
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Whatôs New in  
Omnis Studio 10.2 
 

Rev 30204 
 

 

 

 

 

 

 

 

 

 

 

Omnis Software 
April 2021 

53-042021-01 



 

The software this document describes is furnished under a license agreement. The software may be used or copied 
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials 
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a 
retrieval system or translated into any language in any form by any means without the written permission of Omnis 
Software.  

© Omnis Software, and its licensors 2021. All rights reserved.  
Portions © Copyright Microsoft Corporation.  
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto. 

© 1999-2021 The Apache Software Foundation. All rights reserved.  
This product includes software developed by the Apache Software Foundation (http://www.apache.org/). 
Specifically, this product uses Json-smart published under Apache License 2.0 
(http://www.apache.org/licenses/LICENSE-2.0) 

© 2001-2021 Python Software Foundation; All Rights Reserved.  

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT 
license.  

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.  

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered 
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.  

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark 
of Apple, Inc.  

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation. 

ICU is Copyright © 1995-2021 International Business Machines Corporation and others. 

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd. 

Portions Copyright (c) 1996-2021, The PostgreSQL Global Development Group 
Portions Copyright (c) 1994, The Regents of the University of California 

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates 

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc. 

Acrobat is a registered trademark of Adobe Systems, Inc. 

CodeWarrior is a trademark of Metrowerks, Inc.  

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com). 

This software is based in part on the work of the Independent JPEG Group. 
This software is based in part of the work of the FreeType Team. 

Other products mentioned are trademarks or registered trademarks of their corporations.  

 

http://kishikawakatsumi.com/


  Table of Contents 

  3 

Table of Contents 
ABOUT THIS MANUAL ....................................................................... 6 

SOFTWARE SUPPORT, COMPATIBILITY AND CONVERSION ISSUES ........... 7 

WHATôS NEW IN OMNIS STUDIO 10.2 REV 30204 ....................... 12 

LIST PROGRAMMING ............................................................................. 12 
WINDOW PROGRAMMING ...................................................................... 12 
OMNIS DATA BRIDGE............................................................................ 12 
ORACLE DAM ...................................................................................... 13 

WHATôS NEW IN OMNIS STUDIO 10.2 REV 29818 ....................... 14 

JAVASCRIPT COMPONENTS .................................................................. 14 
JAVASCRIPT REMOTE FORMS .............................................................. 14 
OMNIS ENVIRONMENT .......................................................................... 14 
LIBRARIES ............................................................................................ 15 
WINDOW COMPONENTS ....................................................................... 15 

WHATôS NEW IN OMNIS STUDIO 10.2 REV 29538 ....................... 16 

JAVASCRIPT COMPONENTS .................................................................. 16 
JAVASCRIPT REMOTE FORMS .............................................................. 17 
OMNIS ENVIRONMENT .......................................................................... 17 
WINDOW PROGRAMMING ...................................................................... 18 
WINDOW COMPONENTS ....................................................................... 18 
REPORT PROGRAMMING ...................................................................... 19 
DEPLOYMENT TOOL ............................................................................. 19 
OMNIS GRAPHS .................................................................................... 19 
EXTERNAL COMPONENTS ..................................................................... 20 

WHATôS NEW IN OMNIS STUDIO 10.2 REV 28632 ....................... 21 

JAVASCRIPT REMOTE FORMS .............................................................. 21 
JAVASCRIPT COMPONENTS .................................................................. 21 
CODE EDITOR ...................................................................................... 22 
LIBRARIES ............................................................................................ 23 
OMNIS ENVIRONMENT .......................................................................... 23 
WINDOW COMPONENTS ....................................................................... 23 
FUNCTIONS .......................................................................................... 23 

WHATôS NEW IN OMNIS STUDIO 10.2 ........................................... 25 

JAVASCRIPT COMPONENTS .................................................................. 27 
JAVASCRIPT FORMS ............................................................................. 48 
METHOD EDITOR .................................................................................. 51 
MULTIPROCESS SERVER ...................................................................... 59 
WINDOW COMPONENTS ....................................................................... 66 
WINDOW PROGRAMMING ...................................................................... 79 
OMNIS LIBRARIES ................................................................................. 84 
OMNIS ENVIRONMENT .......................................................................... 85 
LOCALIZATION ...................................................................................... 88 
REPORT PROGRAMMING ...................................................................... 89 
OW3 WORKER OBJECTS ..................................................................... 89 
WEB SERVICES .................................................................................... 97 
OBJECT ORIENTED PROGRAMMING ...................................................... 98 
JSON COMPONENTS ........................................................................... 98 
COMMANDS .......................................................................................... 98 



Table of Contents 

4   

FUNCTIONS .......................................................................................... 99 
OJSON ............................................................................................. 101 
JAVASCRIPT API ................................................................................ 101 
IMPORT/EXPORT ................................................................................ 102 
OMNIS VCS ....................................................................................... 102 
DEPLOYMENT ..................................................................................... 102 
OMNIS DATAFILE MIGRATION .............................................................. 103 
EXTERNAL COMPONENTS ................................................................... 103 

WHATôS NEW IN OMNIS STUDIO 10.1 ......................................... 104 

CODE EDITOR .................................................................................... 106 
SQL WORKER LISTS .......................................................................... 115 
JAVASCRIPT REMOTE FORMS ............................................................ 118 
JAVASCRIPT COMPONENTS ................................................................ 121 
COMMANDS ........................................................................................ 128 
WINDOW CLASSES & COMPONENTS ................................................... 128 
FUNCTIONS ........................................................................................ 133 
OMNIS ENVIRONMENT ........................................................................ 134 
LIBRARIES AND CLASSES .................................................................... 136 
JAVASCRIPT WORKER ........................................................................ 137 
REMOTE DEBUGGER .......................................................................... 137 
OMNIS DATAFILE MIGRATION .............................................................. 137 
LIST PROGRAMMING ........................................................................... 138 
OBJECT CLASSES .............................................................................. 138 
FILE CLASSES .................................................................................... 138 
WEB SERVICES .................................................................................. 138 
REPORT PROGRAMMING .................................................................... 139 
LOCALIZATION .................................................................................... 140 
JSON CONTROL EDITOR .................................................................... 141 
OJSON ............................................................................................. 141 
OW3 WORKER OBJECTS ................................................................... 141 
DEPLOYMENT ..................................................................................... 142 
OMNIS VCS ....................................................................................... 142 
EXTERNAL COMPONENTS ................................................................... 143 

WHATôS NEW IN OMNIS STUDIO 10.0 ......................................... 144 

METHOD EDITOR ................................................................................ 145 
ACCESSIBILITY ................................................................................... 169 
JAVASCRIPT REMOTE FORMS ............................................................ 172 
JAVASCRIPT COMPONENTS ................................................................ 176 
REMOTE DEBUGGER .......................................................................... 194 
REMOTE OBJECTS ............................................................................. 202 
WEB AND EMAIL WORKER OBJECTS ................................................... 204 
JSON COMPONENTS ......................................................................... 212 
REPORT PROGRAMMING .................................................................... 213 
LIBRARIES .......................................................................................... 213 
COLOR THEMES AND APPEARANCE .................................................... 214 
STUDIO BROWSER ............................................................................. 214 
FIND AND REPLACE ............................................................................ 215 
LOCALIZATION .................................................................................... 215 
DEPLOYING YOUR WEB & MOBILE APPS ............................................. 218 
SQL PROGRAMMING .......................................................................... 219 
OMNIS PROGRAMMING ....................................................................... 219 
WEB SERVICES .................................................................................. 220 
WINDOW CLASSES & COMPONENTS ................................................... 220 
ENCRYPTION ...................................................................................... 224 



  Table of Contents 

  5 

REPORT PROGRAMMING .................................................................... 224 
FILEOPS ............................................................................................ 225 
OMNIS VCS ....................................................................................... 225 
OMNIS IDE ......................................................................................... 226 
COMMANDS ........................................................................................ 226 
FUNCTIONS ........................................................................................ 226 
NOTATION .......................................................................................... 227 

APPENDIX A .................................................................................... 228 

OBSOLETE COMMANDS ...................................................................... 228 

 



About This Manual 

6   

About This Manual 
This document describes the new features and enhancements in Omnis Studio 10.2 
Revision 30204 (as well as revisions 29818, 29538 and 28632), as well as Omnis 
Studio 10.1 and 10.0.  

Please see the Readme.txt file for details of bug fixes and any release notes for 
Omnis Studio 10.2 Rev 30204.  

 



 Software Support, Compatibility and Conversion Issues 

  7 

Software Support, Compatibility and 
Conversion Issues 

The following section contains issues regarding software support, compatibility and 
conversion in the Omnis Studio 10.2 Rev 30204 patch release and other Omnis Studio 
10.2 releases.  

Serial Numbers and Licensing 
You will require a new serial number to run Omnis Studio 10.2. Contact your local sales 
office to buy a license or obtain an upgrade serial number under your current support 

program, or go to our website: www.omnis.net  

Library and Datafile Conversion 
IMPORTANT: IN ALL CASES, YOU SHOULD MAKE A SECURE BACKUP OF 
ALL OMNIS LIBRARIES AND OMNIS DATAFILES BEFORE OPENING THEM 
IN OMNIS STUDIO 10.2.  
  

Converting 10.0.0 Libraries 

 
******** IMPORTANT NOTE: ********   

ONCE A STUDIO 10.0.x LIBRARY HAS BEEN OPENED WITH OMNIS 
STUDIO 10.1 or 10.2 IT CANNOT BE OPENED WITH STUDIO 10.0.x.  
  

Converting 8.x or earlier Libraries 

Omnis Studio 10.2 will convert existing version 8.1.x, 8.0.x, 6.1.x, 6.0.x and 5.x libraries 
ï THE CONVERSION PROCESS IS IRREVERSIBLE.  
  

Disclaimer: Omnis Software Ltd. disclaims any responsibility for, or liability related to, 

Software obtained through any channel. IN NO EVENT WILL OMNIS SOFTWARE BE 

LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR 

CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF WE 

HAVE BEEN PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.  

Omnis Studio on macOS Big Sur 
Window Refresh on macOS 

The preventUpdateWithNoRefreshOn config.json item was introduced in Studio 10.1 
Rev 29237 to handle window refresh on Big Sur, but this item has been added to and 
modified for Studio 10.2. In Studio 10.1 Rev 29237 this property was only applicable 
when running on Big Sur but now applies to all versions of macOS, i.e. from 10.14 

through to 11.x.  

When preventUpdateWithNoRefreshOn is set to true and a window has set $norefresh 
to kTrue then this will prevent changes to the window hierarchy, e.g. adding fields, from 
causing a redraw to screen. The window changes will then be applied when $norefresh 

is set to kFalse.  

This is a hidden property that needs to be explicitly added to the config file. It is set to 
false by default.  

http://www.omnis.net/


About This Manual 

8   

Big Sur Support 

Omnis Studio 10.2 is fully supported on macOS 11 Big Sur from Omnis Studio 10.2 
Rev 28632 patch release (and above) is certified for use on the release version of Big 
Sur.  

Studio 10.2 

We released Omnis Studio 10.2 November 10, 2020, just before the official release of 
Big Sur. It is possible that there will be compatibility issues, including some drawing 
anomalies, when running the release version of Omnis Studio 10.2 on Big Sur. Drawing 
support has been changing with each beta release of Big Sur that Omnis engineering 
has been working with, but we have addressed issues now that Big Sur is released, 

and the fixes were in the Studio 10.2 Rev 28632 patch release.  

Studio 10.1 

Omnis Studio 10.1 will operate on Big Sur, but it will not be a certified or supported 
configuration. We therefore recommend that you upgrade to Omnis Studio 10.2 as 

soon as possible.  

Studio 8.1 

Big Sur is a large step forward in architecture and developers should note that older 
applications such as Studio 8.1 cannot simply be adjusted for immediate use on this 

new version of macOS.  

We therefore recommend upgrading to Omnis Studio 10.2 if you believe there is a 
business need or individual use case for you or your end users to use macOS Big Sur.  

Default Printer (Windows) 
The way the default printer on Windows is returned changed in the initial release of 
Omnis Studio 10.2 and this has caused a few issues with some converted applications. 
A workaround is to revert to the previous behavior by setting the new entry 
"useLegacyDefaultPrinter" to true in the "windows" section of config.json.  

Rebuilding External Components 
All external components will need to be rebuilt to run with Omnis Studio 10.2 or above 

using the source files from in the Ext Comp SDK accompanying this version.  

macOS External Components 

For Omnis Studio 10.2 or above we now use a newer version of Appleôs SDK to build 
Omnis and our external component library and this requires a newer version of the 
SDK and Xcode when building components for 10.2.  

To be compatible with the Studio 10.2 SDK and later your component needs to use at a 
minimum the macOS 10.14 SDK with a minimum deployment target of 10.11. This 
requires a minimum of Xcode 10.2 on macOS 10.14.4.  

The C++ Language Dialect must be set to support C++11 as a minimum, and the C++ 

Standard Library set to libc++ with C++11 support accordingly.  

Context Menus & $active 
Context menus in JavaScript Remote forms previously only opened if $enabled for the 
control was kTrue. In Studio 10.x, they are now opened if the $active property of the 
control is true: $active is a new property added to all JavaScript components. This may 
have changed the behavior of your context menus on certain controls, so you are 
advised to examine any event handling code in your application that opens context 
menus. See the section in this manual about the new $active property for more 
information.  



