parser library is called Xerces.Classic.Lib and it is
bound into the oXML component.

Displaying XML Documents

Most recent browsers will display XML documents in a collapsible/expandable format. For most purposes though, you need to extract
data from your XML documents for subsequent data processing, or enumerate an entire document in order to build a list for display
in an Omnis tree list.

The display or transformation of the XML data is handled at the time of delivery when the document is retrieved from a document
store and displayed on a client machine. The idea of XML is to store your data in a raw but structured state, allowing you to query and
present it in many different ways as and when required.

What is the DOM?

To use oXML to access your XML documents, you need some knowledge of the DOM. Like XML, the DOM API is well documented in
print and on the web so consult these external sources for further information.

The Document Object Model (DOM) is an API that allows you to build documents, navigate their structure, and add, modify, or delete
elements and content. To quote from www.w3c.org, the “Document Object Model (DOM) is an application programming interface
(API) for XML [and HTML] documents. It defines the logical structure of documents and the way a document is accessed and ma-
nipulated. In the DOM specification, the term “document” is used in the broad sense - increasingly, XML is being used as a way of
representingmany different kinds of information that may be stored in diverse systems, andmuch of this would traditionally be seen
as data rather than as documents. Nevertheless, XML presents this data as documents, and the DOM may be used to manage this
data.”

The oXML component uses the DOM Level 2 API to access XML documents, as defined on the W3C web site. It is built upon source
code provided by the Xerces project, available as part of the Apache XML project: please see their web site for background information
(http://xml.apache.org). For our purposes, the DOM provides a platform-independent interface to XML documents so that Omnis
developers can use Omnis code and the notation to navigate and manipulate XML documents. DOM treats an XML document as a
hierarchy of nodes, arranged in a tree structure, and accessible via its API and its methods.

The methods available in oXML closely match those defined by the DOM, so for a fuller explanation of the DOM API and its interfaces
andmethods you should consult the www.w3.org web site, or a good XML book or reference guide. The following URL has a definition
of the DOM Level 2 API:

http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html

75

http://www.w3c.org
http://xml.apache.org
http://www.w3.org
http://www.w3.org/TR/2000/REC-DOM-Level-2-Core-20001113/core.html


Documents and Nodes

The DOM represents a document as a tree of nodes or objects. Each node represents a different part of the document, hence a node
can be one of a number of different types of node. In addition, each node or object type can have children, but only certain types
of children are allowed for each type of node. The following table shows you what objects are returned (if any) when you query the
children of a node in the document tree.

Node type Possible Children

Document Element (maximum of one), ProcessingInstruction, Comment, DocumentType
DocumentFragment Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference
DocumentType no children
EntityReference Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference
Element Element, Text, Comment, ProcessingInstruction, CDATASection, EntityReference
Attr Text, EntityReference
ProcessingInstruction no children
Comment no children
Text no children
CDATASection no children
Entity Element, ProcessingInstruction, Comment, Text, CDATASection, EntityReference
Notation no children

See the Reference section later in this manual for a complete list of properties and methods for each type of node object.

Creating a Document Object

The oXML component is an external object which is a type of external component that containmethods that you can use by instan-
tiating an Object Variable based on the oXML external object. The oXML component is stored in a component library, called Oxml.dll
under Windows, and is in the XCOMP folder under the main Omnis folder. The oXML component is always loaded by default so there
is no need to load it via the External Components option in the Component Store.

Creating an Object Variable

You can add a new XML object in themethod editor by inserting a variable of type Object and using the subtype column to select the
XML Document object. You can click on the subtype droplist and select the XML object from the Select Object dialog. You can ignore
the group of DOM Types: youmust create a document object to access the whole of an XML document and use the object’s methods
to return the different parts or elements in the document.

An object icon plus the type “DOM Document” will appear in the variable subtype cell showing the type of object.

Inspecting an Object Variable

Whenan instanceof the external object hasbeen constructed (in anopenwindowor form), you can inspect its properties andmethods
during development using the Interface Manager.

You can drag a method of the XML object from the Interface Manager into the Code Editor for the Do command. For example, when
you inspect a DOM Document object (as shown), the Interface Manager will list the methods of a document object as well as the
general properties of a node, since the root node is at the head of the document. To load a specified XML document you can use the
$loadfile() or $loadbinarymethod (see below in the section Loading an XML document for the code). While debugging your code, you
can inspect an object variable by right-clicking on the variable and selecting the Variable [varname] option. The following shows an
object variable containing a document.

If true, the $useobjectrefs property ensures oXML returns object references rather than objects, that is, object return values are object
references and object parameters must be object references. This property is automatically set in new returned objects to the value
of $useobjectrefs in the object returning the new object.

76



Figure 24:

Figure 25:

77



Figure 26:

Figure 27:

78



Document Objects in oXML

In the DOM, documents have a logical structure which is like a tree, that is, all the elements and objects in the document are arranged
in a hierarchical structure. Each object in a document is treated as a “node”. The objects or nodes in a document can be one of
a number of different types: an element, a comment, an attribute, text, or an entity. The oXML component contains a number of
different objects, to support the different objects defined by the DOM.

The key object in oXML is the “DOM Document” object, which represents an XML document. You can use DOM Document as the
subtype of an object variable, in order to use oXML and access its methods to manipulate your documents.

Having returned an XML document into your object variable, you can use variousmethods to return the objects within the document.
For example, the $documentelement() method returns a DOM Element object that, in this particular case, represents the root of the
XMLdocument (see below the sectionGetting the document root element for the code). You can return andmanipulate the following
objects:

• DOM Attribute
an attribute or property of an element

• DOM CDATASection
the CDATA section of an attribute definition

• DOM Comment
provides access to the content of a comment

• DOM DocumentFragment
allows you to load part of a document into memory rather than the whole document

• DOM DocumentType
a list of document types within a document

• DOM Element
an element within a document; provides access to an element’s attributes

• DOM Entity
an entity within a DTD

• DOM EntityReference
the representation of an entity

• DOM NamedNodeMap
a collection of unordered nodes within a document

• DOM NodeList
an ordered list of nodes within a document

• DOM Notation
an unparsed or non-textual entity within a DTD, or the formal declaration of Processing Instruction target

• DOM ProcessingInstruction
a special element or tag that provides instructions parsed to an external application, e.g. the XML version declaration at the
beginning of a document

• DOM Text
the text or content of an element or attribute

These objects are never used directly as the subtype of an object variable. Instead, they are returned by methods of the oXML object.

Manipulating XML Documents

Having created and instantiated an object variable, based on oXML, you can use its methods to load an XML document, enumerate
the different parts or elements of the document, and display it in an Omnis tree list component. The following sections show how you
can do this using Omnis methods.

79



Loading an XML Document

You can use the $loadfile() or $loadbinary() method to load an XML document into the document object (variable).

• $loadfile(cPath,&cErrorText)
loads the XML filewith pathname cPath into the document object, and returns true for success, or false and cErrorText for failure.

• $loadbinary(xData,&cErrorText[,cSearchDir])
loads a document stored in the binary variable xData into the document object; returns true for success, or false and cErrorText
for failure; when parsing frommemory, cSearchDir is the directory in which the parser looks for externally referenced files.

When the $loadfile() method is executed the specified document is loaded into the object object/variable. In effect, thismethod loads
the whole document, that is, a DOM Document representing the document. The document object has the general properties of a
node ($nodename=#Document and$nodetype=kXMLNodeDocument) togetherwith theproperties of a document object $parserval-
idates, $replaceentityreferences, and $outputencoding, as well as many other methods for manipulating or traversing the document
tree.

The followingmethod can be placed behind a button and be used to prompt the user to select an XML document. The method then
calls a class method to build the tree corresponding to the structure of the document selected by the user.

# Method '$event' for Load XML button
# create instance vars: path (Char), xml (Object, DOM Document), iValidate (Bool), iEnt (Bool), error (Num, Long Int), errorText (Char)
On evClick
Calculate path as
Do FileOps.$getfilename(path,"Select XML file to parse")
# prompts the user for an XML file name and location
If path<>''

Calculate $cinst.$title as path
Calculate xml.$parservalidates as iValidate ## optional
Calculate xml.$replaceentityreferences as iEnt ## optional
Do xml.$loadfile(path,errorText) Returns error
If error=0
OK message Parser Error {[errorText]}

Else
Do method $buildtree ## see below

End If
End If

Note that the variables iValidate and iEnt can be added to your window or application (these preferences can be assigned to check
boxes on a window) and used to force the XML parser to validate your document and resolve all entities.

Getting the Document Root Element

Having loaded the XML document into the document object, you can get the root element using the $documentelement() method;
the method has no parameters.

• $documentelement()
returns the DOM Element object representing the root of this XML document.

The following method prepares the window tree list, gets the root element from the document object and calls another method to
build up a complete tree containing all the sub-nodes in the document.

# Method '$buildtree'
# create local variables nodetext (Char), obj (Object), tree (Item ref), treenode (Item ref)
Set reference tree to $cinst.$objs.tree
Do tree.$clearallnodes()
Calculate obj as xml.$documentelement()
# the root element is returned and placed in 'obj'
Do method $getelementtext (obj) Returns nodetext ## see below
Set reference treenode to tree.$add(nodetext)
Do method $addchildren (obj,treenode) ## see below

80



Getting the Attributes of an Element

When you have placed an element, such as the root element, into an object variable you can get its text value held in the $tagname
property and access its attributes, if the element has any, using the $attributemap() method.

• $attributemap(&cErrorText)
returns a named node map object listing the attributes of the element, or NULL and cErrorText if an error occurs; the named
node map contains an unordered list of attributes belonging the element

Having created the list of attributes (a named node map) for an element you can step through the list using the $item() method in a
For loop to extract each attribute.

• $item(iIndex)
returns an attribute object referenced by iIndex from the name nodemap; indexing starts at zero; a bad index results in a NULL
return value.

The following method gets the text value of the element passed to it and, assuming the element has attributes, adds the attributes
in ‘name=value’ pairs. The properties $attname and $attvalue give you the name and value of an attribute.

# Method '$getelementtext'
# create parameter var element (Object)
# create local vars att (Object), attlist (Object), k (Long int), nodetext (Char)
Calculate nodetext as con('<',element.$tagname,'>')
# returns the element or tag name in nodetext
Calculate attlist as element.$attributemap
# builds a 'namednodemap' or list of object attributes: this is empty if there are no attributes and code skips the For loop, otherwise loop adds all attributes of tag
For k from 0 to attlist.$length-1 step 1
# $length is the number of attributes in the named node map
Calculate att as attlist.$item(k)
# $item() returns the specified attribute in the list
Calculate nodetext as con(nodetext,' ',att.$attname,' = ',att.$attvalue)
# $attname and $attvalue are properties of an attribute

End For
Quit method nodetext

Adding Children to a Node

Since XML documents are highly structured it is relatively easy to step through the node tree and enumerate all its nodes and sub-
nodes (children and grandchildren). You can use the $childnodes() method to get a list of children for a node, and then construct
each child node according to its type by querying its $nodetype property.

• $childnodes(&cErrorText)
returns a node list object listing the children of this object, or NULL and cErrorText if an error occurs

• $haschildnodes()
returns true if the object has children; note no parameters

The following method steps through the node tree passed to it and adds the text value of each node to a tree list. Note the switch
statement branches on the $nodetype of the current node and constructs the nodetext accordingly.

# Method '$addchildren'
# create parameter vars pObj (Object) and pTree (Item ref)
# create local vars att (Object), attlist (Object), child (Object), j (Long int), k (Long int), nl (Object), nodetext (Char), treenode (Item ref)
Calculate nl as pObj.$childnodes()
For j from 0 to nl.$length-1 step 1
Calculate child as nl.$item(j)
Switch child.$nodetype

Case kXMLNodeComment

81



Calculate nodetext as con('// ',child.$textdata)
Case kXMLNodeElement
Do method $getelementtext (child) Returns nodetext

Case kXMLNodeProcessingInstruction
Calculate nodetext as con('PI: ',child.$pitarget,
' = ',child.$pidata)

Case kXMLNodeText
Calculate nodetext as con(child.$textdata)

Case kXMLNodeCDATASection
Calculate nodetext as con('CDATA: ',child.$textdata)

Case kXMLNodeAttribute
Calculate nodetext as con(child.$attname, ' = ',child.$attvalue)

Case kXMLNodeEntityReference
Calculate nodetext as 'ER'

Default
Calculate nodetext as con('Unexpected node type: ',child.$nodetype)

End Switch
Set reference treenode to pTree.$add(nodetext)
If child.$haschildnodes()

Do method $addchildren (child,treenode)
End If

End For

Saving a Document

You can save an XML document to a file on disk using the $savefile() method or to a binary variable using $savebinary().

• $savefile(cPath,&cErrorText[,bStripDT=kFalse,iFmt=kXMLformatNone])
saves XML to pathname cPath; returns true for success, or false and cErrorText; strips prolog DOCTYPE if bStripDT is true; kXML-
Format… constant iFmt controls formatting

• $savebinary(&xXML,&cErrorText[,bStripDT=kFalse,iFmt=kXMLformatNone])
saves XML to binary variable xXML;r eturns true for success, or false and cErrorText; strips prolog DOCTYPE if bStripDT is true;
kXMLFormat… constant iFmt controls formatting

# Method for Save button
# create vars path (Char), errorText (Char), error (Long Int)
On evClick ## Event Parameters - pRow( Itemreference )
Calculate path as
Do FileOps.$putfilename(path,"Specify name of output XML file")
If path<>''

Do xml.$savefile(path,errorText) Returns error
If error=0
OK message Parser Error {[errorText]}

End If
End If

The format parameter for the $savefile() and $savebinary()methods is an integer and can take one of a number of constants, as follows:

• kXMLFormatNone
The output XML is not formatted; the default if iFmt is omitted (that is, no tabs and carriage-return linefeed sequences are
inserted)

• kXMLFormatBasic
The output XML is formatted by the insertion of tabs and carriage-return linefeed sequences

• kXMLFormatFull
The output XML is formatted by the insertion of tabs and carriage-return linefeed sequences; in addition, text nodes are format-
ted by removing all leading and trailing spaces, as well as tabs, carriage returns and linefeeds

82



Using Lists with XML

You can pass the contents of a document object into an Omnis list variable using the $savelist() method. Conversely, you can transfer
the contents of anOmnis list, assuming it is in the correct format, to a document object using the $loadlist()method. You can therefore
manipulate the contents of an XML document via an Omnis list.

• $savelist(&lList,&cErrorText [,bSkipWhiteSpace])
saves the XML specified by the object into the list lList, skipping the whitespace within elements if bSkipWhiteSpace is true;
returns true for success, or false and cErrorText for failure.

• $loadlist(lList,&cErrorText [,cDocTemplatePath])
loads list lList defining an XML document into the object, returns true for success, or false and cErrorText for failure. cDocTem-
platePath is optional and can specify a DTD document template.

The following methods show how you can read an XML document into and out of an Omnis list. The Save List method prompts the
user for an XML document, loads the file into the document object, and saves the contents of the object into the Omnis list xmllist.

# method for save list button
On evClick
Calculate path as
Do FileOps.$getfilename(path,"Select XML file to parse")
If path<>''

Calculate xml.$parservalidates as iValidate
Calculate xml.$replaceentityreferences as iEnt
Do xml.$loadfile(path,errorText) Returns error
If error=0
OK message Parser Error {[errorText]}

Else
Do xml.$savelist(xmllist,errorText,iSkip) Returns error

End If
End If

The Load List method prompts the user for a file name for the output XML document using the FileOps method $putfilename(),
prompts the user to identify a DTD for validation, transfers the contents of the Omnis list to the document object, and saves the
contents of the document object to the XML disk file.

# method for load list button
On evClick
Calculate path as ''
Do FileOps.$putfilename(path,"Specify name of output XML file")
If path<>''

Calculate template as
Do FileOps.$getfilename(template,"Select XML document template for output")
Do xml.$loadlist(xmllist,errorText,template) Returns error
If error=0
OK message {Load list failed: [errorText]}
Quit method

End If
Do xml.$savefile(path,errorText) Returns error
If error=0
OK message Parser Error {[errorText]}

End If
End If

Using Tree Lists with XML

You can save or transfer a document object containing an XML document to an Omnis list variable and display the document in a tree
list object using the $savetree() method. The tree list can be either a standard window tree control or a web component displayed on
a remote form.

83



• $savetree(&lList, &cErrorText, bExpanded [,bIgnoreDocumentElement, bSkipWhiteSpace])
saves theXML specifiedby thedocument object to a list suitable for displaying in adata bound tree list objectwith thedataname
lList, and returns true for success, or false and cErrorText for failure;

If true, bExpanded specifies that the tree list is expanded when displayed, bIgnoreDocumentElement specifies that the document
root is ignored and not displayed, and bSkipWhiteSpace specifies whether or not white spaces within elements are ignored.

The $savetree() method can be used behind a button or FormFile object to transfer an XML document into a tree list for display. For
example, the following remote form allows the user to view an XML document in a web browser.

Figure 28:

The followingmethod is behind a Read button (FormFile object) on the remote form. Themethod prompts the user to locate an XML
document and displays the file in a web tree.

# create vars iXml (Object), iList (List)
# iExpanded, iIgnoreDocElem, iSkipWhitespace are linked to the check boxes on the form
# pFileData is passed to the method from the FormFile component and in this case contains the data from the XML document
On evFileRead
Calculate iXml.$parservalidates as kFalse
Do iXml.$loadbinary(,cErrorText,cSearchDir) Returns #1
If #1=0

Do $cinst.$showmessage(cErrorText)
Else

Do iXml.$savetree(iList, cErrorText, iExpanded, iIgnoreDocElem, iSkipWhitespace) Returns #1
If #1=0
Do $cinst.$showmessage(cErrorText)

End If
Do $cinst.$redraw()

End If

The first parameter of the $savetree()method is anOmnis list variable. When themethod is executed the list is populatedwith the XML
data from the document object. The list has a number of columns that are required to draw the tree list. The columns are: nodeType,
path, value, attributes, iconid, ident, canedit, flags, and textcolor which are required to draw the tree list.

Document Templates

If you wish to build a document containing an XML construct such as a DTD or something that cannot be built using oXML, then
provided that this information is fixed for each XML document, you can handle this by using a document template. The approach to
building a document becomes:

1. Load the document template; this may contain an inline DTD or link to external DTD file, for example.

84



Figure 29:

2. Add information to the document (elements, text etc.).

3. Save the document.

Character Sets and Unicode

XMLdocuments cancontain characters fromany language including those representedbyUnicode. oXMLonlyworkswithdocuments
that contain characters that canbe converted to the local codepage of the environment inwhich Studio is running, for example, under
Windows the ANSI character set is used. Documents containing other characters can be loaded, but will not have the correct data
when used in Omnis Studio.

Removing Invalid Characters

You can use the static function $removeinvalidcharacters to remove invalid characters from XML data.

• $removeinvalidcharacters
$removeinvalidcharacters(&xData,iEncoding,iReplaceChar,&cErrorText) discards or replaces invalid XML characters in xData and
returns the number of characters discarded or replaced, or NULL and cErrorText if an error occurs.
xData: The data to check for invalid XML characters.
iEncoding: The encoding of the xData parameter. One of kUniTypeAuto (defaults to kUniTypeUTF8 if encoding cannot be de-
termined), kUniTypeUTF8, kUniTypeUTF16[BE|LE], kUniTypeUTF32[BE|LE], and kUniTypeNativeCharacters.
iReplaceChar: Either -1 meaning discard invalid XML characters or the value of the character (0-255) used to replace the invalid
XML characters.
cErrorText: Receives error text if an error is returned.

Invalid XML characters are deemed to be characters less than space, that are not tab, carriage return or linefeed.

Creating XML documents

The oXML external component makes the handling of XML documents simple within an Omnis application. It treats each node as a
separate object, enabling easy searching and manipulation of these nodes within the document. To create an XML document you
need to create an Omnis Object with the subtype DOM document object and add different elements to the object. You can do this
using the methods built into the document object.

Creating an XML Document

To create an XML document, first you must create a DOM document object (in the method editor Variable pane, Type is Object, and
Subtype is under external objects -> DOM document, as described earlier in this manual). This is themaster object of your document,
and allows you to create, search, edit and delete all types of nodes within your document.

85



Adding an Element

Your XMLdocumentwill bemadeupof several ‘elements’. Each elementmust have aname, butmay also have several other properties
associated with it, such as attributes, text, and comments. These will be discussed later.

Each element may also contain other elements (known as its children), thereby creating the tree type structure associated with the
XML document.

Elements (and all other objects) are created by the DOMdocument object using its $createXXX() methods. For example, the following
method returns an element object, oRoot, named ‘Root’:

# Define oXML as Object, with subtype DOM document object
# Define lError as Character
# Define oRoot as Object, with subtype DOM Element object
# Define oObj as Object, no subtype
Do oXML.$createelement('Root',lError) returns oRoot

Once you have created an element object, youmust insert it into the document. This must be done from the element object that will
become the parent of the element you are about to add. The element object has two methods for this:

• $appendchild()
inserts the element at the end of its list of children.

• $insertbefore()
inserts the element before the stated object.

As there are no elements when you create your first element, youmust use the DOM document object as its parent: this creates what
is known as the ‘Root’ element, of which there can only be one, and all other elements are descendants of this.

Do oXML.$appendchild(oRoot ,lError)
Do oXML.$createelement('Element1' ,lError) returns oObj
Do oRoot.$appendchild(oObj, lError)

The above method inserts the Root element into the document, then creates another element (Element1), which it returns in oObj
(since oObj has no subtype, its type is defined when it has an object assigned to it; this keeps the number of variables down). The
element is then inserted as a child of oRoot.

Properties of Elements

Although you have now added some elements, they contain no information. An elementmay have various properties associatedwith
it. These are all added as children of the element, in the sameway that elements are added as children of their parent elements. These
may be added before or after inserting the element.

Adding Text

There are two possible ways of displaying text, parsed and unparsed. The usual method is parsed, which means your XML parser will
evaluate the text. For example, “Apples & Pears” will be equated to “Apples & Pears”. Using unparsed will not evaluate the text and so
will express it literally, in this case, “Apples & Pears”.

# to create PARSED text
Do oXML.$createtextnode("Apples & Pears", lError) Returns oObj

# to create UNPARSED text
Do oXML.$createcdatasection("Apples & Pears", lError) Returns oObj

Will create a text node containing the text, then to add it to the element oElement:

Do oElement.$appendchild(oObj, lError)

86



Adding Attributes

Attributes are added in a very simple manner. They require just a name and a value, and are added to the element with its $setat-
tribute() method, as follows:

Do oElement.$setattribute("Colour","red",lError)

This will add the attribute Colour = “red” to the element oElement. You can use this methodmany times to addmultiple attributes to
the same element. Attributes can also be added using the usual method, such as oXML.$createattribute(), then the attribute is added
as a child of element.

Adding Comments

Comments are not processed by XML parsers, but are present only to improve readability of the XML document. They follow the
general form:

Do oXML.$createcomment("Your comment here", lError) Returns oObj
Do oElement.$appendchild(oObj, lError)

Processing Instructions

Processing instructions are used in XML as a way to keep processor-specific information in the text of the document. They store a ‘tar-
get’ anda value topass that target. Again, these are created in the samewayas theother objects, that is, oXML.$createprocessinginstruction(),
then the processing instruction is added as a child of an element.

Entities

Entities are declared in the DOM document’s DocumentType object. The oXML component is based on DOM level 2, which does not
support the editing or creation of DocumentType objects. Therefore, the oXML component only allows the reading of entities already
defined in an existing XML document.

Saving the XML File

Once you have created your DOMdocument inOmnis, with all the elements and so on in place, you need to save the document object
to an .xml file. To do this, you can use the $savefile() method in the DOM document object.

Do oXML.$savefile("C:\MyFolder\MyXML.xml", lError, kFalse, XMLFormatFull)

The last argument of the $savefile() method allows you to specify the formatting of the output XML file. The formatting options let
you specify whether or not to add carriage returns and line feeds, and to remove spaces, etc. Different parsers may require different
formatting settings to display your XML file.

Chapter 6—oProcess

About oProcess

oProcess is a Worker Object (external component) providing a simple interface to launch and manage other processes, executables
and applications, thereby providing you with greater interoperability from within Omnis Studio.

You can interactwith oProcess using the standardworkermethods, e.g. $init(), $run(), etc, which are describedbelow, plus the external
component has the common worker properties which are described here.

87

/developers/resources/onlinedocs/ExtendingOmnis/07webcomms.html#base-worker-properties


Properties

The oProcess object has the following properties:

Property Description

$callbackinst Sets the instance that will receive a worker’s callbacks
$cancancel If kFalse, you can only cancel the worker forcefully.

Defaults to kTrue
$elapsed Seconds elapsed since the worker’s process was

launched. Stops counting when the process returns an
exit code

$pid The worker’s process identification
$exitcode The worker’s process exit code
$timeout Seconds the worker’s process is allowed to run before

getting cancelled. Defaults to 0 (no timeout)
$eol End-of-line character which when encountered, a

callback to the appropriate stream the worker’s process
wrote to is executed. Defaults to kLf for Linux and
macOS and kCr,kLf for Windows. Setting $eol to an
empty string i.e. eol.assign(“”) will cause an immediate
callback to the stream the worker’s process has written
to

$state Returns the worker’s current state
$errortext Returns the error text associated with the last action
$threadcount Returns the number of active background threads for

all worker instances
$errorcode Error code associated with the last action

Methods

$init()

$init(cProcess [,rArguments, cInitialDirectory, lEnvironment])

Initialises the worker to launch process in cProcess parameter. Use the rArguments row parameter to pass arguments to the process.
cInitialDirectory canbeused to launch theprocesswith adifferent current directory. lEnvironment is a two-column list of environment
variables and their values to be used during the process’ runtime. For example, launching the following process:

proc.$init(‘/bin/echo$TEST’„,list(row(“TEST”,“Hello world!”)))

will result in callback to $stdout with “Hello world!” in the stdout column.

$run()

Runs the process on the worker’s main thread, therefore blocking code execution until the process returns. Should be avoided, unless
there are specific synchronous requirements.

$start()

Starts the process on the worker’s background thread (non-blocking).

$cancel()

$cancel([bForce=kFalse])

Cancels the worker’s process. Pass kTrue for bForce parameter to close the process forcefully (currently supported only on Linux and
macOS, sends SIGTERM signal). If bForce is kFalse, a SIGINT signal is sent. Note: if $cancancel property is kFalse and bFore is kFalse,
the call to $cancel will be ignored: use kTrue for bForce to override the $cancancel property.

88



$completed()

$completed(wResults)

Callback method when the worker has finished running. wResults is a row with a retcode column containing the return code of the
process and runtime_seconds column containing the seconds the process was alive for.

$cancelled()

Callback method when the worker’s process has been cancelled.

$started()

Callback method when the worker’s process has started and can now write to stdin. You can use this callback to work with processes
that expect input as soon as they start running, e.g. when they prompt for a password.

$isrunning()

Returns kTrue if the worker’s process is running, meaning that is has a PID greater than 0.

$stdout()

$stdout(wResults)

Callback method when worker’s process writes to the stdout stream. wResults is a row with a stdout column containing the text the
worker’s process has written.

$stderr()

$stderr(wResults)

Callback method when worker’s process writes to the stderr stream. wResults is a row with a stderr column containing the text the
worker’s process has written.

$write()

$write(cCharacters)

Writes cCharacters to the stdin stream of the worker’s process.

$readlines()

$readlines(iStream [,nLines=0])

Returns a list containing all the lines written to kOProcessStd… stream, starting from the beginning of the stream. Use optional
parameter nLines to limit the number of lines returned. For example:

$readlines(kOProcessStdin, 3)

will return the first 3 lines of the stdin stream.

iStream for $readlines() and $readtail() can be one of the following constants:

Constant Description

kOProcessStdin Identifier for the stdin stream
kOProcessStdout Identifier for the stdout stream
kOProcessStderr Identifier for the stderr stream

89



$readtail()

$readtail(iStream [,nLines=0])

Returns a list containing all the lines written to kOProcessStd… stream, starting from the end of the stream. Use optional parameter
nLines to limit the number of lines returned. For example:

$readlines(kOProcessStdout, 3)

will return the last 3 lines of the stdout stream.

Using oProcess

Using the $init method you can run multiple bash commands as follows:

proc.$init("/bin/bash",row("-c","echo hey && echo hey2"))

or without using the arguments parameter

proc.$init("/bin/bash -c 'echo hey && echo hey2'")

OnmacOS and Linux, you can run processes as the root user as follows:

proc.$init("/usr/bin/sudo",row("-S","/usr/bin/whoami"))

and when the $started callback is received, call proc.$write(con(“password”,kLf)) to respond with the password. In this case, you will
receive a call to $stdout with the stdout column containing “root”, indicating that process is running with higher privileges.

On Windows, you cannot elevate the currently running process since the underlying APIs that make use of RunAs cannot redirect
the stdout and stderr streams, suggesting that you cannot directly capture the output streams of an elevated process from a non-
elevated process. Although the best way to ensure the elevated privileges are transferred to the process launched is to run Omnis
with elevated privileges, you could do:

proc.$init('powershell.exe start powershell -Verb runAs -ArgumentList \"net session\" -WindowStyle hidden -Wait')

to execute something as admin when Omnis is not running as admin, but you will not get the $stdout or stderr callbacks and you will
not be able to use $write to the elevated process, making it a run-and-forget process.

Chapter 7—OW3Worker Objects

You can build “low-level” Web- and Email-based communications into your Omnis applications using a number of different tech-
niques or commands: this includes support for HTTP, SMTP, POP3, IMAP, and FTP communications and protocols; with the addition
of JavaScript (Node.js), CRYPTO, HASH, and OAUTH2 in Studio 10, and LDAP and Python in Studio 11.

IMPORTANT:We recommend you use the OW3Worker Objects (OW3) for all new development, since the older WebWorker Objects
(OWEB) and the External commands are no longer supported.

The technique you choose to implement such support will depend on the breadth of support you require and the version of Omnis
Studio you are using. The following techniques are available:

External package Supported protocol Omnis Studio version Implementation

OW3Worker Objects (OW3) HTTP, SMTP, FTP & SFTP, IMAP,
JavaScript (Node.js), POP3, CRYPTO,
HASH(1) OAUTH2(2) LDAP, Python(3)

(1) Studio 10(2) Studio 10.2(3) Studio 11 Objvar.$method

OW3Worker Objects (OW3) HTTP, SMTP, FTP (not secure), IMAP Studio 8.1 Objvar.$method
WebWorker Objects (OWEB) HTTP, SMTP Studio 6.1.2 Objvar.$method

90



External package Supported protocol Omnis Studio version Implementation

External Commands(Note these are
obsolete in Studio 10 or above and are
no longer available)

HTTP, FTP, SMTP, POP3, and IMAP Studio 1.x (previously calledWeb Enabler in
Omnis 7)

External Commands group; name
prefixed with protocol name,
e.g. HTTPGet

Example Apps

There is an example app for most of theOW3Worker Objects available in the Samples group under the Hub in the Studio Browser to
demonstrate the use of theOW3Worker Objects; search for “worker” in the search box (in thewindow title bar/toolbar) under Samples
in the Studio Browser. There are examples for: Crypto, FTP, Hash, HTTP, IMAP, POP3, SMTP, JS Worker, and LDAP.

