
 Omnis SQL

 1

Omnis SQL
This document describes how to use Omnis SQL to access an Omnis database*, and
assumes a working knowledge of SQL. A formal definition of the Omnis SQL language is
included.

The Omnis Data Access Module (DAM), which is in the EXTERNAL folder, lets you
connect to an Omnis database using Omnis SQL. No additional software is required to use
Omnis SQL.

Connecting to the Database
For an application to logon to a database in runtime requires a set of commands in a
method. For Omnis SQL all that is required is the command Set hostname to identify the
database that contains the tables you want to access.
Set hostname { c:\omnis\df\my-dfile}

Sending SQL to the Database
Before a client application can get any data from a server, it must set up a corresponding
place in Omnis to hold the data. This involves mapping the structure of the data, including
column names and data types. Typically, you do this using Omnis schema classes. You can
define a schema to include all columns of the server table or any subset of the columns.

The schema serves as a framework for defining a table class which, in turn, is the reference
for defining lists and rows. Omnis uses list and row variables for handling client/server data.
Creating schema and table classes is described earlier in this manual, and using lists and
rows is described in the List Programming chapter.

To send SQL to the database, you can either write your own methods, or use the table
instance methods that handle both single row and bulk SQL transactions. This section
covers custom methods; Omnis table classes were described earlier.

Omnis provides two different ways of building a SQL statement and sending it to the
database: the Perform SQL command and SQL scripts.

* This document covers Omnis SQL programming using Omnis Studio version 1 and 2.
This functionality has been replaced in Omnis Studio version 3/4 by session and statement
object methods and properties (see the SQL Programming chapter in the Studio 4.x Omnis
Programming manual), however this document is included in order to assist your
understanding of existing applications built using the older API.

Omnis SQL

2

Perform SQL
The Perform SQL command sends a single-line SQL statement to the current SQL session:
Perform SQL { SELECT name FROM Agent }

You can substitute text into the SQL statement using square bracket notation:
Perform SQL { SELECT name from [TABLENAME] }

where TABLENAME is an Omnis variable.

SQL Scripts and the SQL Buffer
For longer statements that you may want to enter on more than one line, Omnis provides the
SQL script. Omnis has a SQL buffer, an area of memory that contains a single SQL
statement that you build up with a series of commands. Begin SQL script clears the buffer;
SQL: enters a line of SQL text, End SQL script closes the buffer and Execute SQL script
sends the contents of the buffer to the database. For example,
Begin SQL script

SQL: INSERT INTO Agent

SQL: (name,number)

SQL: VALUES ('FRED',123)

End SQL script

Execute SQL script

is equivalent to the Perform SQL command
Perform SQL {INSERT INTO Agent (name, number) VALUES ('FRED', 123)}

You can also use Get SQL script {field name} to copy the contents of the SQL buffer into a
variable and Set SQL script {field name} or to copy the contents of a variable into the
current SQL buffer.

Error Handling
Both Perform SQL and Execute SQL script clear the flag when the operation is not
successful and the functions sys(131) and sys(132) report the error code and error text
respectively.
Perform SQL { SELECT name FROM Agent }

If flag false

 OK message {SQL error [sys(131)] [sys(132)] }

End If

The Name Functions
There are several functions you can use to create part of a SQL statement. Each of these
functions takes a file class name or field name list as a parameter and evaluates to a string of
text that Omnis inserts automatically into the SQL buffer. With these functions, you can
write general-purpose methods that will work with any server without typing long SQL

 Omnis SQL

 3

statements. For more information, see the descriptions in the Omnis Help. The functions
are:

� createnames()

� insertnames()

� selectnames()

� updatenames()

� wherenames()

Data Mapping
There are several ways to map Omnis data into SQL statements.

Square Bracket Notation
SQL statements can contain square bracket notation, which Omnis evaluates. If you use it
you must supply quoted literals. For example, to update an Agent table by setting the name
to a string from a variable called FIELD, you must quote the square bracket notation
expression:
Perform SQL { UPDATE Agent SET name ='[FIELD]' }

You cannot use the string �[][]� (two sets of empty square braces) in your SQL statements
because the DAMs use this string to mark the variables passed as @[]

Bind Variables
A bind variable is an Omnis variable to which you want to refer in a SQL statement. Instead
of expanding the expression, Omnis binds, or associates the variable value with a SQL
variable. If you place an @ before the opening square bracket, Omnis evaluates the
expression and passes the value to the server directly rather than substituting it into the SQL
statement as text. You can also use this syntax to bind large fields such as pictures into a
SQL statement:
Perform SQL { INSERT INTO Agent (agentPortrait) values (@[P_FIELD])

 Never quote bind variables, and use them only to represent complete literals or values;
otherwise you will get an error from the server.