 Software Support, Compatibility and Conversion Issues 

  9 

Drag and Drop 
Support for dragging and dropping operating system files and file data (in the thick 
client) has been combined and simplified providing more control in your event handling 
code. As a consequence there may be some compatibility issues, but these are 
outlined later in this document.  

IE 11 Support 
Omnis Studio 10.2 or above does not support IE 11 (or earlier) for the JavaScript 

Client. Microsoft will end support for the desktop version of IE 11 in November 2020.  

Open SSL 
Omnis Studio 10.2 supports OpenSSL 1.1.1 so you should update your copy. 
OpenSSL is used to provide SSL in the OW3 Workers.  

Exporting Double Quotes 
Double quotes are now exported as a pair of double quotes when enclosing exported 
text in quotes (see RFC 4180 point 7), which has an impact on the command Enclose 
exported text in quotes (Enable). If double-quotes are used to enclose fields, then a 
double-quote appearing inside a field must be escaped by preceding it with another 
double quote. For example: "aaa","b""bb","ccc".  

Method Editor: Code Conversion 
IMPORTANT NOTE FOR PRE-STUDIO 10.x USERS: There has been a major rewrite 
of the code editing part of the Method Editor (in Studio 10.0), which means you can 
now enter Omnis commands and code using freetype. Due to these major 
enhancements, there has been several enhancements or changes in the Omnis 
programming language and command syntax. Therefore, when you convert an Omnis 
library to Studio 10.x or above (e.g. from Studio 8.x or earlier), your Omnis code will be 
converted to the new syntax as part of the library conversion process.  

Once you convert your library and start using the new free-type Code Editor in Studio 
10.x or above, you cannot revert back to the old editor in Studio 10.x (or above): 
that is, the old interface for modifying methods, using point-and-click, has been 
removed from Studio 10.x.  

See óLibrary Conversionô under the Code Editor section (under Studio 10.0 in this 
guide) for more information about the changes made to the Omnis code syntax during 
library conversion.  

Java Legacy Integration 
Oracle has changed the way it licenses Java. Therefore, in order for you to avoid the 
ongoing use of Java in connection with Omnis Studio 10.1, or above, we no longer 
provide support for various Java files in the Omnis Studio 10.x tree and consequently 
we have removed various Omnis libraries or features that rely on Java. Any Java-
dependent features will no longer appear in Omnis Studio 10.x and will only be shown 
or supported when the relevant files are reinstated back into the Omnis tree. By doing 
this now, we have allowed you to utilise Java supported features in Omnis Studio by 
choice only. We urge you to check the Oracle website for details about how Java is 
licensed and the changes to licensing they have made.  

Some of those Java-dependent libraries or features in Omnis Studio that have been 
removed have been superceded by newer technologies and we encourage you to 
switch to those for future development. For example, support for the old OWEB Worker 
Object external commands has been removed and we have replaced all the commands 
with a new set of commands in the OW3 Worker Object command set (e.g. the POP3 
and FTP commands), as well as adding new support for Cryptography, Hashing, and 

JavaScript (node.js) worker objects.  



About This Manual 

10   

The following Java-related files and features have been removed or support for them 

has changed:  

Ç Java folder 
The java folder and its contents has been removed from the Omnis Studio 
development, server and runtime trees; you will need to install Java for any Java-

dependent features to work in Omnis Studio  

Ç JDBC DAM 
The JDBC DAM (damjdbc) has been removed from Omnis Studio (xcomps) and will 
no longer appear in the SQL Browser.  

Ç Java Objects 
The javaobjs and javacore libraries have been removed; the Reset Java Class 
Cache hyperlink in the Studio Browser is therefore not shown, and will only appear 
if the JavaObjs Library is put back in the Omnis tree and loaded  

Ç Web Services 
The old SOAP based Web Services library (wsc.lbs in the startup folder) has been 
removed, and it will no longer appear in the Studio Browser: you should use the 
new REST based Web Services that do not depend on Java; it is also possible to 

use SOAP using node.js via the new JavaScript Worker Object  

Ç Web Worker Objects ï Web & Email communications 
The old OWEB Worker Objects external (oweb in the xcomp) and their associated 
commands (FTP, SMTP, etc) have been removed and will no longer appear in the 
IDE (e.g. Code Assistant): you should use the new OW3 based Worker Objects that 
do not depend on Java. In addition, the OWEB external contained a number of 
static methods that have been moved to OW3: see below.  

Ç Java Options 
The $usejavaoptions and $javaoptions properties no longer appear in the Property 
Manager and Code Assistant, and will only appear if the JavaObjs Library is put 
back in the Omnis tree and loaded.  

If you wish to continue to use any of the Java-dependent files in Omnis Studio you 
need to install Java and place any Java-dependent files we used to provide back into 
the Omnis tree. Please contact Technical Support to obtain the Java files, or look on 
our developer website under General Information.  

OWEB Static Methods 

A number of static methods (functions) in the OWEB external have been moved to the 
OW3 external command package. You are urged to change your code to use the new 
methods. You should change your code to use OW3.$methodname() rather than 
OWEB.$methodname().  

The OWEB methods affected are:  

   
$makeuri() $makeuuid() $unescapeuritext() 

$escapeuritext() $gethardwareid()  

Sybase DAM 
The Sybase DAM in Studio 10.x has been modified to work with the FreeTDS ï libct 
client library in place of Sybase Open Client. By exploiting the common heritage 
between technologies, the libct library allows native connection to Microsoft SQL 
Server databases as well as Sybase ASE and ASA databases. 

We have provided a technote (TNSQ0036) which explains how to use the libct client 
library. This page also provides downloads of pre-compiled libct libraries for Windows, 

macOS and Linux. 

https://www.omnis.net/developers/resources/documentation/generalinfo.jsp


 Software Support, Compatibility and Conversion Issues 

  11 

Omnis 7 Events 
The $v3events library preference was removed from Omnis Studio 10.0, but has been 
reinstated in this version 10.1 for backwards compatibility; note however, the 
preference is now only visible in the Property Manager via the library preferences in the 
Notation Inspector. The $v3events library preference is supported in the VCS for 
converted Omnis 7 libraries.  

First Run Receipts on macOS 
By default, if a new version of Omnis is installed it will use any existing user data which 
already exists that matches the Omnis package name.  

To preserve pre-existing user data and allow a new installation of Omnis with a new set 
of user data, a deployment can use the receipt mechanism.  

This is enabled by setting resource 25598 to "1" in the Localizable.strings file for the 
language used, e.g.  
"CORE_RES_25598" = "1 " ;  

If receipts are enabled then when Omnis is first run it will add a unique timestamp to 
the end of the user data folder name, e.g.  
~/Lib ra r y/Ap pl i cation  Support /O mnis / Omnis St udio 10 x64_ 201810 05085835  

and place an associated receipt into a folder with the same name as the Omnis 
package.  
~/L ibr ary /Appli cat i on Support/ Omni s/ Recei pt/O mni s St udio  10.0 x6 4 

This then ties the timestamped user data with that installation of Omnis.  

To provide a clean install of Omnis, the receipt folder needs to be removed, e.g. this 

could be done via a script as part of any deployment installation process.  

This will then generate a new set of time-stamped user data while preserving the old 
set.  

Note: The resource in Localizable.strings should not be edited in an already signed 
package as this will break the code-signature. A package should be re-signed after the 
change is made.  

  



Whatôs New in Omnis Studio 10.2 Rev 30204 

12   

Whatôs New in 
Omnis Studio 10.2 Rev 30204 

The following enhancements have been added to Omnis Studio 10.2 Rev 30204. 
Please see the Readme.txt file accompanying the release for details of bug fixes in 
Studio 10.2 Rev 30204.  

List Programming 
List Column Calculations 
A new library preference $clib.$prefs.$validcolumninbadrowisnull has been added. If 
true, non-existent list columns in calculations evaluate to #NULL rather than an empty 
character string. This allows for expressions like myList.col or myList.10.col where the 
list line does not exist, perhaps because the list is empty.  

  

Window Programming 
Folders in Operating System Drag and Drop 
Due to issues dropping folders when dragging items from Omnis onto the operating 

system, folders are now included in the list of dropped objects, with a size of zero.  

Using Non-TrueType fonts for Background Objects 
A new config.json item has been added to allow you to use non-TrueType fonts for 
window background objects.  

The config.json item 'backgroundObjectsMustUseTrueTypeFont' has been added to 
the 'windows' section of config.json. If true (the default) TrueType fonts must be used. 
When false, you can use non-TrueType fonts for background objects, but note that in 
some situations, e.g. in drag bitmaps, the text may not draw.  

  

Omnis Data Bridge 
ODB Encryption 
The $odbencrypt session property has been added. If kTrue (the default) ODBC Data 
Bridge connections use end-to-end encryption. Improved network performance can be 
achieved by disabling encryption. The ODBC Data Bridge uses the value that is in 
effect when $logon() is called, i.e. if kTrue when $logon() is called, fetch results will still 
be encrypted for the duration of the connection even if $odbencrypt is subsequently 
cleared.  

Note that you do not need to update the ODBC Data Bridge to use this feature, since it 
automatically recognizes encrypted and non-encrypted data, and responds in kind.  

  



  Oracle DAM 

  13 

Oracle DAM 
RPC Methods 

The $rpcprocedures(), $rpcparameters(), $rpcdefine() and $rpc() methods have been 

added to the Oracle DAM.  

$rpc() executes a PL/SQL beginé end statement block that calls the stored procedure 
or function. Operation is as described in the SQL Programming chapter with one 
exception. When bindng single-column SELECT tables, it is necessary to pass the 
required list column numbers along with the parameter definitions. To do this, Omnis 
makes use of column 5 of the list returned by $rpcparameters(). For example:  
Do cStat.$ rpcparam eters('credit') Returns #F  

Do pro cList.$define()  

Do cStat.$fetch(procList,kFetchAll)      ## returns 4 rows  

Do procList.3.5.$assign(1)    ## Assign the list column number to 1  

Do procList.4.5.$assign(2)    ## Assign the list column number to 2  

Do cSes s.$rpcde fine('credit',procList) Returns # F 

Do lCreditList.$define(lName,lBalance)  

Do cStat.$rpc('credit',1,10,lCreditList,lCreditList) Returns #F   

The additional values assigned to procList correspond to the column numbers that 
would otherwise be passed via the $plsql() method.  

You can also call a stored function using the $rpc() method and the return value will be 

written to the statement objectôs $rpcreturnvalue property. For example:  
Begin statement  

Sta: CREATE OR REPLACE FUNCTIO N test_function  

Sta: RETURN VA RCHAR2 IS 

Sta: BEGIN  

Sta: RETURN 'This is being returned from a function';  

Sta: END test_function;  

End statement  

Do cStat.$execdirect() Returns #F  

Do cStat.$rpcparameters('test_function') Returns #F  

Do procList.$define()  

Do cS tat.$fetch(procList,kFetchAll)  

Do cSess .$rpcdefine('test_functi on',procList) Returns #F  

Do cStat.$rpc('test_function') Returns #F    ## now check the value of 

$rpcreturnvalue  

$rpc() is limited to calling a single stored procedure or function. To execute more 
complex PL/SQL constructs, you can continue to use the $plsql() method.  

  



Whatôs New in Omnis Studio 10.2 Rev 29818 

14   

Whatôs New in 
Omnis Studio 10.2 Rev 29818 

The following enhancements have been added to Omnis Studio 10.2 Rev 29818. 
Please see the Readme.txt file accompanying the release for details of bug fixes in 
Studio 10.2 Rev 29818.  

 

JavaScript Components 
Virtual Keyboard & $negallowed 
The $inputtype for JS Edit fields is no longer set to 'numberô if $negallowed is true, as 
these don't guarantee the presence of a minus key. This may mean that some 
situations which previously showed a numeric keyboard no longer will. You should note 
that a touch device's virtual keyboard is more likely to use a numeric keyboard if 
$negallowed is false.  

 

JavaScript Remote Forms 
$construct Row 
A 'clientPlatform' column has been added to the $construct Row parameter for remote 
forms. This denotes the platform on which the client is running, and returns one of the 
following strings: 'Windows', 'macOS', 'Linux', 'iOS', 'Android' or 'Unknown'.  

 

Omnis Environment 
Code Assistant 
There is a new Boolean item listShowsNamesFirst in the 'codeAssistant' section of 
config.json, to show method names before attributes in Code Assistant lists (it defaults 
to true). When true, names occur in the Code Assistant list before attributes etc that 
start with $. When false, the list order is the same as in previous versions, where $ 
entries typically occur before names.  

Method Editor 
There is a new item "methodeditorfadealpha" (value 0-255) in the "IDEmethodEditor" 
section of appearance.json to allow you to set the fade level of the method editor when 

editing a variable value in the debugger variable panel.  

DB view in Query Builder 
An option has been added to the 'Other' menu in the Query Builder to create a DB 
view.  

Class Comparison Tool 
You can now filter the list of classes in the Class Comparison tool on keypress for 
revisions.  



  Libraries 

  15 

Hub Samples 
There is a new sample app showing the use of $userworker in SQL Worker Lists in the 

Samples section of the Hub in the Studio Browser.  

 

Libraries 
JSON Export 
The reporting of conflicts in JSON Export has been improved. Note that the conflict 
detection process uses the modify date of each file in the JSON tree for the class, so if 
a date has changed a conflict will still be reported even if the file contents have not 
changed. Note also that this means conflicts will be reported (if overwrite conflicts is 
off) when you first export a library with this updated version of the JSON export.  