Using the OW3Workers

Using the OW3 Worker Objects you can execute a potentially long-running task on a background thread, such as running a large
mailshot, that reports back to the main thread when the task is complete. Indeed, the OW3 workers allow you to execute multiple
tasks simultaneously allowing you to increase the efficiency and workload of your app.

The OW3worker objects use the open-source CURL library, and native secure connection implementations for Windows andmacOS,
so they should have fewer deployment issues than the implementations available in previous versions.

Theweb and email commands in any of theOW3Workers are accessed via one of theWorker Objects available under theOW3Worker
Objects group in the Object Selection dialog in the Method Editor (do not use theWeb Worker Objects group which contains the
old OWEB worker objects). To use the web and email commands, you need to create an Object variable and set its subtype to one
of the OW3 worker objects, such as HTTPClientWorker or FTPClientWorker, under the OW3Worker Objects group. Alternatively, you
can create anObject class and set its superclass to one of the OW3worker objects, then create an Object variable or Object reference
variable and set its subtype to the object class name. Having created the variable you can call the web or email commands (methods)
using OBJECTVAR.$methodname.

All OW3WorkerObjects share the samebase functionality, plus they have additional functions specific to their respectiveweb or email
protocol.

HTTP/2 support

From Studio 11, the OW3Workers support HTTP/2 which is more secure than HTTP as it uses binary protocols instead of plaintext, and
is generally faster and more efficient for web communication.

The nghttp2 open source library is included to accommodate HTTP/2 support, and various libraries have been updated including: zlib,
mbedTLS, libssh2, and libcurl; if your application usesOW3 your product licensing should include the appropriate third-party licensing.

Base Worker Properties

All OW3 worker objects have the following properties:

Property Description

$callprogress If true, and the worker is invoked to execute asynchronously using
$start, the worker periodically generates a notification to $progress
as it executes. Must be set before calling $start.The $progress
method is described in the Methods section below.

$curloptions Use this property to set internal CURL options not otherwise
exposed by the worker. A two-column list, where column 1 is a
number (the CURL easy option number) and column 2 is a string.
The internal option must use either an integer or string
value.Normally, you would not use this property, but if you do use it,
you will need to consult the libcurl header files and documentation
to obtain easy option numbers and values. You should use this
option with care, as there is a chance you could cause Omnis to
crash by passing an incorrect option value.

91



Property Description

$errorcode Error code associated with the last action (zero means no error)
$errortext Error text associated with the last action (empty means no error)
$protocollog If non-zero, the worker adds a log of protocol activity as a column

named log to its wResults row. The desired value must be set before
calling $run or $start. Defaults to kOW3logNone. Otherwise, a sum
of kOW3log… constants; see below

$state A kWorkerState… constant that indicates the current state of the
worker object, one of the following: kWorkerStateClear,
kWorkerStateInit, kWorkerStateCancelled, kWorkerStateRunning,
kWorkerStateComplete

$threadcount The number of active background threads for all instances of this
type of worker object. In this case, type means the type of the
subclass of the common base class e.g. HTTP

$timeout The timeout (in seconds) for requests. Zero means requests do not
time out. The desired value must be set before calling $run or $start.
Defaults to 10

Request Completion

The $alwaysfinish property allows asynchronous requests to continue to completion after the instance containing the OW3 object
destructs; the property only applies to the HTTP, IMAP, SMTP, POP3 and FTP workers.

When the instance containing an OW3 worker closes, and the OW3 worker is executing via a call to $start(), the worker thread contin-
ues executing until completion in the background: in this case, no notifications will be generated, as there is not a suitable instance
to receive them.

Note that even if $alwaysfinish is true, if you shut down Omnis before the request has completed, OW3 will cancel the request so that
shutdown works correctly.

Base Worker Constants

Protocol Logging

OW3 worker objects can all use these constants to control protocol logging. Sum the constants to select the desired logging.

Constant Description

kOW3logNone No protocol logging occurs. Obviously,
this value needs to be used on its own

kOW3logBasic Basic protocol information such as
headers is logged

kOW3logData Application data sent or received is
logged up to a maximum of 16k for each
direction. If the data is not consistent
with UTF-8 encoding, it is logged as a
binary dump format rather than
character

kOW3logSecureData Secure connection data is logged
kOW3logHTML The content of the generated log is

HTML rather than plain text. This can be
written to a file and displayed using
OBROWSER onWindows and macOS
platforms

Base Worker Methods

All OW3 worker objects have the methods described in this section. There are normal methods that you call, and callback methods
that you override to receive a notification.

92



Normal methods

$run

The $runmethod runs the worker on themain thread. Returns true if the worker executed successfully. The callback $completed will
be called with the results of the request.

$start

The $start method runs the worker on a background thread; can be called multiple times to run different threads simultaneously to
perform different tasks at the same time. Returns true if the worker was successfully started. The callback $completed will be called
with the results of the request, or alternatively $cancelled will be called if the request is cancelled.

$cancel

The $cancel method cancels execution of worker on a background thread. Will not return until the request has been cancelled.

$getsecureoptions

The $getsecureoptions method gets the options that affect how secure connections are established.

OW3.$getsecureoptions([&bVerifyPeer,&bVerifyHost,&cCertFile,&cPrivKeyFile,&cPrivKeyPassword])

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

bVerifyPeer If true, the worker verifies the server certificate. The
default is true, and this results in greater security

bVerifyHost If true, the worker verifies that the server certificate is for
the server it is known as. The default is true, and this
results in greater security

cCertFile For macOS, the pathname of the .p12 file containing the
client certificate and private key, or its keychain name.For
other platforms, the pathname of the client certificate
.pem file. Empty if a client certificate is not required

cPrivKeyFile Ignored on macOS.For other platforms, the pathname of
the private key .pem file. Empty if a client certificate is
not required

cPrivKeyPassword The private key password. Empty if a client certificate is
not required

$setsecureoptions

The $setsecureoptions method sets the options that affect how secure connections are established (call $setsecureoptions before
calling $run or $start).

OW3.$setsecureoptions([bVerifyPeer=kTrue,bVerifyHost=kTrue,cCertFile='',cPrivKeyFile='',cPrivKeyPassword=''])

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

bVerifyPeer If true, the worker verifies the server certificate. The default is true, and this
results in greater security

93



Parameter Description

bVerifyHost If true, the worker verifies that the server certificate is for the server it is known
as. The default is true, and this results in greater security

cCertFile For macOS, the pathname of the .p12 file containing the client certificate and
private key, or its keychain name. For other platforms, the pathname of the
client certificate .pem file. Empty if a client certificate is not required

cPrivKeyFile Ignored on macOS. For other platforms, the pathname of the private key .pem
file.Empty if a client certificate is not required

cPrivKeyPassword The private key password. Empty if a client certificate is not required

$parserfc3339

The $parserfc3339() static method returns an Omnis date-time value from a RFC3339 formatted time.

OW3.$parserfc3339(cRfc3339[,bUTC=kTrue,&iOffset,&cErrorText])

Parses a date and time value conforming to RFC3339 and returns an Omnis date-time value and optionally the time zone offset in
minutes.
Returns #NULL if the string cannot be parsed.

The parameters are:

Parameter Description

cRfc3339 a date and time string conforming to
RFC3339

bUTC If true, the returned date-time value is in
UTC rather than the local time zone of the
RFC3339 date-time value

iOffset If the RFC3339 date and time string is
parsed successfully this receives the time
zone offset in minutes

cErrorText If supplied, receives text describing the
error that caused $parserfc3339 to return
#NULL

$splitmultipart

Allows you to split multipart content of a rest call, plus the MIME list returned by the OW3methods that contain body part headers.

OW3.$splitmultipart(cContentType, xContent, &lMIMEList [,iDefCharSet=kUniTypeUTF8, &cErrorText])

SplitsMIME-encodedmulti-part xContent into lMIMEList.cContentTypemust includeaboundaryparameter. Returns true if successful.
The parameters are:

Parameter Description

cContentType The content type header (must contain a boundary parameter)
xContent The binary content to split
lMIMEList Receives the MIME list created by splitting the MIME content. See

the documentation for the MailSplit command to see how a MIME
list is structured; however note that the charset in the OW3 MIME
list is a kUniType… constant

iDefCharSet The default character set used to convert character data when
there is no charset specified for a MIME text body part. A kUniType…
constant (not Character/Auto/Binary)

&cErrorText If supplied, receives text describing the error that caused
$splitmultipart to return false

94



TheMIME list (for this call and for the other OW3 calls that generate a MIME list) now contains an additional column named bodypart-
headers. This is a row containing a column for each non-empty header present for the body part. In addition, it has a column named
“name” which contains the content-disposition header name parameter. All header names are normalized in the same way as those
passed to RESTful services, that is, lower-case with any - characters removed.

Callback methods

$completed

When aworker is started using either $run or $start, it reports its completion by calling $completed. Override the $completedmethod
of the worker object to receive this notification. It is called with a single row variable parameter. The columns of the row are specific
to each type of worker object, so they are described in each specific worker object section.

$cancelled

To receive a notification that a request has been cancelled using $cancel, override the $cancelled method of the worker object. It is
called with no parameters.

$progress

To receive progress notifications, override the $progress method of the worker object. OW3 worker objects generate notifications to
$progress as and when some data has been transferred. Progress notifications will not be generated any more than once a second.
Each notification receives a row variable parameter. The row has 4 columns.

Column Description

downloadTotalBytesExpected The total number of bytes expected to be
downloaded from the server. This may always be
zero, for example when the server is using
chunked HTTP transfer encoding

downloadBytesSoFar The number of bytes downloaded from the
server so far

uploadTotalBytesExpected The total number of bytes expected to be
uploaded to the server

uploadBytesSoFar The number of bytes uploaded so far

For the OW3 FTP worker, $progress can be called for synchronous operations.

OAUTH2 Worker Object

Support for OAUTH2 authorization has been added to Studio 10.2 by adding a new OAUTH2Worker Object in the OW3Worker object
package, while theHTTP, IMAP, POP3, and SMTPworkers have beenmodified to support OAUTH2 authorization via the newdedicated
worker object.

Why use OAUTH2

OAUTH 2.0 providesmuch improved security over and above simple username and password schemes. It is commonly used bymany
different service providers, such as Google mail, for which its use will become mandatory in 2020 (meaning less secure apps will no
longer be supported). You can read about OAUTH 2.0 in RFC 6749 (https://tools.ietf.org/html/rfc6749)

An application wishing to use a service (using HTTP, IMAP, POP3, or SMTP) requires an Access Token of type “bearer”. The application
needs to be registeredwith the service, so it can identify itself to the service, and the registration process provides the applicationwith
a Client Id and a Client Secret, that identify the application to the service.

As an initial step, the user of the service must authorize the application to use the service. To do this:

• The application opens a Web browser at the Authorization Endpoint (a URL) of the service.

• The authenticated user agrees that the application can access the service.

95

https://tools.ietf.org/html/rfc6749


• The server hosting the Authorization URL redirects the browser to a URL supplied when opening theWeb browser. This request
contains an Authorization Code.

• The application makes a request to the Token Endpoint (a URL) sending it the Authorization Code.

• The server hosting the Token URL returns various pieces of information to the application, including: Access Token, Expiry of
Access Token (recommended but not mandatory), Refresh Token (optional).

At this point, the application can use the Access Token to make requests to the service. Access Tokens are short-lived, typically being
valid for about an hour. If the Token URL server also returned a Refresh Token, the application can use that after the Access Token
has expired to obtain a new Access Token, without any further interaction with the user. Refresh Tokens typically have a long lifetime,
but may be invalidated for various reasons, depending on the service implementation.

Obtaining Authorization

The OAUTH2 Worker allows you to obtain an Authorization Code, exchange it for tokens, and refresh tokens, using the $authorize()
method on a background thread. The worker also containsmethods to save and load the tokens and other related information to and
from an encrypted binary block of data, which helps to protect key pieces of information such as the Refresh Token and Client Secret.

Note that youmust always use an Object Reference to create the OAUTH2Worker object – this eliminates potential issues with the
way Omnis uses the OAUTH2Worker as a property value.

The object reference to an OAUTH2Worker object containing the authorization information can be passed to the $oauth2 property in
the HTTP, IMAP, POP3, and SMTPWorkers to provide authorization.

The $addclientdetailstotokenrequest boolean allows you to include or remove client credentials from the body of a token request
(when Omnis exchanges the authorization code for the access token).

OAUTH2 Properties

These properties are specific to OAUTH2.

Property Description

$accesstoken The access token to be used with HTTP, IMAP, POP3
and SMTP connections

$accesstokenexpiry The expiry date and time of the access token (in UTC
time). #NULL means no access expiry date and time is
available

$addclientdetailstotokenrequest If kTrue (default), the client id and client secret are
added to the body of the request to get the token. If
kFalse, the client id and client secret are not added to
the token request

$authorizeurl The URL of the OAUTH2 authorization endpoint
$clientid The Client Id used in conjunction with the client secret

to identify the application to the OAUTH2 authorization
server

$clientsecret The Client Secret used in conjunction with the Client Id
to identify the application to the OAUTH2 authorization
server

96



Property Description

$redirecturiserveraddress If not empty (the default value), this property overrides
localhost in the redirect URI server address, replacing
localhost with the value of this property. The default is
localhost rather than 127.0.0.1 when generating redirect
URIs when running in a thick client remote task. If
using the default redirect URI, Omnis will pass
localhost[:$serverport]/api/__oauth2/omnis to the
service | | $refreshtoken | The Refresh Token to be used
to request a new access token after the access token
has expired | | $scope | A string identifying the type of
access required. Used as part of the URL used to open
the Web Browser at the authorization endpoint. For
example, when using Google to access GMAIL, specify
the scope as “https://mail.google.com/” | | $tokenurl |
The URL of the OAUTH2 token endpoint | | asof 35659
$oauth2state | Custom content to be appended to the
32-character UUID in the state query string parameter |

HTTP and General Properties

In addition to the OAUTH2 properties, the OAUTH2Worker also has various HTTP and general OW3 properties, that for example affect
how the HTTP requests it makes are executed: the OAUTH2Worker makes two different HTTP requests: a request to exchange an
Authorization Code for an Access Token, and a request to obtain a new Access Token using the Refresh Token.

Property Description

$errorcode Error code associated with the last action (zero means
no error)

$errortext Error text associated with the last action (empty means
no error)

$followredirects If true, the HTTP request will follow a server redirect in
order to complete the request. Defaults to false

$proxyserver The URI of the proxy server to use for all requests from
this object e.g. http://www.myproxy.com:8080. Must be
set before executing $run or $start. Defaults to empty
(no proxy server)

$proxytunnel If true, and $proxyserver is not empty, requests are
tunnelled through the HTTP proxy

$proxyauthtype The type of HTTP authentication to use when
connecting to $proxyserver. A kOW3httpAuthType…
constant (see below)

$proxyauthusername The username used to authenticate the user when
connecting to $proxyserver using $proxyauthtype

$proxyauthpassword The password used to authenticate the user when
connecting to $proxyserver using $proxyauthtype

$state A kWorkerState… constant that indicates the current
state of the worker object

$threadcount The number of active background threads for all
instances of this type of worker object

$timeout The timeout (in seconds) for requests. Defaults to 60
with a minimum value of 10

$protocollog If non-zero, the worker adds a log of protocol activity as a
column named log to its wResults row. The desired value
must be set before calling $run or $start. Defaults to
kOW3logNone. Otherwise, a sum of kOW3log…
constants

97



OAUTH2 Standard Methods

$authorize

$authorize([iAuthFlow=kOW3OAUTH2authFlowCodeWithPKCE])

Starts the OAUTH2 authorization flow iAuthFlow on a background thread. Returns true if the thread was successfully started. Proper-
ties of the object cannot be assigned while $authorize() is running.

$authorize() opens aWebBrowser at the authorization URL, passing theURL various parameters in the query string, such as the Client
Id using the value of the $clientid property.

How the Web Browser is opened depends on the context in which $authorize() is called.

When executed within the context of a thick client (non-remote) task, $authorize() uses the $webbrowser property to control which
browser it opens (note that you cannot use $authorize() with a thick client task when running in the headless server). It should be
noted that when running in the thick client, $authorize() always uses a web browser rather than an embedded obrowser control due
to best practice considerations documented in RFC 8252: https://www.rfc-editor.org/rfc/rfc8252.txt

To use $authorize() in the Runtime version of Omnis, youmust set the disableInRuntime item in the ‘server’ section of the config.json
file to false.

When executed within the context of a remote task, $authorize() will only work if the remote task is a JavaScript Client remote task.
In this case, it uses the $showurl() mechanism of the JavaScript Client to open a browser window or tab. Note that in this case, you
cannot execute both $authorize() and $showurl() in response to the same JavaScript client event.

When using the authorization flows that redirect the browser to a URI, $authorize() determines the redirect URI as follows.

For the thick client, it uses a loopback URI, to 127.0.0.1. Note that if the version of Omnis is not a server version, Omnis will still open a
server port with limited support for OAUTH2 only, to allow the Authorization Code to be received via the redirect URI.

For the JavaScript client, $authorize() uses the RESTful URI determined from the Omnis server configuration. Note that this means
that if you are using aWeb Server to handle requests for your Omnis server, you need to set up the OmnisWeb Server plugin for both
the JavaScript client and RESTful requests.

$authorize() takes a singleparameter, iAuthFlow,which canhaveoneof the followingconstant values (kOW3OAUTH2authFlowCodeWithPKCE
is the default):

Constant Description

kOW3OAUTH2authFlowCode The normal OAUTH2 authorization flow, where the
authorization code will be received by redirecting the
browser to a URI served by Omnis

kOW3OAUTH2authFlowCodeWithPKCE Identical to kOW3OAUTH2authFlowCode, except that
the worker uses PKCE to further secure its requests for
an authorization code; the default iAuthFlow (see
https://tools.ietf.org/html/rfc7636)

kOW3OAUTH2authFlowManualCode Like kOW3OAUTH2authFlowCode, except that the
redirect URI is urn:ietf:wg:oauth:2.0:oob. This means
that instead of the authorization code arriving at Omnis
via the redirect URI, the user must copy the
authorization code to the clipboard from the browser
window, and paste it into Omnis or the JavaScript
client; after pasting, the Omnis application must call
the method $setauthcode() (described below)

kOW3OAUTH2authFlowManualCodeWithPKCE Like kOW3OAUTH2authFlowManualCode, but also uses
PKCE

Note that you would normally use PKCE unless the service does not support it.

Manual code support, via the clipboard, is provided in case you do not want to open up a port for the redirect URI when running in
the thick client; however, note that not all services support the redirect URI urn:ietf:wg:oauth:2.0:oob.

When $authorize() completes (which if successful means that is has opened the browser, received the Authorization Code, and ex-
changed it for an Access Token etc) it generates a call to the callback method $completed().

98

https://www.rfc-editor.org/rfc/rfc8252.txt


$setauthcode

$setauthcode(cAuthCode)

Returns Boolean true for success.

Only applicable to kOW3OAUTH2authFlowManualCode and kOW3OAUTH2authFlowManualCodeWithPKCE, when the $authorize()
thread iswaiting for theAuthorizationCode. Called from the application to supply thepastedAuthorizationCodeusing the cAuthCode
parameter.

$save

$save(&xOAUTH2[,xKey])

Saves the properties ($clientid, $clientsecret, $authorizeurl, $tokenurl, $scope, $accesstoken, $refreshtoken and $accesstokenexpiry)
to the encrypted binary buffer xOAUTH2.

xKey is a 256 bit AES encryption key. If you omit xKey, OW3 uses a hard-coded default key.

Returns Boolean true for success.

$save provides a convenient way to save all of the OAUTH2 parameters required for communicating with a service. In particular, it lets
you safely store the Refresh Token, so you can minimise the number of occasions on which a user needs to authorize access using
$authorize().

You can further protect your client secret, by including the encrypted buffer generated by $save in your release tree.

$load

$load(xOAUTH2[,xKey])

Loads the properties ($clientid, $clientsecret, $authorizeurl, $tokenurl, $scope, $accesstoken, $refreshtoken and $accesstokenexpiry)
from the encrypted binary buffer xOAUTH2 previously generated using $save().

xKey is a 256 bit AES encryption key. If you omit xKey, OW3 uses a hard-coded default key. You must use the same key as that used
when calling $save().

Returns Boolean true for success.

Grant Types

From Studio 11, the OAUTH2 Worker supports multiple grant types: authorization_code, password, and client_credentials (as per RFC
6749 sections 4.1, 4.3 and 4.4).

The $granttype property takes one of the following grant types:

• kOW3OAUTH2grantAuthorizationCode (the default)
the Authorization Code grant type (behaves as previous versions)

• kOW3OAUTH2grantPassword
the Password grant type requires the new $username and $password properties to be specified

• kOW3OAUTH2grantClientCredentials
the Client Credentials grant type requires $clientid and $clientsecret

The $granttype property is set to kOW3OAUTH2grantAuthorizationCode by default which corresponds to behavior versions prior to
Studio 11, so existing code should run as before.

When $granttype is set to kOW3OAUTH2grantPassword, the $password and $username properties can be used to retrieve an autho-
rization token. However, this is deemed to be insecure, when compared to more secure methods, and should not be used (unless a
legacy system requires it).

When $granttype is set to kOW3OAUTH2grantClientCredentials, the properties $clientid and $clientsecret are used to obtain the
authorization token. Note that when using this grant type, the OAUTH2 servermay not return a refresh token (as per RFC 6749 section
4.4.3).

99



Adding custom content to OAUTH2 state parameter

The $oauth2state property can contain custom content to be appended to the 32-character UUID in the state query string parameter
of the request, allowing you to identify requests sent frommultiple instances of Omnis.

If you are handling this on a reverse proxy, you will have to URL-decode and look for your value after the first 32 characters, but it is
important when proxying off the request to keep the UUID in the state, otherwise Omnis will not be able tomatch the callback to the
initiated request.

OAUTH2 Callback Methods

$tokensrefreshed

The OAUTH2Worker has one non-standard callback method, $tokensrefreshed. The OAUTH2Worker generates a call to this method
after it has successfully refreshed the tokens while it is being used in conjunction with the HTTP/IMAP/POP3/SMTP worker.

$tokensrefreshed() is called with no parameters; at this point, the worker has been updated with the new Access Token, Access Token
Expiry and Refresh Token. A typical implementation of $tokensrefreshed() would use $save() to save the current tokens etc and then
write the encrypted buffer to disk. It should be noted that calling the server to refresh tokens can result in a different updated Refresh
Token - this needs to be used to refresh tokens the next time a refresh is required.

HTTP and General Methods

The OAUTH2Worker supports the normal methods $cancel(), $getsecureoptions() and $setsecureoptions(). The latter two relate to
how secure connections to the Token URL are established.

HTTP Callback Methods

The OAUTH2Worker generates calls to the standard callback methods $cancelled() and $completed(). These correspond to a call to
$authorize() to start the authorization code flow. The completion row passed as a parameter to $completed() has columns as follows:

Column Description

errorCode An integer error code indicating if the request was
successful. Zero means success. If successful,
$accesstoken, $accesstokenexpiry and
$refreshtoken have been updated using the
content received from the server; if no Access
Token Expiry was received, $accesstokenexpiry is
#NULL; if no Refresh Token was received,
$refreshtoken is empty

errorInfo A text string providing information about the error
if any

scope The scope returned from the server when
requesting the Access Token, if different to the
requested scope

log If you used $protocollog to generate a log, this
column contains the log data, either as character
data, or UTF-8 HTML. Otherwise, the log column is
empty

HTTP, IMAP, POP3, and SMTP Workers

Once you have used $authorize() to obtain an Access Token, you need to make the Access Token available to the worker with which
OAUTH2 authorization is required. You do this by assigning a new $oauth2 property of the HTTP, IMAP, POP3, or SMTP worker:

• $oauth2
Property that is an object reference to an OAUTH2Worker object containing the authorization information required to make
requests to the server. Clear this property by assigning#NULL to it. $authorize() cannot runwhile theOAUTH2Worker is assigned
to $oauth2

100



The supported workers use $oauth2 to obtain the Access Token for the request. To do this, it uses the following logic:

• If there is no Refresh Token ($refreshtoken is empty), it uses $accesstoken.

• If the $accesstokenexpiry is #NULL (there is no expiry date and time), it uses $accesstoken.

• If the expiry date time is more than 5 seconds away, it uses $accesstoken

• Finally, it uses $refreshtoken to refresh the token(s). If successful, it generates a call to $tokensrefreshed() in the OAUTH2Worker
and it uses the new $accesstoken

You should note that there is a chance the request will fail when it is made near to the 5 second window before the Access Token
expires. You should be prepared to handle this type of error in $completed, possibly retrying the request.

HTTP

After assigning $oauth2, the parameters iAuthType, cUserName, and cPassword passed to $init() are ignored in favour of using the
Access Token stored in $oauth2.

IMAP, POP3, SMTP

After assigning $oauth2, the cPassword parameter passed to $init() is ignored in favour of using the Access Token stored in $oauth2.
Note that cUserName is still required.

HTTP Worker Object

The HTTPClientWorker provides client HTTP support. For example, you can POST data to a server, execute a RESTful request, or
download a file from a server.

The HTTPWorker supports the following externals:

• curl version 7.84.0

• libssh2 version 1.9.0

• mbedTLS version 2.16.2

Properties

The HTTPClientWorker has the following properties in addition to the base worker properties described earlier:

Property Description

$followredirects If true, the HTTP request will follow a server redirect in order to complete the
request. The desired value must be set before calling $run or $start. Defaults
to false

$proxyserver The URI of the proxy server to use for all requests from this object
e.g. http://www.myproxy.com:8080. Must be set before executing $run or
$start. Defaults to empty (no proxy server)

$proxytunnel If true, and $proxyserver is not empty, requests are tunnelled through the
HTTP proxy

$proxyauthtype The type of HTTP authentication to use when connecting to $proxyserver. A
kOW3httpAuthType… constant. kOW3httpAuthType constants are described
in the Constants section below

$proxyauthusername The user name used to authenticate the user when connecting to
$proxyserver using $proxyauthtype

$proxyauthpassword The password used to authenticate the user when connecting to $proxyserver
using $proxyauthtype

$responsepath If not empty, the worker writes response content to the file with this path
rather then adding it to the wResults row. The file must not already exist. The
desired value must be set before calling $run or $start. Defaults to empty

101



Property Description

$oauth2 An object reference to an OAUTH2Worker object containing the authorization
information required to make requests to the server: see OAUTH2Worker
Object

Constants

The HTTPClientWorker uses the following constants, specified in the iMethod parameter in the $init method, in addition to the base
worker constants described earlier:

Constant Description

kOW3httpMethodDelete Sends a DELETE method
kOW3httpMethodGet Sends a GET method
kOW3httpMethodHead Sends a HEADmethod
kOW3httpMethodOptions Sends a OPTIONS method
kOW3httpMethodPatch Sends a PATCHmethod
kOW3httpMethodPost Sends a POST method
kOW3httpMethodPut Sends a PUT method
kOW3httpMethodTrace Sends a TRACEmethod
kOW3httpAuthTypeNone Indicates that no HTTP authentication is required (in this case a

user name and password do not need to be supplied)
kOW3httpAuthTypeBasic Indicates that basic HTTP authentication is required
kOW3httpAuthTypeDigest Indicates that digest HTTP authentication is required
kOW3httpMultiPartFormData Indicates that HTTP multipart/form-data content is to be sent

(this is described below)

Methods

HTTPClientWorker has the methods described in this section in addition to the base worker methods described earlier.

Normal methods

$init

$init(cURI [,iMethod=kOW3httpMethodGet, lHeaders=#NULL, vContent=‘’, iAuthType=kOW3httpAuthTypeNone, cUserName=’‘,cPassword=”])

Called to prepare the object to execute a request, before calling $run or $start; the URI is the only required parameter.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

cURI The URI of the resource, optionally including the URI scheme (http
or https) e.g. http://www.myserver.com/myresource. If you omit the
URI scheme e.g. www.myserver.com/myresource,the URI scheme
de-
faults to http. You can also includequery stringparameters if desired
e.g. http://www.myserver.com/myresource?param1=test&param2=test

iMethod A kOW3httpMethod… constant that identifies the HTTP method to
perform

102



Parameter Description

lHeaders A two-column list where each row is an HTTP header to add to the
HTTP request Column 1 is the HTTP header name e.g. ‘content-type’
and column 2 is the HTTP header value e.g. ‘application/json’. If you
do not supply the header “accept-encoding” the worker
automatically decompresses content compressed using gzip or
deflate; however, if you supply this header, the worker does not
perform automatic decompression

vContent kOW3httpMultiPartFormData or a binary, character or row variable
containing content to send with the request.
kOW3httpMultiPartFormData means send the content built using
the $multipart… methods described below. The worker sends
binary data as it is. The worker converts character data to UTF-8
and sends the UTF-8. A rowmust have a single column containing
the path of the file containing the content to send. If you do not
specify a content-type header in lHeaders, the worker will generate
a suitable type if it recognises the file extension when using a row,
or when using a character value it will use text/plain;charset=utf-8.
Otherwise, it will use application/octet-stream. In addition, the
worker will automatically add a content-length header, so there is
no need to pass this in lHeaders.From Studio 11, you can pass a raw
List or Row which the worker will subsequently transform into
JSON before executing the request. If a row is passed and it
contains only one column, which is a path to a file that exists, the
contents of the file will be used. If the file does not exist, the
contents of the row will be converted to JSON and sent with the
request. Code which passes JSON in a binary variable is not
affected. The lists can contain sub-lists as the worker supports both
JSON arrays of arrays, and arrays of objects

iAuthType A kOW3httpAuthType… constant that specifies the type of
authentication required for this request. If you omit this and the
remaining parameters, authentication defaults to
kOW3httpAuthTypeNone

cUserName The user name to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

cPassword The password to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

NOTE: If you call $init when a request is already running on a background thread, the object will cancel the running request, and wait
for the request to abort before continuing with $init.

Example

The following code could be used to prepare an HTTPClientworker object using $init, and then $run can be used to execute the HTTP
method. The method returns the content of the web page stored in iURI, e.g. ww.omnis.net.

# $execute method
Do method checkHttpObject ## sets up the HTTP object ref var
Do method setupLogging ## sets up logging based on user choice
If len(iTempContent)

Do iHttp.$init(iURI,iMethodList.iMethod,iHeaderList,iTempContent,iAuthList.iAuthType,iUser,iPassword) Returns lOk
Else

If iSendContentMode=1
Do iHttp.$init(iURI,iMethodList.iMethod,iHeaderList,row(iContentPath),iAuthList.iAuthType,iUser,iPassword) Returns lOk

Else If iSendContentMode=2
Do iHttp.$buildmultipart(iContentPath)
Do iHttp.$init(iURI,iMethodList.iMethod,iHeaderList,kOW3httpMultiPartFormData,iAuthList.iAuthType,iUser,iPassword) Returns lOk

Else If iSendContentMode=0

103



Do iHttp.$init(iURI,iMethodList.iMethod,iHeaderList,iContent,iAuthList.iAuthType,iUser,iPassword) Returns lOk
End If

End If
If not(lOk)

OK message {Error [iHttp.$errorcode]: [iHttp.$errortext]}
Quit method kFalse

End If
If pRun

Do iHttp.$run() Returns lOk
Else

Do iHttp.$start() Returns lOk
If lOk

Calculate $cinst.$objs.ScrollBox.$objs.cancel.$enabled as kTrue
Calculate $cinst.$objs.ScrollBox.$objs.execute.$enabled as kFalse
Calculate $cinst.$objs.ScrollBox.$objs.executethencancel.$enabled as kFalse

End If
End If
If not(lOk)

OK message {Error [iHttp.$errorcode]: [iHttp.$errortext]}
Quit method kFalse

End If
Quit method kTrue

$multipartclear

$multipartclear()

Frees any previously generated multipart/form-data content. Note that calling $run or $start with kOW3httpMultiPartFormData re-
sults in the multipart/form-data content being automatically freed after use.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

$multipartaddfield

$multipartaddfield(cName, cFieldData [,lPartHeaders])

Adds afieldpart to themultipart/form-data content stored in theworker object. To send this content specify kOW3httpMultiPartFormData
as the vContent parameter to $init().