Generally, using bind variables performs better than square bracket notation and is more
flexible with respect to data representation. You should use square bracket notation only
when the notation expression evaluates to a part of a SQL statement broader than just a
value reference (such as an entire WHERE clause, for example) or where you know that
simple value substitution is all you need. This works best for numeric data; strings tend to
cause problems because of the issues with quoting. You must include quotes when using
square bracket notation, but you don�t need to when using bind variables. Also, if you are
inserting NULL data into the database, you should use bind variables, since square bracket
notation tends to insert empty strings into the SQL statement, not SQL nulls. This also
applies to pictures, binary data, and very long text.

Omnis SQL

4

Select Tables and Cursors
A select table is a table of results that belongs to a session. When you send a SQL SELECT
statement to the server and there is no error, the results of the SELECT become available to
Omnis as the select table for the current session. The select table can be empty; in this case,
the flag is true after the execution of the select and is only set to false when you attempt to
fetch the first row after the end of the select table.

You can map the data in the select table into Omnis data in three ways:

� Declare cursor and Fetch next row

� Build list from select table

� Retrieve rows to file

When you fetch data from the server, Omnis converts data types between the native SQL
server and the Omnis data type if possible, including numeric precision. If there is a total
mismatch between Omnis field types and SQL column types, you can lose information or
get a SQL error.

Declare cursor and Fetch next row
The Declare cursor and Fetch next row commands let you map each row in the select table
into the CRB on a row-by-row basis.

Declare cursor defines a SQL cursor, a named pointer to a row in the select table, and
associates a SQL select statement with the cursor. Open cursor opens the cursor, parses the
SQL statement, binds input data, and executes the SQL statement. Set current cursor
switches Omnis to use the named cursor.

When you execute a SQL SELECT statement, the current cursor points to the first row in
the resulting select table. When you Fetch next row, you fetch the row pointed to by the
current cursor and move the cursor to the next row. You can have more than one cursor
active at a time, letting you select rows based on values retrieved from a completely
separate select table. You use the Set current cursor command to use a particular cursor as
the current cursor with the Fetch commands.

Unless you are using multiple cursors, you don't need to explicitly open a cursor; Omnis
automatically opens one for you.

The Fetch next row command loads the column values for a single row of the select table
into the Omnis CRB fields.

If the list of fields does not match the columns in the select table, Omnis tries to map the
data as best it can. If there are more columns than fields, then Omnis doesn't copy the extra
column values into Omnis variables. On the other hand, if there are more fields than
columns, then Omnis leaves the extra field values unchanged.

The usual retrieval process is to fetch the rows in a loop, one at a time, until there are no
more rows in the select table. To do this, you use Fetch next row which fetches the row

 Omnis SQL

 5

pointed to by the current cursor, then moves the cursor to the next row. After successfully
fetching a row, the flag is true. After you fetch the last row, the next fetch returns a false
flag and does nothing to the mapped fields. You then can use the Close cursor command to
close a cursor explicitly, freeing the memory it uses.

Using the Repeat and Until commands with the flag lets you fetch until the flag turns false,
though you must save the value of the flag in a separate variable for the test, since other
commands may reset the flag before reaching the end of the loop. You can also use a While
command, fetching the first row before entering the loop.

There are several variations on the Fetch command.

� Fetch first row fetches the first row in the select table and points the cursor at the
second row

� Fetch current row fetches the current row and leaves the cursor pointing to that row

� Fetch next row fetches the current row and points the cursor to the following row

Build list from select table
The Build list from select table command fetches all the rows of the select table into a list
that has been defined with the appropriate fields. The command appends the values rather
than overwriting any values in the list so you can use this feature to put multiple select
tables into a list, but there is a Clear list option to clear the list first. If you have defined
the list with other fields or variables, the Add CRB fields option inserts these values to the
list as well.