 

Window Components 
Entry Fields 
A new property $showellipsis has been added to the fat client Single Line Entry Field 
(only applies when field is read-only, i.e. the data is not being edited). If true, an ellipsis 
is shown at the end of truncated text in the field if the text is too long to be displayed 
(this only applies when the control is read-only, $horzscroll and $righttoleft are both 

kFalse, $align is kLeftJst and $passwordchar is not set).  

Note that the edit field always includes at least the first character of the text, so very 
narrow edit fields will sometimes show truncated text, but in most cases this will not be 
apparent.  

 



Whatôs New in Omnis Studio 10.2 Rev 29538 

16   

Whatôs New in 
Omnis Studio 10.2 Rev 29538 

The following enhancements have been added to Omnis Studio 10.2 Rev 29538. 
Please see the Readme.txt file accompanying the release for details of bug fixes in 
Studio 10.2 Rev 29538.  

 

JavaScript Components 

Position Assistance 

When positioning objects in the center of a remote form the Position Assistance feature 
now uses the center of the current layout breakpoint, not the center of the remote form 
design window, as in previous versions.  

Hot Control Properties 

Several JS controls will now use their ñhotò colors when they have the focus, and not 
just when the pointer is over them, as in previous versions. This enhancement applies 
to the ñhotò properties for the following controls: Nav menu, Split button, Hyperlink, 
Nav bar, Tab bar, and Trans button.  

Border Radius 

The $borderradius property has been added to the Date Picker and Popup Menu 
controls allowing you to apply a border radius to these controls.  

Paged Pane 

The $fieldstyle property has been added to the Paged Pane control for the JS Client 
allowing you to apply a style to the control.  

Data Grid 
Assigning Colors 

Using kEscColor with the style() function to change the color of items in a Data grid 
has been improved.   

The parameters for style() can now be any HTML color string, such as "#FF0000". For 
client methods that execute on the client, the color parameter must be a literal string 
and therefore enclosed in double quotes. For example, style(kEscColor,"#FF0000"), or 
style(kEscColor,"rgba(0,0,255,0.5)").  

Omnis does not validate the HTML color syntax, so you should check the syntax is 
correct to avoid runtime errors.  

Frozen Columns 

The $frozencolumns property in Data Grids can now be assigned at runtime.  

 



  JavaScript Remote Forms 

  17 

JavaScript Remote Forms 
Timeouts in Remote Tasks 
The $ondisconnected remote task method is now shown in the built-in methods list in 

the method editor and Interface Manager.  

 

Omnis Environment 

Find and Replace 
When using Find and Replace, the found or replacement text is now highlighted in the 
Find and Replace log. The Highlight Matches option in the context menu for the log 

allows you to toggle the find or replace text highlighting (the default is on).  

The color used for highlighting the found or replacement text is the method line 
highlight color, that is, the highlight color used when the Code Editor field does not 
have the focus. If the text occurs more than once, up to the first 16 occurrences in the 

log are highlighted.  

Catalog 

You can now drag variables and other items from the Catalog (F9/Cmnd-9) to the 
Initial value and the Description fields in the variable pane of the method editor: for this 
to work, the focus must be on the initial value or description field before switching to the 

Catalog to select the item.  

Clipboard Commands for Fields 
The clipboard menu items Cut, Copy, Paste, etc are now available for all entry fields in 
the Omnis environment, such as in the Method Editor, and for Entry fields in your apps 
when you Right-click/Option-click on the field.  

Boolean Variable Values 

The value of Boolean variables is now shown in a tooltip in the Code Editor when you 
hover over the variable. The "Show Empty Booleans" option has been added to the 
Debugger Options menu in the Code Editor to control whether empty Booleans are 
shown as Empty or No/False; the default is on, meaning that unset Booleans are 

shown as empty.  

Tooltips 

You can now specify the maximum width for tooltips, used within the Omnis IDE, e.g. in 
the Property Manager, and for window controls in all but a few special cases. The 
maxWidth setting in the ótooltipô section of the appearance.json file specifies the width 
in pixels; it defaults to 0 meaning tooltips can be up to a third of the width of the screen 
or application window.  

Notation Errors 

A new item óstricterNotationErrorChecksô has been added to the ódefaultsô section of the 
config.json file. When set to true, certain unresolved name errors (from such notation in 
the form $cinst.name or $ctask.name) now result in a debugger (or runtime) error if 
$clib.$prefs.$reportnotationerrors is kTrue. The option defaults to false, so there is no 
change to behavior unless you enable the new option.  



Whatôs New in Omnis Studio 10.2 Rev 29538 

18   

Trace Log 

You can now copy selected lines from the Trace log to the clipboard using the Edit 

menu Copy command or Ctrl/Cmnd-C shortcut key.  

Omnis Configuration File 
Omnis Port 

There is a new item disableInRuntime in the óserverô section of the config.json file to 
prevent the Omnis Server listening on its own port: this can be used to prevent firewall 
prompts when the Omnis Server is not required.  

File associations and UAC 

The items in the config.json file regarding file associations and UAC have been 
renamed, specifically regarding capitalization:  

Ç UpdateFilesAssociations becomes updateFileAssociations (also the ósô was 
removed)  

Ç NoAdmin becomes noAdmin 

Ç HideStudiorgMessage becomes hideStudiorgMessage 

 

Window Programming 

Toast Messages 
The iStack parameter in the $showtoast method has a new option kToastStackCenter 
to allow you to stack the toast messages in the center of the screen or application 
window.  

 

Window Components 

Complex Grids 
The $extendedgridlines property has been added to Complex grids. When set to 

kTrue, the grid lines of the final row extend to the base of the grid.  

Key Events 

Support for the Windows VK_PAUSE virtual key has been added to the evKey event. 
In this case, the pSystemKey event parameter has a value of 100 to signal the Pause 
button has been pressed.  

Combo box 

The $disablesearchonopen property has been added to fat client Combo boxes, Data 
grids (applies to combo box columns), and toolbar Combo boxes.  

If true, the automatic search is disabled, that is, the content of the combo box list is not 
used to populate the edit field based on the content of the edit field when the popup list 
is opened. For Data Grids, this property is used for columns with $columntype 
kDataGridComboPicker.  

Tab Pane 

A new property $colortabselectedhighlightmacos has been added to the fat client 
Tab Pane control to allow you to set the color of the active tab for tab panes on macOS 

only.  



  Report Programming 

  19 

Window Resizing 
The evResized event is now reported when a window with the $edgefloat property set 
to floating edges resizes due to the main Omnis application window being resized (this 
only applies on the Windows platform).  

 

Report Programming 

HTML Link Object 
The $tooltip property has been added to the HTML Link report external component. 
This contains the tooltip used for the link specified by $address in Page Preview 
reports (tooltips will not work in PDF reports). It can contain expressions including 
square bracket notation.  

Report Entry field 

The $linkaddress and $tooltip properties have been added to the Report Entry Field.  

$linkaddress is the link address used by the Preview and PDF report destinations to 
provide a hyperlink. Note this provides similar functionality to the $address property of 
the HTML Link objects.  

 

Deployment Tool 
Build Folder 
A new Go to menu has been added to the Deployment Tool that allows you to see the 
build folder in the system file explorer.  

 

Omnis Graphs 

High Resolution Charts 
The Graph2 component now draws charts in high resolution suitable for display on high 
resolution displays. In this case, charts are generated at twice the size and are 
displayed at the correct physical size on high resolution displays.  

You can disable the new behavior by setting the new property $disablehighresolution to 
kTrue (the default is kFalse meaning high resolution charts are supported). If the client 
is running on a display that does not support high resolution, the property will be set to 
kTrue automatically, and you will not be able to change the value of the property.  

 



Whatôs New in Omnis Studio 10.2 Rev 29538 

20   

External Components 

There is a new Window Message to report the mouse wheel has been rotated.   

WM_MOUSEWHEEL 
The WM_MOUSEWHEEL message is sent to a window when the mouse wheel is 
rotated.  

If the mouse is not captured, the message goes to the window beneath the cursor. 
Otherwise, the message goes to the window that has captured the mouse. 

Parameters:  

direction ï Value of wParam. The high-order word indicates the distance the wheel is 
rotated. A positive value indicates that the wheel was rotated forward, away from the 
user; a negative value indicates that the wheel was rotated backward, toward the user. 

Returns:  

An external component should return zero if it processes this message.  

Notes:  

On macOS 

  1) The direction value will be either 0, 1 or -1. No other values are supported. 

  2) Controls that have no scroll bars added will need to respond to 
WM_FLD_NEEDSWM_MOUSEWHEEL to receive a WM_MOUSEWHEEL message ( 
see example )  

Example:  
// This is an ex ample handing WM_MOUSEWHEEL 

// Processing t o be ad ded to W NDPROC.. 

switch ( m essage )  

{  

  // contro ls with no scroll ba rs need to return 1L for the 

WM_FLD_NEEDSWM_MOUSEWHEEL message to rec eiv e WM_MOUSEWHEEL 

  case WM_FLD_NEEDSWM_MOUSEWHEEL:  return 1L;  

  //  

  case WM_MOUSEWHEEL: 

  {  

    // Mouse whe el move d 

    if  ( wParam )  

    {  

      qbool lineUp = ( (qshort)HIWORD(wPara m)) >= 0;  

    }  

    // return 0 to indica te this control has process ed this m ess age.  

    r eturn 0L;  

  }  

 

#EXTCOMPLIBS file location 

You can now copy the text from the #EXTCOMPLIBS file location field, plus the field 

will auto-scroll and displays a tooltip, making the file location more visible.  

  



  JavaScript Remote Forms 

  21 

Whatôs New in 
Omnis Studio 10.2 Rev 28632 

Omnis Studio 10.2 was released in November 2020. This patch release provides some 
important fixes to fully support 10.2 on macOS Big Sur, plus some other bug fixes and 
minor enhancements.  

The following enhancements have been added to Omnis Studio 10.2 Rev 28632. 
Please see the Readme.txt file accompanying the release for details of bug fixes in 

Studio 10.2 Rev 28632.  

 

JavaScript Remote Forms 
Remote Form Design 
The Remote form Web Preview design mode in the initial release version of Studio 
10.2 used HTML templates in the html/design folder to render the web view in the 
remote form in design mode. Note that design mode now uses the same template as 
runtime mode, either jsctempl.htm, or the $htmltemplate from the design task, so 
jsctempl.htm no longer needs to be present in the html/design folder. The HTML file 
used for design mode is still generated in the html/design folder, but only to render the 

Web Preview of the form.  

JS Themes 

You can now edit the current or selected theme from the JavaScript Theme selector 
dialog (opened with Ctrl-J when editing a remote form) by Right-clicking on a theme or 
background of the dialog and selecting the Open JavaScript Theme Editor option; this 

opens the selected or current JS theme.  

Enter & Esc Keys in Subforms 

The $okkeyobject and $cancelkeyobject properties are now activated when the focus is 
on the containing form. $okkeyobject and $cancelkeyobject will now receive a click 
when the Enter or Esc keys are pressed, and the focus is on the whitespace within its 
container. Each parent form (when working with subforms) will be checked for an 
$okkeyobject or $cancelkeyobject until it reaches the top form. The exception to this is 
if the subform is contained within a subform set, and in this case, it will keep checking 
parent forms until it reaches its containing subform.  

JavaScript Components 
JS Edit Control 
Incompatible input types are now prevented from being used with JS Edit Input Masks. 
For example, the kJSInputTypeNumber and kJSInputTypeEmail values of $inputtypes 
are incompatible with JS Edit input masks. If $inputtype is one of these values, and 
$inputmask is set, the input element will use the text type (effectively 

kJSInputTypeDefault).  



Whatôs New in Omnis Studio 10.2 Rev 28632 

22   

JS Button 

When $textishtml for a JS Button control is set to kTrue the text in $text is treated as 
HTML. The HTML needs to be valid for it to be rendered, including when used as the 
contents of a <p> element, so for example you cannot use a <p> element inside 
another <p> element.  

Field Styles for Complex Grids 

The $rowdividerlinestyle is now assignable at runtime and by $fieldstyle. As 
$rowdividerlinestyle is a custom field in a $fieldstyle it gets assigned at runtime, and is 
treated like any other runtime property change, therefore it is now assignable at 
runtime. Note that $rowdividerlinestyle changes just the border between each row in a 
Complex grid, unless $rowborder is set to kJSborderPlain, in which case it also effects 
the border around the client, i.e. the section of the complex grid which contains the 
rows.  

SVG Icons 
More SVG icons have been added to the ómaterialô iconset, including icons for eating 
out (restaurant and café), travel (bus, train, car, bicycle), and so on. You can find more 
SVG icons on the Google Material icons website, and add them to the material iconset 
in Omnis (html/icons folder: note Omnis uses the óblack roundedô type). Alternatively, 
you can source other SVG icons and create your own new icon sets. You must convert 
any SVG files to óthemed SVGô icons using the SVG Themer tool (Add-ons>>Web 

Client Tools option) if you want to use the icons with themes in the JS Client.  

PNG Icon Editor 
You can now sort icon pages in ascending or descending alphabetical order in the Icon 
Editor (Tools>>Icon Editor option used for editing PNG icons) by clicking on the óPagesô 
title above the list of icon pages.  

 

Code Editor 
Export List or Row Variables 
You are now able to export the complete contents of a list or row variable from the 
Variable menu to a tab-separated file. There is a new menu item "Export Tab 
Separated..." that appears in the Variable menu for list and row variables, in the same 
location as the "Copy Value" option that appears for various simple data types. When 
selected, it prompts for the path name of a file that receives a tab-separated value 
representation of the list or row.  