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

cName The name of the multipart/form-data field part
cFieldData The value of the multipart/form-data field
lPartHeaders A two-column list where each row is a header to add to the part.

Column 1 is the header name and column 2 is the header value

$multipartaddfile

$multipartaddfile(cName, vFileData [,cFileName=‘’, lPartHeaders])

Adds a file part to the multipart/form-data content stored in the worker object. A file part indicates to the server that a file is being
uploaded. To send this content specify kOW3httpMultiPartFormData as the vContent parameter to $init().

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

cName The name of the multipart/form-data file part

104



Parameter Description

vFileData A binary, character or row variable containing the file data for the part.
The worker sends binary data as it is. The worker converts character data
to UTF-8 and sends the UTF-8. A rowmust have a single column
containing the path of the file containing the content to send. If you do
not specify a content-type header in lPartHeaders, the worker will
generate a suitable type if it recognises the file extension when using a
row, or when using a character value it will use text/plain;charset=utf-8.
Otherwise, it will use application/octet-stream

cFileName The filename of the part. Must be specified if vFileData is binary or
character. If vFileData is a row (identifying a file) then this overrides the
default filename (the name of the file)

lPartHeaders A two-column list where each row is a header to add to the part. Column
1 is the header name and column 2 is the header value

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the following columns:

Column Description

errorCode An integer error code indicating if the request was successful. Zero means
success i.e. the HTTP request was issued and a response received - you also need
to check the httpStatusCode to know if the HTTP request itself worked

errorInfo A text string providing information about the error if any
httpStatusCode A standard HTTP status code that indicates the result received from the HTTP

server
httpStatusText The HTTP status text received from the HTTP server
responseHeaders A row containing the headers received in the response from the HTTP server.The

header values are stored in columns of the row.The column name is the header
name converted to lower case with any - characters removed, so for example the
Content-Length header would have the column name contentlength.If the
client receives multiple headers with the same name, it combines them into a
single header with a comma separated list of the received header values. This is
consistent with the HTTP specification

responseContent If you have not used $responsepath to write the received content directly to a
file, this is a binary column containing the content received from the server

log If you used $protocollog to generate a log, this column contains the log data,
either as character data, or UTF-8 HTML. Otherwise, the log column is empty

WebSocket Client Support

$init

To initialise the OW3 HTTP worker object so that it is ready to create a WebSocket client connection, call $init with parameters as
follows:

Parameter Description

cURI The URI of the WebSocket server, which must include the URI
scheme (ws or wss) e.g. wss://demos.kaazing.com/echoYou
cannot omit the URI scheme, because the HTTP worker
defaults to using http

iMethod Must be kOW3httpMethodGet

105



Parameter Description

lHeaders A two column list where each row is an HTTP header to add to
the HTTP request.The worker automatically adds these headers
when connecting to a WebSocket server, so do not add these
headers:connection: upgrade upgrade:
websocketsec-websocket-version: 13sec-websocket-key:

vContent Not used
iAuthType A kOW3httpAuthType… constant that specifies the type of

authentication required for this request. If you omit this and
the remaining parameters, authentication defaults to
kOW3httpAuthTypeNone

cUserName The user name to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

cPassword The password to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

The standard OW3 properties $state, $errortext, $errorcode, $threadcount, $protocollog, $timeout, $callprogress and $curloptions all
apply when connecting to a WebSocket server.

The standard OW3methods $getsecureoptions and $setsecureoptions apply when connecting to a WebSocket server.

$run and $start

You cannot use $run to establish a WebSocket connection, since multiple threads are required to make it usable. So if you try to use
$run, the worker returns kFalse and sets $errorcode and $errortext.

To establish a WebSocket connection, call $start. If $start succeeds, then the worker attempts to establish the connection to the
WebSocket server in another thread.

If the connection cannot be established, the worker generates a notification to $completed, with a non-zero value in the errorCode
member of the notification row parameter.

If the connection is established successfully (and is therefore open and ready for data transfer), the worker generates a notification to
the new method $ws_onconnect. Override this method to receive this notification. $ws_onconnect receives a single row variable as
its parameter. This row variable has a single column, responseHeaders, which is a row with a single column for each response header
received from the server in the final HTTP protocol exchange resulting in the 101 (web socket protocol handshake) HTTP status code.

As soon as you have received the $ws_onconnect notification, the WebSocket is ready to send and receive data.

$wssend

After you have received the $ws_onconnect notification, you can send data using the method $wssend:

$wssend(vMessage)

Sends the supplied message on a connected web socket. Returns true if successful, which means the message has been queued for
sending.

If vMessage is a character value, the worker converts it to UTF-8 before sending it as a text message; otherwise the value is treated as
binary and sent as a binary message.

Receiving Data

Each message received from the WebSocket server generates a $ws_onmessage notification. Override this method to receive these
notifications. $ws_onmessage receives a single row variable parameter, with 2 columns (named data and utf8). Column data is the
binary data and column utf8 is boolean true if the data is UTF-8.

$wsclose

The client can close the WebSocket connection by calling the method $wsclose:

$wsclose([bDiscardUnsentMessages=kFalse,iStatusCode=1000,cReason=‘’])

106



Closes the connection to the web socket server. $completed() will be notified when the connection has closed. The row passed to
$completed has closeStatus and closeReason columns that receive the values sent in the close frame to the server.

Pass bDiscardUnsentMessages as kTrue, to discard any completely unsent queued messages before sending the close frame to the
server.

iStatusCode is an integer status code that indicates the reason for closure (one of the values in section 7.4 of RFC6455).

cReason is some optional text that indicates the reason for closure.

Server close

The server can send a close frame to the client, telling the client it is closing the connection. The client responds with a close frame,
before the connection closes. Again, $completed is notified to tell the object that the connection has closed.

The row passed to $completed has closeStatus and closeReason columns that receive the values sent in the close frame from the
server.

$cancel

You can use $cancel to terminate the connection in a non-graceful manner.

Ping-pong

If the client receives a Ping from the server, it automatically responds with a Pong. You can also set up the client to automatically Ping
the server, and generate an error (closing the connection) if a Pong is not received. To do this, use these two properties:

$wspinginterval: If non-zero, and the connection is to a web socket server, the HTTP worker sends a Ping frame to the server ev-
ery $wspinginterval seconds of inactivity, and closes the connection if a Pong frame is not received after $wspongtimeout seconds.
Defaults to zero.

$wspongtimeout: The number of seconds (1-60, default 5) the client waits to receive a Pong frame after sending a Ping frame as a
result of the $wspinginterval timeout expiring.

Timeout

The object restarts the $timeout timer each time it sends or receives some data.

SMTP Worker Object

The SMTPClientWorker provides client SMTP support, allowing you to use the worker to send emails, including bulk emails via a
mailshot. The following sections describe the SMTP worker properties, constants and methods.

Properties

The SMTPClientWorker has the following properties in addition to the base worker properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection starts as
a non-secure connection which must be upgraded to a secure
connection (using the STARTTLS command). If it cannot be
upgraded then the request fails. Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server open
when it completes its request. Defaults to false. Note that even
when this property is set to true, a protocol error may cause the
connection to close. Use true if you are likely to send more
emails using the same server fairly soon

107



Property Description

$callmailshotprogress If true, and the worker is sending a mailshot asynchronously via
$start, the worker generates notifications to $mailshotprogress
as it executes. $callmailshotprogress must be set before calling
$start. Defaults to false

$oauth2 An object reference to an OAUTH2Worker object containing
the authorization information required to make requests to the
server: see OAUTH2Worker Object

asof 35659 $allowpathinuri If true, the SMTPWorker will accept paths in the URI used in the
$init method, e.g. smtp://my.smtp.server:587/my.helo.address.
Defaults to false

Constants

The SMTPClientWorker uses the following constants in addition to the base worker constants described earlier:

Constant Description

kOW3msgPriorityLowest The message has the lowest priority
kOW3msgPriorityLow The message has low priority
kOW3msgPriorityNormal The message has normal priority
kOW3msgPriorityHigh The message has high priority
kOW3msgPriorityHighest The message has the highest priority

Methods

SMTPClientWorker has the methods described in this section in addition to the base worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, vFrom, lTo, lCc, lBcc, cSubject, cPriority, lHeaders, vContent [,bMailshot=kFalse])

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI
scheme (smtp or smtps), e.g. smtp://test.com. If you omit
the URI scheme e.g. smtp.myserver.com the URI scheme
defaults to smtp. If the server uses a non-standard port,
you can include it in the URI like this example
smtp://smtp.myserver.com:2525

cUser The user name to be used to log on to the SMTP server
cPassword The password to be used to log on to the SMTP server
vFrom The email address of the message sender. Either a

character value e.g. user@test.com or a row with 2
columns where column 1 is the email address
e.g. user@test.com and column 2 is descriptive text for
the sender, typically their name

108



Parameter Description

lTo A one or two column list where each row identifies a
primary recipient of the message. Column 1 contains the
email address e.g. user@test.com and column 2 if
present contains descriptive text for the recipient,
typically their name

lCc Empty if there are no CC recipients, or a one or two
column list where each row identifies a carbon copied
recipient of the message. Column 1 contains the email
address e.g. user@test.com and column 2 if present
contains descriptive text for the recipient, typically their
name

lBcc Empty if there are no BCC recipients, or a single column
list where each row contains the email address of a blind
carbon copied recipient of the message
e.g. user@test.com. Unlike lTo and lCc, lBcc does not
allowmore than 1 column, as blind carbon copied
recipients are not added to the message header and
therefore the descriptive text is not required

cSubject The subject of the message
iPriority A kOW3msgPriority… constant that specifies the priority

of the message
lHeaders A two-column list where each row is an additional SMTP

header to send with the message. Column 1 is the
header name e.g. ‘X-OriginalArrivalTime’ and column 2 is
the header value e.g. ’23:02’

vContent Message content. Either binary raw content (which the
worker sends exactly as it is), or a list to be sent as MIME.
See the documentation for the MailSplit command to
see how a MIME list is structured; however, note that the
charset in the worker MIME list is a kUniType… constant
rather than a character string

bMailshot Allows a mailshot to be sent (default is kFalse). If true,
the worker sends a separate copy of the message to
each recipient in the lTo list (so that each recipient
cannot see the addresses of the others); only lTo is used,
and lCc and lBcc must be empty

NOTE: If you call $init when a request is already running on a background thread, the object will cancel the running request, and wait
for the request to abort before continuing with $init.

Example

The $init method can be used to prepare the SMTPClientWorker object to be executed using the $run or $start method. In this case,
iSmtp is an object reference variable with its subtype set to an object class, which has its $superclass set to the SMTPClientWorker in
the OW3 worker objects group.

# $start method
Do method setupLogging ## set up logging
Calculate iSmtp.$timeout as iTimeout ## set properties via window fields
Calculate iSmtp.$callprogress as iCallProgress
Calculate iSmtp.$keepconnectionopen as iKeepConnectionOpen
Calculate iSmtp.$requiresecureconnection as iRequireSecureConnection
Calculate iSmtp.$callmailshotprogress as iCallMailshotProgress
Do method $splitaddressentry (iFrom,lFromAddress,lFromDescription) Returns lOk
If not(lOk)

OK message {From "[iFrom]" is invalid}
Quit method kFalse

109



End If
Calculate lOk as $cinst.$makerecipientlist(lToList,iTo)
If not(lOk)

OK message {From "[iTo]" is invalid}
Quit method kFalse

End If
Calculate lOk as $cinst.$makerecipientlist(lCcList,iCc)
If not(lOk)

OK message {From "[iCc]" is invalid}
Quit method kFalse

End If
Calculate lOk as $cinst.$makerecipientlist(lBccList,iBcc)
If not(lOk)

OK message {From "[iBcc]" is invalid}
Quit method kFalse

End If
If iCallMailshotProgress

Set reference lMailshotProgressItem to $clib.$windows.wMailshotProgress.$openmodal("*",kWindowCenterRelative,$cinst,lToList.$linecount,$cinst)
End If
Do iSmtp.$setMailshotProgressInst(lMailshotProgressItem)
If iNoMIME

If len(lFromDescription)
Do iSmtp.$init(iServerURI,iUser,iPassword,row(lFromAddress,lFromDescription),lToList,lCcList,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lBinContent,iMailshot) Returns lOk

Else
Do iSmtp.$init(iServerURI,iUser,iPassword,lFromAddress,lToList,lCcList,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lBinContent,iMailshot) Returns lOk

End If
Else

If len(lFromDescription)
Do iSmtp.$init(iServerURI,iUser,iPassword,row(lFromAddress,lFromDescription),lToList,lCcList,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lMIMElist,iMailshot) Returns lOk

Else
Do iSmtp.$init(iServerURI,iUser,iPassword,lFromAddress,lToList,lCcList,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lMIMElist,iMailshot) Returns lOk

End If
End If
If not(lOk)

OK message {$init error [iSmtp.$errorcode]: [iSmtp.$errortext]}
Quit method kFalse

End If
If pRun

Do iSmtp.$run() Returns lOk
Else

Do iSmtp.$start() Returns lOk
End If
If not(lOk)

OK message {$run error [iSmtp.$errorcode]: [iSmtp.$errortext]}
Quit method kFalse

Else If not(pRun)
Calculate $cinst.$objs.scrollbox.$objs.cancel.$enabled as kTrue
Calculate $cinst.$objs.scrollbox.$objs.start.$enabled as kFalse
Calculate $cinst.$objs.scrollbox.$objs.startthencancel.$enabled as kFalse

End If
Quit method kTrue

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the following columns:

110



Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success i.e. the message was successfully sent

errorInfo A text string providing information about the error if any
log If you used $protocollog to generate a log, this column contains the

log data, either as character data, or UTF-8 HTML. Otherwise, the log
column is empty

$mailshotprogress

If the request is a mailshot, and $callmailshotprogress is kTrue, the worker generates a notification to $mailshotprogress each time it
sends (or fails to send) the message to a recipient. $mailshotprogress is passed a row variable parameter with the following columns:

Column Description

address The email address of the recipient.
sent Boolean, true if the message was successfully sent to this recipient

FTP Worker Object

The FTPClientWorker provides client FTP support, allowing you to transfer files. The following sections describe the FTP worker prop-
erties, constants and methods.

Properties

The FTPClientWorker has the following properties in addition to the base worker properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection starts as a non-secure
connection which must be upgraded to a secure connection (using the
STARTTLS command). If it cannot be upgraded then the request fails. Defaults
to false

$keepconnectionopen If true, the worker can leave the connection to the server open when it
completes its request. Defaults to false. Note that even when this property is
set to true, a protocol error may cause the connection to close. Use true if you
are likely to use the same server quite soon

$servercharset The character set used by the server to encode file names in commands and
file lists. Default kUniTypeAuto (meaning UTF-8 if the server supports it or
kUniTypeNativeCharacters if not). Otherwise a kUniType… constant for 8-bit
character sets

$responsepath If not empty, the worker writes response content to the file with this path rather
then adding it to the wResults row. The file must not already exist. The desired
value must be set before calling $run or $start. Defaults to empty

Constants

The FTPClientWorker uses the following constants in addition to the base worker constants described earlier. These constants are all
actions specified in the iAction parameter used with the $init method to indicate the action to perform, so this section should be read
in conjunction with the section describing the $init method:

111



Constant Description

kOW3ftpActionPutFile Upload file data to file cServerPath on FTP server.vParam is file
data (binary, character or row).Worker converts character to
server character set.Rowmust have one column (path of file
containing data to upload).Note that all file transfers use FTP
binary mode

kOW3ftpActionPutFileMulti Upload multiple files to the FTP server. vParam is a 2 column
list (col1: full local pathname, col2: full server pathname).
cServerPath must be empty; see below

kOW3ftpActionAppendFile Identical to kOW3ftpActionPutFile except the action appends
the file data to an existing file on the FTP server, or creates a
new file containing the supplied data if the file does not exist
on the FTP server

kOW3ftpActionGetFile Download file cServerPath from FTP server. Downloaded file
data is either written to $responsepath (if not empty) or
returned in the wResults row. vParam is not required.Note
that all file transfers use FTP binary mode

kOW3ftpActionGetFileMulti Download multiple files from the FTP server. vParam is a 2
column list (col1: full local pathname, col2: full server
pathname). cServerPath must be empty; see below

kOW3ftpActionDelete Delete directory or file cServerPath from the FTP server.
vParam is Boolean true if cServerPath is a directory, false if it is
a file

kOW3ftpActionCreateDirectory Create directory cServerPath on the FTP server. vParam is not
required

kOW3ftpActionListDirectory List the contents of directory cServerPath on the FTP server
returned to wResults.resultList. vParam is Boolean true to list
file names only (single column list), or false to get a detailed
list with 8 columns: see below

kOW3ftpActionSetPermissions Set the permissions of file or directory cServerPath on the FTP
server. vParam is a character string specifying the new
permissions of the file or directory.Note that not all servers
support the SITE CHMOD command used by this

kOW3ftpActionExecute If cServerPath is not empty, CWD cServerPath.Then execute
FTP control connection commands in vParam.vParam is
either a character string or a single column list of commands.
E.g. to rename a file, you could use:RNFR oldname.txtRNTO
newname.txtas two lines in the command
list.wResults.resultList has a row for each command response

kOW3ftpActionMove (Studio 11) Moves or renames a file on the FTP server. In this
case, cServerPath in $init is the pathname of the file or
directory to be moved. vParam is the new server path name.
The action works with FTP, FTPS and SFTP (the latter uses a
different command), and can be used to rename a file, or
move it to a new location

Directory list for kOW3ftpActionListDirectory

FTP does not have a standard syntax for the data returned by the LIST command, so the FTP worker attempts to parse the results of
the ListDirectory action, based on some typical syntaxes supported by many servers. The detailed list has 8 columns, as follows:

• The full text returned by the server. Thismaintains compatibility with previous versions of theOW3FTPworker, andmay contain
additional information not extracted by the parser.

• The file name.

• Boolean. True if the entry is probably a directory.

• Boolean. True if the entry is probably a file.

112



• File size in bytes.

• Modification date of the file.

• Boolean. True if themodification date is in the local time zone of the client. Falsemeans the time zone of themodification date
is unknown.

• If not empty, the server id of the file or directory. A character string.

Uploading or downloading multiple files

When using kOW3ftpActionGetFileMulti or kOW3ftpActionPutFileMulti, to upload or download multiple files, the row passed to
$progress has an extra column (requestNumber) which corresponds to the line number in the vParam list currently being transferred.

The $completed method is called with a successful status if all transfers are completed successfully. If at least one failed, the error
code is 10312 (at least one transfer during a kOW3ftpActionGetFileMulti or kOW3ftpActionPutFileMulti action failed). In addition, the
resultList column contains a list with a line for each transfer, containing error code, error info and FTP status code.

Methods

FTPClientWorker has the methods described in this section in addition to the base worker methods described earlier. $progress can
be called for synchronous (as well as asynchronous) operations for the FTP worker.

Normal methods

$init

$init(cURI, cUser, cPassword, iAction, cServerPath, vParam)

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI
scheme (ftp or ftps) e.g.ftp://ftp.myserver.com.If you omit
the URI schemee.g. ftp.myserver.comthe URI scheme
defaults to ftp

cUser The user name to be used to log on to the FTP server
cPassword The password to be used to log on to the FTP server
iAction A kOW3ftpAction… constant that specifies the action to

perform
cServerPath A pathname on the FTP server. Paths are relative to the

current working directory on the FTP server. The worker
only changes directory if you supply a non-empty
cServerPath parameter to kOW3ftpActionExecute, so
unless you do this, paths are relative to the root.After
changing working directory, if you supply cServerPath
prefixed with // then the path is relative to the root,
e.g./myfile ormyfileis a path relative to the current
working directory, whereas//myfileis a path relative to the
root.

vParam A parameter specific to the action. See the constant
descriptions for details of vParam for each action

NOTE: If you call $init when a request is already running on a background thread, the object will cancel the running request, and wait
for the request to abort before continuing with $init.

113



Example

You could create anFTP clientwindowwith various fields for FTPhost name, username, password, timeout setting, server character set,
and a list of FTP commands or actions as they are defined in the $init() method. A button could initiate the FTP command, executing
the appropriate action depending on the one chosen by the end user, using the following code:

# start() method
# iFtp is an Object reference variable with the FTPClientWorker as Subtype
# iActionList (List) variable assigned to list of actions on the window
Do method setupLogging
Calculate iFtp.$timeout as iTimeout ## fields on the FTP window
Calculate iFtp.$callprogress as iCallProgress
Calculate iFtp.$keepconnectionopen as iKeepConnectionOpen
Calculate iFtp.$requiresecureconnection as iRequireSecureConnection
Calculate iFtp.$servercharset as iServerCharsetList.C2
Calculate iFtp.$responsepath as iResponsePath
If iActionList.C2=kOW3ftpActionPutFile.C2=kOW3ftpActionAppendFile

If iSendContentMode=0
ReadBinFile (iContentPath,iContent)
Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iContent) Returns lOk

Else
Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath,row(iContentPath)) Returns lOk

End If
Else If iActionList.C2=kOW3ftpActionSetPermissions

Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iPermissions) Returns lOk
Else If iActionList.C2=kOW3ftpActionExecute

Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iCommandList) Returns lOk
Else If iActionList.C2=kOW3ftpActionListDirectory

Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iNamesOnly) Returns lOk
Else If iActionList.C2=kOW3ftpActionDelete

Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iPathIsDirectory) Returns lOk
Else

Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath) Returns lOk
End If
# then $run or $start is called
If not(lOk)

OK message {$init error [iFtp.$errorcode]: [iFtp.$errortext]}
Quit method kFalse

End If
If pRun

Do iFtp.$run() Returns lOk
Else

Do iFtp.$start() Returns lOk
End If
If not(lOk)

OK message {$run error [iFtp.$errorcode]: [iFtp.$errortext]}
Quit method kFalse

Else If not(pRun)
Calculate $cinst.$objs.scrollbox.$objs.cancel.$enabled as kTrue
Calculate $cinst.$objs.scrollbox.$objs.start.$enabled as kFalse
Calculate $cinst.$objs.scrollbox.$objs.startthencancel.$enabled as kFalse

End If
Quit method kTrue

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the following columns:

114



Column Description

errorCode An integer error code indicating if the request was successful. Zero means
success i.e. the message was successfully sent

errorInfo A text string providing information about the error if any
ftpResponseCode The FTP response code from the last FTP command executed when

performing the action. An integer
fileData Used for kOW3ftpActionGetFile only. If you have not used $responsepath to

write the file data directly to a file, this is a binary column containing the file
data received from the server

resultList For kOW3ftpActionList:A single character column list, containing the list entries
received from the server.For kOW3ftpActionExecute:A 2 column list, containing
an entry for each command supplied in vParam that was successfully executed.
Command execution stops as soon as a command fails; the status of the failed
command becomes the main error information in the row passed to
$completed.Each row of the list contains the ftpResponseCode for the
command, and the response text that was received from the server

log If you used $protocollog to generate a log, this column contains the log data,
either as character data, or UTF-8 HTML. Otherwise, the log column is empty

Example

Following on from the $init example above, you could create code in the $completed method to handle the response from the FTP
server returned in the pResults parameter: the code writes the log to an HTML file and displays it in the oBrowser object.

# $completed method
Calculate iResponse as pResults
Calculate iErrorCode as pResults.errorCode
Calculate iErrorText as pResults.errorInfo
If iUsingLogBrowser

Do FileOps.$deletefile(iLogHTMLPath)
WriteBinFile (iLogHTMLPath,iResponse.log)
Calculate iLogBrowser.$urlorcontrolname as con("file://",replaceall(iLogHTMLPath," ","%20"))

Else
Calculate iLog as iResponse.log

End If
Do $cinst.$redraw()
Calculate $cinst.$objs.tabpane.$currenttab as 3

Secure FTP (SFTP)

The FTPWorker Object supports Secure FTP (SFTP). There are some differences in functionality when using SFTP:

• You use URLs of the form SFTP:// to request an SFTP connection.

• You must explicitly select a server character set - kUniTypeAuto will cause the worker to return an error.

• The append file action is not supported.

• If you have written code that uses the execute action, be aware that SFTP servers support different commands to FTP servers.

• The remaining actions work as expected.

In addition, there are some properties and methods, primarily related to how a connection is authenticated. SFTP does not use TLS,
so the secure options related to that only affect FTPS and FTP connections to be upgraded to TLS.

The FTP worker object has the properties:

• $sshenablecompression
If true, SSH compression is enabled for SFTP connections, resulting in a request to the server to enable compression; the server
may ignore the request. Defaults to false

115



• $sshknownhostsfile
The full pathname of the SSH known hosts file used for SFTP. Defaults to the path of clientserver/client/ow3_sftp_known_hosts
in the Studio tree. Set this to empty to allow connections (insecurely) to any host

• $sshknownhostsaction
A sum of kOW3sshKHAction… constants (default kOW3sshKHActionReject) specifying what occurs if $sshknownhostsfile is
present, and a connection is to be made to a server not in the file, or a server in the file with a host key mismatch

• $sshauthtypes
A sum of kOW3sshAuthType… constants specifying the allowed authentication types when establishing a connection to the
server; thedefault is kOW3sshAuthTypePublicKey +kOW3sshAuthTypePassword+kOW3sshAuthTypeHost + kOW3sshAuthTypeAgent

The FTP worker object has the methods:

• $getsshoptions()

$getsshoptions([&cServerPublicKeyMD5,&cClientPublicKeyFile,&cPrivKeyFile,&cPrivKeyPassword)]) gets the options that af-
fect how SSH connections are established for SFTP

• $setsshoptions()

$setsshoptions([cServerPublicKeyMD5=‘’,cClientPublicKeyFile=’‘,cPrivKeyFile=’‘,cPrivKeyPassword=”]) sets the options that
affect how SSH connections are established for SFTP. The parameters are:
cServerPublicKeyMD5:The 128 bit MD5 checksum of the server’s public key (supplied as a 32 character ASCII hex string).If not
empty,the SFTP client will reject the connection to the server unless the MD5 checksums match
cClientPublicKeyFile:The pathname of the client’s public key. If empty,the client will try to compute the public key from the
private key
cPrivKeyFile:The pathname of the client’s private key file
cPrivKeyPassword:The private key file password

Some or all of the SSH options may be optional, depending on the authentication type chosen.

Keys

When using SFTP, the public and private keys need to be in OpenSSH format. If you have a differently formatted key, such as SSH2
from RFC4716, perhaps generated with PuTTY, you can convert the key using a terminal.

For example, converting a public key with ssh-keygen:

ssh-keygen -i -f [path to .pub key]

will print out the OpenSSH-format public key which can be copied into its own new .pub file.

Converting a private .ppk key:

puttygen [path to .ppk key] -O private-openssh -o [path to new .pem file]

will convert the .ppk key generated from PuTTY to a private OpenSSH-format private key.

IMAP Worker Object

The IMAPClientWorker provides client IMAP support, allowing you to use the worker to manage emails stored on an IMAP server. The
following sections describe the IMAP worker properties, constants and methods.

116



Properties

The IMAPClientWorker has the following properties in addition to the base worker properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request
fails. Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the
server open when it completes its request. Defaults to
false.Note that even when this property is set to true, a
protocol error may cause the connection to close. Use
true if you are likely to use the same server fairly soon

$splitfetchedmessage If true, the worker splits the fetched message into
headers and a MIME list for any content. Defaults to
true. If false, the worker simply returns the raw fetched
message data

$defaultcharset Used when kOW3imapActionFetchMessage splits the
message, and no character set is specified for a MIME
text body part. The character set used to convert to
character. Default kUniTypeUTF8. A kUniType…
constant (not Character/Auto/Binary)

$removemessageid If true, the worker removes the Message-id header
from the message when performing the action
kOW3imapActionAppendMessage. Defaults to
true.Duplicating message ids may cause the IMAP
server to discard messages with duplicate ids, hence
this property

$oauth2 An object reference to an OAUTH2Worker object
containing the authorization information required to
make requests to the server: see OAUTH2Worker
Object

Constants

The IMAPClientWorker uses the following constants in addition to the base worker constants described earlier. These constants are
all actions used with the $init method to indicate the action to perform, so this section should be read in conjunction with the section
describing the $init method:

Constant Description

kOW3imapActionListMailboxes List mailboxes in reference name cMailboxName.vParam1 specifies
the names to list. This becomes the “mailbox name with possible
wildcards” parameter of the IMAP LIST or LSUB command (see RFC
3501).vParam2 (optional, default false) is Boolean true to list
subscribed mailboxes only

kOW3imapActionListMessages Selects mailbox cMailboxName and lists the messages it
contains.vParam1 (optional), if present, it is a single column list of
additional mail header names to retrieve in addition to the standard
mailbox list information e.g. the list could have 2 rows, “Subject” and
“X-Priority” to retrieve the message subject and priority for each
message.vParam2 (optional) is an IMAP search query selecting
messages to list, e.g. UNSEEN to fetch the unread messages

kOW3imapActionFetchMessage Selects mailbox cMailboxName and fetches the message with UID
vParam1.vParam2 (optional, default false) is Boolean true to fetch
message headers only

117



Constant Description

kOW3imapActionSetMessageFlags Selects mailbox cMailboxName and sets flags for message with UID
vParam1.vParam2 is a row of flags with values kFalse, kTrue or
kUnknown (leave flag unchanged):row(answered, deleted, draft,
flagged, seen)

kOW3imapActionAppendMessage Selects mailbox cMailboxName and appends a message to the
mailbox.You can either:Supply the entire message as binary data in
vParam1 orSupply a 2 character column list in vParam1 (columns are
header name and header value) with binary raw content in
vParam2orSupply a 2 character column list in vParam1 (columns are
header name and header value) with the content specified by a
MIME list in vParam2. See the documentation for the MailSplit
command to see how a MIME list is structured; however note that
the charset in the worker MIME list is a kUniType… constant rather
than a character string

kOW3imapActionExecute If cMailboxName is not empty select mailbox cMailboxName.Then
execute IMAP commands in vParam1. vParam1 is either a binary
value or a single column list of binary values. wResults.resultList has
a row for each command response.Each binary value is an IMAP
command to execute, e.g. EXAMINE. You can generate binary values
using the correct character set required by the IMAP protocol using
the $chartoutf7 method of the IMAPClientWorker.The sequence of
actions will stop as soon as an error occurs

kOW3imapActionSelect (Studio 11) Executes an IMAP SELECT on the mailbox given to $init.
As part of the SELECT, IMAP returns the number of emails in the
mailbox, which are returned to the $completed method in resultList
in column EXISTS. Note that an IMAP SELECT will cause the current
mailbox to be changed, so you may prefer to execute this action on a
different connection

Methods

IMAPClientWorker has the methods described in this section in addition to the base worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, iAction, cMailboxName, vParam1, vParam2)

Called to prepare the object to execute a request, before calling $run or $start.
Returns Boolean true for success, or returns false and sets $errorcode and $errortext if an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme
(imap or imaps), e.g. imap://ftp.myserver.com. If you omit the
URI scheme, e.g. imap.myserver.com, the URI scheme
defaults to map

cUser The user name to be used to log on to the FTP server
cPassword The password to be used to log on to the FTP server
iAction A kOW3imapAction… constant that specifies the action to

perform

118



Parameter Description

cMailboxName The IMAPmailbox name (ignored for
kOWEimapActionListMailboxes). If you are using non-ASCII
characters in mailbox names, you may need to normalise the
name using the Omnis nfd() or nfc() function before passing
it to $init()

vParam1 A parameter specific to the action. See the constant
descriptions for details of vParam1 for each action

vParam2 A parameter specific to the action. See the constant
descriptions for details of vParam2 for each action

NOTE: If you call $init when a request is already running on a background thread, the object will cancel the running request, and wait
for the request to abort before continuing with $init.