You can use #LM or $linemax to limit the size of the list regardless of the number of rows
in the select table. There are also commands provided by most servers to limit number of
rows returned; do not confuse these with the #LM value, which just affects the list.

The following method selects a table called Contacts with columns name and number
directly into a list.
; Local variable lvContacts (list)

Set current list lvContacts

Define list { fContacts }

Perform SQL { SELECT name, number FROM Contacts }

; Creates the select table of all rows and columns

If flag true

 Build list from select table

End If

Retrieve Rows to File
This command copies the select table on a row by row basis into the current client import
file, where the data is appended in tab-delimited format.

Omnis SQL

6

Set client import file name {my_file}

Open client import file

Perform SQL {Select * from my_table}

Retrieve rows to file

Close client import file

Omnis SQL Language Definition
The following sections show the grammar of Omnis SQL using BNF (Backus-Naur Form)
diagrams, using the conventions from the ANSI standard.

Each statement includes a note specifying what parts, if any, of the statement depart from
the ANSI 1989 standard for SQL.

SQL Statement
SQL_statement ::=

 create_table_statement
| create_index_statement
| delete_statement_searched
| drop_index_statement
| drop_table_statement
| insert_statement
| select_statement
| update_statement_searched
| update_statement_positioned
| alter_table_statement

The SQL statement is the text that goes in the Perform SQL command or in a SQL script
starting with Begin SQL script. The rest of the grammar depends on this main element.

ANSI SQL has the following statements that Omnis does not implement. Most statement
involve cursors, and Omnis implements these as commands rather than as SQL statements.

� close_statement
closes a cursor (see the Close cursor, Quit cursor, and Reset cursors commands)

� commit_statement
commits a transaction (see the Commit current session command)

� declare_cursor
declares a cursor (see the Declare cursor command)

� delete_statement_positioned
deletes a row based on current cursor position

� fetch_statement
fetches a row using the current cursor (see the Fetch commands)

� open_statement
opens a cursor (see the Open cursor command)

 Omnis SQL

 7

� create_schema_statement
creates a schema containing tables and views; Omnis SQL does not support schemas

� create_view_statement
creates a view; Omnis SQL does not support views

� grant_privilege
grants an access privilege on an object to a user; Omnis SQL does not implement any
SQL security

CREATE TABLE
create_table_statement ::=

CREATE TABLE table (table_element_comma_list)
CONNECTIONS (table_comma_list)

The CONNECTIONS clause is an Omnis extension to the ANSI standard that lets you
specify a list of file classes to which to connect a file class. Connections are parent-child
relationships between file classes. See the Omnis Data Files chapter for information on
connections
table_element ::= column_definition | UNIQUE (column_comma_list)

You can define a file class using the SQL CREATE TABLE statement. The fields in the
format come from the list of column definitions. You can also specify that the values for a
group of columns are unique, taken together, with the UNIQUE constraint. You can have
more than one UNIQUE constraint. All the columns in a UNIQUE constraint must be
defined with the NOT NULL qualifier (see below).

The ANSI standard contains several other table constraints, namely PRIMARY KEY,
FOREIGN KEY and CHECK that Omnis SQL does not implement.
column_definition ::= column_data [[NOT] NULL]

The NOT NULL constraint specifies that when you insert a row, the value for this column
must not be NULL.

The ANSI standard specifies a default clause that lets you define a default value for the
column. It also lets you specify that the column is UNIQUE, REFERENCES a primary key
in another table, or satisfies a CHECK constraint. Omnis SQL does not implement any of
these features.
column_data ::=

column_name data_type

Omnis SQL

8

data_type ::=
[LONG] VARBINARY
| BIT
| VARCHAR (NUMBER)
| CHAR (NUMBER)
| NATIONAL CHAR[ACTER] VARYING (NUMBER)
| NCHAR VARYING (NUMBER)
| SEQUENCE_TYPE
| DATE [({ 1900..1999 | 1980..2079
| 2000..2099 })]
| TIME
| TIMESTAMP
| TINYINT
| SMALLINT
| INTEGER
| NUMERIC (number, integer)
| DEC[IMAL] (number, integer)
| FLOAT_TYPE [(integer)]
| REAL
| LIST
| PICTURE

ANSI data types include CHARACTER, NUMERIC, DECIMAL, INTEGER, INT,
SMALLINT, FLOAT, REAL, and DOUBLE PRECISION. Omnis does not implement
FLOAT and DOUBLE PRECISION directly, though FLOAT_TYPE is similar to FLOAT.
The other data types are Omnis specific. The integer value in the NUMERIC, DECIMAL,
and FLOAT_TYPE types corresponds to the Omnis subtypes for numbers; 0-8, 10, 12, and
14 are the possible values.