The output file is UTF-8 with a UTF-8 byte-order-marker. The first export row 
comprises tab-separated column names. Simple types in the list are exported as their 
actual value, whereas types such as lists are output as an information string, e.g. (5 
Lines). If the characters tab, carriage return, linefeed or backslash occur in the data, 
they are exported as escapes: \t, \r, \n and \\ respectively. If a column has a #NULL 

value, it is exported as the text NULL.  

Code Folding 

You can now remove code folding from all the methods in a class or all classes in a 
library. All classes that can contain methods now have the method $removecodefolding 
which removes code folding from all methods in the class, and returns the number of 
methods from which code folding was removed. For example, to remove code folding 
from all methods in all classes in a library, execute: 
Do $libs.library.$classes.$sendall($ref.$removecodefolding())  



  Libraries 

  23 

In addition, the option óexportcodefoldingstateô has been added to the 
$exportimportjsonoptions Omnis Preference ($root.$prefs) to control whether or not the 
code-folding state in the methods in your library is exported; the option is set to false by 
default so the code folding state is not exported.  

 

Libraries 
JSON Import Option 
There is a new boolean option óimporttreatsunknownpropertyaswarningô in the 
$exportimportjsonoptions Omnis Preference ($root.$prefs) to treat unknown properties 
in imported JSON as a warning; it is true by default.  

JSON Import Error Messages 

Error messages have been improved when an import JSON fails due to the inability to 
parse a method line; the text that cannot be parsed is now included in the error 
message.  

  

Omnis Environment 
Help System 
All HTML pages used to create F1 style Help systems using the Omnis Help Project 
Manager (available in the Tools menu) must now be UTF-8 encoded. Due to Character 
set issues building help word indexes, all HTML pages used with the Help Project 
Manager (and any additional text files such as the _exclude files) must now be UTF-8 
encoded.  

  

Window Components 
OBrowser 
The property $donotredirectconsoletotracelog has been added to OBrowser. If true (the 
default), browser console messages generated by OBrowser are not redirected to the 
Omnis trace log.  

  

Functions 
split() 
There is a new split() function that allow you to split a string at the specified delimiter 
(comma is the default delimiter).  
spli t(string[,delimiters =', ',stripWhitespace=kFalse])  

Splits the string at the character(s) in delimiters and returns a list of the resulting 
substrings. The function strips leading and trailing whitespace from each substring if 
stripWhitespace is kTrue (default is false). The function is available in both normal 
methods, and client-executed methods.  



Whatôs New in Omnis Studio 10.2 Rev 28632 

24   

sys(192/292) 
There is a new item "sys192ListRowLimit": N in the "defaults" section of config.json 
which allows lists (and rows) with up to N rows to be included as a third column in the 
output parameter data for the sys(192) and sys(292) functions (note: sys(192) returns 
the method stack as a list, and sys(292) returns the calling method).  

If N <= 0 (the default) then sys(192/292) behave as before. If N > 0, then each 
parameter in the parameter list stored in each line of the sys(192/292) list has a third 
column, which for lists and rows contains the actual list (or row) data, if the list or row 
has less than or equal to N lines. In all other cases (not a list or row, or line limit N 
exceeded) column 3 is empty.  

 



  Functions 

  25 

Whatôs New in 
Omnis Studio 10.2 

For Omnis Studio 10.2 the appearance and useability of many of the JavaScript 
components has been greatly enhanced with the introduction of color themes and 
support for SVG icons. In design mode, position assistance is provided to help you 
arrange objects on a remote form, plus remote forms are now displayed in a web 
preview in design mode so you can see exactly how your forms will look at runtime.  

This release also includes many enhancements in the Code Editor, including Code 
Folding and Word Wrapping, plus you can now edit your code when using the Remote 
Debugger. For the thick client, there is a new Token Entry Field and Breadcrumb 
control, plus Page panes can be displayed as Side panels improving the UX for 

desktop apps.  

The following features have been added to Studio 10.2:  

Ç JS Client Themes and Appearance 
The appearance and useability of the JavaScript components has been greatly 
enhanced with the addition of JS Themes for managing colors used throughout 
your application; some of the JS controls now have animations and other visual 
effects to improve the UX for your apps; plus the default size of some of the 
components has been increased to better cater to touch devices  

Ç SVG Icons 
you can now use SVG image files for icons for JavaScript components and window 
controls; SVG images are vector based and are inherently scalable, therefore a 
single file can provide multiple icon sizes; specifically, an SVG image will scale to fit 
the icon area available in a control; and for the JS client only, SVG icons can be 
themed which means they change color to match the current theme  

Ç Position Assistance 
colored visual guides are now displayed automatically when you move or resize 
objects using the mouse (pointer) in a remote form, report or window class design 
screen; as you move or resize objects, colored lines are shown and objects will 
snap into position to help you arrange the objects in a form or report  

Ç Remote Form Design 
When you design a JavaScript Remote form it is now displayed in a Web Preview 
(using the built-in Chromium browser) so you can see exactly how a remote form 
will look and behave at runtime in the end userôs browser, including the use of the 
current theme and any other visual effects  

Ç New JS Split Button Control and other enhancements 
the new JS Split Button provides a dropdown menu of choices on a single button; 
new style & positioning properties for the Data Picker for Edit controls and Data 
Grids; you can now send an SMS message to multiple recipients in the Device 

Control; plus the $inputmask property has been added to JS Edit controls  

Ç Method Editor & Code Editor 
the Code Editor now supports Code Folding allowing you to collapse and expand 
code constructs, to improve readability and code manipulation, while Word 
Wrapping allows long lines of code to wrap onto the next line; there is a new 
Search box above the Method Names tree allowing you to find specific methods or 
filter the list; plus built-in methods for a class are now shown in the method list  



Whatôs New in Omnis Studio 10.2 

26   

Ç Remote Debugger 
You can now edit methods and code while stepping through live code in the 
Remote Debugger; prior to this, code could only be viewed in read-only mode while 
using the remote debugger  

Ç MultiProcess Server 
The Linux Headless Server can now be run in MultiProcess Server (MPS) mode 
which can ultilize the multi-core processors on your server, providing performance 
improvements for your server based, web and mobile apps  

Ç New Window controls 
the new Token Entry Field allows the end user to enter text which then becomes 
tokenized (a single block), similar to the recipient field in email programs; the new 
Breadcrumb control can be used to display the end userôs ñlocationò within the 
hierarchy of an application; and the Check Box control now allows a ñhorizontalò 

mode which behave like an ñon/offò slider switch (all for thick client only) 

Ç Side Panels 
a Side panel is a vertical panel containing clickable options or other content that 
can be added to the left or right of a window, using a page pane, or scroll box; a 
side panel can be shown automatically or linked to a menu control to allow it to be 
opened or closed manually (for thick client only)  

Ç Toast Messages for desktop apps 
Toast messages are small notifications that that can be ñpoppedò in your desktop 
application to alert the end user about something; this enhancement allows you to 
open toast messages in your desktop apps, via a window instance for example, 
using a new $showtoast method  

Ç Drag and Drop for system files 
Support for dragging and dropping operating system files and file data (in the thick 
client) has been simplified providing more control over files and data in your event 
handling code   

Ç Regular Expressions 
the PCRE2 library has been added to Omnis to support regular expressions in your 
Omnis code or for Find and Replace; the PCRE2 library (Perl Compatible Regular 
Expressions version 2) is an open source library of functions that provides syntax 
and semantics like Perl 5 for defining a search  

Ç OAUTH2 Authorization and OW3 Workers 
there is a new OAUTH2 Worker Object providing general support for OAUTH2 
authorization for the OW3 worker objects; the HTTP, IMAP, POP3, and SMTP 
workers have been modified to support OAUTH2 via the new OAUTH2 worker; plus 

there are some enhancements to the IMAP, HASH, and the FTP workers  

Ç OpenAPI for Web Services  
Omnis now generates an OpenAPI 3.0.0 definition for a RESTful web service as 
well as Swagger 2.0; OpenAPI is a more up to date version of the RESTful API 
description format, and Studio 10.2 now generates OpenAPI 3.0.0 definitions, as 
well as Swagger 2.0 definitions  

Ç Localization for JS Client 
localization for the JS Client has been optimized, reducing data size for applications 
that support multiple languages by only loading language file(s) as required; plus 
German, French, Italian and Spanish are supported by default, while support for 
other languages can be added  

Ç Omnis Datafile Migration 
The DML emulator has been substantially re-written for Studio 10.2 to improve 
performance; this allows you to convert an Omnis data file to either SQLite or 
PostgreSQL  

 



  JavaScript Components 

  27 

JavaScript Components 
The following new features and enhancements are for JavaScript components.  

JS Client Themes and Appearance 
The appearance and useability of the JavaScript components has been greatly 
enhanced to help you design better and more consistent UIs, as well as improve the 
accessibility for your applications created using the JS client. The enhancements 
include:  

Ç the introduction of color Themes, to help you apply colors consistently across your 
web and mobile applications  

Ç support for SVG icons which can be scaled to any size, and colored or styled using 
the theme in your app  

Ç the addition of animations and other visual effects to enhance the UX in your apps, 
such as a ripple effect for button clicks, plus improved border highlight and shadow 
effects to show the focus  

Ç plus the default size of some of the components has been increased to cater to the 

touch interface on tablets and phones  

The appearance enhancements have been guided in part by Googleôs óMaterialô design 
system, including the use of primary and secondary colors, to modernize and improve 
the UI for your JS client applications.  

There is a new example app under the Samples option in the Hub in the Studio 
Browser called óJS Input Border and Button Stylesô to highlight some of the appearance 
changes for Edit controls and Buttons.  

JS Themes 

You can now apply a consistent set of colors to components on a JavaScript remote 
form by selecting colors defined in a theme ï underlying a theme is a set of CSS styles 
which are applied to controls at runtime in the browser. Omnis has a number themes 
which you can use to style your JS client applications: a default theme, which provides 
an effective and pleasing UI across all JS controls and devices, and a range of different 
color themes, such as the dark theme, which provides an alternative set of darker 
colors.  

 

When designing a remote form, you can change the 
current theme in the JS Theme Select dialog by pressing 
Ctrl-J, or select JavaScript Theme from the View menu. 
To select a theme, click on the theme preview and close 
the dialog. The selected theme is applied to the current 
remote form and to all the remote forms in your library 

since the theme is an Omnis-wide preference.  

The current theme is stored in a new Omnis root preference, $javascripttheme (in 
$root.$prefs), which is set to the default theme initially, and controls which theme is 



Whatôs New in Omnis Studio 10.2 

28   

used to render themed colors for all remote forms in design mode (but you can set or 

change the theme on the client using the ósetthemeô client command; see later).  

Selecting Colors 

When you select the color for a JS control in design mode in the Property Manager, 
you can now choose a theme color from the color picker, under the new Theme color 
button in the color picker toolbar (existing users should note that the color brightness 
button & setting has been removed). For example, select a button, click on the Text tab 
in the Property Manager and click on the color picker for $textcolor.  

 

The color setting for most properties, such as $textcolor, is set to kColorDefault, which 
means the appropriate color from the current theme is used. If a text color property is 
set to kColorDefault, and it sits on an element with a background color which comes 
from a themed color constant, the text will be rendered in the associated <theme 
color>Text color. For example, if a buttonôs $buttoncolor is set to 
kJSThemeColorPrimary and its $textcolor is set to kColorDefault, the text will be 
rendered using kJSThemeColorPrimaryText.  

The colors defined in a theme and shown on the color picker have corresponding color 
constants, whose names begin kJSThemeColor, as follows:  

kJSThemeColorBackground kJSThemeColorPrimary  

kJSThemeColorBackgroundText kJSThemeColorPrimaryDark  

kJSThemeColorBorder kJSThemeColorPrimaryDarkText  

kJSThemeColorDialog kJSThemeColorPrimaryLight  

kJSThemeColorDialogText kJSThemeColorPrimaryLightText  

kJSThemeColorDialogTitle kJSThemeColorPrimaryText  

kJSThemeColorDialogTitleText kJSThemeColorSecondary  

kJSThemeColorDisabled kJSThemeColorSecondaryDark  

kJSThemeColorDisabledText kJSThemeColorSecondaryDarkText 

kJSThemeColorError  kJSThemeColorSecondaryLight 

kJSThemeColorErrorText kJSThemeColorSecondaryLightText 

kJSThemeColorFocusedRow kJSThemeColorSecondaryText 



  JavaScript Components 

  29 

kJSThemeColorFocusedRowText kJSThemeColorSurface 

kJSThemeColorNeutral  kJSThemeColorSurfaceText 

kJSThemeColorNeutralText   

 

Theme Editor 

You can create new themes, or modify an existing theme using the JS Theme Editor, 
available under the Add-Ons > Web Client Tools menu option and select JS Theme 
Editor.  

 

The editor provides a preview of the current theme on the right side of the editor 
screen, and you can click on an area or text item within the preview to view or set its 

color (you can also set colors by clicking in the list on the left).  

The colors in a theme are categorized as Primary and Secondary, plus there are 
specific color for errors, borders, dialogs, and so on. The primary colors are used 
throughout your application and set the general tone or style of the theme, while the 

secondary colors provide an accent to certain parts of the UI.  

Creating a new theme 

To create a new theme, you can duplicate an existing theme and make any changes to 
the copy. To do this, open the Theme Editor, select a theme from the dropdown list or 
use the default theme (selected initially by default), click on Save as and give the new 
theme a name ï then change individual colors and use the Save option to save any 
modifications. The Set theme option sets the $javascripttheme preference to the 
theme currently shown in the editor. If you make any modifications to the current 

theme, all open remote forms will be updated automatically.  