$chartoutf7

$chartoutf7(cChar)

Returns a binary value (containing 7 bit characters) that is the IMAP UTF-7 representation of cChar (note that IMAP uses a special
variant of UTF-7, and this method generates that variant).

The parameters are:

Parameter Description

cChar A character string to be converted to IMAP UTF-7

$utf7tochar

$utf7tochar(xUtf7[,bAllowCRLF=kTrue])

Converts IMAP UTF-7 xUtf7 to character and returns the result. Optionally allows CRLF sequences in the data and replaces themwith
CR in the result (note that IMAP uses a special variant of UTF-7, and this method expects that variant in xUtf7).

The parameters are:

Parameter Description

xUtf7 A binary value containing IMAP UTF-7 to be converted to character.
bAllowCRLF If true, CRLF sequences are to be expected in the UTF-7 stream - they are replaced with CR.

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the following columns:

Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success i.e. the message was successfully sent

errorInfo A text string providing information about the error if any
resultList This column receives a list, the content of which depends on the action.

The action-specific lists returned here are described below (actions
kOW3imapActionSetMessageFlags and
kOW3imapActionAppendMessage do not return any data in this
column)

119



Column Description

log If you used $protocollog to generate a log, this column contains the log
data, either as character data, or UTF-8 HTML. Otherwise, the log
column is empty

<action-specific> Column 5 is present for certain actions, and contains action- specific
data. The action-specific data is described below

kOW3imapActionListMailboxes:

Column Description

resultList The list of mailboxes that match the criteria pass to
$init(). A 7 column list, with columns as follows (see RFC
3501 for more details - the data in these columns is
populated using the LIST or LSUB
response):hasChildren: Boolean true if the mailbox has
child mailboxes.noInferiors: Boolean true if it is not
possible for any child levels of hierarchy to exist under
this name; no child levels exist now and none can be
created in the future.noSelect: Boolean true if it is not
possible to use this name as a selectable
mailbox.marked: Boolean true if the mailbox has been
marked “interesting” by the server; the mailbox
probably contains messages that have been added
since the last time the mailbox was
selected.unMarked: Boolean true if the mailbox does
not contain any additional messages since the last time
the mailbox was selected.separator: The mailbox
hierarchy delimiter.mailboxName: The name of the
mailbox

<action‐specific> No action specific column

kOW3imapActionListMessages:

Column Description

resultList The list of messages in the mailbox. This is a list with 9 standard columns,
followed by a column for each header specified in vParam2 when calling
$init() to prepare for this action. The additional header columns are
named by removing - characters from the header name, and converting
the result to lower case.The 9 standard columns in the message list
are:UID: The unsigned integer UID of the messagesize: The size of the
message in bytesinternalDate: The internal date of the
message.answered: The Boolean answered flag for the
message.deleted: The Boolean deleted flag for the message.draft: The
Boolean draft flag for the message.flagged: The Boolean flagged flag for
the message.recent: The Boolean recent flag for the message.seen: The
Boolean seen flag for the message.

<action‐specific> No action specific column

kOW3imapActionFetchMessage:

Column Description

resultList If $splitfetchedmessage is kFalse, this column is not populated.
Otherwise, this column is a 2 character column list of mail
headers:Column 1 is the header name.Column 2 is the header value

120



Column Description

<action‐specific> If the action fetches the message content as well as the headers,
this column receives the content. It is either:rawData: A binary
column that receives the un-split fetched message
dataormimeList: A MIME list containing the content. See the
documentation for the MailSplit command to see how a MIME list
is structured; however note that the charset in the worker MIME list
is a kUniType… constant rather than a character string

kOW3imapActionSetMessageFlags:

Column Description

resultList Not populated.
<action‐specific> No action specific column.

kOW3imapActionAppendMessage:

Column Description

resultList Not populated
<action‐specific> If possible, the action extracts the UID of the appended message from

the IMAP server response. The UID is returned to this column (named
UID) and is non-zero if the UID could be extracted. (Note that not all
servers return the UID of an appended message)

kOW3imapActionExecute:

Column Description

resultList A single column list of binary values. Each row of the list contains
the sequence of responses returned from the server when
executing the corresponding command in the list (or single binary
value) passed to $init(). You would typically decode this using
$utf7tochar, using the option to expect CRLF and replace with CR

<action‐specific> No action specific column

JavaScript Worker Object

The JavaScript Worker Object allows you to execute JavaScript methods inside node.js by making the request in Omnis code by
calling a Worker Object method, and receiving the results via a worker callback. The node.js framework is embedded into Omnis
Studio, and contains many open source third-party modules that can be used from inside your Omnis code. All traffic sent between
the Omnis and node.js processes is encrypted. For example, the library ‘xml2js’ is included in Omnis Studio, which converts XML to
JSON: in addition, support for ZIP can be added using the node.js jszip module, which is described at the end of this section.

npm is provided alongside Node.js. To launch npm you can run index.js inside the npm folder, e.g.

./node npm/index.js

Enabling JavaScript Methods

There is a JS file, ow3javascript.js, located in the clientserver/server/remotedebug program folder, that is the entry point for all method
calls: on macOS, the remotedebug folder is in the Resources folder in the Omnis.app bundle. Method calls arrive as an HTTP request
from Omnis, and respond with their results as HTTP content. A worker executes methods sequentially.

Omnis has a simple structure where you can write a JavaScript module containing one or more methods, and then call methods via
their module and method name.

121



In the Omnis data folder, there is a folder called ‘jsworker’, where modules required by ow3javascript.js are located. You can install
additional node.js modules in this folder using the npm -i command when running in the folder - these might be modules for which
you want to provide an interface from Omnis.

There are two key files in this folder, which must always be present:

omnis_calls.js - a module which provides an interface for methods to return their results to Omnis.

omnis_modules.js - a module which provides a table of modules that can be called from Omnis.

There are also two example module files, omnis_test.js and omnis_xml2js.js. These provide Omnis modules named test and xml2js.
Each module file must have an entry in omnis_modules.js. Each module file provides a table of methods that can be called from
Omnis.

Note that ‘jsworker’ in the data folder may not be considered suitable for deployment, since the data folder is writeable. The worker
provides the ability for you to structure things differently when you deploy your application, but is fine for development.

Auto Loading modules

From Studio 11, the JS Worker will pick up any modules you have added automatically if they are placed in the jsworker folder. Any
modules that you have added in their own folder, with a package.json or index.js, are picked up automatically by the JS Worker. (This
is in addition to using the hard-coded moduleMap method, as described below.)

Creating the worker

The sub-type of the external object is OW3 Worker Objects\JAVASCRIPTWorker. You can use either an Object variable or an Object
Reference variable, either directly if you set $callbackinst to receive results, or by subclassing the external object with an Omnis object.

Properties

The JavaScript worker only has the standard worker properties: $state, $threadcount, $errorcode and $errortext.

Methods

Called Methods

$init()

$init([cPath, bDebugNodeJs=kFalse])

Initialize the object so it is ready to execute JavaScript method calls. Returns true if successful. You must call $init() before any other
methods.

• cPath
allows you to override the default NODE_PATH module search path set by the worker. The default path is <Omnis data
folder>/jsworker. If you override this path, the various JavaScript modules that are mandatory for the worker to operate must
still be able to be located.

• bDebugNodeJs
is a Boolean that indicates if you want to be able to debug node.js, for example using Chrome. It is possible that youmay not be
able to start theworker if you set this formore than one active JavaScript worker, as node.js requires a debug port to be available.
To debug the JavaScript in Chrome, navigate to chrome://inspect, and then open the dedicated debug tools for node.js via the
link.

122



$start()

$start()

Runs the JavaScript worker in a background thread. Returns true if the worker was successfully started.

After you call $start(), the background thread starts up a node.js process which will process JavaScript method calls. You can make
multiple method calls to the same process, so there is no need to call $start() frequently, which means the overhead of starting the
node.js process is minimal.

$cancel()

$cancel()

Use this to terminate the node.js process. Any in-progress method calls may not complete.

$callmethod()

$callmethod(cModule, cMethod, vListOrRow [,bWait=kFalse, &cErrorText, vTag])

Call the method passing it a single parameter which is the JavaScript object representation of vListOrRow. Optionally wait for the
method to complete. Returns true if successful.

cModule and cMethod (Character) identify a module, and a method within the module, to call, as described above.

vListOrRow (Variant) will be converted to JSON and passed to the method as its parameter. This means that you should be aware of
data that will not map to JSON, and avoid trying to pass that to $callmethod.

bWait (Boolean) indicates if the caller wishes to suspend execution until the method completes. If you use bWait, then a completion
callback will occur before $callmethod returns.

cErrorText (Character) receives text describing the error if $callmethod fails; code 460 for module not found, and 461 for method not
found.

(for Studio 11) vTag (Variant) If supplied, some data can be passed to $methoderror or $methodreturn in the column __tag of the row
parameter. This can be used, for example, to identify the caller when the worker object is shared by several instances.

Callback Methods

$cancelled

Override this to receive a notification that the request to cancel the worker has succeeded.

$workererror

$workererror(wError)

Override this method to receive reports of errors from the worker that are not related to calling a method, e.g. failure to start node.js.
The worker thread exits after generating this notification.

wError has two columns, an Integer named errorCode and a Character string named errorInfo.

$methoderror

$methoderror(wError)

Override this method to receive reports of the failure of an attempt to call a method with $callmethod.

wError has two columns, an Integer named errorCode and a Character string named errorInfo.

If an unhandled exception occurs causing node.js to exit, Omnis adds the stack traceback of the exception to the errorInfo column.

123



$methodreturn

$methodreturn(wReturn)

Method called with the results of a call to $callmethod.

wReturn is a list/row parameter with two columns: __module and __method. If the parameter is a list, then __module and __method
are only populated for the first line of the list.

If the JavaScript method returns an object, this is the Omnis equivalent of the object, created by converting the JSON to a row. If the
JavaScript method returns some other data, e.g. a picture, this is a row with a single column named content, which contains the data
returned by the method.

The content column for non-JSON content returned from a worker method is of type character when the content type is text/.

Example: Adding ZIP support

You could add support for ZIP files. To do this, install the node.js jszip module by running the npm command in the jsworker folder:

npm i jszip

(the npm command is installed with node.js, available on the web)

Edit omnis_modules.js by adding an entry to the ‘moduleMap’ object for the zip module (or from Studio 11 it should be loaded auto-
matically since it is in its own folder ‘omnis_zip’):

const moduleMap = {
zip: require('./omnis_zip.js'),
... // Other modules

};

You can then make calls from Omnis code as follows:

Do lRow.$cols.$add("path",kCharacter,kSimplechar)
Calculate lRow.path as iZipPath
Do iJS.$callmethod("zip","loadZip",lRow,kTrue,lErrorText) Returns lOK

POP3 Worker Object

The POP3 worker is similar to other OW3 workers, in that you pass an action to $init and action specific parameters, and use $run or
$start to execute the request. There is a sample app in Samples section in the Hub in the Studio Browser.

Methods

$init()

$init(cURI,cUser,cPassword,iAction[,iMessageNumber,cPostCommand])

Initialises the object so it is ready to perform the specified action using POP3. Returns true if successful

The $init parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (pop3 or
pop3s) e.g. pop3://pop3.myserver.com. If you omit the URI scheme,
e.g. pop3.myserver.com, the URI scheme defaults to pop3

cUser The username to be used to log on to the POP3 server
cPassword The password to be used to log on to the POP3 server

124



Parameter Description

iAction A kOW3pop3Action… constant that specifies the action to perform;
see below

iMessageNumber The message number to get (applies to actions
kOW3pop3ActionGetMessage, kOW3pop3ActionGetHeaders and
kOW3pop3ActionDeleteMessage)

cPostCommand Only applies to action kOW3pop3ActionGetMessage. If not empty, a
command to send to the server after getting the message. This
would typically be RSET to undelete messages or QUIT to delete
messages

The Actions are:

• kOW3pop3ActionStat Gets maildrop status. For a successful request, wResults has 2 columns returning the stat information,
messageCount and maildropSize

• kOW3pop3ActionList Lists messages. For a successful request, wResults has a column namedmessageList which contains a 2
column list, with columns messageNumber and messageSize

• kOW3pop3ActionGetMessage Gets specified message. For a successful request, wResults has either a column rawData or
columns headerList and mimeList (depending on the value of $splitfetchedmessage

• kOW3pop3ActionGetHeaders Gets headers for a specified message. For a successful request, wResults has either a column
rawData or a column headerList (depending on the value of $splitfetchedmessage)

• kOW3pop3ActionDeleteMessage Deletes the specified message from the maildrop

• kOW3pop3ActionQuit Sends a QUIT command to the server to ensure that any messages marked for deletion are deleted

Properties

The OW3 POP3 worker has the following properties in addition to those supported by all OW3 worker objects:

Property Description

$splitfetchedmessage If true, worker splits fetchedmessage into headers and MIME list for
any content. Defaults to true. If false, the worker simply returns the
raw fetched message data (Applies to
kOW3imapActionFetchMessage and
kOW3pop3ActionGetMessage)

$defaultcharset Used by kOW3imapActionFetchMessage and
kOW3pop3ActionGetMessage when there is no charset for a MIME
text body part. The charset used to convert to character. Default
kUniTypeUTF8.A kUniType… constant (not Character/Auto/Binary)

$keepconnectionopen If true, the worker can leave the connection to the server open
when it completes its request. Defaults to false. Note that even
when this property is set to true, a protocol error may cause the
connection to close.

$requiresecureconnection If true, and the URI is not a secure URI, the connection starts as a
non-secure connection which must be upgraded to a secure
connection (using STARTTLS or STLS). If it cannot be upgraded,
then the request fails. Defaults to false

$oauth2 An object reference to an OAUTH2Worker object containing the
authorization information required to make requests to the server:
see OAUTH2Worker Object

125



CRYPTOWorker Object

The CRYPTOWorker Object allows you to perform encryption and decryption of data. The encryption types you can use include AES,
Camellia, DES, and Blowfish.

The CRYPTO worker is similar to other OW3 workers, in that you pass an action to $init and action specific parameters, and use $run
or $start to execute the request. There is an example app in the HUB in the Studio Browser to demo the CRYPTOWorker Object.

To use the worker object, create a variable with its subtype set to the CRYPTOWorker object which is contained in the OW3 Worker
Objects group in the Select Object dialog, or subclass the external object. For encryption of data over 2GB you are advised to write
the encrypted data to a file, rather than memory.

The CRYPTO worker has the following methods:

• $start, $run and $cancel
Standard worker methods

• $completed and $cancelled
Standard worker completion methods

• $makerandom
$makerandom(iBytes,&xRandomData) generates some random data with the specified length in bytes. This is suitable for use
as an encryption key or initialization vector. Returns true if successful (if an error occurs, the standard properties $errorcode and
$errortext describe the error).
iBytes is the number of bytes of random data to generate
xRandomData is a binary variable that receives the random data

As with the other worker objects you can use the $init method with various input parameters to initialize the object, while the action
can be to Encrypt or Decrypt:

• $init
$init(iAction, iEncryptionType, iCipherMode, iPadding, xKey, xIV, vInputData [,cOutputPath]) initialises the object ready to per-
form the encryption or decryption. Returns true if successful

iAction can be either:

• kOW3cryptoActionEncrypt
Encrypt the data using the specified encryption scheme and parameters

• kOW3cryptoActionDecrypt
Decrypt the data using the specified encryption scheme and parameters

iEncryptionType can be one of:

• kOW3cryptoTypeAES
AES encryption. Key size must be 128, 192 or 256 bits

• kOW3cryptoTypeCamellia
Camellia encryption. Key size must be 128, 192 or 256 bits

• kOW3cryptoTypeDES
DES encryption. Key size must be 64 or 192 bits. Uses Triple DES if key size is 192 bits

• kOW3cryptoTypeBlowfish (deprecated in Studio 11; do not use for new apps)
Blowfish encryption. Key size must be 128 bits

iCipherMode can be one of:

• kOW3cryptoCipherModeCBC
CBC (Cipher Block Chaining)

126



• kOW3cryptoCipherModeECB
EBC (Electronic Code Book)

• kOW3cryptoCipherModeCTR
CTR (Counter). Not supported for kOW3cryptoTypeDES

iPadding can be one of:

• kOW3cryptoPaddingNone
No padding (use this for cipher modes other than CBC and EBC)

• kOW3cryptoPaddingPKCS7
PKCS7 padding

• kOW3cryptoPaddingOneAndZeros
One and zeros padding (ISO/IEC 7816-4)

• kOW3cryptoPaddingZerosAndLen
Pad with N-1 zero bytes followed by a byte with value N, where N is the number of padding bytes (ANSI X.923)

• kOW3cryptoPaddingZeros
Pad with N zero bytes, where N is the number of padding bytes

Note that PKCS7 is the most common and allows binary data to be correctly decrypted, for example, kOW3cryptoPaddingZeros can
lead to extra bytes being stripped from decrypted binary data.

xKey is a binary containing the key. See the encryption types for details of supported key lengths.

xIV is a binary containing the Initialization Vector (IV) (randomdata that can be used tomake the same encrypted data different when
using the same key). This must be 8 bytes long for DES and Blowfish, and 16 bytes long for AES and Camellia.

vInputData is the data to be encrypted. Either a character value which is the pathname of the file containing the data to encrypt or
decrypt, or a binary variable containing the data to encrypt or decrypt.

cOutputPath is:

• Either omitted or empty meaning that the encrypted or decrypted data is supplied to $completed in the data column of the
results row parameter (this column has type binary)

• Or the pathname of a file (which must not already exist) to which the worker will write the encrypted or decrypted data

The results row passed to $completed has 3 columns: errorCode, errorInfo and data. The error columns behave in the sameway as the
other OW3 workers: note that a negative error code is a code returned by the mbedTLS library. The data column is only used when
cOutputPath was omitted when calling $init.

The worker has properties as follows:

• $errorcode, $errortext, $state and $threadcount
Standard worker properties

• $useexplicitiv
If true, a random IV is added to the start of the data when encrypting or the first IV size bytes is removed from decrypted data.
Only applies to CBC cipher mode. This means that a user can decrypt data without knowing the IV (any IV can be used for
decryption, which will result in just the first IV size bytes being decrypted incorrectly, because of the way the CBC cipher mode
works)

HASHWorker Object

The HASH Worker Object allows you to hash data using SHA1, SHA2, SHA3, MD5, and RIPEMD hash types, which are primarily for
signature purposes, while PBKDF2 is available for password hashing. You use the $inithash() method to initialise the object, passing
the binary or character data to be hashed, and the hash type represented by a constant, as follows:

127



Constant Hash type

kOW3hashSHA1 SHA1
kOW3hashSHA2_256 SHA2 including hash output 256
kOW3hashSHA2_384 SHA2 including hash output 384
kOW3hashSHA2_512 SHA2 including hash output 512
kOW3hashSHA3_256 SHA3 including hash output 256
kOW3hashSHA3_384 SHA3 including hash output 384
kOW3hashSHA3_512 SHA3 including hash output 512
kOW3hashMD5 MD5
kOW3hashRIPEMD_160 RIPEMD_160
kOW3hashPBKDF2 PBKDF2

You can use $initverifyhash to verify or compare some data against previously hashed data generated using $inithash. Having called
the $init… methods, you can use $run or $start to execute the request.

To use the worker object, create a variable with its subtype set to the HASHWorker object which is contained in the OW3 Worker
Objects group in the Select Object dialog, or subclass the external object. There is a new sample app in the HUB in the Studio Browser
to demo the HASHWorker Object.

The HASH worker object has methods as follows:

• $start, $run and $cancel
Standard worker methods: see Base Worker Methods

• $completed and $cancelled
Standard worker completion methods: see Callback methods

• $inithash()
$inithash(vData,iHashType,vHashParameters) initialises the object so it is ready to hash data using the specified hash type
vData specifies the data to hash. Either binary or character. A binary value is used directly. Otherwise, for PBKDF2 the worker
converts character data to UTF-8 before generating the hash. For other hash types, a character parameter is the pathname of
the file containing the data to hash.
iHashType the hash type, a kOW3hash… constant.
vHashParametersA row of parameters that control the hash. For all types except PBKDF2, an empty row() to generate a hash, or
the binary key to use when generating an HMAC (see below). For PBKDF2, a rowwith 3 integer columns in the order saltLength,
keyLength, iterations.
saltLength - the length of the random salt (generated by the worker). A good value for this is 16. Must be 8 to 64 inclusive
keyLength - the length of the hashed key to be generated. A good value is 32. Must be between 16 and 256 inclusive
iterations - the number of iterations to perform to generate the hash. A good value for iterations is at least 100000 - the higher
the value, the more secure the hash, traded off against a longer execution time. Must be between 1 and 256000 inclusive

• $initverifyhash()
$initverifyhash(vData,iHashType,vHash [,xHMACkey]) initialises the object so it is ready to generate the hash for vData using
iHashType and compare it against previously generated vHash
vData specifies the data to hash. Either binary or character. For PBKDF2 the worker converts character data to UTF-8 before
generating the hash. For other hash types, a character parameter is the pathname of the file containing the data to hash.
iHashType the hash type, a kOW3hash… constant.
vHash A hash previously generated by the worker using $inithash(). Either binary or character. If character, the value must be
the BASE64 encoded representation of the hash. Using this method, you could create a hash using $inithash and store that for
future use. To verify a password or document you call $initverifyhash, with vData as the password or document to verify, and
vHash as the stored hash from your call to $inithash.
xHMACkey the key to use when verifying an HMAC authentication code (see below)

• $initsignature()
$initsignature(vData,iHashType,vPrivateKeyPEM[,bBlind=kFalse]) initialises the object so it is ready to generate the signature for
vData using iHashType and RSA encryption with private key xPrivateKeyPEM.
vData specifies the data for which a signature is required. Either binary or character. The worker converts character data to
UTF-8 before generating the signature.
iHashType the hash type, a kOW3hash… constant.
vPrivateKeyPEM The private key in PEM (Privacy EnhancedMail) format. Either binary or character. Binary is assumed to already
be UTF-8. The worker converts character data to UTF-8 before trying to use the private key.
bBlind (default kFalse) If true, the RSA encryption used to generate the signature uses blinding.

128



• $initverifysignature()
$initverifysignature(vData,iHashType,vPublicKeyPEM,vSignature) verifies a signature from $initsignature.
vData the original data
iHashType the original hash type
vPublicKeyPEM the public key in PEM format
vSignature the signature from $initsignature
When returning to $completed, the row’s errorCode will be 0 if the signature has been verified successfully (that is, the data has
not been tamperedwith and itmatches the signature), otherwise it will have ambedtls or anOmnis error code if something has
gone wrong (e.g. if the signature doesn’t match, it should return -17280 with error info of “RSA - The PKCS#1 verification failed”).

HMACs

HMACs can be generated for all hash types, except PBKDF2 and the SHA3 hashes, instead of a hash. The key length for an HMAC is
unrestricted (in versions prior to Studio 10.22 key length was restricted to 64 characters).

To generate an HMAC rather than a hash, supply the binary key as the hash parameters parameter of $inithash() – an empty row as
this parameter generates a hash rather than HMAC. To verify an HMAC rather than a hash, supply the binary key as a new binary last
parameter to $initverifyhash() – this is optional and its presence indicates HMAC.

Results

After calling one of the $init… methods, you call $run or $start. The results row passed to $completed has 3 columns: errorCode,
errorInfo and data. The error columns behave in the same way as the other OW3 workers - note that a negative error code is a code
returned by the mbedTLS library. The data column is only used for $inithash() and it contains the generated binary hash, provided
that no error occurred – youmay want to convert this to base64 before storing it, but note that if you do this you will need to convert it
back to binary before using it to verify data. For $initverifyhash(), the errorCode is zero if and only if the hash was successfully verified.

The worker has properties as follows:

• $errorcode, $errortext, $state and $threadcount
Standard worker properties

LDAPWorker Object

Lightweight Directory Access Protocol (LDAP) allows “the sharing of information about users, systems, networks, services, and ap-
plications throughout the network” (Wikipedia). The LDAP Worker is available in the OW3 group of worker objects, and is named
LDAPClientWorker.

To use the LDAPWorker, you should create an Object variable or an Object Reference variable and set its subtype to the LDAPClient-
Worker object in the Select Object dialog; or you can create an Object class, set its superclass to the LDAPClientWorker object, create
an Object variable or an Object Reference variable and set its subtype to the object class.

There is an example library which you can request from your local Support office.

There is an example app called LDAP Client Worker Object in the Samples section in the Hub in the Studio Browser

Properties

The LDAPWorker has all the base worker properties plus $callbackinst and $keepconnectionopen.

Methods

The LDAP Worker has all the base worker methods. You can use the $init method to initialize the worker object to specify what
information is to be returned from the LDAP server; $init for the LDAPWorker has the following definition:

129



• $init(cURI,cUser,cPassword) Initialize the object so it is ready to access the specified URI using LDAP. Returns true if successful
cURI: The URI of the server, optionally including the URI scheme (ldap or ldaps) e.g. ldap://ldap.myserver.com. If you omit the
URI scheme e.g. ldap.myserver.com, the URI scheme defaults to ldap
cUser: The user name to be used to log on to the LDAP server
cPassword: The password to be used to log on to the LDAP server

To structure theURI of the LDAP server, youwill need to find outwhat parameters are required by the server; youmay find the RFC4516
standard useful which defines the syntax of LDAP URLs: https://docs.ldap.com/specs/rfc4516.txt.

As $init() is called, the details of what is to be retrieved from the server are passed in the URL. You can then call $run() or $start() to run
the request on the main thread or a background thread.

When thequery completes, theworker calls the $completedmethod in theusualway forOW3workers. The rowpassed to $completed
has four columns:

errorCode: Zero for success, otherwise an error code

errorInfo: The description of the error

log: If you enabled logging for the OW3 worker, this contains the log

rawData: If successful, the result of the LDAP query. The developer is currently responsible for parsing this.

Python Worker Object

The PythonWorker Object works exactly like the JavaScript worker, including support for HTTP/2, with a few exceptions, as follows.

The $init method has only one parameter instead of two, since Omnis does not support the remote debugger capabilities in Python.

The $init method of the Python worker accepts a second optional parameter, cExecutable, which is a character variable containing
the path to the Python executable to use, overriding the default location of the Python executable. Without the parameter the Python
worker looks in /usr/bin/python3 for the Python executable.

When passing rows to the Python worker, a dictionary object is created in your Python module. When passing lists, a list object is
created.

There is an example library which you can request from your local Support office.

There is an example library for the PythonWorker under the Samples section in the Hub in the Studio Browser.

Installation

The Python executable is not provided with Omnis Studio, so you will have to install it manually alongside pip (the packagemanager)
on your chosen platform. The Python worker will work with python3 only and ideally you should use at least Python 3.6. Get the latest
download and installation notes for different platforms from: https://www.python.org/

On Linux and macOS, Omnis expects the binary to be in /usr/bin/python3 as well as on the PATH. On Windows, Omnis expects the
installation to also be in the PATH as it relies on loading the python3.dll to get the directory where Python is installed and use the
python.exe within. Currently, you cannot specify a path to a different python executable to use.

In addition, flask, psutils and requests are required; these are listed in a file called requirements.txt which is in the pyworker folder in
the Omnis read/write directory. You can either install themmanually or by doing pip/pip3 install -r path/to/file/requirements.txt

In order to create a Python module, create a new folder inside the pyworker folder in the Omnis read/write directory, and include a
main.py file which Omnis will load at runtime. When calling your module, use the folder name of your module and a function within
your main.py. You can import omnis_calls in your main.py and use sendResponse or sendError if required, or you can simply return
a message or some data, or raise an Exception if an error occurred (in which case it should automatically return a $methoderror or
$methodreturn).

Java Worker Object

The Java Worker allows you to invoke methods inside Java modules. There is a Java Worker example in the Samples section in the
Hub in the Studio Browser.

130

https://docs.ldap.com/specs/rfc4516.txt
https://www.python.org/


Installation

Java is not installed with Omnis Studio, therefore you will have to install it separately. Java version 17 was used to implement the
JavaWorker, more specifically the Adoptium implementation, but any Java implementation (including Oracle’s) should work with the
Omnis Java Worker.

Methods

The $initmethod initializes the Java Worker and is the only method that differs from the other existing worker base methods.

$init([cPath,cExecutable,bDebugWorker,cJvmOptions])

Initializes the Java Worker and returns kTrue if successful, otherwise kFalse is returned.

• cPath
optional character string of items for the Java CLASSPATH. Paths must be separated by ; (semi colon) onWindows, and : (colon)
on macOS and Linux. If empty, the worker adds the default CLASSPATH.

• cExecutable
optional character string containing the path to the Java executable that should be used. If empty, Omnis uses /usr/bin/java on
macOS and Linux, and java.exe on Windows.

• bDebugWorker
optional boolean to put the Java Worker thread in debug mode, defaults to false. If debug is true, debugging messages are
written to stdout.

• JvmOptions
optional character string of options to pass to the JVM.

Properties

The Java Worker has the same base properties as the existing workers.

Main module file structure

A new javaworker folder has been added to the clientserver/server folder in the Omnis read/write location (Application Support on
macOS or AppData onWindows):

<read/write location>/clientserver/server/javaworker

which contains:

• JavaWorker.jar
the main Java entry point for the Java Worker. This is a Spring Boot application running the http/2 endpoint that handles Java
method calls.

• lib
a folder containing the JAR dependencies for JavaWorker.jar.

• store.jks
a Java KeyStore containing the Omnis self-signed certificate used to form a secure connection between Omnis and the Java-
Worker.jar. WhenOmnis starts the Javaprocess, the JavaWorker.jar, lib subfolder and<read/write location>/clientserver/server/javaworker/
are added to the CLASSPATH.

131

https://adoptium.net/en-GB/temurin/releases/?version=17


User module file structure

A new javaworker folder has been added in the root of the Omnis read/write location (Application Support on macOS or AppData on
Windows) which contains:

• lib
a global folder for JAR dependencies, for example, it contains gson-2.10.1.jar since it is used by some of the JARs in the Java
Worker. If your modules have a common dependency, you should use this global lib folder.

• OmnisCalls a folder that represents the OmnisCalls module, containing the OmnisCalls.jar.

• OmnisTest
a folder that represents the OmnisTest module, containing the OmnisTest.jar.

Each new module needs to be placed inside its own folder, inside the javaworker folder, at the root of the read/write location. If your
module has dependencies that are not shared with other modules, you should also create a lib folder inside your module’s folder and
place the dependencies there.