ALTER TABLE
alter_table_statement ::=

ALTER TABLE table ADD
{ column_data | (column_data_comma_list) }

The ALTER TABLE statement lets you add a column to an already existing table using the
same syntax as in CREATE TABLE.

The ALTER TABLE statement does not exist in the 1989 ANSI standard.

DROP TABLE
drop table statement ::=

DROP TABLE table_name

The DROP TABLE statement removes a file slot and any data for that slot from an Omnis
datafile.

The DROP TABLE statement does not exist in the 1989 ANSI standard.

 Omnis SQL

 9

CREATE INDEX
create_index_statement ::=

CREATE [CASE SENSITIVE] [UNIQUE] INDEX index
ON table (index_column_comma_list)

index_column ::=
column_reference [ASC]

The CREATE INDEX statement lets you create an index on an Omnis database column.
You can make the index UNIQUE, asserting that no two rows of the database have the same
value for this combination of columns. You can also make the index CASE SENSITIVE,
this will usually result in more efficient queries. The index column list contains columns
from the table, and the table must already exist. You can also specify ASC on an individual
column to sort it in ascending, as opposed to descending, order.

The CREATE INDEX statement does not exist in the 1989 ANSI standard.

DROP INDEX
drop_index_statement ::= DROP INDEX index

The DROP INDEX statement removes the named index, which must already exist.

The DROP INDEX statement does not exist in the 1989 ANSI standard.

SELECT
select_statement ::=

SELECT [ALL | DISTINCT] { value_expression_comma_list | * }
from_clause
[where_clause]
[group_by_clause]
[order_by_clause]
[FOR UPDATE]

The SELECT statement is the basic query statement in Omnis SQL. It largely matches the
ANSI standard, one exception being the having clause, which in Omnis SQL is part of the
group by clause instead of being a separate clause in the select statement. That is, in Omnis
SQL you cannot have a HAVING clause separate from the GROUP BY clause.

The FOR UPDATE clause initiates special locking for the records in the query. When you
fetch a row from a cursor containing a SELECT statement with a FOR UPDATE clause,
Omnis locks the row for update. One of three things can then happen:

� You update the record with an UPDATE ... WHERE CURRENT OF cursor_name (see
below), which on completion unlocks the row

� You fetch another row, which releases the lock on the previous row and locks the
current one

� You terminate the transaction, which releases all locks

Omnis SQL

10

The order_by clause is separated out in ANSI SQL so that there is only one ordering for a
query. Since Omnis SQL does not have any set operators, such as UNION, there is no need
to separate out the ordering clause.
The ANSI 1989 standard has no for_update clause. This comes from embedded SQL, the
syntax there is FOR UPDATE OF column_name_list.

Value Expression
value_expression ::=

 term
| value_expression { + | - } term

term ::=
factor
| term { * | / } factor

factor ::=
[{ + | - }] primary

primary ::=
 literal
| column_reference
| function_reference
| (value_expression)

A value expression is a key element of SQL that lets you calculate a value using an
arithmetic expression language. You build an expression out of literal numbers and strings,
references to columns, or parenthesized, nested expressions. You can combine expressions
with any of the four arithmetic operators. The grammar above expresses the precedence
relationships between the operators: unary + and - take precedence over * and /, all of
which take precedence over binary + and -.

Column and Table References
column_reference ::=

 [table .] column_name

 | [alias .] column_name

The column name corresponds to a field in a file class.
table ::=

[library_name .] table_name

The table name corresponds to a file class or to a table alias in the same SELECT statement,
and the library name corresponds to a library. The table must belong to the library.

Omnis SQL does not support the ANSI standard syntax alias.*, meaning all the columns
from the table to which the alias refers. Also, if you use something other than a library
name, or a name that Omnis cannot recognize as a library name, you will get a syntax error.

 Omnis SQL

 11

Function Reference
function_reference ::=

 scalar_function
| aggregate_function

A function reference is either a scalar function or an aggregate function. Scalar functions
operate on each row of data in the select; aggregate functions operate on groups of rows.