Whatôs New in Omnis Studio 10.2 

30   

A theme is stored as a .json file and an associated .css file in the óhtml/themesô folder. 
When deploying your application, the themes folder and its contents must be copied to 
the corresponding location on the Omnis App Server.  

When designing the colors in a new theme, you may want to follow the guidance 
provided by the Google Material design system, which may help you create a theme 
containing colors which complement one another and provide maximum usuability and 
accessibility across different platforms and devices. Google provides a Material Color 
Tool which you may find useful to create a set of complementary colors for the 
dark/light variants.  

Themed Icons 

This version of Omnis supports the use of SVG images for component icons (see the 
next section in this doc regarding how to use SVG icons). For the JS client only, SVG 
icons can be ñthemedò which means an icon will be tinted using the controlôs text color 
as specified in the current JS theme (the ófillô color in a themed SVG file is set to the 
text color from the theme). This allows a single themed SVG icon file to be used with 
different themes and its color is set automatically.  

Omnis includes an icon set named ómaterialô which contains over a 100 themed SVG 
icons (note this icon set can only be used with the JS Client, not window classes since 
they do not support themed icons). The material icon set is located in the ó\html\iconsô 
folder and if you have used any of the icons in your app the icon set needs to be copied 
to the Omnis App Server when deploying your application.  

The following are examples of a single icon from the material icon set with different 

color themes applied (note the icon is rendered using the button text color):  

 

SVG icon files can be óthemedô using the SVG Themer tool under the Add Ons > Web 
Client Tools menu option. You can open a single SVG file, preview it using one of the 
test colors (the preview colors are not saved to the file), and save it using the Export 
button.  

https://material.io/resources/color
https://material.io/resources/color


  JavaScript Components 

  31 

 

The SVG Themer tool converts a standard SVG image file into an Omnis themed SVG 
file format: specifically, the first element in the root svg element in the original file is 
converted to a óg elementô with fill="var(--om-tint-color)" and id óomThemeô which 
reference the color from the current theme. The Image Data tab shows the source for 
the converted SVG file which you can edit if required, although the converter converts 
the the SVG file as necessary.  

(Beta testers should note that the format of themed SVGs has changed since the beta4 
of Studio 10.2, so you will need to convert any SVG icons again using the release 

version.)  

Like other SVG icon files, any themed SVG icons need to placed in an icon set folder. 
For example, you could create or acquire a set of SVG icons and convert them using 
the SVG Themer tool ready for use in your JS client apps.  

HTML Template & JS Client theme setting 

The JS clientôs theme is set in the ódata-themenameô attribute in the omnisobject div in 
the HTML file for your remote form, e.g. data-themename="dark".  

The special value of ñ_JT_ò is used in the HTML template (jsctempl.htm) which is 
replaced this with the current value of $javascripttheme when Omnis generates the 

HTML file for your remote form.  

In addition, the 'data-appid' attribute specifies the application a page belongs to. It 
defaults to '<lib name>.<form name>' each time a form is tested (the '_APPID_' 
placeholder in the template .htm file is replaced when a from is tested).  

Changing the Theme 

You can change the theme on the JS client in your code using a new ósetthemeô client 
command ($clientcommand) which takes a row parameter whose first column is the 
name of the new theme. Note that a remote form needs to be reloaded in the browser 
for a change of theme to take effect. Once you have set the theme using ósetthemeô, 
the client stores it in the client localStorage and will use that theme for subsequent 
visits to the page. To revert back to the default theme specified in the HTML page, you 
need to call the 'settheme' clientcommand, passing an empty string as the theme name 
(or clear the client's localStorage).  

The current theme: $construct 

The current theme is passed in the $construct row parameter, in a column named 

theme.  



Whatôs New in Omnis Studio 10.2 

32   

Note for existing users: active color properties 

The JS client now uses a ripple effect for which the colors are generated automatically, 
so the following properties are no longer relevant and have been removed from the 
Property Manager (they will continue to work in existing apps):  

Ç Nav bar - $buttonpressedcolor 

Ç Split button - $activebackcolor 

Ç Toolbar - $toolbaractivecolor 

  

SVG Icons 
You can now use SVG images for icons for JavaScript Remote Form components and 
in most other places that currently support bitmap images for icons, as in previous 
versions. Specifically, you can use SVG image files in an Icon set, alongside any 
existing icon sets containing PNG files, and these will appear in the Select Icon dialog 
when you need to assign an icon to a JS component. (You can also use SVG icons for 
Window class controls, but they cannot be themed, see below.)  

SVG images are vector based and are inherently scalable, therefore a single SVG file 
can provide multiple sizes for icons ï a single icon file will scale to fit the icon area 
available in a control (unless you fix its size, see below). By contrast, component icons 
in previous versions only supported PNG graphics and therefore you had to create a 
separate image file for each icon size or resolution you wished to support and place all 
the separate files in an icon set in the Omnis tree. In addition, a single vector-based 
image will have a much smaller file size than mulitple PNG files, giving your app a 
smaller footprint on the client.  

Platform support 

On macOS, SVG icons only render in the thick client when using macOS 10.13 or later.  

On Windows, SVG icons only render when using the Windows 10 Creators Update or 
later. In general, support for SVG in Windows is more limited than on macOS, for 
example, Windows does not support classes in SVG files ï read here about Windows 

SVG support:  

https://docs.microsoft.com/en-us/windows/win32/direct2d/svg-support  

Creating SVG Icons 

You can create your own SVG icons, or you may be able to acquire a set of icons from 
a third-party, either paid-for or for free (subject to the appropriate licensing), such as 
the icons provided in the Material design scheme from Google and issued under the 
Apache License Version 2.0 (https://material.io/resources/icons). We have selected 
over 100 of the Material icons (from the black, rounded style) and placed them in an 
icon set folder called ómaterialô under the main óhtml\iconsô folder, and you are free to 
use these in your Omnis applications (with the proper attribution in your product 
licensing); note these Material icons have been óthemedô and therefore support the new 
JS Themes. You can download other icons from the Material website and add them to 
this folder, if required.  

SVG image files must be saved with the .svg file extension (see naming below) and 
should be placed in a subfolder in the óiconsetsô folder in the Omnis tree; the name of 
the sub-folder becomes the name of the icon set, and in order to use the icons, the icon 
set name needs to be added to the list of icon sets in the $iconsets preference in your 

library (note $iconsets can now take a list of icon set names).  

From our testing, we found that Adobe® Illustrator® allows you to export vector images 
in SVG format, and on the export to SVG options dialog you can select the óInline Styleô 
option to ensure classes are not used in the output SVG. There are many other image 
editors that can output SVG.  

https://docs.microsoft.com/en-us/windows/win32/direct2d/svg-support
https://material.io/resources/icons


  JavaScript Components 

  33 

Themed Icons 

In order to work with the new JS Themes, an SVG icon needs to be converted to a 
Themed SVG file. Themed icons only appear in the Select Icon dialog for JavaScript 
remote forms and Remote Menus (not for window classes or controls, since they do not 
support themes). The Material icons in the ómaterialô icon set have been themed. 

Using SVG Icons 

If a JavaScript component can support SVG icons, and most do, then the icon IDs 
(names) of any SVG icons will appear in the Select Icon dialog when you assign the 
icon via the Property Manage and the Select Icon dialog (if a component does not 
support SVG icons, then they are not shown in the Select Icon dialog).  

In general, SVG icons are supported by any controls that previously required an icon, 

including the following classes or features:  

Ç Remote Form class components (JavaScript Client controls), including buttons, 
menus, toolbars, lists, tabs, check boxes  

Ç Window class controls (thick client), including menus and toolbars, together with 
some external component window controls including clock, treectrl, html icon link, 
hyplinks, etc.  

Ç Styled text, including styled text on reports sent to the Omnis PDF report 
destination  

Ç The background icon for the main Omnis window on the Windows platform 
($root.$prefs.$backgroundiconid) 

Ç The $componenticon class property  

You should note the following for JS controls only:  

Ç Some JS controls use background-image CSS, so when using an SVG image, it 
will not always scale as expected if the aspect ratio in the SVG is fixed, and the 
desired dimensions of the background-image do not have the same aspect ratio.  

Ç JS Popup menu and JS Navmenu controls have hot iconid properties ï in this case, 
the hot and equivalent non-hot iconid properties must either both use SVG or both 
use PNG  

Naming and Icon Sets 

The base icon ID of an SVG icon is the name of the SVG file, without the file extension, 
and converted to lower case, up to a maximum of 32 characters. The naming 

restrictions for SVG icons are as follows:  

Ç The base icon ID must not represent an integer (the icon ID had to be an integer for 
PNGs, but does not have to be for SVG image files)  

Ç The base icon ID must not contain the characters + # , ; = ? (plus, hash, comma, 
semicolon, equals, or question mark); note + is used to add a size restriction, see 
below  

An icon ID or name can now be either an integer or a string, and integer icon IDs work 
exactly as they did before (the naming of PNG icon images remains the same).  

You cannot use the same file name with different case in an icon set folder, plus itôs 
always good practice to make icon IDs or names unique across different icon sets, 
since the icon with the first instance of a specific icon ID or name is used.  

Any errors related to the naming requirements are written to the icon set log file, which 

is in the folder logs/iconsets, in the data part of the Omnis tree.  



Whatôs New in Omnis Studio 10.2 

34   

Multi-state Icons 

If you want to include icons for different states of a control (for example, checked, 
highlighted, and checked highlighted for a check box control), you can include separate 
SVG files with a suffix in their name:  

Ç _c for checked  

Ç _h for highlighted  

Ç _ch for checked and highlighted  

For example, SVG files for a check box could include the files: checkbox.svg (for the 
unchecked icon), checkbox_c.svg, checkbox_h.svg and checkbox_ch.svg (for the 
different states). These 4 files all result in a single icon with id ócheckboxô, and Omnis 

will select the correct SVG file according to the state of the checkbox.  

Selecting an SVG icon 

The Select Icon dialog has had a few modifications to support SVG icons; the screen 
below shows the ómaterialô icon set. When you select an icon set containing SVG icons, 
the page list in the dialog shows an entry for standard sizes, and a full-page entry for 
each individual SVG icon. The standard sizes include all the SVG icons in the set, 
since SVG images will scale to any size. When you select a full page SVG icon, the 
first line of the size list shows the default size read from the SVG file (converted to 
Omnis design pixels), with the text (kDefSize) appended to it.  



  JavaScript Components 

  35 

 

The select icon dialog has a new status bar area that shows the type of icon (PNG, 
SVG, Themed SVG or Icon page entry), and the ID (name) of the icon.  

There is a Search box on the Select Icon dialog that allows you to search for an icon or 
filter the icons shown using the icon ID or name.  

Fixed and Custom Icon Sizes 

An SVG icon will always expand to fit the available space within a control, but it is 
possible to fix or restrict the size of an icon by adding size information to the end of the 
icon ID name. The size information has the syntax +<w>x<h> where <w> is the integer 
width and <h> is the integer height. For example, an SVG icon ID could be any of the 
following:  

Ç testsvg (unrestricted size)  

Ç testsvg+16x16 (restricted to 16x16, for example, for a menu)  

Ç testsvg+32x48 (restricted to 32 wide x 48 high)  

When selecting an SVG icon, the size list includes the configured sizes from 
config.json, and the current size of the icon, in addition to the standard sizes and 
kDefSize. There is a + button in the heading of the size list that allows you add a new 
size. There is an option on the dialog to add the new size to config.json.  



Whatôs New in Omnis Studio 10.2 

36   

There is a new configuration item called ócustomSizesô in the ósvgô section of config.json 
that allows you to add other sizes. The size list in the Select Icon dialog will show any 
other sizes specified in the config.json file:  
"s vg" :  {  

        " cus t omSizes":  [  

            "2 56x25 6" ,  

            " 64x6 4",  

            " 128x 128"  

        ]  

    }  

 

When a custom size is selected in the size list for a full page SVG icon, in addition to 
the + button, there is a - button which you can use to remove the size from the list, and 

optionally remove it from config.json.  

Omnis uses the default width and height specified in an SVG file to determine the 
aspect ratio of the icon image. To obtain this, Omnis looks for the width and height 
attributes of the svg element in the SVG file and uses these if present. If width and 
height are not present, Omnis uses the viewBox attribute of the svg element to 
determine the aspect ratio. In this case, you can add a size using the + button in the 
Select Icon dialog, and use the Keep Aspect Ratio option, to fix the aspect ratio.  

Icons for Lists 

Certain controls, such as the Icon Array, use a list column to contain an icon ID. To 
make use of SVG icons, this column now needs to be defined as Character. Where you 
use a mixture of SVG icons and existing icons, the icon IDs can be specified as strings 
or integers as appropriate.  

Icon Caching 

Prior to this version, Omnis cached every icon set icon in memory, as bitmaps. To 
handle SVG support, you can now control the cache size for all icon sets (using PNG 
and SVG icon image files). There is a new entry in the ódefaultsô section of config.json 
called maxCachedIconSetBitmaps. This is an integer, which defaults to 1000 bitmaps. 
If Omnis needs to create a new bitmap for an icon from an icon set, and the current 
number of cached bitmaps is at this limit, Omnis will free up the least recently used 

bitmap.  