You can place commonmodule dependencies in the lib folder at the root of the javaworker folder.

When Omnis starts the Java process, each module folder and its lib subfolder are added to the CLASSPATH, alongside the main lib
folder. This means that your module’s lib subfolder contents will be visible to other modules, therefore the separation is purely for
maintaining a clean file structure.

Building Java Modules

When creating a new Java module to use with the Java Worker, you will need to first create a Java project. Visual Studio has a great
extension that assists with this, see more here:

https://code.visualstudio.com/docs/java/java-tutorial

TheMaven build tool was used to create the Java Worker. More specifically, the Maven wrapper (https://maven.apache.org/wrapper/)
which provides a mvnw executable.

Once your project is set up, you will need to add OmnisCalls as a dependency. In the Maven project, OmnisCalls was added to the
pom.xml in the section:

...
<dependencies>

<dependency>
<groupId>net.omnis</groupId>
<artifactId>OmnisCalls</artifactId>
<version>0.1</version>
<scope>system</scope>
<systemPath>path/to/OmnisCalls.jar</systemPath>

</dependency>
</dependencies>

...

The dependency is needed only at build time since Omnis comes with OmnisCalls.jar in the CLASSPATH at runtime. Whilst editing
the pom.xml, if using Maven, you could also setup the Maven plugin to build your dependencies out in a lib folder inside your project,
which you could then copy out into your module’s lib subfolder:

...
<build>

<plugins>
<!-- Get dependencies in lib folder -->
<plugin>

<groupId>org.apache.maven.plugins</groupId>
<artifactId>maven-dependency-plugin</artifactId>
<version>3.2.0</version>

132

https://code.visualstudio.com/docs/java/java-tutorial
https://maven.apache.org/wrapper/


<executions>
<execution>

<id>copy-dependencies</id>
<phase>package</phase>
<goals>

<goal>copy-dependencies</goal>
</goals>
<configuration>

<outputDirectory>
${project.build.directory}/lib

</outputDirectory>
</configuration>

</execution>
</executions>

</plugin>
</plugins>

</build>
...

Once the dependency is available to your Java project, you can create the Java class you wish to expose to Omnis by extending
OModule, for example:

package net.omnis.OmnisTest; import net.omnis.OmnisCalls.*;
public class Test extends OModule {

// Implement your methods here
}

In the above example a package net.omnis.OmnisTest was created with a class Test. When using $callmethod from Omnis Studio,
the module name parameter would be net.omnis.OmnisTest.Test.

Note that if you do not inherit from the OModule class, the JavaWorker will not be able to call your methods; the OModule class does
not do anything at present, but is reserved for future use.

To implement a method in your module, you must make it return a Response object (provided by OmnisCalls) and take in a Map:

public Response test(Map<String, Object> pParams) {

Map<String, Object> data = new HashMap<>(); data.put("unicode",
"Fingerspitzengef\u00FChl is a German term.\nIt\u2019s pronounced as follows: [\u02C8f\u026A\u014B\u0250\u02CC\u0283p\u026Ats\u0259n\u0261\u0259\u02CCfy

\u02D0l]");

return new SendResponse(data);
}

In the above example a test method was created which returns a new SendResponse object (provided by OmnisCalls) with a Map
parameter (i.e. a key-value store) containing one key: ‘unicode’ with a UTF-8 formatted string value.

The Java Worker automatically converts the Map from SendResponse into JSON, which when received in Omnis Studio will be a row
variable in your $methodreturn.

Similarly, if you wish to send back an error, you can return a new SendError (provided by OmnisCalls). If you wish to send a list as part
of the data, you can add an ArrayList to the Map, which can be summarized with the OmnisTest example, as follows:

package net.omnis.OmnisTest;
import net.omnis.OmnisCalls.*;

import java.util.Map;
import java.util.HashMap;
import java.util.ArrayList;

133



public class Test extends OModule {

public Response test(Map<String, Object> pParams) {

Map<String, Object> data = new HashMap<>(); data.put("unicode","Fingerspitzengef\u00FChl is a German term.\nIt\u2019s
pronounced as follows: [\u02C8f\u026A\u014B\u0250\u02CC\u0283p\u026Ats\u0259n\u0261\u0259\u02CCfy\u02D0l]");

ArrayList<String> listData = new ArrayList<>();
listData.add("Python");
listData.add("JavaScript");
listData.add("Java");
listData.add(".NET Core");

data.put("OW3 Workers", listData);

return new SendResponse(data);
}

}

To summarize, if you used the abovemodule, you would call it fromOmnis Studio through the JavaWorker with $callmethod and use
net.omnis.OmnisTest.Test as the module parameter and test as the method name.

WebWorker Objects

The following section refers to the Web Worker Objects (OWEB) available in Omnis Studio prior to Studio 8.1 (introduced in Studio
6.1.2): note they require Java to be installed and are therefore no longer supported in Studio 10.x or above: you should use the OW3
Workers for all new development.

SMTP Client Workers

The SMTP worker object allows you to submit email(s) to an SMTP server in a background thread, working in a similar way to the
existing “worker objects” for DAMs, HTTP and Timers. In addition, it provides support for authentication methods not supported by
the existing SMTPSend command including DIGEST-MD5, NTLM and OAUTH2.

In addition to the SMTP worker object, there is an object called EMAILMessage, which you use to build the message to be sent by the
worker.

Software Requirements

The SMTP worker object relies on Java, and therefore relies on some Java files located in the ‘java/axis/lib’ folder in the main Omnis
Studio folder: see the Java Objects chapter for details about running Java in Omnis.

EMAILMessage Object

The EMAILMessage object is used to construct the message to be sent to the SMTP Client worker. The EMAILMessage object has
methods tomanipulate theMIME body parts of themessage. Each body part has a non-zero integer identifier that uniquely identifies
the body part within the context of the object instance. EMAILmessage needs to remain in scope until the worker $completed or
$cancelled message is called.

Note: If you specify a charset of kUniTypeAuto for binary or file body parts, the object will inspect the data, and set its charset ac-
cording to the presence of a BOM (Byte Order Marker) to kUniTypeUTF8, kUniTypeUTF16BE, kUniTypeUTF16LE, kUniTypeUTF32BE or
kUniTypeUTF32LE. If there is no BOM, the charset will be kUniTypeNativeCharacters, resulting in iso-8859-1 for Linux, macintosh for
macOS or windows-1252 for Windows.

Methods

134



$createbodypartfromfile

$createbodypartfromfile(cPath[,cMIMEType,iCharset,cEncoding,cDisposition,cFilename])

Creates a MIME file body part. Returns non-zero integer body part id (unique for this EMAILMessage object) or zero if an error occurs.

Parameter Description

cPath The pathname of the file containing the body part data.The name of
the file will also be used to set the filename for the attachment if you do
not also pass the cFilename parameter

cMIMEType The MIME type of the body part,in the standard syntax of type/subtype.
If you omit this, the object will use a mapping table built into oweb.jar
to generate the MIME type from the file extension; if this mapping fails,
the type defaults to application/octet-stream

iCharset A kUniType… constant (default kUniTypeAuto) indicating the charset of
MIME type text/… (cannot be kUniTypeBinary or kUniTypeCharacter). If
this body part needs a charset,it is assumed to be already encoded
using this charset

cEncoding The encoding to be used to transfer the body part data e.g. ‘BASE64’. If
omitted,the mail client chooses a default

cDisposition The content disposition value to be used for the body part e.g. ‘inline’ or
‘attachment’. If omitted, the mail client will use the default disposition

cFilename The name sent as the filename of the body part.Defaults to the file
name component of cPath if omitted

$createbodypartfromchar

$createbodypartfromchar(cData[,cMIMEType,iCharset,cEncoding,cDisposition,cFilename])

Creates a MIME body part from character data. Returns non-zero integer body part id (unique for this EMAILMessage object) or zero
if an error occurs.

Parameter Description

cData The character data to be used as the content of the body part
cMIMEType The MIME type of the body part,in the standard syntax of

type/subtype. If you omit this, the type defaults to text/plain
iCharset A kUniType… constant(default kUniTypeUTF8) indicating the

charset to be used for the character data (cannot be
kUniTypeAuto, kUniTypeBinary or kUniTypeCharacter)

cEncoding The encoding to be used to transfer the body part data e.g.
‘BASE64’. If omitted,the mail client chooses a default

cDisposition The content disposition value to be used for the body part e.g.
‘inline’ or ‘attachment’. If omitted, the mail client will use the
default disposition

cFilename The name sent as the filename of the body part. If omitted, no
filename will be used

$createbodypartfrombin

$createbodypartfrombin(xBin[,cMIMEType,iCharset,cEncoding,cDisposition,cFilename])

Creates a MIME body part from binary data. Returns non-zero integer body part id (unique for this EMAILMessage object) or zero if
an error occurs.

135



Parameter Description

xBin The binary data to be used as the content of the body part
cMIMEType The MIME type of the body part,in the standard syntax of

type/subtype. If you omit this, the type defaults to
application/octet-stream

iCharset A kUniType… constant (default kUniTypeAuto) indicating the
charset of MIME type text/… (cannot be kUniTypeBinary or
kUniTypeCharacter). If this body part needs a charset,it is
assumed to be already encoded using this charset

cEncoding The encoding to be used to transfer the body part data e.g.
‘BASE64’. If omitted, the mail client chooses a default

cDisposition The content disposition value to be used for the body part e.g.
‘inline’ or ‘attachment’. If omitted, the mail client will use the
default disposition

cFilename The name sent as the filename of the body part. If omitted, no
filename will be used

$createbodypartfromparts

$createbodypartfromparts(cMultiType,vPart[,iPart2,...])

Creates aMIMEmulti-part bodypart containing specifiedbodyparts. Returnsnon-zero integer bodypart id (unique for this EMAILMes-
sage object) or zero if an error occurs.

Parameter Description

cMultiType The type of multi-part body part being created e.g. mixed
vPart Either an integer body part id for a previously created body part in

the EMAILMessage object or a single column list of integer body
part ids for previously created body parts

iPart2 An integer body part id for a previously created body part in the
EMAILMessage

… Further parameters can be integer body part ids for previously
created body parts

Note that each body part can only be used once in a multi-part body.

$deleteaallbodyparts

$deleteaallbodyparts()

Deletes all body parts that have been created using a $createbodypart… method. Also sets property $contentid to zero.

Properties

The EMAILMessage object has the following properties:

Property Description

$errorcode Error code associated with the last action (method call or
property assignment) (zero means no error)

$errortext Error text associated with the last action (method call or
property assignment) (empty means no error)

$from The email address of the sender
$subject The subject of the message

136



Property Description

$to A space separated list of email addresses of the primary
recipients of the message

$cc A space separated list of email addresses of the carbon copied
recipients of the message

$bcc A space separated list of email addresses of the blind carbon
copied recipients of the message

$priority A kOWEBmsgPriority… constant that specifies the priority of
the message. Defaults to kOWEBmsgPriorityNormal

$extraheaders A list with 2 character columns (name and value). Each row in
the list is an additional SMTP header to be sent to the server
when submitting the message

$contentid The id of the content to be sent with this email message. An
integer body part id (returned by one of the $createbodypart…
methods)

Constants

The EMAILMessage object has the following constants:

Constant Description

kOWEBmsgPriorityLowest The message has the lowest priority.
kOWEBmsgPriorityLow The message has low priority.
kOWEBmsgPriorityNormal The message has normal priority.
kOWEBmsgPriorityHigh The message has high priority.
kOWEBmsgPriorityHighest The message has the highest priority.

SMTPClientWorker Object

The SMTPClientWorker object uses the standard worker mechanism, with methods $init, $start, $run and $cancel, and callbacks
$completed and $cancelled. In addition, there are some properties which further control the behavior of the object.

Methods

$init

$init(zMessage,cServer[,iSecure=kOWEBsmtpSecureNotSecure,iAuthType=kOWEBsmtpAuthTypeNone,cUser,cPassword,cOAUTH2,cRealm,cNTLMDomain,lProps, bMailShot=kFalse ])

Initialize the worker object so it is ready to send message oMessage. Returns true if successful.

Parameter Description

zMessage An object reference to the EMAILMessage to send
cServer The SMTP server that will send the message.Either a domain name or

IP address.You can optionally specify the server port by appending ‘:’
iSecure A kOWEBsmtpSecure… constant that indicates if and how the

connection is to be made secure
iAuthType A sum of kOWEBsmtpAuthType… constants that specify the allowed

authentication types
cUser The user name that will be used to log on to the SMTP server
cPassword The password that will be used to log on to the SMTP server

137



Parameter Description

OAUTH2 The SMTPClientWorker can manage OAUTH2 authentication for you. If
you want it to do this, then this parameter is the name of the authority
responsible for OAUTH2 authentication. This name is the name of a
folder (which must exist) in secure/oauth2/smtp in the Omnis folder
(the authority folder contains configuration and assets for this
authority). In this case, cPassword is not used if OAUTH2 is the
authentication mechanism chosen by the mail client. If you want to
manage OAUTH2 yourself, then OAUTH2 must be empty or omitted,
and the password must be the OAUTH2 access token. See the section
on OAUTH2 for more details

cRealm The realm used for DIGEST-MD5 authentication
cNTLMDomain The domain used for NTLM authentication
lProps A list with 2 character columns (name and value). A list of properties to

be set for the JavaMail SMTP session object (see docs for package
com.sun.mail.smtp at https://javamail.java.net/nonav/docs/api/). The
SMTPClientWorker sets these properties as a final step, meaning that
this can be used to override properties set by the worker, or to set other
properties

bMailShot If bMailShot is true (the default is false), the worker sends a separate
copy of the message to each recipient (each recipient cannot see the
email address of the other recipients). In this case, only ‘to’ recipients
can be specified

$run

$run([cOAUTH2authCode])

Runs the worker on current thread. Returns true if the worker executed successfully. The cOAUTH2authCode parameter is discussed
in the section on OAUTH2. It is not required in the initial call to $run to send an email.

$start

$start([cOAUTH2authCode])

Runs the worker on background thread. Returns true if the worker was successfully started. The cOAUTH2authCode parameter is
discussed in the section on OAUTH2. It is not required in the initial call to $start to send an email.

$cancel

$cancel()

If required,cancels execution of worker on background thread. Will not return until the request has been cancelled.

$completed

$completed(wResults)

Callbackmethod called when the request completes. Typically, you would subclass the SMTPClientWorker, and override $completed
in order to receive the results. wResults is a row containing the results of executing the request. It has columns as follows:

138



Column name Description

errorCode An integer indicating the error that has occurred. Zero means no
error occurred, and the email was successfully sent

errorInfo Error text that describes the error. Empty if no error occurred
log If the property $debuglog was set to kTrue before calling $init, this

character column contains debugging information, including a log
of the interaction with the SMTP server

oauth2_authcodeurl Only applies when using OAUTH2 authentication managed by the
SMTPClientWorker, and when errorCode is
kOWEBsmtpErrorOAUTH2authCodeRequired. The URL to which
the user needs to navigate in order to obtain an OAUTH2
authorisation code. See the section on OAUTH2 for more details

$cancelled

$cancelled()

Callback method called when the request has been cancelled by a call to $cancel(). Typically, you would subclass the SMTPClient-
Worker, and override $cancelled.

Properties

The SMTPClientWorker object has the following properties:

Property Description

$state A kWorkerState… constant that indicates the current state of the
worker object

$errorcode Error code associated with the last action (zero means no error)
$errortext Error text associated with the last action (empty means no error)
$threadcount The number of active background threads for all instances of this

type of worker object
$debuglog If true,when the worker executes it generates a log of the

interaction with the SMTP server.Must be set before executing
$init for this object.The log is supplied as a column of the row
variable parameter passed to $completed

$timeout The timeout (in seconds) for SMTP requests (default is 30). Zero
means infinite. Must be set before executing $init for this object

$clientsecret The OAUTH2 client secret to be used to obtain tokens for OAUTH2.
Must be set before executing $init for this object. Overrides the
clientSecret (if any) in the OAUTH2 authority file. See the section
on OAUTH2 for more details. This property is only relevant if the
SMTPClientWorker is managing OAUTH2 authentication using an
OAUTH2 authority

Constants

Authentication Types

These constants can be added together in order to form a bit mask of allowed authentication types:

Constant Description

kOWEBsmtpAuthTypeNone This has value zero, as a convenient way to indicate that no SMTP authentication is required.
kOWEBsmtpAuthTypeLOGIN SMTP LOGIN authentication is allowed if the server supports it.
kOWEBsmtpAuthTypePLAIN SMTP PLAIN authentication is allowed if the server supports it.
kOWEBsmtpAuthTypeDIGESTMD5 SMTP DIGEST-MD5 authentication is allowed if the server supports it.

139



Constant Description

kOWEBsmtpAuthTypeNTLM SMTP NTLM authentication is allowed if the server supports it.
kOWEBsmtpAuthTypeCRAMMD5 SMTP CRAM-MD5 authentication is allowed if the server supports it.
kOWEBsmtpAuthTypeOAUTH2 SMTP OAUTH2 authentication is allowed if the server supports it

Secure Connection Type

These constants indicate how the connection is to be made secure:

Constant Description

kOWEBsmtpSecureNotSecure The connection between client and server is not secure.
kOWEBsmtpSecureSSL The connection between client and server uses SSL.
kOWEBsmtpSecureSTARTTLS The connection between client and server is to be made secure by using the STARTTLS command.

OAUTH2

This section provides an overview of OAUTH2, including some key terms.

OAUTH2 provides a way for applications to perform actions on behalf of a user, provided that they have the permission of the user. So
in the case of the SMTPClientWorker, when using OAUTH2 authentication, the Omnis Studio client needs to be given permission to
send the email.

This all occurs in the context of an OAUTH2 authority, so for example if you are using GMAIL, the OAUTH2 authority is Google, or if you
are using Windows mail, the OAUTH2 authority is Microsoft. he client application (Omnis Studio or more typically your application)
needs to be registered as an application with the OAUTH2 authority; this gives it two key pieces of information:

• Client ID. A unique identifier for the client application.

• Client secret. A string used in requests to the OAUTH2 authority

that authenticates the application. This needs to be kept as private as possible.

How you register your application with the OAUTH2 authority depends on the particular authority. For example:

• For Google
go to the Google Developers Console (https://console.developers.google.com) and create a new project. On the credentials
screen, create a new client ID for an installed application of type other.

• For Microsoft
go to the Microsoft account Developer centre (https://account.live.com/developers/applications/ ) and create an application.
In the API Settings make sure “Mobile or desktop client app” is set to Yes.

The user interfaces for these developer consoles allow you to obtain the client ID and client secret.

In order to use OAUTH2 authentication, the application needs to supply an OAUTH2 access token as the password. An access token
is a short-lived password that is typically valid for an hour. The first time the application needs an access token, there has to be some
interaction at the user interface:

• The application opens a browser window at the OAUTH2 authorisation code URL for the authority. Note that this URL includes
a scope which indicates what type of permission is being requested. Each authority has a scope value which indicates that the
user wants to manage email.

• The browser windowmay ask the user to log on to their account with the relevant authority. Once logged on, it will ask the user
if they give the particular application permission to use their email. If the user agrees, the browser redirects to a URI called the
redirect URI, passing an authorisation code to the URI. There are special redirect URIs for OAUTH2 authorities which cause the
authorisation code to be available in the browser window after the user agrees - you need to use these special redirect URIs to
use the SMTPClientWorker.

• The user copies the authorisation code from the browser window, and pastes it into the application.

140

https://console.developers.google.com
https://account.live.com/developers/applications/


• The application uses the authorisation code, client secret, client id and redirect URI to make an HTTP request to the token URL.
A successful call to this URL returns an access token, expiry information for the access token (how long it is valid) and a refresh
token.

• The application uses the access token as the password.

As part of the process described above, the application stores the access token, expiry information, and refresh token in permanent
storage. The next time the application needs to log on, the application reads this information. If the access token is probably still
valid, based on the expiry information, the application uses it. If not, the application uses the refresh token tomake a slightly different
request to the token URL, in order to get a new access token, which it then stores and uses to log on. Note:

• If the log on fails using the saved access token (with an authentication failure), the application will then try to use the refresh
token to obtain a new access token.

• The refresh token may be invalidated by the authority at some point. For this, and various other reasons, log on may fail with
an authentication failure. In that case, the application needs to return to the initial step of opening the browser window at the
OAUTH2 authorisation code URL, so that it can obtain the user’s permission, and a new access token and refresh token.

OAUTH2 for SMTPClientWorker

This section describes how the OAUTH2 support for the SMTPClientWorker works.

Authority Configuration

Each authority has a folder with the authority name in the folder secure/oauth2/smtp, in the Omnis data folder. In the installed tree,
there are folders for two authorities, and each folder includes a file called config.json; this is a JSON file that configures the authority
for use with the SMTPClientWorker. The installed authorities, and their JSON files, are:

gmail:
{
"authURL": "https://accounts.google.com/o/oauth2/auth",
"tokenURL": "https://www.googleapis.com/oauth2/v3/token",
"proxyServer": "",
"scope": "http://mail.google.com/",
"redirectURI": "urn:ietf:wg:oauth:2.0:oob",
"clientID": "",
"clientSecret": ""

}

outlook:
{
"authURL": "https://login.live.com/oauth20_authorize.srf",
"tokenURL": "https://login.live.com/oauth20_token.srf",
"proxyServer": "",
"scope": "wl.imap,wl.offline_access",
"redirectURI": "https://login.live.com/oauth20_desktop.srf",
"clientID": "",
"clientSecret": ""

}

When using these authorities, you need to supply your client ID. You can optionally store your client secret here, or if you want to keep
it in another more secure location, you can store it how you like, and then supply it to the SMTPClientWorker using the $clientsecret
property.

The proxyServer only requires a value if your client system is using a proxy server; the SMTPClientWorker uses this whenmaking HTTP
requests to the token URL.

User Storage

The SMTPClientWorker stores the access token, expiry information, and refresh token for a user in the file <user>.info in the authority
folder, where <user> is typically the email address of the authorising user. This file is a JSON file, that is automatically handled by the
SMTPClientWorker, so you should not need to edit this file.

141



Application Logic

After you have configured the authority, to use OAUTH2 in your application with the SMTPClientWorker, there is only one additional
step you need to code in your application. Essentially, this comprises:

• Opening a browser window at the OAUTH2 authorisation code URL.

• Accepting the pasted authorisation code.

• Calling $run or $start for a second time, this time also passing the authorisation code.

For example, in $completed:

If pResults.errorCode=kOWEBsmtpErrorOAUTH2authCodeRequired

OK message {A browser window will open so that you can authorize sending email.//Please follow the instructions and then paste the authorization code into the following dialog...}

Launch program ,[pResults.oauth2_authcodeurl]

While len(lAuthCode)=0
Prompt for input Authorization code Returns lAuthCode (Cancel button)
If flag false
Yes/No message {Are you sure you want to cancel?}
If flag true
Quit method

End If
End If

End While
Do $cinst.$start(lAuthCode)

End If

External Commands

Note the Web and Email external commands are obsolete and are no longer supported in Studio 10.x or above: you should use the
OW3Workers for all new development.

The following protocols were supported: HTTP, FTP, SMTP, POP3, and IMAP. The external commands are prefixed with the respective
protocol name, e.g. HTTPSend, FTPConnect, etc.

The Web and Email external commands are not displayed in the Code Editor since the ‘Exclude Old Commands’ filter is selected in
the Code Editor (if you select No Filter from theModify menu they will be available); these commands are described in the Command
Reference and the Omnis Help (press F1) under the External commands group.

Multi-threading

The Web and Email external commands are multi-threaded, when running on a multi-threaded Omnis Server. The Web commands
allow another thread to execute in the multi-threaded server while the current command runs. Note that the same socket cannot
safely be used concurrently by more than one thread. See also the ‘SMTP Client Workers’ section for using email in multi-threaded
environment.

MailSplit

If the encoding cannot be determined from the MIME, MailSplit uses $importencoding as the default encoding rather than UTF-8,
provided that $importencoding is an 8 bit encoding, that is, anything except kUniTypeUTF16, kUniTypeUTF16BE and kUniTypeUTF16LE.

Email Headers

The SMTPSend andMailSplit commands support international characters in email headers (using RFC2047). The character limit of 76
for RFC2047 encoded words for mail headers has been removed in the MailSplit command.

142



SSL Security

TheWeb and Email external commands allow support for secure connections using Secure Sockets Layer (SSL) technology. However,
Transport Layer Security (TLS) supersedes SSL and should be used in new development. Applications that require a high level of
interoperability should support SSL 3.0 and TLS.

TheHTTP, FTP, SMTP, POP3, and IMAP client commands that establish a connection to a server allow you to control if and howa secure
connection is used. The commands which allow secure connections are:

FTPConnect IMAPConnect
HTTPGet POP3Connect
HTTPOpen POP3Recv
HTTPPost POP3Stat
HTTPSetProxyServer SMTPSend

The parameters Secure and Verify allow you to enable support for secure connections. The parameters behave as follows:

• Secure
is an optional Boolean* parameter which indicates if a secure connection is required to the server. Pass kFalse for non-secure
(the default). Pass kTrue (value 1) for a secure connection; this enables the Verify option.
*In addition, you canpass value 2 to someof the commands to enable specific types of authentication. The SSL package installed
on yours or the client’s system is used (Windows: Schannel, ormacOS: Secure Transport). FTPS resumes the TLS session for data
connections. In addition, it automatically sends PBSZ and PROT commands to the server after establishing a secure control
connection

• Verify
is an optional Boolean parameter which is only significant when Secure is not kFalse. When Verify is kTrue, the command
instructs the SSL package to verify the server’s identity using its certificate; if the verification fails, the connection will not be
established. You can pass Verify as kFalse, to turn off the verification; in this case, the connection will still be encrypted, but
there is a chance the server is an impostor.

For example, the FTPConnect command allows you to establish a secure connection to the specified FTP server; the full syntax of the
command is:

FTPConnect (serveraddr, username, password [,port, errorprotocoltext, secure {Default zero insecure;1 secure;2 use AUTH TLS}, verify {Default kTrue}]) Returns socket

where Secure is an optional Boolean parameter which indicates if a secure connection is required to the server. Pass kTrue for a
secure connection. If you pass secure with the value 2, the connection is initially not secure, but after the initial exchange with the
server, FTPConnect issues an AUTH TLS FTP command to make the connection secure if the server supports it (see RFC 4217 for
details), followed by further commands necessary to set up the secure connection. Authentication occurs after a successful AUTH TLS
command. Note that if you use either of the secure options, all data connections are also secure, and all data transfer uses passive
FTP.

When set to true (the default), the “ftpsresumesession” item in the “web” section of the config.json file ensures that the FTP commands
attempt to resume the control connection session when establishing a secure data connection.

HTTPPage

The HTTPPage command has an additional parameter to allow you to ignore SSL. The full syntax of the command is:

HTTPPage (url[,Service|Port,pVerify]) Returns html-text

When passed as false, the pVerify argument prevents SSL verification when using a secure URL, so you can use:

HTTPPage (url,,kFalse)

143



SSL Packages

In order to use SSL or TLS in theWeb and Email external commands the Secure Channel (Schannel) package onWindows, or Secure
Transport on macOSmust be installed on your development computer or a client’s computer: these are present by default on their
respective platforms.

OpenSSL

Existing Users should note: The Web and Email external commands relied on OpenSSL in previous versions to provide secure com-
munications. Support for OpenSSL has been removed for these commands and support for SSL and TLS relies on the built-in security
for each platform.

If you have used OpenSSL to provide secure comms for these commands in existing applications, you will need to switch to using
either Schannel or Secure Transport depending on what platform your app is running on.

Certificate Authority Certificates

In order to perform the verification (when the Verify parameter is kTrue), the SSL package uses the Certificate Authority Certificates in
the cacerts sub-folder of the secure folder in the Omnis folder. If you use your own Certificate Authority to self-sign certificates, you
can place its certificate in the cacerts folder, and the SSL package will use it after you restart Omnis.

Web Command Error Codes

Error codes for the Web Commands are listed in the Commands Reference.

Chapter 8—Omnis Graphs

Some parts of this chapter refer to creating Charts and Graphs using the Graph2 window component, which is available forWindow
classes only, and therefore may not be available in your edition of Omnis Studio. You can however use the Graph2 External Object to
generate a chart image in your Omnis code, save it as a JPG image and display it in the JavaScript Client in a remote form Picture
control (this technique is shown in the JS Picture example app in the Hub in the Studio Browser), or you can add the chart image to
a PDF report. Alternatively, you can use the Bar or Pie Chart JavaScript component to display a chart in your web & mobile apps. As
a further alternative for displaying charts in the JavaScript Client, you could embed a third-party chart engine into a remote form, a
technique which is described in the tech note: Integrating AmCharts into Omnis Studio TNJC0014.

About Graph2

You can createmany different types of chart in Omnis using the Graph2 component and display them in your windows, remote forms,
or reports. The data and appearance of a chart is based on the data stored in an Omnis list variable. The different chart types require
a different list data structure to represent their data points. The Graph2 component supports four main types of chart: XY charts,
Pie charts, Polar charts and Meter charts, each of which has a number of subtypes (except Pie). The major and minor types of the
graph are specified as properties of the graph window object (found under External Components in the Component Store) and the
associated list variable is specified in the $dataname property of the object.

Note to existing Omnis developers

The Graph2 component is based on a new graphing engine (called ChartDirector from Advanced Software Engineering Ltd) and was
introduced to simplify graphing functionality in Omnis. The Graph2 component can produce many more types of chart and is easier
to use than the old Graph component, which for backwards compatibility is still available in Omnis, but is no longer maintained or
supported.

High Resolution Charts

From Studio 10.2 Rev 29538 onwards, the Graph2 component draws charts in high resolution suitable for display on high resolution
displays. In this case, charts are generated at twice the size and are displayed at the correct physical size on high resolution displays.

You can disable this behavior by setting the property $disablehighresolution to kTrue (the default is kFalse meaning high resolution
charts are supported). If the client is running on a display that does not support high resolution, the property will be set to kTrue
automatically, and you will not be able to change the value of the property.

144

/developers/resources/onlinedocs/CommandRef/Commands_A-Z/web_error_codes.html
https://omnis.net/developers/resources/technotes/tnjc0014.jsp


Chart Types

XY Charts

XY charts can be one of several different minor types or subtypes.

Bar charts

Figure 30:

Bar charts represent individual amounts, or compare individual amounts; you can change the graph orientation to show horizontal
bars. There are several subtypes which you can select, including Line, Scatter, Area, and Box whisker.

Line charts

Figure 31:

Line charts emphasize the rate of change rather than individual amounts.

Scatter charts

Figure 32:

Scatter charts show the relationship of different groups of numerical data, and plot the data as xy coordinates.

Area charts

Area charts emphasize the amount or magnitude of change rather than the rate of change.

145



Figure 33:

Figure 34:

Box whisker charts

Box whisker charts normally consist of five items of data to represent each element. Gantt charts are also constructed using the Box
Whisker type, using three items of data per graph element.

High/Low/Open/Close charts

Figure 35:

High/Low/Open/Close (HLOC) charts are used to represent financial data; this type uses four data items to represent each element.

Candlestick charts

Candlestick charts are used to represent financial data; this type uses four data items to represent each element.

Pie Charts

The data in a pie chart is represented as sections, or slices of a pie. There are nominor types for this chart type, but pies have numerous
visual effects.