The ANSI SQL standard has no scalar functions.
scalar_function ::=

scalar_function_name (value_expression_comma_list)

There are a number of scalar functions, summarized below.

Function Purpose Parameters

ABS absolute value of a number number
ACOS angle in radians, the cosine of which is a

specified number
number

ASCII ASCII character corresponding to an integer
between 0 and 255, inclusive

integer

ASIN angle in radians whose sine is the specified
number

number

ATAN the angle in radians whose tangent is the
specified number

number

ATAN2 the angle in radians whose tangent is one
number divided by another number

number 1, number 2

CHARINDEX the starting character position of one string in
a second string

index string, source
string

CHR ASCII character corresponding to an integer
between 0 and 255, inclusive

integer

COS cosine of a number number
TODATE converts a date string or number to a date

value using a format string
date string/number,
format string

DIM increments a date string by some number of
months

date string, months

DTCY a string containing the year and century of a
date string

date string

DTD a string containing the day part of a date string
or a number representing the day of the
month, depending on context

date string

DTM a string containing the month part of a date date string

Omnis SQL

12

Function Purpose Parameters

string or a number representing the month of
the year, depending on context

DTW a string containing the day of the week part of
a date string or a number representing the day
of the week, depending on context

date string

DTY a string containing the year part of a date
string or a number representing the year,
depending on context

date string

EXP exponential value of a number number
INITCAP transforms string by capitalizing the initial

letter of each word in the string and lower-
casing every other letter

string

LENGTH number of characters in a string string
LOG natural logarithm of a number number
LOG10 base 10 logarithm of number number
LOWER transforms string by lower-casing all letters string
MOD modulus of a number given another number number, modulo

number
POWER the value of a number raised to the power of

another number
number, power

ROUND rounds a number to an integer number of
significant digits

number, significant
digits

SIN sine of a number number
SQRT square root of a number number
STRING concatenates some number of strings into a

string
string[, string, ...]

SUBSTRING extracts part of a string starting at a given
index and moving a certain number of
characters

string, start index,
length

TAN tangent of a number number
UPPER transforms a string by upper-casing all letters string

aggregate function ::=

 COUNT(*)
| aggregate function name (DISTINCT column reference)
| aggregate function name ([ALL] value expression

aggregate_function_name ::=
AVG | MAX | MIN | SUM | COUNT

 Omnis SQL

 13

There are some departures from the ANSI standard for DISTINCT aggregates: you can use
only one such function in a given SQL statement, and you cannot use aggregate functions in
expressions in a GROUP BY clause or WHERE clause.

FROM Clause
from_clause ::=

 FROM table_reference_comma_list

table_reference ::=
table_name [AS] [alias]

The FROM clause lets you specify the table to input into the SQL statement. Multiple tables
in the list indicate a join, and the WHERE clause specifies the join condition. Each table
reference can have an optional alias that lets you refer to the table in other parts of the SQL
statement by the alias. You can use this to abbreviate references to the table in the other
clauses.

The ANSI standard does not have the optional AS keyword.

WHERE Clause
where_clause ::=

WHERE search_condition

search_condition ::=
boolean_term | search_condition OR boolean_term

boolean_term ::=
boolean_factor | boolean_term AND boolean_factor

boolean_factor ::=
[NOT] boolean_primary

boolean_primary ::=
predicate | (search_condition)

The WHERE clause lets you select a subset of the input rows using a logical predicate. The
above grammar defines the precedence of the logical operators AND, OR, and NOT.
predicate ::=

 comparison_predicate
| between_predicate
| in_predicate
| like_predicate
| relation_predicate
| null_predicate

The ANSI standard has, in addition to the above predicates, the quantified and exists
predicates (nested selects), which Omnis does not support. The relation_predicate is an
Omnis extension to the standard that lets you use Omnis connections; see below.
comparison_predicate ::=

value_expression comparison_operator value_expression

comparison_operator ::=
< | > | = | <> | != | >= | <= | *= | =*

Omnis SQL

14

The standard comparison predicate involves one of the relational operators (greater than,
less than, and so on).

ANSI SQL also allows you to use a nested select statement in place of the right-hand
value_expression; Omnis SQL does not support that. Omnis adds the !=, *=, and =*
operators (not equal, left outer join, and right outer join, respectively) to the ANSI standard
operators.