Multiple Icon sets 

In addition to support for SVG icons, you can now specify multiple icon sets for a 
library. Therefore, the $iconset library preference has been renamed to $iconsets, and 
can now accept a comma-separated list of icon set folder names, or a single icon set 
name as before. The icon set folders are searched in the order specified in the 
property, followed by the Studio icon set, then the library #ICONS system class, and 
finally the icon data files Omnispic and Userpic.  

Icon Search order 

The Select Icon dialog now shows icon sets in the order in which they will be searched 
when an icon is referenced. If there is a duplicate icon name, then a component or 
window control will display the first icon found by the search. The Select Icon dialog will 
show the icon from each icon set even if the icon will be overridden by the search 
order.  

During SCAF generation, for the serverless client, the Omnis Server now passes all the 
files for all icon sets in $iconsets to the serverless client library.  

Multi-state Icons 

The Select Icon dialog will now only display multi-state icons for controls that require a 
multi-state icon, such as check boxes. In addition, there is a check box on the Select 

Icon dialog so you can display the multi-state icons only.  



  JavaScript Components 

  37 

JSON Export-Import 

The new icon ID syntax is handled when exporting a class to JSON, and importing 

JSON to a class.  

There are new flags specified in property tables to identify icon ID properties that 
support SVG icons. For the thick client, the flag is PROP_SVG, and for external 
components, the flag is EXTD_EFLAG_SVG.  

Icon APIs 

The bitmap APIs for both the core and external components now have overloads that 
accept a fldval or EXTfldval respectively, to represent an icon ID that can be either an 
integer or a string.  

Position Assistance 
Position Assistance provides visual guides (colored arrows and dashed lines) that 
enable you to easily align and distribute controls and other objects in a design window, 
that is, when you move or resize objects using the mouse or trackpad. The new 
position assistance is available when positioning objects in a JS Remote form, a 
window class, or in the report editor.  

As you move or resize objects on a remote form (or report or window), colored lines are 
shown automatically, and objects will snap into position to help you arrange the objects 
in a form. Position Assistance is also provided when you use the Arrow keys to position 
or resize objects.  

The context menu for the remote form (or report or window) has a new entry after the 
Align hierarchical menu, ñShow Position Assistanceò, which toggles the new Position 
Assistance (default is enabled). There is a single setting for this, shared by all editors, 
that is saved to omnis.cfg when Omnis shuts down.  

 

Position Assistance for sizing does not apply when Size to Grid is turned on, and for 

moving, it does not apply when Align to Grid is turned on.   

The positioning lines are drawn using the colorhighlight color in the system group of 
appearance.json. There is a new entry positionAssistantKeyboardTimer, in the ide 
section of the config.json, that can be used to adjust the time that the position 
assistance remains visible after you stop pressing an arrow key; this defaults to 750 
milliseconds.  

Positioning & Aligning Objects 

When the Position Assistance is enabled, Omnis gives precedence to distribution over 
alignment, and within alignment it prioritises the top edge, over the center, and the 
center over the right edge. As soon as a visual guide is displayed for a target, any other 
targets that would also cause the object to move in the same axis are dropped.  

As you move or size objects Omnis displays a visual guide when the object(s) being 
moved or sized are within +/-2 pixels of a specific alignment or distribution target, e.g. 
an alignment target is the top edge of another object or objects. When you release the 
mouse, the objects snap to the displayed target. Position Assistance is applied to 
objects dragged from the Component Store, as well as objects being moved or sized 



Whatôs New in Omnis Studio 10.2 

38   

within a design window. Position Assistance is provided when moving an object even if 

the adjacent objects are contained inside a container field.  

When sizing objects, assistance is not provided if the objects being sized have more 
than a single container, that is, the component that is the parent of the objects ï this 
can be more granular than a field, such as for complex grids, there are several 

containers such as the row and header sections.  

Distribution 

Position Assistance attempts to distribute objects by allowing them to be evenly 
spaced. The visual guide for distribution is a line drawn between the objects with arrow 
heads.  

 

The guides are drawn for as many objects as possible, immediately adjacent to the 
object(s) being moved or sized. Position Assistance works best when objects are 
already reasonably well arranged, either vertically or horizontally, so for more complex 
arrangements, with overlapping fields may result in no visual guides being presented.  

Alignment 

Position Assistance attempts to align objects by giving them the same top or bottom 
coordinate, or centered relative to each other. When you try to center objects, you only 
get visual guides when moving objects, and when the appropriate side of the rectangle 
representing the objects being moved either fully encloses or is fully enclosed by the 
appropriate side of the object in which it is being centered. The following illustrate how 

the Position Assistance is applied for different cases when aligning objects.  

  

Top alignment Bottom alignment 

  

Left alignment Right alignment 



  JavaScript Components 

  39 

Positioning for Paged Panes (Container fields) 

Assistance is provided to help you align fields inside a container field, such as a Paged 
Pane. In addition to the left/right, top/bottom positioning, when you move an object 
inside and near to the center of a container, a line across either the vertical or 
horizontal center of the container is drawn and the object will snap to the line.  

 

When positioning objects inside a Paged Pane (or any container), Position Assistance 
is only provided for the controls within the Paged Pane itself, so objects outside the 
Paged Pane are not included in the current object grouping. Similarly, if you are 
positioning objects outside, but near to a Paged Pane, the objects inside the Paged 
Pane are not included in the current grouping.  

Positioning for Complex Grids 

Position Assistance is provided within each section of a Complex Grid, that is, the row 
and header sections of a Complex Grid, and the above behavior for container fields 
applies to each section independently.  

Position Assistance for Reports 

Position Assistance is available for fields and controls when designing a report, 
however the behavior is different for non-floating report fields. When moving or sizing 
objects in the report editor, Position Assistance is not provided for the vertical axis if 
any of the objects being moved or sized are not floating.  

Remote Form Design 
When you create or modify a JavaScript Remote form class the form design window is 
now displayed in a Web Preview (using the Chromium built-in web browser), so you 
can see exactly how your form will look at runtime in the end userôs web browser. 
Specifically, JavaScript controls (and JSON-defined controls) will now look the same in 
design mode as they will do at runtime in a web browser, including the visual effect of 
any CSS styles you have applied to the controls (using $cssclassname). In addition, 
your remote form and its controls will be displayed using the current JavaScript theme.  

There is a new folder in the óhtmlô folder named ódesignô, in which the HTML for remote 
form design mode is generated; note this folder is only for design mode and is not 

required when you deploy your application.  

Note to Existing users: Using old design mode 

Existing users should note that there are a few differences between the new Web 
Preview mode for remote forms and the old design mode, as follows:  

Ç There is no design grid available in the new Web preview mode, so $showgrid is 

not present ($showgrid is not available if you switch to the old design mode).  

Ç Rulers are not supported in the new Web preview mode, so the remote form 
context menu does not have an option to show Rulers.  

Ç Design DPI scaling does not apply in in the new Web preview mode.  

Ç The JS client now uses box-sizing border-box, so the appearance of control 
borders may be different.  



Whatôs New in Omnis Studio 10.2 

40   

Ç It is possible an exception will occur in the JS client running in the new Web 
preview mode: this does not have any effect on the validity of the remote form 
class. If this occurs, a message will be displayed for 5 seconds, and the error will 
also be logged to the trace log. In this case, you should close and re-open the 
editor after an exception.  

You can revert to the old design mode for remote forms, either by holding the Shift key 
down when opening a remote form in design mode, or by changing the config.json 
entry óuseObrowserForRemoteFormDesignô in the ide section.  

HTML control 

The HTML control has a new property, $showruntimepreview, which defaults to kTrue, 
which ensures the HTML is rendered in the remote form rather than showing the HTML 
code text. If $showruntimepreview is false, the HTML code text is shown, but it cannot 
be scrolled inside the control in the design window.  

JS Split Button Control 
The Split Button control is a new JavaScript component: it combines a standard button 
with a dropdown menu, allowing you to provide multiple, alternate actions grouped 
together in a single button control. The Split Button is like the Send button in gmail as it 
provides two options in one control: a default Send option on the button and a 
Schedule send option via the menu.  

The component is available for JavaScript remote forms as well as window classes, but 
there are some additional properties for the JavaScript control; note the split button for 
window classes is an external component which must be loaded via the External 
Components option on the Component Store.  

The menu for the control is specified in the $menuname property and must be a 
Remote Menu class for the JavaScript component, or a menu class for the Window 
class control.  

The following example Split button has a Print option and a printer icon on the main 
button part, and it has options for printing to a Preview, PDF or File specified in a 
Remote menu class specified in the $menuname property of the button control. In this 
case, a single click on the button would activate the Print to printer option, while 
clicking on the down arrow provides the other options (the images uses the 

óprofessionalô JS Theme).  

 



  JavaScript Components 

  41 

Properties 

The following properties are available for both the JS Remote form and Window class 
controls.  

Property Description 

$hotbackcolor The background color of the control when hovered 

$activebackcolor The background color of the control while pressed; 
active color is generated automatically if 

$activebackcolor is kColorDefault  

$buttonborderradius The radius in pixels of the corners 

$borderwidth The width (0-7) of the edges drawn as the border of the 
control 

$arrowside The position of the dropdown button on the control 

$textbeforeicon If true, and the control has both text and an icon, the 
text is drawn before the icon 

$vertical If true, the text and icon are arranged vertically 

$menuname The name of the menu class, a Remote Menu class for 
the JS control, or a Menu class for the Window control 

The following properties are available for the JavaScript control only.  

Property Description 

$menubackcolor The background color of menu lines 

$menuhotbackcolor The background color of menu lines when hovered 

$menutextcolor The text color of menu lines 

$menuhottextcolor The text color of menu lines when hovered 

$menudisabledtextcolor The text color of disabled menu lines 

Events 

An evClick event is triggered when the main button area is pressed. In addition, for the 
JavaScript client only, the evOpenContextMenu and evExecuteContextMenu events 
are generated when the menu is pressed and in this case the pControlMenu event 
parameter is kTrue (when a Context menu is opened pControlMenu will be kFalse).  

JS Edit Control 
Input Masks 

Support for input masks has been added to JS Edit controls with the addition of the 
$inputmask property: this allows you to use a custom input mask string to control user 
input on a character level in data entry fields in a remote form. If the user enters an 
invalid character, the control will briefly become highlighted and the input will be 
rejected. For edit fields of character type, the data variable will contain mask 
characters. For number/integer fields, the data is the unmasked number value.  

As a consequence of adding $inputmask, there is a new system class #JSMASKS that 
stores the input masks for JS Edit controls for the library, and a new 
$javascriptinputmasks notation group.  

There are a number of differences between the existing Masked entry field on the thick 

client and the new input masks for JS Edit controls:  

Ç On the thick client, the user must complete the masked entry field before focus can 
leave the field. This is not the case with JS masked edit fields - fields can be left 
partially filled.  

Ç JS input masks do not support any of the 'control characters' which can be used on 
the thick client.  



Whatôs New in Omnis Studio 10.2 

42   

Ç The JS edit control does not have a $formatstring property (like the thick client 

masked entry field).  

Ç The JS edit control has two unique properties: $inputmaskguide and 
$maskvaluevalid.  

Ç JS input masks can be changed dynamically as the user types using the 

$processmask client method.  

Ç There is visual feedback when entering invalid characters in a masked JS edit field. 

$inputmask 

The value of $inputmask may contain a combination of fixed and special characters. 

Note that underscores cannot be used as these are used as placeholders.  

Special character Description 

# Any digit 

@ Any character 

a Any letter 

A Any uppercase letter 

n Alphanumeric 

N Alphanumeric, uppercase 

ñABC" Any character from list 

ñA-D" Any character from A to D inclusive 

\ (back slash) Escape character (next character is 
displayed literally, use to escape special mask 

characters, double quotes or backslash) 

$inputmaskguide 

The $inputmaskguide boolean property controls whether or not a guide is shown. If 
true, placeholder and non-placeholder mask characters are always displayed. If false, 
placeholder characters are hidden, and mask characters are only shown when the user 
reaches them as they type. The property is false by default.  

$maskvaluevalid 

The $maskvaluevalid property is a boolean, read only, runtime only property. A value of 

kTrue indicates that the field is completed, and therefore valid.  

$processmask 

A client method named $processmask can optionally be added to an edit control. This 
allows the mask to be changed as the user types. The method is called any time the 
value in the field changes, and receives a parameter pInput which contains the user 
input. Note that the user input parameter could contain anything as the event is sent 
before mask validation occurs (the mask needs to be updated before it can validate 
input). As a general use case, $processmask could be used to create the effect of 

optional characters.  

Horizontal padding 

When a library is converted to Studio 10.2, the $horzpadding property for all JS Edit 
controls will be set to 4 automatically if they were previously set to 0, which is the 
default for all new Edit controls; if $horzpadding is set to any other value it is not 

changed. After conversion, you can change the value of $horzpadding.  

Vertical padding 

The $vertpadding property has been added to the JS Edit control which allows you to 
add vertical padding to the text inside the controlôs border. The new property only 
applies when $issingleline=kFalse as single line edit controls are vertically centered.  



  JavaScript Components 

  43 

JS Date Picker 
Mode & Popup Style Properties 

There are two new properties controlling the style of the Date Picker control. The 
$datepickermode and $datepickerpopupstyle properties control the mode (style) and 
popup style (positioning) of the date picker displayed when a date is entered into an 
Edit field (also applies to data grid cells and columns).  