Polar Charts

Polar Area

Polar charts represent data points on a radial axis with the values represented as the distance from the center; four minor types are
available.

146



Figure 36:

Figure 37:

Figure 38:

147



Polar Line

Figure 39:

See later in this section for a description of how to draw the 2 graphs above.

Polar charts represent data points on a radial axis with the values represented as the distance from the center; four minor types are
available.

Polar Spline Line and Area

Figure 40:

Meter Charts

Numeric amounts or measurements can be shown as a meter or gauge; angular (or dial) or linear styles are available.

Figure 41:

Ameter chart with the Linear subtype. In addition to changing the orientation ofmeter charts, you can add extra pointers for showing
multiple data points, and colored zones to mark the scale or dial, for example.

A Meter chart with Angular subtype providing a dial or gauge effect, shown here with rounded frame

The Graph2 Example Library

There is an example library showing how the Graph2 component works, which is located under the Examples link in the Welcome
window when you first launch Omnis – you can open this window by clicking on the New Users button in the main Omnis toolbar.
Code from the example library is used later in this manual to show you how to use the component.

148



Figure 42:

Common Graph Properties

All the different graph types have the following properties; one of the most important properties is the $dataname which contains
the name of the Omnis list variable containing the data for the graph; this is found under the General tab in the Property Manager.

Property Name Data Type Description

$dataname List The name of the Omnis list variable supplying the data to the graph; the structure of
the data in the list must match the type of graph you wish to draw

The following common properties are found under the Prefs tab in the Property Manager.

Property Name Data Type Description

$deviceindependent Boolean If True report printing creates a device independent bitmap (DIB), used for
printing in the Web client and cross-platform applications

$imagesearchpath Char The path and folder name where the Graph component will search for images (on
macOS the property uses a standard HFS colon-separated pathname); if empty
(the default), the component searches in the Omnis\Icons folder

$legendbackgroundcolor RGB Color The legend background color
$legendbackgroundeffect Constant The legend background effect: kG2colorSolid, kG2colorMetal, or kG2colorNotUsed
$legendpos Constant The legend position: kG2legendNone, kG2legendLeft, kG2legendRight,

kG2legendTop, kG2legendBottom, kG2legendManual ($legendx & legendy apply)
$legendtextcolor RGB Color The legend text color
$legendvert Boolean If True the legend is drawn vertically
$legendx Integer The X Position of the legend (only if $legendpos is kG2legendManual)
$legendy Integer The Y Position of the legend (only if $legendpos is kG2legendManual)
$majortype Constant The graph type, a constant: kG2xy, kG2pie, kG2polar, or kG2meter
$minorxytype$minorpolartype$minormetertypeConstant Minor type for XY, Polar, or Meter graphs only; there are no minor types for Pie

charts
$roundedframe Boolean If True the graph frame has rounded corners

The following common properties are found under the Custom tab in the Property Manager for all graph types.

Property Name Data Type Description

$3d Boolean If true the graph is 3d
$backgroundborder RGB Color The background border color
$backgroundcolor RGB Color The background color
$backgroundeffect Constant kG2colorSolid or kG2colorMetal
$backgroundraised Integer The degree to which the background is raised (if positive) or sunken (if negative);

0 is not raised
$columnheadings List or row A list or row containing the column headings of the list
$labelfont Character Name of the font for the graph label (appears under the main title); must be a

font in the Omnis/fonts folder; see the Labels section later in this manual
$maintitle Character The main title of the graph
$offsetwidth Integer The offset width for the graph

149



Property Name Data Type Description

$offsetx Integer Additional x offset for the graph
$offsety Integer Additional y offset for the graph
$titlefont Character Name of the font for the graph title; must be a font in the Omnis/fonts folder; see

the Labels section later in this manual
$titlefontheight Integer Height of the font for the graph title
$wallpaper Character The path/filename of an image; leave blank for no image
$xaxisfontangle Integer The angle of rotation, -1 is the default
$xaxistitle Character The title displayed on the X-Axis
$xlabelfontangle Integer Angle of rotation for X axis label, -1 is the default
$yaxisfontangle Integer angle of rotation for Y axis label, -1 is the default
$y2axisfontangle Integer angle of rotation for Y2 axis label, -1 is the default
$yaxistitle Character The title displayed on the Y axis

Setting the major and minor type

The different types of graph are specified using the $majortype and $minortype of the graph object. The following types are available,
specified under the Prefs tab in the Property Manager:

Major type ($majortype) Minor type Minor type constants

kG2xy $minorxytype kG2xyBar kG2xyLine kG2xyScatter kG2xyArea
kG2xyBoxwhisker kG2xyHLOC kG2xyCandlestick
kG2xyTrend

kG2polar $minorpolartype kG2polarArea kG2polarLine kG2polarSplineArea
kG2polarSplineLine

kG2meter $minormetertype kG2meterAngular kG2meterLinear
kG2pie No minor types

When you have placed a Graph2 component on your window, you can set its $majortype in the Property Manager and select the
appropriate minor type. As you change the major and minor type of the graph, several properties will be shown or hidden according
to the graph type selected.

Figure 43:

Common Graph Methods

All the graph types have the following methods under the Methods tab in the Property Manager. More details about each method
is supplied later in this section. Note these methods apply to the window graph object; methods are also available for the non-visual
graph object, described in the second table.

150



Method Name Returns Description

$addmark() None $addmark(iAxisID, nValue, iColor [,cText, cFontname, iFontsize]) adds a mark
or separator at the specified axis, value and color; you can add text to the
mark with the specified font name and size

$addtext() None $addtext(cText, iX, iY [,cFontname, iFontsize, iColor, iAlign, iAngle, bVertical])
adds the specified text positioned according to the X & Y co-ordinates; this
must be done during the evPreLayout event; the co-ordinates are taken
from the top left of the graph object and the Y component is inverted so that
as Y increases the text string will appear further down the object

$addzone() None $addzone(iAxisID, iLowerlimit, iUpperlimit, iFillcolor) adds a zone from the
lower and upper limits, in the color and on the axis specified

$convdate() Integer $convdate(dDatetime) converts a date/time variable to an integer equivalent
which can then be used in graph data

$dispose() None Disposes the graph and rebuilds it. Useful if you need to change something
other than a property on the graph which requires it to be rebuilt, such as
adding more layers

$findobject() kTrue for success $findobject(iX, iY, iSetno, iItemno [,cSetname, cItemname]) obtains the set &
item information for the graph object under the mouse given its position as
the X & Y co-ordinates: see Drilldown

$formatvalue() Char $formatvalue(nValue, cFormatstring) formats a number/date using the
formatting syntax described in the Parameter Substitution and Formatting
section

$getcolors() List $getcolors([PaletteID]) returns a list of RGB colors used for the graph, or
palette if specified, a constant: kG2paletteDefault, kG2paletteTransparent, or
kG2paletteWhiteOnBlack

$getmainlayer() Object Returns the main layer object
$redraw() None Redraws the graph
$setcolors() kTrue for success $setcolors(lPaletteList) sets the colors for the graph using the specified list of

RGB colors returned using $getcolors()
$setlinearscale() None $setlinearscale(iAxisid, nLowerlimit, nUpperlimit, [,nMajortick, nMinortick,

lLabellist]) sets the linear scale for the specified axis; only available during
Prelayout

$setlogscale() None $setlogscale(iAxisid, [cFormatstringORLowerlimit, nUpperlimit, ,cMajortick,
nMinortick, nLabellist]) sets the log scale for the specified axis; only available
during Prelayout

$snapshot() Picture $snapshot([iWidth, iHeight]) captures a snapshot of the graph with the
specified width & height in pixels; omitting the parameters will return an
image with the same dimensions as the current graph; the $snapshot()
method causes the evPrelayout event to occur which allows you to add
layers; see Graph Layers section below

The following method is available for the non-visual graph object, that is, object variables based on the Graph2 object.

Method Name Returns Description

$prelayout() None Available for object variables based on Graph2 component only;
called during construction of the graph enabling layers to be
added; see Graph Layers section below

XY Charts

The XY chart type has several subtypes, which all share the following properties and methods.

XY chart properties

151



Property Name Data Type Description

$datacombine Constant The combine method of the data for Bar, Area, and Line graphs, a
constant: kG2dataSide, kG2dataStack, kG2dataOverlay,
kG2dataPercentage; these constants can also be used in the
$addarealayer(), $addbarlayer(), and $addlinelayer() XY chart
methods

$3ddepth Integer Specifies the depth of a 3d XY chart; the default is –1 but can be set
to a positive integer value to specify a custom depth which is useful
for 3d line and area graphs with multiple series

$hgridcolor RGB Color The horizontal grid color
$minorxytype Constant The minor type of a kG2xy graph; can be one of the following:

kG2xyBar, kG2xyLine, kG2xyScatter, kG2xyArea, kG2xyBoxWhisker,
kG2xyHLOC, kG2xyCandleStick

$offsetheight Integer The additional offset height of the graph
$subtitle Character The subtitle of the graph
$swapxy Boolean If true, the X & Y axis are swapped
$xaxisontop Boolean If true, the X axis is to be displayed on the top
$xaxiswidth Integer Width of the X axis in pixels
$y2axistitle Character Y2 axis title
$yaxisonright Boolean If true, the Y axis is to be displayed on the right
$yaxiswidth Integer Width of the Y axis in pixels
$layereffect Constant The effect for all layers, a constant: kG2effectNone, kG2effectGlass,

kG2effectSoftLight
$layereffectalign Constant The alignment or direction for the effect for all layers, as set by

$layereffect; a constant: kG2alignTop, kG2alignBottom,
kG2alignLeft, kG2alignCenter, kG2alignRight

$plotareacolorend RGB Color The end gradient color for the plot area
$plotareacolorstart RGB Color The start gradient color for the plot area
$vgridcolor RGB Color The vertical grid color

XY chart methods

All the following methods can only be executed during the evPreLayout event; see below for details.

| Method Name | Returns | Description | | ———————– | ——- | ——————————————- | | $addarealayer() | Integer | $addare-
alayer(pList [,iCombineType]) adds an area layer to the graph; pList is the area data* | | $addbarlayer() | Integer | $addbarlayer(pList
[,iCombineType]) adds a bar layer to the graph; pList is the bar data* | | $addboxwhiskerlayer() | Integer | $addboxwhiskerlayer(pList)
adds a box whisker layer to the graph; pList is the box whisker data* | | $addcandlesticklayer() | Integer | $addcandlesticklayer(pList)
adds candlestick layer to the graph; pList is the candlestick data* | | $addhloclayer() | Integer | $addhloclayer(pList) adds a HLOC layer
to the graph; pList is the HLOC data* | | $addlinelayer() | Integer | $addlinelayer(pList [,iCombineType]) adds a line layer to the graph;
pList contains the Line data* | | $addscatterlayer() | Integer | $addscatterlayer(pList [,pSymbol, pSymbolSize]) adds a scatter layer to
the graph.; pList is the scatter data*; pSymbol is an optional symbol type (of type kG2symbolXXX, defaults is kG2symbolSquare); pSym-
bolSize is the symbol size, default is 10 | | $addtrendlayer() | Integer | $addtrendlayer(pList) adds a trend layer to the graph using the
data in pList* | | $getxaxis() | Object | $getxaxis([bSecondAxis]) returns the x-axis object, or the x2-axis object if bSecondAxis is true;
only available during prelayout | | $getyaxis() | Object | $getyaxis([bSecondAxis]) returns the y-axis object, or the y2-axis object if bSec-
ondAxis is true; only available during prelayout | * See appropriate chart section below for the format of the data in pList. In addition,
see $datacombine for details of the various data combine types available.

List data structure for XY charts

Bar Charts

The bar chart is one of the most common forms of chart. The list format is one row per series with the first column being the group
name followed by the data for each group. You can build the list data for your graph from a database or construct it on the fly: you
need to use the $define() method to specify the columns in your list, and you can use $add() (or the SQL database list methods) to
build the list line by line.

The following method will construct the list data for a simple bar chart.

152



# define vars listGraph (List), Name (Char), Sales (Long Int), Expenses (Long Int)
Do list.$define(Name,Sales,Expenses)
Do list.$add('Andy',85000,20000)
Do list.$add('Sam',80000,15000)
Do list.$add('Lisa',92000,34000)
Do list.$add('Harry',45000,15000)

The list variable listGraph is specified as the $dataname of the graph field. The above method will create a graph of two groups each
with four series:

Figure 44:

Note you can use the Omnis 4GL commands to build the list data for the graph, either from an Omnis database, a SQL database, or
on-the-fly, such as the following:

Set current list list
Define list {(Name,Sales,Expenses)}
Add line to list {('Andy',85000,20000)}
Add line to list {('Sam',80000,15000)}
Add line to list {('Lisa',92000,34000)}
Add line to list {('Harry',45000,15000)}

Line/Area Charts

The line and area chart in their data representation are very similar to the bar chart. So given the following data:

# define vars listGraph (List), colList (List), Name (Char), and use built-in #vars
Do list.$define(Name,#1,#2,#3,#4,#5,#6,#7,#8, #9,#10,#11,#12,#13,#14,#15,#16,#17,#18,#19,#20)
Do list.$add('Andy',30,28,40,55,75,68, 54,60,50,62,75,65,75,91,60,55,53,35,50,66,56,48,52,65,62)
Do list.$add('Liza',48,52,65,62,30,68,54,60, 50,28,40,55,75,62,75,65,75,35,50,66,56,91,60,55,53)
# now build the column headings list
Do colList.$define(#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12, #13,#14,#15,#16,#17,#18,#19,#20)
Do colList.$add(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)

Note the use of the colList list in the portion of code, which can be assigned to the $columnheadings property of the graph field,
overriding the normal x-axis variable names.

You should set the $majortype and minor type properties ($minorxytype or $minorpolartype) of the graph to specify its type and
subtype. The above method will display the following line or area graph:

153



3d Line chart 3d Area chart $majortype=kG2xy,
$minorxytype=kG2xyLine

3d Area chart \$majortype=kG2xy,
$minorxytype=kG2xyArea

Scatter Charts

Each individual row in the chart list data represents a newplot (or series). The X & Y plot positions are then represented in two columns.
Additional columns represent the other groups, so given the following data:

Do list.$define(Name,#1,#2,#3,#4)
Do list.$add('Pt1',10,130,5,100)
Do list.$add('Pt2',15,150,12,95)
Do list.$add('Pt3',6,80,8,105)
Do list.$add('Pt4',12,110,7,82)
Do list.$add('Pt5',10.5,125,10.5,99)

There are two groups of five series which will result in the following chart:

Figure 45:

Note that the symbols used to represent each series are in the order of square, diamond, triangle, right-triangle, left-triangle, inverted
triangle, circle, cross, and cross #2.

Box Whisker Charts

Box whisker charts represent data ranges as boxes and/or marks. A common application is to represent the maximum, 3rd quartile,
median, 1st quartile and minimum values of some statistics.

Each individual row in the chart list data represents each series.

Do list.$define(Name,#1,#2,#3,#4,#5)
Do list.$add('',55,70,80,40,62)
Do list.$add('',60,80,90,45,70)
Do list.$add('',50,65,75,40,60)

154



Figure 46:

Gantt Charts

You can create Gantt charts using aBoxWhisker chart and setting the $swapxy property to kTrue so the bars are displayed horizontally.
For Gantt charts you only need to provide two groups of data in your list. The example Graph2 library contains a simple Gantt chart,
as follows:

Figure 47:

The following method is executed in the $construct() of the Gantt chart window:

# define inst vars: iGraphList (List), Name (Char)
Do iGraphList.$define(Name,#1,#2)
Do method $addline ('Market Research',2004,8,16,14)
Do method $addline ('Define Specifications',2004,8,30,14)
Do method $addline ('Overall Architecture',2004,9,13,14)
Do method $addline ('Project Planning',2004,9,20,14)
Do method $addline ('Detail Design',2004,9,27,14)
Do method $addline ('Software Development',2004,10,4,35)
Do method $addline ('Test Plan',2004,10,25,14)
Do method $addline ('Testing and QA',2004,11,1,21)
Do method $addline ('User documentation',2004,11,8,14)

The $addline() class method is:

# Params: p1 (Char) p2-p5 (Long Int)
# Local var: chartdate (Date time D m y)
Calculate Name as p1
Calculate chartdate as dat(con(p2,"-",p3,"-",p4),"Y-M-D")
Calculate #1 as $cinst.$objs.ganttChart.$convdate(chartdate)

155



Calculate chartdate as dadd(kDay,p5,chartdate)
Calculate #2 as $cinst.$objs.ganttChart.$convdate(chartdate)
Add line to list

You can use the $convdate() method to convert a date/time variable to an integer equivalent which can be used in graph data.

High/Low/Open/Close (HLOC) Charts

The HLOC chart is often used to represent financial stock data. Each series consists of four pieces of information, the highest price,
the lowest price, the open price, and the close price.

The volatility is then shown as a vertical line, with the opening price as a horizontal line to the left and the closing price as a horizontal
line to the right.

Do list.$define(Name,#1,#2,#3,#4,#5)
Do list.$add('',2043,1931,2000,1950)
Do list.$add('',2039,1921,1957,1991)
Do list.$add('',2076,1985,1993,2026)

Figure 48:

Candlestick Charts

The candlestick chart is very similar to the HLOC chart and the list data is formatted in the same way. The difference in the graphical
representation is that the area between the opening and closing price is shown as a filled rectangle; in the following example a black
rectangle indicates that the closing price was lower than the opening price (a bad day). Both examples of the HLOC and Candlestick
charts used the same data.

Figure 49:

156



Trend Chart

A trend chart allows you to view and compare data values over a given period or within a group. The first column in the data list
contains the name of item and the second column onwards contains the data values for the item. A trend chart will contain one line
for each row of data in the list.

# iColList is a List var assigned to $columnheadings of the graph object
Do lReturnList.$define( lName,#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13,#14,#15,#16,#17,#18,#19,#20)
Do lReturnList.$add(0,50,55,47,34,42,49,63,62,73,59,56,50,64,60,67,67,58,59,73,77)
Do iColList.$define(#1,#2,#3,#4,#5,#6,#7,#8,#9,#10,#11,#12,#13,#14,#15,#16,#17,#18,#19,#20)
Do iColList.$add(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20)

Figure 50:

Data presentation in XY charts

You can change the way data is presented in Bar, Area, and Line graphs using the $datacombine property, which can be set to one of
the following constants: kG2dataSide, kG2dataStack, kG2dataOverlay, or kG2dataPercentage. When $datacombine is changed the
bars, areas, or lines, and the Y-axis, are redrawn to reflect the selected combine type. The following example graphs shown how the
different combine types affect the presentation of the same set of data (these graphs are available in the Graph example library).

$datacombine =
kG2dataSide: The data sets are shown as individual bars

side-by-side (the default for XY bar charts)

$datacombine = kG2dataStack:
The data sets are combined by stacking up the bar segments, therefore
showing individual amounts in relation to the total amount for the data

group

157



$datacombine =
kG2dataOverlay: The data sets are overlayed each other

providing a clearer comparison of data than the side-by-side
type

$datacombine =
kG2dataPercentage shows each individual amount as a percentage of the

total for the data group

These different combine types can also be used when adding data layers to a graph using the $addarealayer(), $addbarlayer(), or
$addlinelayer() XY chart methods; see the Graph Layers section.

Pie Charts

Pie charts have the following properties and methods, in addition to the Common graph properties and methods.

Pie chart properties

Property Name Data Type Description

$depth Integer The depth of the pie (-1 is default)
$depthcolumn Integer The column number (0 if not required) of the depth values in the list. This can be

used to enable different slice depths
$donutradius Integer The amount of cut out from the center of the pie, specified as the percentage of

the total radius of the pie; the range is 0-100, with 0 being no donut (the default)
$drawclockwise Boolean if true the slices are drawn clockwise
$feelercolor RGB The feeler color
$feelerwidth Integer The feeler width
$framecolor RGB The color of frame around pie slices, if $frameon is true
$frameon Boolean If true a frame is drawn around each pie slice
$labelformat Character Overrides the default formatting of labels; see section Parameter Substitution and

formatting
$labelpos Integer Position of the labels relative to the edge of the pie, only used if $labelposon is

true
$labelposon Boolean If true $labelpos is enabled
$rotate Number The pie rotation, in degrees
$shadow Boolean If true a pie shadow is displayed
$showfeeler Boolean if true feelers are shown
$sidelayout Boolean If true the labels are displayed by the side of pie
$tilt Integer If $tilton is enabled this contains the degree of tilt
$tilton Boolean if true the tilt is enabled (see $tilt); note $3d has to be enabled as well to display tilt

Pie chart methods

Pie charts have the following method(s), in addition to the commonmethods.

158



Method Name Returns Description

$slicemove() None $slicemove(iDistance, iSlice [,iSliceend]) moves iSlice or range of slices (iSlice to
iSliceend) the specified iDistance from the center of the pie; the first slice in the
chart is value 0; to move non-adjacent slices, iSlice should be a comma-separated
list of slices, e.g. .$slicemove(iDistance,’0,2’) to move slices 1 and 3

Note that some ‘actions’ on a pie chart are controlled by setting a particular property, such as $tilt; see the previous section for pie
chart properties. Note also that you cannot add layers to a pie chart using methods, such as those used on XY and Polar charts.

List data structure for Pie charts

The following list data will result in the graph shown.

Do listGraph.$define(Name,Sales)
Do listGraph.$add('Andy',85)
Do listGraph.$add('Sam',80)
Do listGraph.$add('Liza',92)
Do listGraph.$add('Harry',45)

Figure 51:

Pie charts have several properties that allow you to alter the appearance of the chart, such as $tilt and $rotate. These can be used
together with a set of sliders to create a dynamic representation of the user’s data. See the Graph2 example in the Welcome screen
when Omnis starts up (click the New Users button on themain Omnis toolbar) – the Graph2 example application showsmany effects
for Pie charts.

The code behind the slider can change the appropriate property in the pie chart, such as the following, which allows the user to
change the tilt of the pie chart:

# $event method for Tilt slider
# $min and $max of slider component are set to 0 and 100
On evNewValue
Calculate $cinst.$objs.GR.$tilt as pNewVal

The following code for a slider component allows the user to change the rotation of the chart.

# $event method for Rotate slider
# $min and $max of slider component are set to 0 and 360
On evNewValue
Calculate $cinst.$objs.GR.$rotate as pNewVal

In addition, the $slicemove(iDistance, iSlice) method lets you move or ‘slice out’ one of the slices in the pie chart. For example, the
Slice move slider in the above window has the following method:

159



Figure 52:

# $event method for Slice-move slider\
# $min and \$max of slider component are set to 0 and 50
On evNewValue
Do $cinst.$objs.GR.$slicemove(pNewVal,’0,2’) ## items 1 and 3

Using a combination of properties you can create some good effects for Pie charts. The following pie chart uses $sidelayout set to
kTrue, a custom $labelformat, and $slicemove is set to slice out the first and the third slices in the chart.

Figure 53:

Polar Charts

The Polar chart has the following properties and methods, in addition to the Common graph properties and methods.

Polar chart properties

Property Name Data Type Description

$angularcolor RGB color Color of angular grid
$angularlabelson Boolean If true labels are shown on the angular axis
$angularwidth Integer Width of the angular grid

160



Property Name Data Type Description

$circulargrid Boolean If true the grid is circular, otherwise the default is polygonal
$minorpolartype Constant The minor type for kG2polar type graphs; can be one of the following:

kG2polarArea, kG2polarLine, kG2polarSplineArea, kG2polarSplineLine
$radialcolor RGB color Color of radial grid
$radiallabelson Boolean If true labels are shown on the radial axis
$radialwidth Integer Width of the radial grid

Polar chart methods

The following methods must only be executed during the evPreLayout event; see below for details.

Method Name Returns Description

$addarealayer() None $addarealayer(pList [,iCombineType]) adds an area layer to the graph; pList is the
area data*

$addlinelayer() None $addlinelayer(pList [,iCombineType]) adds a line layer to the graph; pList contains
the Line data*

$addsplinearealayer() None $addsplinearealayer(pList [,pSymbol, pSymbolSize]) adds a spline area layer to the
graph; pList is the spline area data list (same format as all polar charts)

$addsplinelinelayer() None $addsplinelinelayer(pList [,pSymbol, pSymbolSize]) adds a spline line layer to the
graph; pList is the spline line data list (same format as all polar charts)

$getradialaxis() Object $getradialaxis() returns the radial axis object

* See appropriate chart section for the format of the data in pList. In addition, see $datacombine for details of the various data combine
types available.

List data structure for Polar charts

The data points in a polar chart are plotted using polar co-ordinates (radius,angle) whereby radius is the distance or amount from the
center of the chart and angle is the relative angle with reference to the “12 o’clock position” in the chart. The first three columns in the
Omnis list for a polar chart should therefore be Name (Label), Amount, Angle. If the angle is omitted from the list data, then the data
points are distributed evenly around the chart. For example, consider the following data:

# define listGraph (List), Name (Char), Score (Long int)
Do listGraph.$define(Name,Score)
Do listGraph.$add("Speed",90)
Do listGraph.$add("Reliability",60)
Do listGraph.$add("Comfort",65)
Do listGraph.$add("Safety",75)
Do listGraph.$add("Efficiency",40)

Will give the following polar chart:

Note the following properties are set for the chart:
$majortype = kG2polar, $minorpolartype = kG2polarArea,
$legendpos = kG2legendManual, $legendx & $legendy = 10,
$angularlabelson = kTrue, $offsetwidth = 30,
$angularcolor = 187,187,255, $radialcolor = 153,153,255,
$maintitle = ‘Speed Reliability Test’

Adding layers to a polar chart

To draw a second set of data in a polar chart, from a second list perhaps, you can add the additional data in a layer over the first set of
data. You can add layers to charts during the evPrelayout event which is triggered as the graph component is instantiated.

Consider the following example. The first set of data is constructed in the $construct() method of the graph window: the second set
of data is added as a layer.

161



Figure 54:

# $construct() method for graph window
# define listGraph (List), listNames (List), Name (Char)
Do listGraph.$define(Name,#1,#3)
Do listGraph.$add("",90,15)
Do listGraph.$add("",25,60)
Do listGraph.$add("",40,110)
Do listGraph.$add("",55,180)
Do listGraph.$add("",68,230)
Do listGraph.$add("",44,260)
Do listGraph.$add("",79,260)
Do listGraph.$add("",85,310)
Do listGraph.$add("",50,340)

# $columnheadings of graph is set to listNames
Do listNames.$define(#S1)
Do listNames.$add("Closed loop")

The seconddata set is constructedduring the evPrelayout event for thegraphobject and added as a line layer using the $addlinelayer()
method.

# $event() method for graph window object
# define listLayer2 (List), local vars lLayer and OpenLoop
On evPreLayout
Do list.$define(Name,OpenLoop,#1)
Do list.$add("",80,40)
Do list.$add("",91,65)
Do list.$add("",66,88)
Do list.$add("",80,110)
Do list.$add("",92,150)
Do list.$add("",87,200)
Do $cinst.$objs.GROBJ.$getmainlayer() Returns lLayer
Do lLayer.$setlinewidth(2)
Do lLayer.$setsymbol(kG2symbolTriangle,11)
Do lLayer.$setdatalabelformat("({value},{angle})")
Do list.$define(#S1)
Do list.$add("Open loop")
Do $cinst.$objs.GROBJ.$addlinelayer(list) Returns lLayer
Do $cinst.$objs.GROBJ.$setlinearscale(kG2axisAngular,0,360,30)
Do lLayer.$setlinewidth(2)
Do lLayer.$setcloseloop(kFalse)
Do lLayer.$setsymbol(kG2symbolDiamond,11)
Do lLayer.$setDataLabelFormat("({value},{angle})")

162



The above code produces the following graph:

Figure 55:

Meter Charts

You can create Linear or Angular (radial) meter charts, and change their appearance using a range of properties and methods. Meter
charts have the following properties and methods, in addition to the common graph properties and methods.

Meter chart properties

Property Name Data Type Description

$minormetertype Constant The minor type for meter charts, a constant: kG2meterLinear, kG2meterAngular
$linearalignment Constant The alignment for linear meter charts, a constant: kG2alignTop, kG2alignBottom,

kG2alignLeft, kG2alignRight, kG2alignCenter
$angulardegrees Integer The start and end degrees for an angular chart in the form n,n, the default is 0,360
$angularpositionh Integer The horizontal position of the center (start) of an angular meter chart; the default is 50

which centers the chart horizontally
$angularpositionv Integer The vertical position of the center (start) of an angular meter chart; the default is 50

which centers the chart vertically
$majortickwidth Integer The width of the major tick in pixels; the default is 1
$microtickwidth Integer The width of the micro tick in pixels; the default is 1
$minortickwidth Integer The width of the minor tick in pixels; the default is 1
$pointercolor RGB color The color of the pointer for a meter chart

Changing the minor type for Meter charts

You can change the minor type of a meter graph using the following method:

Do $cinst.$objs.meterGraph.$minormetertype.$assign(kG2meterAngular)

or

Do $cinst.$objs.meterGraph.$minormetertype.$assign(kG2meterLinear)

163



Meter chart methods

Meter charts have the following methods in addition to the commonmethods.

Method Name Returns Description

$addpointer() None $addpointer(nValue, iColor [,nPointertype]) adds a pointer to a meter chart with the specified
value and color; this must be done during the evPreLayout event; the pointer type is a number
in the range 0-5; see the Adding Pointers section below

$addring() None $addring(iStartradius, iEndradius, iFillcolor) adds a colored ring to an angular meter with the
specified start and end radius in pixels; this must be done during the evPreLayout event; you
can use this to add a colored band or a number of bands around a standard meter dial; you
can color the entire face by setting the start radius to zero and the end radius to beyond the
meter ticks

List data structure for Meter charts

The Meter chart type (kG2meter) lets you create Angular and Linear meters to represent single data points. The properties of the
meter type let you specify analog and digital read outs, colored backgrounds, multiple pointers per chart, pointers of different shapes,
and so on. The example library demonstrates angular/radial and linear charts.

The data in the list associated with the graph object is used to specify the data point and various properties of the graph, as follows:

Do iGraphList.$add(45.17) ## the data point
Do iGraphList.$add(0) ## scale start
Do iGraphList.$add(100) ## scale end
Do iGraphList.$add(10) ## major tick interval
Do iGraphList.$add(5) ## minor tick interval
Do iGraphList.$add(1) ## micro tick interval

The example library uses the above data to create the following chart:

Figure 56:

Note that this and the next meter chart has colored zones defined on the scale; these are described on the Adding Colored Zones
section.

When the minor type is set to kG2meterLinear, the following method:

Do iGraphList.$add(75.35)
Do iGraphList.$add(0)
Do iGraphList.$add(100)
Do iGraphList.$add(10)

Can be used to build the following linear chart:

164



Figure 57:

Adding Pointers

The standard meter chart represents a single data point, which is shown using the default pointer, but you can add one or more
additional pointers to a chart to showother data. You can add extra pointers to ameter chart (angular or linear) using the $addpointer()
method, which must be executed during the evPreLayout event for the graph object; see the Graph Layers section for information
about evPreLayout.