An outer join is a join that includes all the rows in the tables regardless of the matching of
the rows. The *= operator includes all rows from the table on the left that satisfy the rest of
the WHERE clause. The =* operator includes all rows from the table on the right that
satisfy the WHERE clause. Rows from the other table (right and left, respectively,
contribute values if there is a match and NULLs if not. This syntax is similar to the
SYBASE outer join syntax.
between_predicate ::=

value_expression [NOT] BETWEEN value_expression AND
value_expression

in_predicate ::=
value_expression [NOT] IN (literal_comma_list)

The ANSI standard lets you use a subquery (a nested select) as well as a literal list; Omnis
does not.
like_predicate ::=

column_reference [NOT] LIKE literal

The ANSI standard adds an ESCAPE clause to the like_predicate to let you specify an
escape character so you can match a % or _; Omnis does not implement this.
null_predicate ::=

column_reference IS [NOT] NULL

relation_predicate ::=
{ CHILD | PARENT } OF table

The relation_predicate lets you test the current row as being either a child or a parent of
rows in the specified table. . See the Omnis Data Files chapter for information on parent-
child connection relationships

GROUP BY Clause
group_by_clause ::=

GROUP BY column_reference_comma_list [HAVING search_condition]

The group_by_clause lets you group the input rows into groups according to a set of
columns. The HAVING clause lets you select the groups, as opposed to the WHERE clause,
which selects the rows going into the groups.

ANSI SQL has no ordering dependency between GROUP BY and HAVING, and you can
have a HAVING clause without an accompanying GROUP BY. Omnis does not allow this.

Omnis SQL does not support the use of functions in a GROUP BY clause.

 Omnis SQL

 15

ORDER BY Clause
order_by_clause ::=

ORDER BY order_column_comma_list

order_column ::=
column_reference [ASC | DESC]

The order_by_clause lets you sort the output rows of the SQL statement using columns from
the input tables.

The ANSI standard lets you sort by value_expressions in the select list by specifying the
number of the expression; Omnis does not.

INSERT
insert statement ::=

INSERT INTO table [(column_reference_comma_list)]
{ VALUES (insert_value_comma_list) | select_statement }

The INSERT statement inserts rows into an Omnis table. The first list of columns names the
columns you are creating; this exists to let you reorder the list to match your list of values or
select statement.

There are two alternative ways to supply values to the INSERT statement. You can supply
actual values through a VALUES clause that contains a list of values, or you can give a
SELECT statement that creates a table of data matching the insert list. See the SELECT
statement section above for details on SELECT.
insert_value ::=

literal | NULL

An insert value is a literal value or the NULL value specified by the string �NULL�.

UPDATE
update_statement_searched ::=

UPDATE table SET assignment_comma_list [where_clause]

assignment ::=
column_reference = { value_expression | NULL }

The searched update statement updates all rows that satisfy the predicate in the WHERE
clause by assigning the indicated value or NULL to the column.

Omnis SQL will let you preface the column name in the assignment with the library and
table names, which extends the ANSI standard. There is no need to specify the additional
names, but you can do so for clarity if you wish. Specifying a table other than the table in
the UPDATE table clause, generates an error.
update_statement_positioned ::=

UPDATE table SET assignment_comma_list
WHERE CURRENT OF cursor

The positioned update statement updates the current row, the row to which the current
cursor points. See the description of the Declare cursor command in the Omnis Help. The

Omnis SQL

16

WHERE CURRENT OF cursor clause works with the SELECT ... FOR UPDATE
statement to update rows locked for update.

DELETE
delete_statement_searched ::=

DELETE FROM table [where_clause]

The DELETE statement deletes rows from the Omnis database based on the predicate in the
WHERE clause. Omnis deletes all rows that satisfy the predicate.

	Omnis SQL
	Connecting to the Database
	Sending SQL to the Database
	Perform SQL
	SQL Scripts and the SQL Buffer
	Error Handling
	The Name Functions
	Data Mapping

	Omnis SQL Language Definition
	SQL Statement
	CREATE TABLE
	ALTER TABLE
	DROP TABLE
	CREATE INDEX
	DROP INDEX
	SELECT
	Value Expression
	Column and Table References
	Function Reference
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	ORDER BY Clause
	INSERT
	UPDATE
	DELETE