Ç $datepickermode  
controls the type of picker to be displayed, one of the following constants:  
kJSDatePickerModeAuto: Date picker type is assigned automatically based on 
$dateformat  
kJSDatePickerModeCalendar: calendar type is displayed  

kJSDatePickerModePicker: a picker type is displayed  

Ç $datepickerpopupstyle  
controls how the popup will be displayed, one of the following constants:  
kJSDatePickerPopupStyleAuto: Popup style will be determined by device type  
kJSDatePickerPopupStyleInline: Popup style will always be displayed adjacent to 
the control  
kJSDatePickerPopupStyleModal: Popup style will always be displayed modal  

(Note that Internet Explorer does not correctly display the modal type, and so falls back 

to inline on these clients.)  

The inline style picker will position itself underneath the parent control, but from the 
right so it is closer to the icon which opens it. If there is not enough space beneath the 
parent control, the picker will be placed above, where space permits.  

In addition, Data Grids have the new $datepickermode and $datepickerpopupstyle 
properties, as well as $columndatepickermode and $columndatepickerpopupstyle. The 
latter two work in the same way, but on the given column when $userdefined = true.  

JS Data Grid 
Tabbing through cells 

The property $tabthroughcells has been added to JS data grids to change the action of 
the tab key while the focus is on the grid; it is set to kFalse by default. If set to kTrue, 
tabbing from a cell which is not being edited selects the next cell, or Shift+tab selects 
the previous cell. In addition, setting $hcell or $vcell now triggers edit mode if 
$autoedit=kTrue.  

Column header height 

The JS Data grid has a new property, $columnheaderheight, that specifies the height in 
pixels of the column header area. If set to 0 (the default) the header height will be the 
same as $rowheight.  

Column header line breaks 

You can now create multi-line column headers in a JS Data grid using a line break. You 

can use \n in the text for $columnnames to create a line break.  

evCellValueChanged & pHorzCell 

The pHorzCell event parameter of evCellValueChanged now references the column of 
the grid control itself, rather than the column of the data list belonging to the data grid 
as in previous versions. This has consequences for grids in which $columndatacol is 

used to map columns and you may need to change your code accordingly.  

pDataColumnName 

A new event parameter pDataColumnName has been added to the JS Data Grid 
events evClick, evDoubleClick, evCellChanged, and evCellValueChanged. The new 
parameter contains the data list column name (or number) when the event is triggered. 



Whatôs New in Omnis Studio 10.2 

44   

This is useful when columns in the data list do not map directly to the columns of the 

form data grid (that is, if $columndatacol is used to set the column order.  

If the list column does not have a name, the parameter contains 'C1', 'C2', etc, so it can 
be used notationally. The value of the cell can be obtained with: 
iDataList.[pVertCell].[pDataColumnName].  

Open Filter Method 

The data grid has a new client-executed method $openfilter which can be called from 
$init to allow you to open the filter area in the grid when the form is opened.  

Ç $openfilter([bOpen])  
opens or closes the filter area if the grid has one, and returns kTrue if the operation 
was completed. bOpen: Use kTrue to open the filter area or kFalse to close it. 
Defaults to kTrue if unspecified.  

JS List Control 
Line Selection 

The behavior for multi-select lists has changed when selecting and de-selecting list 
lines and when the Shift key is pressed. The change applies to all lists including the 
standard JS List control, Data Grid, Tree list, and Native List, when multiple line 
selection is enabled.  

In addition, the $keyboardchangesline property now takes effect when $multipleselect 
is kTrue (Data Grid and Tree list only). In previous versions, when both properties were 
set to kTrue, $keyboardchangesline did not have any effect regardless of its state. This 
was so non-adjacent lines could be selected with the keyboard. This change allows 
multiple rows to be selected while also having the keyboard change the current line. To 
enable users to select non-adjacent lines with the keyboard, $keyboardchangesline 

can be set to kFalse.  

JS Device Control 
Multiple SMS recipients 

You can now send a SMS to multiple recipients by assigning a comma-separated list of 
phone numbers to $communicationaddress. For example:  
Do ci nst .$ objs .d evi ce.$co mmuni ca t io naddr ess .$ assi gn(  

  "0 123456789, 0987654321, 0192837465" )  

Remember that the Device control only works when it is contained in a JavaScript 

wrapper.  

Image Aspect Ratio 

The JS Device control has a new property, $imageaspect, to allow the aspect ratio of a 
photo to be specified; it only affects images taken with the kJSDeviceActionTakePhoto 
device action (not GetImage). This functionality is only available in the iOS and Android 
wrappers, version 3.1.0 & later; also note the minimum Android version is now API21 
(5.0, Lollipop).  

The $imageaspect property takes a floating number, indicating width divided by height. 
If set to 0, no aspect ratio will be enforced, and the standard camera application will be 
used for taking photos. If greater than zero, a custom camera view within the app will 
be used, which shows the preview stream in the specified aspect ratio, and an image of 
the specified aspect will be returned. A value of 1 will enforce a square image.  

The $imageaspect property can be used in conjunction with $imagemegapixel to take 
an image of specific dimensions, that is:  

$imageaspect = targetWidth / targetHeight 

$imagemegapixel = (targetWidth * targetHeight) / 1,000,000 

The device control also has a new client-executed method, $takephoto(iWidth, iHeight) 
to provide a shorthand way of taking a photo with specific dimensions.  



  JavaScript Components 

  45 

JS Droplist & Combo box 
$extraspace 

The $extraspace property has been added to both the JS Droplist and JS Combo box. 
The property is a number of pixels (>= 0) that adds extra space to the lines in the 
dropped list box. (Note $extraspace also applies to JS List control, Tree list, and 
Hyperlink controls.)  

If $extraspace is zero, the height of each row is the default height of the row content. If 
$extraspace is greater than zero, the height of each row is the font height + 
$extraspace.  

$borderstyle 
The $borderstyle property for Droplists, Combo boxes (and JS Edit controls) has been 
renamed to $inputborderstyle, and is a kJSInputBorderStyleé constant that controls 
the appearance of kJSborderDefault, and which specifies the appearance of the control 
border when the control has the focus.  

JS Complex Grid 
Scrollable footer 

The Complex Grid control can now include a scrollable footer section similar to the 
existing scrolling header section (this is also available in the window class complex grid 

control).  

To enable a scrollable horizontal footer, you need to set $showhorzfooter to true. The 
complex grid has the following properties to control the appearance of the footer:  

Ç $horzfooterheight 

The height of the grid horizontal footer 

Ç $horzfooterfillcolor 
The fill color for the grid horizontal footer 

Ç $horzfooterborder 

The border style for the grid horizontal footer 

Ç $horzfooterlinestyle 
The line style for the grid horizontal footer 

Resize Row Animation 

When you resize a row in a Complex Grid, you can now specify an animation type and 
duration for the resizing action. The method $setrowheight(...) now takes two additional 
optional parameters: an ease constant, such as kAnimationCurveEaseOut, and a 
duration in milliseconds for the animation.  

JS Tree Lists 
JS Tree lists have a new event, evExpandNode, which is fired after the user has 
expanded a node, every time that node is expanded (unlike evLoadNode which is only 
triggered if the node has no children). This applies to both dynamic and non-dynamic 
tree lists.  

You cannot use $nodedata to load data into the tree list with this new event, it is just a 
notification and includes the parameters pNodeIdent and pNodeTag. If evLoadNode 
and evExpandNode are both active, evLoadNode will be fired first, as evExpandNode 
is fired after the node is expanded.  

JS Button 
Border Appearance 

The JS Button control has a new property, $borderwidth, that specifies the border width 
in pixels (the default is 0 or no border). You can set the border color using 

$bordercolor.  



Whatôs New in Omnis Studio 10.2 

46   

Flat button style 

The style for all new buttons (and buttons in converted libraries) is now flat, so $isflat is 
set to true. In addition, if the value of $buttonborderradius in converted libraries is set to 
0, it will now be changed to the new default of 4; any other value will be retained on 
conversion.  

Disabled appearance 

The appearance for disabled buttons has been improved, that is, when $active 
becomes kfalse. If $isflat is kTrue (the default), the button back color will become 
transparent (if it isn't already) and the text color will take on the disabledText color. If 
$isflat is kFalse, the button back color will take on the disabled color and the button text 
color will take on the disabledText color.  

In addition, if $bordercolor for buttons is set to kColorDefault the color will match 
$textcolor. When disabled ($active = kFalse), the border will match the disabled text 
color to maintain a consistent disabled appearance.  

JS Bar & Pie Charts 
Theme Colors 

You can now specify theme colors and explicit RGB integer colors for JS Bar chart & 

Pie chart segments.  

The $colorlist runtime-only property can now contain kJSThemeColor... constants to 
allow you to match the colors in the current theme. In addition, you can specify an RGB 
integer using the rgb() function.  

Note you cannot use standard Omnis color constants (such as kRed, etc.) in this 
context, since these are taken as literal text on the client.  

Text and Axis Colors 

The $textcolor and $axiscolor properties have been added to Bar Charts (Pie charts 
had $textcolor in previous versions). Both controls now use theme colors for this 
$textcolor which applies to the color of the title, labels, axis text, and legend in the 
chart, where applicable.  

The $axiscolor property for a Bar chart applies to the color of the both axes lines, and 
the unit lines which run across the bar chart.  

When set to kColorDefault, both properties will set their color dynamically according to 
the color of $backcolor.  

In addition for Bar charts, when $showvalue=kTrue, the popup label will use $backcolor 
for the text and $textcolor for the background of the label so that it can be seen against 

the background of the control.  

JS Tab Control, JS Segmented & JS Page Control 
Current Tab, Segment & Page color 

The properties $currenttabindicatorcolor, $focusedsegmentindicatorcolor, and 
$currentpageindicatorcolor have been added to the JS Tab controls, JS Segmented, 
and JS Page Control respectively, which are colors to indicate the current tab, 

segment, or page.  

JS Popup Menu 
Line Height 

A new property $menulineheight has been added to remote forms to control the line 
height for all the menus in a remote form, including context menus and menus 
belonging to controls such as Popup, Tab strip and Splitbutton.  



  JavaScript Components 

  47 

For existing applications, the value of $menulineheight will be zero, meaning the font 
size will determine the line height, as previous versions. For new applications, this will 
be a touch-friendly value to give enough space for each menu option.  

JS Check Box, Radio Group & Switch 
Color properties have been added to the JS Check box, Radio group and Switch 
controls so you can set their colors; note these can be theme colours so will change 

with a change of theme.  

Ç $checkboxcolor 
Color for the Check box control, and check boxes when they appear in Lists, Data 
grids & Tree lists.  

Ç $radiobuttoncolor 
Color for the Radio group control.  

Ç $switchcolor 
The $switchcolor property specifies the color for the Switch control when it is 

switched on (set to value 1), assuming no on/off icons have been set.  

Event Method Validation 
Omnis now validates the event codes you have entered when adding or editing On 
event commands in the Code Editor. Therefore, Omnis will check to see if the event 
code is valid for the current object, and if not, it will flag it as an error.  

For remote forms, if the event is not specified in the $events property, Omnis will add it 
to $events automatically when editing a method named $event in a non-inherited object 
(Omnis displays a temporary status bar message when it does this).  

You can turn off this validation using the validateEventsForOnCommand entry in the 

methodEditor group of config.json; set it to false to turn off event method validation.  

Tab Order 
All JS components now have a $taborder property in design mode (which is read-only) 
which shows the resolved tab order within the form, taking into account container fields, 
such as paged panes.  

The context menu on a remote form includes the "Show $taborder" option (previously it 
was "Show $order"), so that you can see the value of $taborder for all controls on the 
form.  

You can still alter the tab order of the controls in a form by modifying $order for each 

control.  

The $inheritedorder property has been removed from the Property Manager for remote 
forms (it is still shown in the Notation Inspector for remote forms).  

This property is set to zero by default and you are recommended to keep it set to zero 

which means that the designed order from the base class will be maintained.  

Next Tab Object 

All JS Components now have a property $nexttabobject which allows you to override 
the default tab order set by the $order property for all the controls in a remote form. 
The $nexttabobject property allows you to specify the name ($name) of the control you 
want the end user to tab to after the current object, overriding the tab order set by 
$order. You should not overuse this property, as it does incur some overhead by 
setting up additional event listeners.  

Paged Pane 
The behavior of the evUserChangedPage event has been modified. When the Paged 
Pane is linked to a Tab bar control, the evUserChangedPage event is triggered in the 

paged pane control when a tab is clicked to change the pane.  



Whatôs New in Omnis Studio 10.2 

48   

Control-level Return Methods 
Support for control-level Return methods has been added. In previous versions, you 
were able to create a _return method in the remote form to return a value from the 
server to the client (you create a '$serverMethod_return' client-executed method in the 
form to receive the value returned from the server). Now you can create such return 
methods for controls (fields).  

If a client-executed method calls a server-executed method on a control, when 
execution returns to the client, Omnis will look for the ó$serverMethod_return' method 
on the control, and if not found it will look for the return method at the form level, as in 
previous versions.  

JS Control Variable Names 
The Property Manager now displays an error message when you try to assign an 
invalid data name property for a JS client object. This applies to $dataname as well as 
other similar properties such as $listname which require a variable.  

Property Values in Client Methods 
You can only read the value of a property in a JS client form/control instance when 
running in a client-executed method. The error reporting has been improved if you try 
to do this from a server-executed method. The improved error message when trying to 
read a remote form instance property on the server is now: "Cannot get the value of a 
remote form instance property when executing code on the server".  

  

JavaScript Forms 
The following new features and enhancements are for JavaScript Remote forms.  