1. $addpointer(nValue, iColor [,nPointertype])
adds a pointer to an angular or linear meter chart with the specified value and color; this must be done during the evPreLayout
event; the pointer type is a number in the range 0-5, as follows:

0 Pencil pointer (the default pointer for linear charts)
1 Diamond pointer (the default pointer for angular charts)
2 Triangular pointer
3 Arrow with square ends
4 Arrow with sharp/pointed ends
5 Line pointer

The different pointer styles are shown in the following linear chart:

Figure 58:

The following method adds two pointers to an angular chart:

On evPreLayout
If iAddpointer ## var behind checkbox on window
Do $cinst.$objs.meterGraph.$addpointer(30,kGreen,2) ## triangle
Do $cinst.$objs.meterGraph.$addpointer(10,kMagenta,5) ## line
End If
## etc

The method produces the following chart:

Adding Rings

A ring is the region in an Angular chart between two concentric circles. You can add rings to an Angular chart using the $addring()
method, which is useful for adding circular borders and backgrounds to a meter; this must be done during the evPreLayout event.

• $addring(iStartradius, iEndradius, iFillcolor)
adds a colored ring to an angular meter with the specified start and end radius in pixels

The difference between the start and end radius is, in effect, the width or thickness of the ring in pixels. If you use a start radius of zero,
the ring will be drawn starting from the center of the chart face and, depending on the value of the end radius, will draw a circle on
the chart with the given radius.

The example library demonstrates adding a ring to a radialmeter chart, and uses the followingmethod, which is added to the $event()
method for the graph window object:

165



Figure 59:

On evPreLayout
Do $cinst.$objs.meterGraph.$addring(
173-abs(iBackgroundRaised),
174-abs(iBackgroundRaised),
$cinst.$objs.ringColor.$contents)
# etc...

Which produces the following chart; note the ring has been changed to red using the color picker:

Figure 60:

In the example library, the start and end radius settings for the $addring() method take account of the raised background, since when
the background is raised or inset by any amount, the radius of the meter dial is reduced by the same amount. The color for the ring
is taken from the color picker, which is returned in the value of the $contents property of the color picker button.

A ring must be added to a meter chart during the evPreLayout event, which is triggered following a $dispose() method for the graph
object. For example, the method for the color picker in the example library is as follows:

On evClick
Do $cinst.$objs.meterGraph.$dispose()

This causes the $event() method for the graph window object to be called and the evPreLayout event is triggered, which in this case
runs the method to add the ring.

166



Graph Layers and the Prelayout Event

You can add multiple layers to certain types of XY and Polar graph using the $add<layertype> methods during the Prelayout event
(evPreLayout) event, which is triggered just before the graph instance is created in a window. Note you cannot add layers to Pie charts.

You can add layers to any type of XY or Polar chart using one of the $add<layertype>methods. In theory, any combination of chart type
and layer is possible within the major XY and Polar types, but not all combinations are that meaningful. It largely depends on what
type of data you are trying to represent or what data sets you might want to compare by showing the data sets as different layers.

Adding layers to charts

You can specify how the layer data is combined with or added to the graph using one of the data combine type constants as follows:

kG2dataOverlay The additional data layer is added on top of the existing graph data
kG2dataPercentage The existing and additional data sets are combined and scaled so each adds up to 100
kG2dataSide The existing and additional data sets are shown side by side
kG2dataStack The additional data set is stacked on top of the existing graph data
kG2dataOverlay The additional data layer is added on top of the existing graph data

For example, in the case of the High/Low/Open/Close charts, it is quite common in financial applications to draw a line between the
open and close points. This can be achieved by adding a line layer during the evPreLayout event using the $addlinelayer() method, as
follows:

# $event() method for graph window object
# define var: lineLayer (List)
On evPreLayout
Do lineLayer.$define(Name,#1,#2,#3)
Do lineLayer.$add('',1950,1991,2026) ## Closing prices
Do $cinst.$objs.GraphObj.$addlinelayer(lineLayer, kG2dataOverlay)

Refer to the appropriate layers section for the exact format of the list. The above method will result in the following graph:

Figure 61:

When using an object variable based on the Graph2 component you can use the $prelayout() method in the object to add layers in
the same way as described above.

Caution: A word of warning, evPreLayout events occur during the construction of a graph image which typically happens during the
drawing of the graph control. This can make debugging the graph object’s $event() method potentially troublesome.

167



Graph Clicks and Drilldown

The Graph2 window component reports an evGraphClick event when the user clicks on the object. The event returns the following
event parameters:

pItem The number of the item or data point clicked on within the current
data set or group; the first item or data point is 1, the second is 2, and
so on.

pItemname The name of the data point clicked on.
pSet The number of the data set or group clicked on; the first set or group

is 1, the second is 2, and so on.
pSetname The name of the data set or group clicked on.

For example, using the following method behind the $event() method of the graph object:

# the $event() for the graph object
On evGraphClick
OK message {Graph Click =

// Item Number [pItem] (Name = [pItemname])
// Set Number [pSet] (Name = [pSetname])}

And clicking on the first item in the second set or group of the following graph

Figure 62:

Will give the following message:

Graph Click =
Item Number 1 (Name = Andy)
Set Number 2 (Name = Expenses)

You can use the item and set number/name information to drilldown into the data by reformatting the list data and redrawing the
graph.

Note that pSet and pSetname are not valid for pie charts since they represent a single set of data only.

Changing the Color of Graph elements

The methods $getcolors() and $setcolors() allow you to get and set the color of elements within a graph at runtime. $getcolors()
returns a list containing the RGB color of each element in the current graph.

The first eight color values in the color list have special significance. The first three palette colors are the background color, default
line color, and the default text color of the chart. The fourth to seventh palette colors are reserved for future use. The eighth color is
a special dynamic color indicating the “current data set”. The ninth color (index = 8) and subsequent colors in the list represent the
elements in the graph, such as lines and text objects.

In a pie chart, Omnis will automatically use the ninth color for the first slice, the tenth color for the second slice, and so on. Similarly,
for a multi-line chart, Omnis will use the ninth color for the first line, the tenth color for the second line, and so on.

The $setcolors() method allows you to set the color of any element in the graph. For example, the following method will set the color
of the first data element in the chart to black (value 0):

168



# define local var: lColorList (List)
Do $cinst.$objs.GR.$getcolors() Returns lColorList
Calculate lColorList.9.1 as 0 ## 0 = black
Do $cinst.$objs.GR.$setcolors(lColorList)

You can return the color palette for a graph by specifying one of the palette constants in the $getcolors([PaletteID]) method. The
constants are: kG2paletteDefault, kG2paletteTransparent, or kG2paletteWhiteOnBlack (the latter inverts the black and white colors in
the graph). The following method can be used to switch to a transparent color palette for a graph:

# define local var: lColorList (List)
Do $cinst.$objs.polarGraph.$getcolors(kG2paletteTransparent) Returns lColorList
Do $cinst.$objs.polarGraph.$setcolors(lColorList)

The following method can be used to switch the graph colors back to the default palette, perhaps after having colored individual
elements or switching the whole graph palette to transparent or White-on-black:

Do $cinst.$objs.polarGraph.$getcolors(kG2paletteDefault) Returns lColorList
Do $cinst.$objs.polarGraph.$setcolors(lColorList)

Adding Colored Zones

A zone is a color band on the back of the plot area. Like marks, zones can be horizontal or vertical. They are particularly useful for
marking different parts of the scale on a meter chart, or adding bands of color behind a bar, area or line chart.

You can add zones to the background of a chart using the $addzone() method; this must be done in the evPreLayout event. For
example, the following method can be used to set the color for different parts of the scale on a linear meter.

On evPreLayout
Do $cinst.$objs.meterGraph.$addzone(0,50,kGreen)
Do $cinst.$objs.meterGraph.$addzone(50,80,kYellow)
Do $cinst.$objs.meterGraph.$addzone(80,100,kRed)
# etc…

This method produces the following chart.

Figure 63:

Parameter Substitution and Formatting

Charts often contain a lot of text strings, such as sector labels in pie charts, axis labels for XY charts, data labels for the data points,
graph titles, and so on. You can substitute many of these parameters to allow you to configure precisely the information contained in
the text and their format. For example, when drawing a pie chart with side label layout, the default sector label format is:

"{label} ({percent}%)"

In drawing the sector labels, the graph component will replace “{label}” with the sector name, and “{percent}” with the sector percent-
age. So the label will be something like:

"ABC (34.56%)"

You can change the sector label format by changing the format string. For example, you can change it to:

"{label}: US\${value}K ({percent}%)"

169



The sector value will then be something like:

"ABC: US\$123 (34.56%)"

Here is an example method that changes the $labelformat property in a pie chart.

Calculate $cinst.$objs.GROBJ.$labelformat as con("{label} ${value}K",chr(10),"({percent}%)")

Pie chart with
default labels

Same pie chart
with modified labels

For fields that are numbers, dates, or times, the Graph component supports a special syntax in parameter substitution to allow for-
matting of these values. Please refer to the Number Formatting and Date/Time Formatting sections below for details.

The following tables describe the fields available for various chart objects.

Parameters for Pie charts

Parameter Description

sector The sector number. The first sector is 1, the second is 2, and so on.
dataSet Same as {sector}. See above.
label The text label of the sector.
dataSetName Same as {label}. See above.
value The data value of the sector.
percent The percentage value of the sector.

Parameters for all XY Chart Layers

The following are parameters that apply to all XY Chart layers in general. Some layer typesmay have additional parameters (see below).

Note that some parameters do not apply in certain cases. For example, when specifying the aggregate label of a stacked bar chart,
the {dataSetName} parameter does not apply, because a stacked bar is composed of multiple data sets. It does not belong to any
particular data set and hence does not have a data set name.

Parameter Description

x The x value of the data point.
xLabel The bottom x-axis label of the data point.
x2Label The top x-axis label of the data point.
value The value of the data point.
accValue The accumulative value of the data point. This is useful for stacked charts, such as stacked bar chart and

stacked area chart.
totalValue The total value of all data points. This is useful for stacked charts, such as stacked bar chart and stacked area

chart.
percent The percentage of the data point based on the total value of all data points.

170



Parameter Description

accPercent The accumulated percentage of the data point based on the total value of all data points. This is useful for
stacked charts, such as stacked bar chart and stacked area chart.

dataSet The data set number to which the data point belongs. The first data set is 1, the second is 2, and so on.
dataSetName The name of the data set to which the data point belongs.
dataItem The data point number within the data set. The first data point is 1, the second is 2, and so on.
dataGroup The data group number to which the data point belongs. The first data group is 1, the second is 2, and so on.
dataGroupName The name of the data group to which the data point belongs.
layerId The layer number to which the data point belongs. The first layer is 1, the second is 2, and so on.

Additional Parameters for HLOC and CandleStick Layers

The following are in addition to the parameters for all XY Chart layers.

Parameter Description

high The high value of the data representation.
low The low value of the data representation.
open The open value of the data representation.
close The close value of the data representation.

Additional Parameters for Box Whisker Layers

The following are in addition to the parameters for all XY Chart layers.

Parameter Description

top The value of the top edge of the box-whisker symbol.
bottom The value of the bottom edge of the box-whisker symbol.
max The value of the maximummark of the box-whisker symbol.
min The value of the minimummark of the box-whisker symbol.
med The value of the median mark of the box-whisker symbol.

Additional Parameters for Trend Layers

The following are in addition to the parameters for all XY Chart layers.

Parameter Description

slope The slope of the trend line.
intercept The y-intercept of the trend line.
corr The correlation coefficient in linear regression analysis.
stderr The standard error in linear regression analysis.

Parameters for Polar Charts

Parameter Description

radius The radial value of the data point.
value Same as {radius}. See above.
angle The angular value of the data point.
x Same as {angle}. See above.
label The angular label of the data point.
xLabel Same as {label}. See above.
name The name of the layer to which the data point belongs.
dataSetName Same as {name}. See above.

171



Parameter Description

i The data point number. The first data point is 1, the second is 2, and so on.
dataItem Same as {i}. See above.

The following method sets the label for the data points in a polar chart.

Do $cinst.$objs.GROBJ.$getmainlayer() Returns lLayer
Do lLayer.$setdatalabelformat("({value},{angle})")

Parameters for Axis

Parameter Description

value The axis value at the tick position.

Number Formatting

For parameters that are numbers, the Graph component supports a number of formatting options in parameter substitution.

For example, if youwant a numeric field (value) to have a precision of two digits to the right of the decimal point, you can use (value|2.,)
where 2 and ‘.’ (dot) is used to specify the decimal point precision, and ‘,’ (comma) as the thousand separator. The number 123456.789
will therefore be displayed as 123,456.79.

For numbers, the formatting options are specified using the following syntax:

([param]|[a][b][c][d])

where:

Parameter Description

[param] The name of the parameter
[a] An integer specifying the number of digits to the right of the decimal point. The default is

automatic. To use the default, simply skip this parameter.
[b] The thousand separator. Should be a non-alphanumeric character (not 0-9, A-Z, a-z). Use ‘~’ for no

thousand separater.
[c] The decimal point character.
[d] The negative sign character. Use ‘~’ for no negative sign character.

You may skip the trailing formatting options if they are needed. For example, (value|2)means formatting the value with two digits to
the right, where the thousand separator, decimal point character, and negative sign character are all using the default settings of the
chart.

Date/Time Formatting

For parameters that are dates & times, the formatting options can be specified using the following syntax:

([param]|[datetime_format_string])

where [datetime_format_string]must start with an alphabetic character (A-Z or a-z), andmay contain any characters except ‘)’. Certain
characters are substituted according to the following table:

Parameter Description

yyyy Year in 4 digits (e.g. 2005)
yyy Year showing only the least significant 3 digits (e.g. 007 for the year 2007)
yy Year showing only the least significant 2 digits (e.g. 07 for the year 2007)
y Year showing only the least significant 1 digit (e.g. 7 for the year 2007)

172



Parameter Description

mmm Month formatted as its name. The default is to use the first 3 characters of the English month name (Jan,
Feb, Mar …).

mm Month formatted as 2 digits from 01 - 12, with leading zero if necessary.
m Month formatted using the minimum number of digits from 1 - 12.
dd Day of month formatted as 2 digits from 01 - 31, with leading zero if necessary.
d Day of month formatted using the minimum number of digits from 1 - 31.
w The name of the day of week. The default is to use the first 3 characters of the English day of week name

(Sun, Mon, Tue …).
hh The hour of day formatted as 2 digits, adding leading zero if necessary. The 2 digits will be 00 - 23 if the ‘a’

option (see below) is not specified, otherwise it will be 00 - 12.
h The hour of day formatted using the minimum number of digits. The digits will be 0 - 23 if the ‘a’ option

(see below) is not specified, otherwise it will be 0 - 12.
nn The minute formatted as 2 digits from 00 - 59, adding leading zero if necessary.
n The minute formatted using the minimum number of digits from 00 - 59.
ss The second formatted as 2 digits from 00 - 59, adding leading zero if necessary.
s The second formatted using the minimum number of digits from 00 - 59.
a Display either ‘am’ or ‘pm’, depending on whether the time is in the morning or afternoon.

For example, a parameter substitution format of (value|mm-dd-yyyy)will display a date as something similar to 09-15-2002. A format
of (value|dd/mm/yy hh:nn:ss a)will display a date as something similar to 15/09/02 03:04:05 pm.

Further formatting options

You can use a type of Mark Up Language (supported in the underlying graph engine and called ChartDirector Mark Up Language or
CDML) to include formatting information in text strings bymarking up the text with tags. This Mark Up Language allows a single text
string to be rendered using multiple fonts, with different colors, and even embed images in the text. CDML is supported in all text
objects including chart titles, legend keys, axis labels, data labels, and so on.

Font Styles

You can change the style of the text by using special tags. For example, the following code substitutes some of the parameters and
formats the fonts using tags:

Calculate $cinst.$objs.GR.$labelformat as
con("<*font=timesi.ttf,size=16,color=FF0000*>{label}
${value}K",chr(10),
"<*font=arial.ttf,size=12,color=8000*>({percent}%)")

In general, all tags in CDML are enclosed by <* and *>. Attributes within the tags determine the styles of the text following the tags
within the same block. If you want to include <* in text without being interpreted as CDML tags, use <<* as the escape sequence.

The following font style attributes can be used:

• font The font file name.

• size The font size.

• width The font width. This attribute is used to set the font width and height to different values. If the width and height are the
same, use the size attribute.

• height The font height. This attribute is used to set the font width and height to different values. If the width and height are the
same, use the size attribute.

• color The text color in hex format.

• underline The line width of the line used to underline the following characters. Set to 0 to disable underline.

173



Embedding Images

You can embed images in text using the <*img*> tag and the following syntax:

<*img=my_image_file.png*>

You can use the $imagesearchpath property (on the Preference tab) to specify the folder where the Graph component will search for
images (on macOS the property uses a standard HFS colon-separated pathname). If you leave the property blank (the default), the
component sets the search path to the icons folder in the Studio tree, which means your image file must be located in this folder.
Having set the image search path you can use the image file name only in the <*img*> tag. For example, the line:

# set $imagesearchpath to C:\Program Files\RainingData\OS43\images
Calculate $cinst.$objs.GR.$labelformat as con(
"{label} ${value}K",chr(10),
"({percent}%)",chr(10),"<*img= sun_bullet.gif*>")

embeds the image file sun_bullet.gif which is located in the Omnis\images folder.

Labels

You can override the default fonts for the main title and labels in a graph by setting the $titlefont and $labelfont properties (found
under the Custom tab in the Property Manager). You can specify any true type font (TTF) or True type collection (TTC) that is located
in the Fonts folder in themain Omnis folder. If a folder called ‘Fonts’ does not exist you can create one with this name. If you add fonts
to this folder, you have to restart Omnis before the fonts become available in Omnis.

The default value is set to “(DEFAULT)” which means the default font for your systemwill be used (e.g. Times Roman under Windows).
You can adjust the height or size of the main graph title by setting the $titlefontheight property.

Adding Text to a Chart

You can add text to a chart using the $addtext() method, but this must be done during the evPreLayout event.

• $addtext(cText, iX, iY [,cFontname, iFontsize, iColor, iAlign, iAngle, bVertical])
adds the specified text positioned according to the X & Y co-ordinates

The X & Y co-ordinates are taken from the top left of the graph object, but the Y component is inverted, so that as Y increases the
text string will appear further down the chart. The followingmethod adds some text to a Linear meter chart. Note the $formatvalue()
method is used to format a number before it is added.

On evPreLayout
Calculate lTextToAdd as $cinst.$objs.meterGraph.$formatvalue(75.35,"2")
Do $cinst.$objs.meterGraph.$addtext(

lTextToAdd,345,70,
"arialbd.ttf",8,kBlack,kG2alignBottomRight)

Do $cinst.$objs.meterGraph.$addtext(
"Temperature °C",10,68,
"arialbd.ttf",8,kBlack,kG2alignBottomLeft)

This method produces the following chart:

Figure 64:

174



Using Graphs in Reports

You can use the Graph2 component on Omnis reports in much the same way as you can for windows for displaying data contained
in an Omnis list. That is, you can place a graph component on a report class, assign a list variable to it, print the report and the data
will be displayed in a chart as expected, depending on the properties you have set in the graph object.

However, if you wish to manipulate a graph using any of the graph methods, this must be done within the report instance itself and
before the report is printed. Therefore to do this, youmust instantiate an object variable based on the Graph2 component, execute any
methods against the graph object and transfer the image of the graph to an Omnis picture variable using the $snapshot() method.
The graph image contained in the picture variable can be displayed in the report using a standard Omnis Picture field.

For example, the following report class has a single picture field with its $dataname set to the variable iPicture. The $height and
$width properties are set to 7.9cm and 10.5cm respectively, which corresponds the height and width of the graph image created in
the report instance.

Figure 65:

The following method is contained in the $construct() method of the report class, therefore the method is executed when the report
is instantiated, and the graph object is created and transferred to the picture variable before the report is printed. The $snapshot()
method is used to capture the graph image and returns it to the picture variable.

# Define class var: cGraphObj (Object), subtype Graph2
# Define instance var: iList1 (List), iPicture (Picture)
# Define instance var: iCol1, iCol2 (Char)
Do iList1.$define(iCol1,iCol2)
Do iList1.$add('Col1',10)
Do iList1.$add('Col2',60)
Do iList1.$add('Col3',30)
Do cGraphObj.$majortype.$assign(kG2xy)
Do cGraphObj.$dataname.$assign(iList1)
Do cGraphObj.$snapshot(400,300) Returns iPicture
Do $cinst.$printrecord()
Do $cinst.$endprint()

Note that the graph object will use all the default properties, so if you want to change the appearance, type or subtype of graph, you
need to change the appropriate properties of the graph object at runtime using the notation. The abovemethod sets the graphmajor
type and assigns the list variable to the object.

The report will look something like the following:

Using Graphs in the Web client

If you wish to display a chart in a remote form you have to use a similar technique to displaying graphs in a report – this is because
there is no visual graph component for use with remote forms. Instead, you can use the graph component as an object variable and

175



Figure 66:

construct the graph image inmemory on the Omnis Server and ‘save’ and display it as a picture in the remote form. When the graph
is constructed in memory, the $snapshot() method lets you transfer the graph image to an image variable suitable for displaying in
an Omnis picture field in a remote form.

You have to create anObject variable in your remote formwith theGraph object specified as the object subtype. The followingmethod
will do this:

# cGraphObj is an Object variable with Subtype of ‘Graph2’
Do list.$define(Name,Sales)
Do list.$add('Andy',85)
Do list.$add('Sam',80)
Do list.$add('Liza',92)
Do list.$add('Harry',45)
Do cGraphObj.$majortype.$assign(kG2pie)
Do cGraphObj.$dataname.$assign(list)
Do cGraphObj.$maintitle.$assign("WebClient Pie Example")
Do cGraphObj.$snapshot(640,400) Returns iWebImage

This will result in this image:

Figure 67:

The Graph2 example library contains a Remote form example, showing all themain chart types. In this case, the remote form uses an
object class based on the Graph2 component and uses $snapshot() to transfer the graph image to a picture field in the remote form.

176



Drilldown in Web Client graphs

The remote form Picture field type reports the mouse X and Y co-ordinates when an evClick event is triggered. This allows you to
pinpoint where in the image the user has clicked. You can use this information to find out which active graph element has been
clicked, such as a bar, line or pie slice. Having captured the graph image using the $snapshot() method you can use the $findobject()
method to return the item and set information for the selected object. For example:

# do code to construct the graph object, such as
Do list.$define(Name,Sales,Expenses)
Do list.$add('Andy',850,400)
Do list.$add('Sam',800,600)
Do list.$add('Liza',920,560)
Do list.$add('Harry',450,230)
Do cGraphObj.$majortype.$assign(kG2xy)
Do cGraphObj.$minorxytype.$assign(kG2xyBar)
Do cGraphObj.$dataname.$assign(list)
Do cGraphObj.$maintitle.$assign("Web Client Bar Chart")
Do cGraphObj.$snapshot(640,400) Returns iWebImage
Do $cinst.$objs.pic.$redraw
# graph image is transferred to remote form picture field and redrawn

The bar chart would look something like the following:

Figure 68:

# $event() method for remote form Picture field
On evClick
Do cGraphObj.$findobject(pMouseX,pMouseY,setno,itemno,setname,itemname)
Returns ok ## true if successful

The mouse co-ordinates are returned in pMouseX and pMouseY in the evClick event. The $findobject() method uses the mouse co-
ordinates to get the setno, itemno, setname, and itemname which contain information about the graph object clicked on. Clicking
on the first bar in the second group of the above chart produces this data:

setno = 2, itemno = 1, setname = Expenses, itemname = Andy

You can use the item and set number/name information to drilldown into the data by reformatting the list data and redrawing the
graph in the remote form.

Note that the Set number and name are not valid for pie charts.

177



Chapter 9—Remote Studio Applet

Remote Studio is an applet, whichprovides an equivalent of remoteprocedure calls to anOmnis server in order to provide functionality.
The applet may reside either on the client or the server and can be utilized from many languages. For example, you could invoke it
on your server from PERL or PHP, or invoke it on your client from VBScript, Delphi or .NET(C#, C or Visual Basic).

Remote Studio is available as COM or PHP objects so the possibilities are endless (Java support available in older versions has been
removed). For example, you could write a Web Service using .NET, which uses the Remote Studio applet to provide functionality via
SOAP requests; or you could simply use it from VBScript embedded in an HTML page.

How does it work?

The Remote Studio applet consists of two objects, both of which provide variousmethods and properties. Themain object, the server
object, lets you set up connection information; this information is very similar to the information required for an Omnis web client
connection.

The second object, the variable object, provides functionality to get and set the variable information using variable types, which are
native to the language. This object ensures that when the applet is translated to another language, such as Java, your code is virtually
identical to all the other languages.

To use the applet, follow these steps:

• Create the server object

• Configure the connection information parameters (URL address, task name, etc.)

• Call the server object

• Destroy the server object

During the calling of the server object, the specified Omnis task will be constructed and the $event() method will be called with the
method name and the parameters. Note that if the parameters are altered during the call, they will be updated in the calling code so
in that sense they can be referred to as being “passed by reference”.

Object Interfaces

Server Object methods & properties

Method Description Parameters Return Value

Open Opens the connection. None Error Code (0=Ok)
Close Closes the connection None None
ErrorId Obtain the last error id (0 = Ok) None Integer
ErrorText Obtain the last error text string None String
Execute Execute the specified remote method Method Name, Parameter Array, Parameter Count Variable Object (null if failure)
ExecuteNoParams Execute the specified remote method Method Name Variable Object (null if failure)
NewChar Helper method to create a variable with a string String Variable Object
NewLong Helper method to create a variable with a integer Integer Variable Object
NewBool Helper method to create a variable with a Boolean Boolean Variable Object
NewVar Helper method to create a variable None Variable Object

Note: All the above methods affect the error code and error text. Methods ErrorId() and ErrorText() should be used to verify success.

Property Description Type Assignable

ServerURL The URL of the server String Yes
OmnisClass The name of the Omnis class String Yes
OmnisLibrary The name of the Omnis library String Yes
OmnisServer The name of the Omnis server String Yes

178



Property Description Type Assignable

ServerScript The server script text String Yes

Variable Object methods

Method Name Description Parameters Return Value

GetType Get the variable type. The following types
exist: varNone(0), varChar(1), varBinary(2),
varPicture(3), varBool(4), varNumber(5),
varList(6), varRow(7), varLong(8),
varDateTime(9).

None Integer

Clear Clears/empties the variable content resulting
in its type being varNone.

None None

GetChar Get the character data None String
SetChar Set the character data String None
GetBool Get the Boolean data None Boolean
SetBool Set the Boolean data Boolean None
GetLong Get the long integer data (32 bits) None Integer
SetLong Set the long integer data (32 bits) Integer None
GetNumber Get the number data None Double
SetNumber Set the number data Double None
GetDate Get the date / time data None Date
SetDate Set the date / time data Date None
GetBinary Get the binary data Byte buffer, start from (0), buffer size. Integer: Number of bytes copied
SetBinary Set the binary data Byte buffer, start from (0), buffer size None
GetBinaryLen Get the length of the binary data None Integer
SetRow Creates a row Integer column count None
SetList Creates a list Integer row count, integer column count None
GetRowCount Get the row count Integer None
GetColumnCount Get the column count Integer None
GetElement Get the variable for the specified column &

row (zero based). Note that this variable is a
duplicate and you must use setElement if
you wish to update the list/row contents.

Integer row, integer column Variable Object

SetElement Set the variable for the specified column &
row (zero based)

Integer row, integer column, Variable Object None

Note: Variable conversion between types will automatically occur, however if a variable cannot be converted then a data mismatch
error will be called.

Studio Remote Tasks

You need to create an Omnis remote task class on the server to process the method requests. You should consider whether or not
you need an instance of the remote task class to be constructed and destructed for each method call (most of the time you will not),
therefore you will need to add a $canclose() method (see examples section) to the task.

The Remote Studio applet will add the following variables to the row parameter which is passed to the remote task instance during
$construct() and $event() methods.

Parameter vars Description

RSrval RSrval is the row column, which contains the return value. Populate this value with the data that
you wish to return to the caller.

RSname RSname is the name of the method that should be invoked by the task instance.
RSparmNN Where NN is the number of the parameter from 1 to N. RSparmNN are the parameters for the

method. If these are modified then the variables in the server applet will also be modified.

179



Parameter vars Description

MessageType MessageType contains an integer to indicate the reason for the call. Currently the only valid
values are:0 = Object is being closed by the caller1 = Method call

At the end of the $construct() and $event() methods you need to return the row parameter to ensure that the values are returned to
the server applet.

Remote Studio Examples

Studio server remote task format

An example of a remote task class:

# Instance Var: iCanClose (Boolean)
# $construct method
# Parameter 1: pParams (Row)
Quit method $processmsg(pParams)
# $canclose method
Quit Method iCanClose
# $event method
# Parameter 1: pParams (Row)
On evPost
Quit method $processmsg(pParams)

# $processmsg method
# Parameter 1: pParams (Row)
Switch pParams.MessageType
Case 0 ## Object being closed by server

Calculate iCanClose as kTrue
Case 1 ## Method call

# Use values in pParams to call method.
# Note that this is a simple example and more work
# is required for the parameters.
Calculate iCanClose as kFalse
Do method [pParams.RSname] Returns pParams.RSrval

End Switch
Quit method pParams
# TestRoutine method
# Sample method which can be called by server applet
# You should add more methods as required
Quit method "Test Return Value"

Use of the Server applet in Visual Basic

The following is an example of use in Visual Basic. To use this code in other languages such as .NET, VBA, Delphi you will need to
change the syntax, but the structure should remain similar or unchanged.

Private Sub Command1_Click()
Dim rsapp As RemoteStudio.Application
Dim args(1) As RSvar
Dim result As RSvar
Rem Create applet & connect

Set rsapp = New RemoteStudio.Application
rsapp.omnisLibrary = “MyLibrary”
rsapp.omnisClass = “rtMyTask”
rsapp.omnisServer = “5000”
rsapp.serverURL = “http://000.000.000.000” ## IP of your server
rsapp.serverScript = “/cgi-bin/nph-omniscgi.exe”

180



If (rsapp.open()) then
MsgBox (“Error “+rsapp.errorText())

End If
Rem Setup parameters and call routine
Set args(0) = New RSvar
args(0).setChar (“Parameter 1”)
Set result = rsapp.execute(“TestRoutine”,args,1)
If ( rsapp.errorId()) Then
MsgBox (“Error “+Str(rsapp.errorId()) + “:” + rsapp.errorText() )

Else
MsgBox (“Method returned “+result.getChar())

End If
Rem Close applet
rsapp.Close

End Sub

Use of the complex variables and Server applet in Omnis Studio

The following is an example of returning a complex variable type, in this case a list, inOmnis Studio. To use this code in other languages
such as Visual Basic, .NET, VBA, Delphi you will need to change the syntax, but the structure should remain similar or unchanged.

# Server rtnVarList Method
Set current list myList
Define list {myCol1,myCol2}
Add line to list {("Row1 Col1","Row1 Col2")}
Add line to list {("Row2 Col1","Row2 Col2")}
Add line to list {("Row3 Col1","Row3 Col2")}
Do pParams.$cols.RSrval.$coltype.$assign(kList)
Calculate pParams.RSrval as myList
# Client Method
Do rsapp.$createobject()
Calculate rsapp.$omnislibrary as "RSTUDIO"
Calculate rsapp.$omnisclass as "rtRStudio"
Calculate rsapp.$omnisserver as "5112"
Calculate rsapp.$serverurl as http://127.0.0.1
Calculate rsapp.$serverscript as "/cgi-bin/nph-omniscgi.exe"
Do rsapp.$open()
Do rsapp.$executeNoParams("rtnVarList") Retuns result
Calculate rcnt as result.$getrowcount()
Calculate ccnt as result.$getcolumncount()
For row from 1 to rcnt step 1
For col from 1 to ccnt step 1

# To confirm with Visual Basic, offsets are zero based
Calculate parm1 as result.$getelement(row-1,col-1)
Send to trace log {[parm1.$getchar()]}

End For
End For

Use of the Server applet in PHP

The following is an example of use in PHP: See previous example for the server method code.

Server rtnVarList Client Method

<?php
include_once("rstudio.php");
$rsapp = new RemoteStudio;
$rsapp->mOmnisLibrary = "RSTUDIO";
$rsapp->mOmnisClass = "rtRStudio";

181



$rsapp->mOmnisServer = "5112";
$rsapp->mServerURL = "127.0.0.1";
$rsapp->mServerScript = "/cgi-bin/nph-omniscgi.exe";
if ( $rsapp->open() )
{

echo "Port opened\r\n";
$result = $rsapp->executeNoParams("rtnVarList");
$lst = $result->getList();
for ( $r=1; $r<=$lst->rowCount(); $r++ )
{
echo " Row $r = ";
for ( $c=1; $c<=$lst->colCount(); $c++ )
{
$var = $lst->getElement($r,$c);
echo $var->getCString() . " ";

}
echo "\r\n";

}
echo "Port closed\r\n";
$rsapp->close();

}
if ( $rsapp->getErrorID() )
{

echo " Error ID :" . $rsapp->getErrorID() . "\r\n";
echo " Error Message:" . $rsapp->getErrorText() . "\r\n";

}
?>

Chapter 10—Automation

Automation, formerly calledOLE Automation, is a technology that allows you to utilize an existing program’s content and functionality,
and to incorporate it into your own applications. Automation is based on the Component Object Model (COM). COM is a standard soft-
ware architecture, based on interfaces, that is designed to separate code into self-contained objects, or components. Each component
exposes a set of interfaces through which all communication to the component is handled.

For example, with Automation you can use a Word processor’s mail merge feature to generate form letters from data in an Omnis
database without the user being aware that Word processor is involved.

Automation consists of a client and a server. The automation client (Omnis) attaches to the automation server so that it can use the
content and functionality that the automation server provides. Omnis can only be an automation client, it cannot be a server.

Automation servers consist of an object or a number of objects. For example, in the object hierarchy for Excel, the uppermost object
in the Excel object model is the Application object. The Excel Application object has many children, two of which are Workbooks
and CommandBars. Workbooks and CommandBars are collection objects that contain other objects. A Workbooks collection object
contains Workbook objects and a CommandBars collection objects contain CommandBar objects. And, the list goes on, but under-
standing the object relationships in the automation server is fundamental to its use in Omnis and the third-party manufacturer can
only provide the appropriate level of documentation for these relationships. See the Excel documentation for an illustration of the
object hierarchy.

OLE2 Menu Options

Note that from Studio 11, the OLE2 menu options Links, Object and Insert Object have been removed from the Edit menu under
Windows (these were used by OOLE2 which was removed in Studio 6.1).

Instantiating an Automation Server

In Omnis, before you can utilize automation servers, you need to get an object (in Excels’ case you need to obtain an Application
object).

You can obtain an automation object by:

182



• Creating an object variable with subtype set to the automation server that you require. Once created, you will have to invoke a
standard method, such as $createobject(), to instantiate the server.

• Calling the OLE picture control $getobject() method and using the returned object variable.

• Querying an ActiveX controls’ property, or calling a method, which returns an object variable.

Automation Server Functionality

An object by itself does nothing unless you can do somethingwith that object. To programmatically examine or control an object, you
can use the properties and methods that the object supports. A property is a function that sets or retrieves an attribute for an object.
A method is a function that performs some action on an object.

For example, in Omnis, you can navigate to an object by starting at the uppermost object and working your way down to your target.
Consider Excel and its Workbooks collection object, which represents all the open workbooks. You could use its Count property to
acquire the count of workbooks open in Excel:

lNum = objectApplication.$Workbooks().$xcount

Youmay notice that the above example references a property called xcount whereas the Microsoft Excel automation documentation
refers to the property as count. This is because, Omnis already has $count as a core internal notation attribute and has therefore
appended “x” as a prefix. Unfortunately, other automation properties and methods also clash with Omnis internal notation but have
not been renamed. To utilise the automation attributes simply add two colons before the name. So $xcount becomes $::xcount.
Adding two colons even when they aren’t required will not have an effect, so it is a good habit to get into.

Another example would be to enquire on a particular value in a worksheet:

CValue = objectApplication.$Workbooks(“Book1.xls”).$Worksheets(“Sheet1”).Range(“A1”).Value

If you require a particular object often, it is beneficial to assign the automation object to a Omnis object variable. To do this simply,
create an object variable, with an empty subtype, and then invoke the automation method/property and assign the results. For
example:

Do objectApplication.$Workbooks("Book1.xls").$Worksheets("Sheet1") returns objWorkSheet
Do objWorkSheet.$Range("A1").$value.$assign("Cell Value")

So, how exactly, do you know what automation objects have what properties and methods?

• Obviously the best source of documentation is the third-party, which developed the automation server. For example, for Mi-
crosoft Office software, you can refer to the vbaxl8 (Excel), vbagrp8 (Graph), vbaoff8 (Office), vbaoutl (Outlook), vbappt (Power-
point), vbawrd8 (Word), help files.

• Use an automation object browser such as the OLE/COM Object viewer, which is included with Microsoft Studio.

• Use the Omnis Interface manager and Values list.

• And lastly, many Microsoft Applications come with a Macro recorder, which enables you to record user actions as a Visual Basic
for Applications, or VBA, script.

To illustrate this, follow these simple steps: -

• Start Microsoft Word.

• On the Tools menu, click Macro, and then select Record New Macro. In the Store Macro In drop-down box, select the name of
the active document. Make note of the newmacro’s name, and then click OK to start recording.

• Start a new document.

• Type one and press ENTER.

• Type two and press ENTER.

• Type three.

• On the File menu, click Save, and save the document as C:\doc1.doc

183



• Click the Stop Recording button (or, on the Tools menu, click Macro and then Stop Recording).

To view the VBA code that the macro recorder generated from your actions, on the Toolsmenu, click Macro, and then click Macros.
Select the name of the newmacro in the list and click Edit. The Visual Basic Editor displays the recorded macro.

Documents.Add
Selection.TypeText Text:="one"
Selection.TypeParagraph
Selection.TypeText Text:="two"
Selection.TypeParagraph
Selection.TypeText Text:="three"
ActiveDocument.SaveAs FileName:="Doc1.doc",
FileFormat:=wdFormatDocument, _
LockComments:=False, Password:="", AddToRecentFiles:=True,
WritePassword:="", ReadOnlyRecommended:=False,
EmbedTrueTypeFonts:=False, SaveNativePictureFormat:=False,
SaveFormsData:=False, SaveAsAOCELetter:= False

Whilst, this isn’t valid Omnis script code, it does illustrate the automation properties and methods, and usually it is simply a case of
making a fewminor modifications such as adding the $ prefix to the names and appending the parenteses to methods.

Built-in Methods

Along with the automation server’s methods, Omnis provides additional methods to enable you to manage the server.

These methods are: -

• $createobject() creates an instance of the object and may be called before the automation server can be used.

• $getactiveobject() obtains an instance to a current automation object.

• $getobject(Filename,[class]) creates an instance of an object from the specified filename and class, if supplied. For example
$getobject(“C:\CAD\SCHEMA.CAD”)

• $isavailable() returns kTrue if the object variable has a server instance, or kFalse otherwise.

Whether these methods exist or not, will depend on the source of the object variable. For example, an object, which originated from
an ActiveX, OLE2, or an automation collection, will not have these methods.

Lifetime of an Automation Server Instance

The lifetime of an automation instance typically follows these steps:

• Create an instance of the object using $createobject, $getactiveobject or $getobject. And validate that an instance was created
by calling $isavailable.

• Communicate with the object via properties and methods.

• Finally, terminate the object. Many automation servers provide a method called $quitwhich should be used to ensure that the
instance is terminated.

Terminating Processes

The $quit() method of an Automation Object has an optional parameter ‘hwnd’ to allow you to terminate the object’s process. For
example:

Do ExcelObj.$quit(ExcelObj.$hwnd)

will terminate the automation object’s process once the QUIT method finishes.

184



Automation Event Handling

Some automation servers fire events, for example, an email application may fire an email alert event to signify new emails. In Omnis,
it is possible to intercept COM automation events (ActiveX and OLE2 events are handled differently). To receive automation server
events, you need to add the “enableEvents” item to the “ole2auto” section of the config.json file and set it to true:

"ole2auto": {
"enableEvents": true

},

To intercept events, you simply sub-class the automation server object and override the desired events. The event method name will
have the suffix ‘event’ added.

For example, the following steps illustrate the trapping of events for an automation server called UrlReader, which is available from
Microsoft.

• Before you start Omnis, ensure that you have used regsvr32 (a DOS program which is distributed by Microsoft and used to
register automation servers) to register the UrlReader server.

• Create a new object, which is subclassed from the automation object ‘UrlReader.UrlReader.1’. To do this either, use the Class
Wizard ‘New Sub-class object’ from the Studio Browser and select “Automation>>UrlReader.UrlReader.1” from the list or create
an object and change the superclass property to “Automation>>UrlReader.UrlReader.1” using the superclass dialog.

• Now open themethod editor for the new object. You will notice numerousmethods for the UrlReader object. Two of which will
have the suffix ‘event’. Automation events have the extension “event” appended by Omnis. Now override both event methods
and add the code ‘Send to tracelog Event triggered’, then close the method editor.

• Create a new window and add a button.

• Open themethod editor for the window and add an object variable calledmyObjwith the subtype that you named your object
(in the first stage).

• Add the following code:

$construct: Do myObj.$createobject()
$destruct: Do myObj.$quit()
Button evClick: Do myObj.$readurl(http://www.microsoft.com/,"c:\mscom.txt")

• Open the window and the tracelog. Then press the button. Notice that the tracelog will contain “Event triggered” text.

Automation to Omnis Variable Conversion

An advanced topic is the differences between variable types in automation and in Omnis. This topic becomes less and less relevant
as the automation servers become more and more flexible; unfortunately, some of the older automation servers are rather inflexible
when it comes to the type of variables used.

Automation has a parameter type called VARIANT; this type can hold any type of data. Unfortunately with this flexibility comes a price.
Namely that some objects, Excel for example, state that they handle any type of data (ie VARIANT) in theory, but in fact they may be
expecting data passed by reference or of a limit subset of the VARIANT types.

The Omnis automation component takes the same approach as Visual Basic, in that everything is passed by VARIANT, and depending
on the Omnis data type used, certain assumptions are made.

All these assumptions can be over-ridden; the table below shows the default conversion.

Omnis DataType Automation DataType

Boolean VT_BOOL
Integer (0 to 255) VT_I1
Integer (Long) VT_I4
Number VT_R8

185



Omnis DataType Automation DataType

Character VT_BSTR
List VT_ARRAY
Row VT_ARRAY
Binary VT_ARRAY | VT_UI1

Typically a server will return the error code of 80070057 (see Automation errors section) if the parameter wasn’t of the correct type.
You can coerce variables to another datatype, by preceding the parameter with a constant listed in the table below:

Constant Name Automation DataType Datatype description

KAutoBOOL VT_BOOL Boolean Value (True or false)
kAutoI1 / kAutoUI1 VT_I1 / VT_UI1 Signed / Unsigned Byte
kAutoI2 / kAutoUI2 VT_I2 / VT_UI2 Signed / Unsigned short
kAutoI4 / kAutoUI4 VT_I4 / VT_UI4 Signed / Unsigned Long
kAutoR4 VT_R4 4 byte real
kAutoR8 VT_R8 8 byte real
kAutoBSTR VT_BSTR Binary String
kAutoDISPATCH VT_DISPATCH IDispatch *
kAutoCY VT_CY Currency
kAutoEMPTY VT_EMPTY Empty
The above constants+REF VT_xxxREF By Reference
kAutoNULL VT_NULL Null

For example:

Do object.$setvalue(kAutoI4,"45")

Automation Errors and Limitations

Should an automation error occur, then the contents of #ERRCODE and #ERRTEXT can be used to isolate the problem.

On an error, #ERRCODE will be set to the automation error code type, HRESULT, which is a 32bit unsigned integer. A value of –
1 indicates that the error occurred in the automation component rather than in the automation server, for example, “Automation
method not found”.

#ERRTEXT will contain a string representation of the error.

HRESULT codes are difficult to document as they can be defined by both the server application and by the operating system. However,
here are a few of the more common codes (which are in hexidecimal):

8000FFFF Unexpected error
80004001 Not implemented
8007000E Out of memory
80070057 Invalid argument
80004002 No such interface supported
80004004 Operation aborted
80004005 Unspecified error
800401F3 Invalid class string

An automation limitation is Constants, or automation enums, which are not supported for COM objects and OLE2 objects.

Automation Examples

Some of the best examples of automation in Omnis are contained within the automation sample library, but the following illustrate
the use of XML, DAO and Outlook in Omnis.

186



XML

This example requires the file books.xml, which is available from Microsoft. Ensure that you obtain the correct version, which have
“AUTHOR” tags, in the correct case; otherwise you will have to subsitute the “AUTHOR” tag with another tag in the example code.

The variables xml (type Object and subtype ‘Microsoft.XMLDOM.1.0’) and element (type Object, no subtype) need to be added to your
code.

Do xml.$createobject()
Do xml.$async.$assign(kFalse)
Do xml.$load("c:\books.xml")
Do xml.$getelementsbytagname("AUTHOR") Returns element
For #1 from 0 to element.$length-1 step 1

Calculate #S1 as element.$item(#1).$xml
OK message {[#S1]}

End For
Do xml.$quit()

This example loads the xml file and enumerates each AUTHOR tag.

DAO

This example requires the Microsoft Office sample database northwind.mdb. The variables obj (type Object and subtype
‘DAO.DBEngine.36’) and database, recordset, both of type Object (no subtype).

Do obj.$createobject()
Do obj.$Workspaces(0).$opendatabase("c:\office\northwind.mdb") Returns dat
Do dat.$openrecordset("Select * from Products",4) Returns recordset
Calculate #1 as recordset.$fields().$xcount
For #2 from 1 to #1 step 1

Calculate #S1 as recordset.$fields(#2-1).$::value
Calculate #S2 as recordset.$fields(#2-1).$::name
Send to trace log {[#S2]=[#S1]}

End For
Do recordset.$close()
Do dat.$close()
Do obj.$quit()

This example opens the database file and enumerates each product in the record set.

Outlook 2000

This examples requires variables ol (type Object and subtype ‘Outlook.Application.9’) and variables olns, objFolder, ocontacts, and
ocontact (all of type Object and no subtype).

Do ol.$createobject()
Do ol.$getnamespace("MAPI") Returns olns
Do olns.$getdefaultfolder(10) Returns objFolder
Do objFolder.$items() Returns ocontacts
OK message {There are [ocontacts.$xcount] contacts}
Do ocontacts.$getfirst() Returns ocontact
For #1 from 1 to ocontacts.$xcount step 1
Calculate #S1 as ocontact.$xfullname
OK message {[#S1]}
Do ocontacts.$getnext Returns ocontact

End For

This example enumerates the contacts in your Outlook application.

187



Chapter 11—Apple Events

All the Apple Event commands, including Send core event and Send Finder event, are obsolete and have been removed from the
Method Editor in Omnis Studio 10 and above. You can use the oFinderEvent object class to call Apple Finder events, as described
below.

Note that in Omnis Studio 8.0.3; Apple Events do not work on macOS Sierra and are therefore no longer supported in that release of
Omnis Studio. The commands have been moved from the Apple events… group and placed into the Obsolete commands group in
the Method Editor and are no longer supported.

Apple Events Object

To replace the functionality of the old “Send Finder Event” commands, this release includes a new Object class called oFinderEvent
which contains a number of methods which run AppleScript to execute the equivalent Apple Finder events, such as a Get File Info
event or a Duplicate Files event. The AppleScript is run using the $runapplescript() Omnis method from inside each method in the
object class.

To use the object class and these methods, click on the Class Wizard option in the Studio Browser, then click on Object, select the
oFinderEvent option (available on macOS only), name the object class (or keep the name oFinderEvent) and press Return: a copy of
the object class template is added to your library. Open the Method Editor for the class in which you want to use the Finder events
(such as a window, menu or toolbar class), and then create an Object variable in the class, setting its subtype to the oFinderEvent
object you created.

Apple Event Methods

You can call the methods in your code, and run the AppleScript as required, using the Omnis command Do ObjVar.$methodname()
using the appropriate method name, as below.

Some of the methods can take a file path as the first parameter, or if this is omitted or empty a file selection dialog will open. The title
of the dialog can be customized by editing the cOpenFilesTitle class variable.

• $getfileinfo([cFilePath])
Sends a Get File Info event: equivalent Send finder event {Get File Info} command

• $duplicatefiles([cFilePath])
Sends a Duplicate Files event: equivalent Send finder event {Duplicate Files} command

• $makealiasforfiles([cFilePath])
Sends a Make Alias For Files event: equivalent Send finder event {Make Alias For Files} command

• $openfiles([cFilePath])
Sends a Open Files event: equivalent Send finder event {Open Files} command

• $printfiles([cFilePath])
Sends a Print Files event: equivalent Send finder event {Print Files} command

• $revealfiles([cFilePath])
Sends a Reveal Files event: equivalent Send finder event {Reveal Files} command

• $emptytrash()
Sends a Empty Trash event: equivalent Send finder event {Empty Trash} command

• $restart()
Sends a Restart Macintosh event: equivalent Send finder event {Restart Macintosh} command

• $shutdown()
Sends a Shutdown Macintosh event: equivalent Send finder event {Shutdown Macintosh} command

• $sleep()
Sends a Sleep Macintosh event: equivalent Send finder event {Sleep Macintosh} command

The object has three instance variables which you can use in your code to handle errors:

188



• iErrCode
The error code generated by the last command. 0 for no error.

• iErrText
The error text generated by the last command.

• iScript
The AppleScript sent by the last command.

The following legacy commands are not supported in the latest version onmacOS: Send finder event {Show About}, Send finder event
{Share Files}, Send finder event {Show Clipboard}.

You can examine the Omnis code and AppleScript in eachmethod inside the object class. For example, various simple operations are
handled in a generic method $simpleop and the operation is passed in as a parameter:

# $simpleop method
# pOperation param receives ‘Empty’, ‘Restart’, ‘Shut down’, or ‘Sleep’ msg
Begin text block
Text: tell application "Finder" (Carriage return)
Text: [pOperation] (Carriage return)
Text: end tell (Carriage return)

End text block
Get text block iScript
Do $root.$runapplescript(iScript,iErrCode,iErrText)
Quit method iErrCode

Each of the newmethods in the object class includes the equivalent old command as a comment to help you map your code to the
newmethods.

# Send finder event {Empty Trash} ## old command
Quit method $cinst.$simpleop("Empty") ## new method

Chapter 12—Omnis ODBC Driver

The Omnis ODBCDriver is available onWindows andmacOS platforms and enables read-only access to Omnis data files. You can use
it to import data into ODBC-compliant applications such as Microsoft Access, Excel and Word using the Microsoft Query tool.

There are also separate versions of the ODBC Driver available for Unicode and non-Unicode/legacy data files (Omnis 7 & pre-Studio
4.3.2).

Enable ODBC Access

Before you can access an Omnis data file via ODBC, you need to add one or more ODBC users to the data file. These user names
and passwords are used to authenticate users attempting to connect to the data file. Each user also has an associated ODBC access
mask value which is used to enable or disable access to one or more of the tables inside the data file. Therefore, each user can have
customized access to certain tables whilst being denied access to others.

Select Tables

You can find the ODBC Admin tool in Omnis Studio by selecting the
Tools -> Add-Ons->ODBCAdmin…menu option.

Press Open Data File to proceed, then select the Tables tab.

This is where you select which tables will be visible via ODBC. Each table has an associated 32-bit access mask; shown as two banks
of 16 checkboxes.

The choice and assignment of groups is entirely user-defined, but a table must be amember of one or more groups to permit access.

Select (single-click) each table in turn and select one or more of the checkboxes, e.g.

189



Figure 69:

Figure 70:

190



Figure 71:

Figure 72:

191



Whenyouenable a table forODBCaccess, all of its columns are enabledbydefault. You can further restrict access to a table’s individual
columns by expanding the tree list on the left, or by double-clicking the table name. Select and uncheck the group box(es) to hide
individual columns.

Figure 73:

At each stage, and before leaving the Tables tab, press Update to save your changes.

Select Users

Now that one ormore tables have been enabled for ODBC access, click on theUsers tab. If one ormore users already exist for this data
file, they will be shown on the left. Otherwise, enter a new user name in the Current User field to create a new one, add a password
then press Insert to save changes.

For existing users, select the user name on the left, modify the fields as required, then press Update to save changes.

Figure 74:

For each user, select one or more group checkboxes. These correspond to the groups assigned to your tables in the previous step.
Therefore, a given user will only have access to tables in the selected groups.

If the FCUSTOMERS table in the above example belongs to Group 1 only, the user needs to be a member of Group 1 in order grant
access to that table.

192



If the FBOOKINGS table belongs to its own group, e.g. Group 3, a user must have group 3 selected in order to see it. Similarly, a user
that has both groups 1 and 3 selected will be able to access both tables.

The categorization of tables into different access groups and users that have access to those groups is entirely at your discretion. As a
minimum, or for basic access to all tables by all users, you can assign all tables to Group 1 (for example), then assign all users to Group1.

Once you have completed your table groups and user group assignments, press Finished to close the ODBC Admin tool. ODBC user
information is stored in a (hidden) table named ODBC_USERS. (This table is normally accessible only if you retain access to the data
file using Omnis Studio and the OmnisSQL DAM.)

Download and Install the Driver

Having added one or more ODBC Users to your Omnis data file, you can now download and setup the Omnis ODBC Driver.

You can download the latest version of the ODBC driver from the Omnis website at: https://www.omnis.net/developers/resources/
download/tools/odbcdriver.jsp

Once downloaded, run the installer and follow the steps in order to add the driver to the system.

Figure 75:

Configure ODBC DSNs

Once installed, you can add one ormore ODBCData Source Names (DSNs); one DSN is needed for each Omnis data file that you need
access to.

On Windows, you can use the 64-bit ODBC Administrator to configure a DSN that uses the 64-bit ODBC Driver (for use with 64-bit
apps) or the 32-bit ODBC Driver (for use with 32-bit apps). Both drivers are provided during installation.

Press the Windows key (�) then type “ODBC” in order to locate and run the ODBC Administrator.

Press Add to create a new User or System ODBC DSN dependent on which tab is currently selected. Select the Omnis ODBC driver
that is compatible with your Omnis data file. For data files used with recent versions of Omnis Studio, this will normally be the Omnis
Unicode ODBC Driver (64-bit). The choice of 32 or 64-bit depends on the third-party application that you will be using. 32-bit apps
may not be able to see ODBC DSNs defined using the 64-bit ODBC Administrator and vice-versa.

Now select the Omnis data file to be accessed or enter the path name directly into the entry field.

The user name and password you add here must correspond with a name that you added to the data file previously using ODBC
Admin tool.

Press OK to complete setup of this ODBC DSN.

193

https://www.omnis.net/developers/resources/download/tools/odbcdriver.jsp
https://www.omnis.net/developers/resources/download/tools/odbcdriver.jsp


Figure 76:

Figure 77:

194



Testing the DSN

You can either use Omnis Studio or your third-party application (such as Microsoft Query/ Excel) to test your ODBC DSN.

Using Omnis Studio

From Studio, you can use the SQL Browser by setting-up an ODBC session to the ODBC data source.

Figure 78:

Press Test Connection to verify the connection details.

Using Excel

Using Microsoft Excel, go to the Data -> From Other Sources -> From Microsoft Query.

Select the ODBC data source name created in the previous step, then select the table and (optionally) columns that you want to
import.

Selecting the table, then pressing >will select all visible columns. Press Next to select additional options and to choose how/where to
return the columns. You can return the results to Microsoft Query or import the results directly into your spreadsheet.

Other Apps

Other ODBC-compliant applications provide different ways to import data via ODBC. Please refer to the documentation accompany-
ing the application for specific details.

The only caveat is that the application must be compatible with read-only operation.

Using SQL

The Omnis ODBC driver recnognizes a limited subset of the SQL programming language. Tools like Microsoft Query handle the SQL
syntax for you, but if you want to modify the syntax of the SQL SELECT query, please refer to the Omnis Programming Manual where
the OmnisSQL language definition is explained in more detail.

195

https://www.omnis.net/developers/resources/onlinedocs/Programming/09serv.html#omnis-sql-language-definition


Figure 79:

Figure 80:

196



Chapter 13—Blowfish Encryption

You can use the Blowfish external component to integrate encryption into your Omnis Studio applications. Alternatively, you can use
the CRYPTOWorker Object to perform encryption and decryption of data using the AES, Camellia, and DES encryption types.

About Blowfish

Omnis Studio supports the Blowfish encryption algorithm via a non-visual External Object which you can use in code to provide a
layer of security. Blowfish is a fast and freely available encryption algorithm created by Bruce Schneier.

The Blowfish external object contains methods to encrypt and decrypt, as well as initialize the encryption object using an initial key.
To create an encryption object, you should create an object variable and specify the Blowfish object as the subtype of the variable. You
must initialize the blowfish object with a variable length key using the $initkey() method. For example:

# create Object var ‘blowfish’ of Blowfish subtype
Do blowfish.$initkey("MyKey")

To encrypt binary data use the following method:

Do blowfish.$encrypt("MyData"[,bAddLenHeader=kFalse])

Optionally adds a length header if bAddLenHeader is kTrue and then returns the binary encrypted data. The object can use the length
header to restore the data length when decrypting the data. The header is 8 bytes.

To decrypt data use the following method:

Do blowfish.$decrypt("MyData"[,bHasLenHeader=kFalse])

Decrypts the data and returns the binary result. If bHasLenHeader is kTrue, the object strips the length header and uses it to set the
length of the returned data.

You can also use the following methods to encrypt or decrypt Character data:

Do blowfish.$encryptchar("cData"[,bAddLenHeader=kFalse])
# or to decrypt
Do blowfish.$decryptchar("cData"[,bHasLenHeader=kFalse])

Padding

The $padding property allows you to specify the type of padding to use when encrypting data.

• $padding
A kBlowFishPadding… constant that indicates the type of padding to use when encrypting or expect when decrypting (default
kBlowFishPaddingNone). A value other than kBlowFishPaddingNone is ignored if you specify a length header.

Valid values of the padding constant are kBlowFishPaddingNone (use or expect no padding) and kBlowFishPaddingPKCS5 (use or
expect PKCS5 padding).

The presence of PKCS5 padding allows the codedecrypting the data to correctly restore its length, without requiring the non-standard
length header. This allows the BlowFish object to be used to encrypt data to be passed to applications other than Omnis – these
applications (assuming they have the key) can decrypt the data and set its length correctly.

197

07webcomms.html#crypto-worker-object


Binary Encryption

You can use the encxtea() and decxtea() functions to encrypt and decrypt binary data. The functions are found in the Binary Field
group and use the eXtended Tiny Encryption Algorithm (XTEA) to encrypt the data.

• encxtea(binary,key)
Returns the binary result of encrypting binary using the eXtended Tiny Encryption Algorithm (XTEA) with the binary key; the
key must be 128 bits long.

• decxtea(binary,key)
Returns the binary result of decrypting binary (previously encoded using encxtea()) with the binary key; the key must be 128
bits long.

String Encoding

You can encode and decode a string using the encstr() and decstr() functions. You can supply a code or Omnis supplies a default key.
The functions are found in the String group of functions.

• encstr(string[,key])
Encodes the string using the key. If omitted, Omnis uses its default value for the key. The return value of encstr() is a string that
is difficult to decode without knowing the key. To decode the string, and return the original value, use the decstr() function.

• decstr(string[,key])
Decodes the string (previously encoded using encstr()) using the key. If omitted, Omnis uses its default value for the key. Note
that decstr(encstr(string,key),key) = string.

Calculate lEncoded as encstr('Testing',10)
Calculate lDecoded as decstr(lEncoded,10)
# returns the original string 'Testing'

198


	Extending Omnis
	About This Manual

	Chapter 1—Web Services
	What is REST?
	Creating a Web Services Client
	Creating your own Web Services
	Cross Origin Resource Sharing
	Logging
	Authentication

	Chapter 2—OJSON
	Data Structure and Addressing
	Static Methods
	JSON External Component Object

	Chapter 3—Java Objects
	Setting Up
	Creating Java Objects
	Subclassing Java Objects
	Using Java Objects
	Method Overloading and Pattern Matching
	Calling Overloaded Methods Directly
	Nested Object Arrays
	Modifying The System Package List
	Overloaded Types
	Frequently Asked Questions

	Chapter 4—Omnis .NET Objects
	Introduction
	Software Requirements
	Setting up
	Creating .NET Objects
	Subclassing .NET Objects
	Using .NET Objects
	.NET Objects example library
	Method Method Overloading and Pattern Matching
	Nested Object Arrays
	Overloaded Types

	Chapter 5—oXML
	About oXML
	What is XML?
	Creating a Document Object
	Document Objects in oXML
	Manipulating XML Documents
	Creating XML documents

	Chapter 6—oProcess
	About oProcess
	Properties
	Methods
	Using oProcess

	Chapter 7—OW3 Worker Objects
	Example Apps
	Using the OW3 Workers
	HTTP/2 support
	Base Worker Properties
	Base Worker Constants
	Base Worker Methods
	OAUTH2 Worker Object
	HTTP Worker Object
	SMTP Worker Object
	FTP Worker Object
	IMAP Worker Object
	JavaScript Worker Object
	POP3 Worker Object
	CRYPTO Worker Object
	HASH Worker Object
	LDAP Worker Object
	Python Worker Object
	Java Worker Object
	Web Worker Objects
	External Commands

	Chapter 8—Omnis Graphs
	About Graph2
	Chart Types
	Common Graph Properties
	Common Graph Methods
	XY Charts
	Pie Charts
	Polar Charts
	Meter Charts
	Graph Layers and the Prelayout Event
	Graph Clicks and Drilldown
	Changing the Color of Graph elements
	Adding Colored Zones
	Parameter Substitution and Formatting
	Labels
	Using Graphs in Reports
	Using Graphs in the Web client

	Chapter 9—Remote Studio Applet
	How does it work?
	Object Interfaces
	Studio Remote Tasks
	Remote Studio Examples

	Chapter 10—Automation
	Instantiating an Automation Server
	Automation Server Functionality
	Built-in Methods
	Lifetime of an Automation Server Instance
	Automation Event Handling
	Automation to Omnis Variable Conversion
	Automation Errors and Limitations
	Automation Examples

	Chapter 11—Apple Events
	Apple Events Object
	Apple Event Methods

	Chapter 12—Omnis ODBC Driver
	Enable ODBC Access
	Download and Install the Driver
	Configure ODBC DSNs
	Testing the DSN
	Using SQL

	Chapter 13—Blowfish Encryption
	About Blowfish
	Padding
	Binary Encryption
	String Encoding