Subforms 
Subform Dialogs 

Two new client commands have been added to remote forms to allow you to open a 
single subform as a modal dialog: subformdialogshow opens the modal subform 

dialog, and subformdialogclose closes the topmost subform dialog.  

The ñsubformdialogshowò command opens a single subform as a modal dialog. 

Do $cinst.$clientcommand("subformdialogshow ",row) 

Where row is row(classname, params, title, width, height, closeButton, resizable, 

maxButton, openMax). The parameters are as follows:  

Ç classname  
String, the name of the remoteform  

Ç params  

String, literals to pass to the subform  

Ç title  
String, the title of the modal dialog  

Ç width  
Integer 
the width of the dialog  

Ç height  
Integer, the height of the dialog  

Ç [closeButton]  
Boolean, defaults to true, show close button  

Ç [resizable]  
Boolean, defaults to false, if true allows resizing  



  JavaScript Forms 

  49 

Ç [maxButton]  
Boolean, defaults to false, if true shows maximize button (resizable must be set to 
true)  

Ç [openMax]  
Boolean, defaults to false, if true opens dialog in a maximized state (resizable must 

be set to true)  

This command generates a new subform set and adds one modal subform to it. The 
name of this set is internal only, and cannot be added to or removed from. Another 
modal subform dialog can be opened above the previous one by running subsequent 

calls, preventing access to the first one until the second is closed.  

The òsubformdialogcloseò command closes the topmost subform dialog. This 
command only works for subforms opened using the subformdialogshow command, 
and has no parameters as such modal dialogs must be closed in reverse order of them 

opening.  

Subform Dimensions List 

When you open a set of subforms in a subform set using the subformset_formadd 
client command, you can now pass dimensions for the subforms for each breakpoint in 
a responsive remote form; in previous versions you could only provide one set of 

dimensions.  

A list can now be passed instead of the single set of left, top, width, height parameters 
in the subform client commands providing values for as many breakpoints as required. 
This works in both the formlist contained within the "subformset_add" and the individual 
"subformset_formadd" client commands. The same method applies to both client 
commands, but the example below shows directly adding a form with 
"subformset_formadd":  
Do lDimList. $de f i ne(l Bre akpoint,l Left,l Top,l Wid th,lHeigh t)  

Do l Di mList . $add(310,1 0,1 0,2 00, 200)  

Do l DimList.$ add( 600, kSFScent er , kSFScent er , 300 ,3 00)  

Do lDi mLis t.$ add ( 1000,kSFSc enter, kSFScent er ,60 0, 600)  

Do $cin st . $cli ent command( 

  "s ubf or mset _form add",ro w(  

  cSetName,vUn iqu eI D, cPara ms,cTitle , l DimLis t ,i Modal))  

Note that the new dimensions list has replaced 4 separate parameters, and so has 
condensed the command to a minimum of 5 parameters (6 if passing a value for 
iModal). You can pass the parameter list accepted in previous versions or the new style 
list. However, this only works for responsive forms, whereas single and screen type 
forms must use the original set of parameters to avoid confusion.  

The client will use the value passed in lBreakpoint to assign the values to the correct 
breakpoint for the containing form. If the breakpoints do not match, then the values will 
be used from the next breakpoint down. For example, if you had the list of dimensions 
as defined above, but your form used the following breakpoints: 

310 - would use the values from 310 as they match 

590 - this is smaller than the next value of 600, so would again use the values from 310 

900 - this is smaller than the next value of 1000, so would use the values from 600 

1200 - this is greater than the values from 1000, so uses those values. 

$loadfinished method 

The $loadfinished method has been added to remote forms to allow you to check when 
all subforms of a form have been loaded. The client-executed method is called after all 
the subforms that belong to the parent remote form instance have finished loading and 
their $init methods have been called, so you could create a client method called 
$loadfinished to perform any actions you want after all subforms have loaded.  



Whatôs New in Omnis Studio 10.2 

50   

Control Menus 
The pControlMenu event parameter has been added to the evOpenContextMenu and 
evExecuteContextMenu events to distinguish between events generated by a Control 
menu or a Context menu opened when clicking on the control.  

All controls with a menu (Tab, Popup menu, and the new Split button) generate 
evOpenContextMenu and evExecuteContextMenu when using their own menus. To 
distinguish between Control menus and Context menus, a new boolean parameter, 
pControlMenu, has been added to both these events for all controls; pControlMenu is 
kTrue if the menu is a control menu, or kFalse if it is a context menu (JavaScript client 
only).  

The pControlMenu event parameter has been added to the evOpenContextMenu and 
evExecuteContextMenu events generated by the Split Button control to allow you to 
detect events in the Control menu.  

Form Layout Type 
When designing a remote form, if you change $layouttype to kLayoutTypeSingle, and 
the $resizemode property is set to kJSformResizeModeNone, then $resizemode will be 
set to kJSformResizeModeFull automatically to make it resizble.  

Remote Tasks: $order 
The $order property for remote tasks is not new but there was not an adequate 
description of the property in previous versions, so the property description and online 

help for $order of a remote task instance have both been updated, as follows.  

$order is an integer that uniquely identifies the remote task instance within the lifetime 
of the Omnis Server (since it was started). The value will not be re-used for a different 
remote task until the Omnis Server is restarted. Also, values are unlikely to be 

incremental.  

PDF Printing 
In previous versions, the Python files that are used to print a report to PDF were 
discarded. A new option kDevOmnisPDFParamKeepScriptAndPNGs has been added 
for the PDF device to allow you to keep the Python script and PNGs after printing to 
PDF. Use this constant with $cdevice.$setparam as the parameter number of the keep 
Python script and PNGs device parameter.  

Runtime & Server Logging 
There is a new Library preference, $clib.$prefs.$alwayslog (defaults to kFalse) to allow 
you to log messages in the Runtime and Server versions of Omnis to help you debug 
your code. When kTrue, the Send to trace log command and tracelog() function always 
write non-diagnostic messages to the trace log (overriding the check for debuggable 
code). In previous versions, the trace log recorded such messages in the Development 
version only.  

  



  Method Editor 

  51 

Method Editor 
The following new features and enhancements are for the Method Editor and Code 

Editor.  

Code Folding 
The Code Editor now supports Code folding which means you can fold and unfold 
(collapse and expand) blocks of code in order to assist with readability and code 
manipulation in general. If a code block can be folded, a ó-ó icon appears in the margin 
at the start of the block: when a block has been folded a ó+ô icon is shown next to the 
first line of the block, and directly under this is shown a ñbadgeò (an ellipsis icon) 
representing the hidden code content.  

The Code Editor shows a fold icon ( ) in the left margin which shows that a code block 
can be folded: you can click on the icon to fold the block, and the icon will toggle to 
show an unfold icon ( ) to show that the block can be unfolded. For example, this is a 
code line before code folding:  

 

When the mouse is over the fold icon, Omnis highlights the block that will be folded, for 

example:  

 

After you have clicked the fold icon, and the code has been folded, the content is 
shown as a badge (ellipsis) representing the content of the folded block:  

 

When the mouse is over the badge icon, Omnis displays a tooltip to show its content 
(this is like the method content tooltips already in Studio 10.1), but note that this tooltip 
is always displayed, irrespective of the Show Method Content Tips option. For 
example:  

 

Just like method content tips, pressing the Shift key while the tooltip is displayed locks 
it in place until you remove the Shift key and move the mouse away. You can select the 
text in the tooltip and copy it to the clipboard.  

You can also press the Control (Windows) or Command (macOS) key while the mouse 
is over a fold or unfold icon. In this case, if the command has multiple blocks that can 



Whatôs New in Omnis Studio 10.2 

52   

be folded or unfolded, Omnis highlights all the affected blocks, and pressing the fold or 
unfold icon while all blocks are highlighted opens or closes all the highlighted blocks.  
For example:  

 

Code folding is only available in a block when there are at least two method lines: for a 
block that has a single line only, folding is not enabled for the block, so the folding 

icons are not shown, and the options in the folding menu are disabled.  

Which Commands can be folded? 

The following Omnis commands can be folded:  

Ç All If commands, folded until the next Else, Else If or End If command in the same 
block. 

Ç Else, folded until the next End If command in the same block. 

Ç All Else If commands, folded until the next Else, Else If or End If command in the 
same block. 

Ç All While commands, folded until the terminating End While command of the block. 

Ç Both For commands, folded until the terminating End For command of the block. 

Ç Repeat, folded until the terminating Untilé command of the block. 

Ç Switch, folded until the terminating End Switch command of the block. 

Ç Case, folded until the next Case, Default or End Switch command in the same 

block. 

Ç Default, folded until the next Case, Default or End Switch command in the same 
block. 

Ç Begin reversible block, folded until the terminating End reversible block command 

of the block. 

Ç Begin critical block, folded until the terminating End critical block command of the 
block. 

Ç On and On default, folded until the next On or On default command, or the end of 

the method if there is no such command.  

Code folding menu 

In addition to using the fold or unfold icons in the left margin, you can use the 
fold/unfold options on a new Code folding menu, that can be used when the code editor 
has the focus. In this case, most of the menu items apply to the block containing the 

single line of code that is currently selected.  

The Code folding menu is present on the Modify menu of the Method Editor and the 
Remote Debugger window for a remote debugger edit session. For a remote debugger 
debug session, there is a new Code menu on the toolbar, containing the Code folding 

menu commands. 

The menu commands are:  

Menu command Description 

Fold Block Equivalent to pressing the Fold icon to fold the block. 



  Method Editor 

  53 

Fold Block And Related 
Blocks 

Equivalent to pressing the Fold icon while holding the Control 
(Windows) or Command (macOS) key to fold the block and 
other related blocks that can be folded.  

Unfold Block Equivalent to pressing the Unfold icon to unfold the block.  

Unfold Block And 
Related Blocks 

Equivalent to pressing the Unfold icon while holding the 
Control (Windows) or Command (macOS) key to unfold the 
block and other related blocks that can be unfolded.  

Unfold All Blocks Unfolds all folded blocks in the method.  

The menu items also have shortcuts: 

Windows macOS 

  

You can configure the keys for these shortcuts using the keys preference item, in the 

methodEditorAndRemoteDebugger group (in the keys.json file):  

Preference item Key(s) 

codeFold Opt + Up Arrow 

codeFoldRelated Cmnd + Opt + Up Arrow 

codeUnfold Opt + Down Arrow 

codeUnfoldAll Cmnd + Opt + O 

codeUnfoldRelated Cmnd + Opt + Down Arrow 

Selecting Code using the pointer 

You can select the badge representing a code folded block, either using the keyboard 
or using the mouse. When the badge is selected, the content of the block it represents 
is selected. In addition, double clicking on the badge selects its content. 

When Omnis needs to select a line in a folded block, e.g. when hitting a breakpoint, or 
clicking on a stack list entry, the editor automatically unfolds the block (and any 
containing blocks) in order to display the line correctly.  

Entry Behavior 

As soon as an edit would affect a folded block, Omnis automatically unfolds the block 

(and any containing blocks) before applying the edit.  

Saving the Code Folding State 

Omnis stores the code folding state with the method.  

When using the method editor, the state is saved back to the class with the method, 
provided that the editor is not operating in read-only mode. In the latter case, you can 
still fold or unfold methods in a read-only class, but changes to the code folding state 
are not saved to the class. 

When using the remote debugger, changes to the code folding state are saved locally 
to the cache of methods loaded from the server. However, once you re-open the debug 
session, these changes are lost; the one exception to this is any code folding that has 
been applied while editing a method in a remote debug edit session.  



Whatôs New in Omnis Studio 10.2 

54   

Therefore, you should consider code folding a semi-permanent state, since as soon as 
Omnis needs to display the contents of a folded block for some reason, it will open the 
block.  

JSON Export 

When Omnis exports a method as part of JSON export, it now appends the string $é 
to the inline comment of commands that correspond to a code folded block. This allows 
Omnis to regenerate the code folding state of the method when it imports the class 
JSON.  

Word Wrapping 
Long lines of code displayed in the Code Editor will now wrap onto the next line 
automatically, and the text that wraps is drawn with an indent to make it clear that it 
belongs to the wrapped line (you can disable this behavior, so code lines are not 
wrapped, which corresponds to behavior in previous versions).  

There is a new menu command, Word Wrap, on the View menu of the method editor 
and remote debugger windows to toggle Word wrapping; the option is turned on by 
default, and the state is saved with the window setup. When Word Wrap is enabled 
there is no horizontal scrollbar in the code editor window and long code lines wrap to 
the next line at suitable break characters, or they wrap if there is no break character.  

For method content tooltips, word wrapping is always on, irrespective of the setting in 

the window for which the tooltip is being generated.  

Inline comment wrapping & color 

When word wrap is turned on and the Code editor encounters an inline comment, it 
tries to shrink the gap between the end of the code line and the inline comment to 
avoid wrapping the code line if possible: if the inline comment is still too long to fit onto 

the line it will wrap onto the next line, under the code line and is displayed indented.  

As a result of these changes to the wrapping behavior of inline comments, their default 
color has been changed to gray for all of the themes (so they are different to code).  

Method Search 
There is a new Search or filter option in the method editor tree (method list) in the 
Method Editor (and Remote Debugger) to allow you to find specific named methods, or 
methods that start with or contain specific characters. As you type in the search box, 
the method list updates automatically to highlight the method names that match or 
contain the search (in currently expanded nodes only). These lines draw in a new 
colour, treelinesmatchingsearchcolor in the IDEMethodEditor section of 
appearance.json. The editor selects the first matching method for the search and 
shows its contents. While the search box has the focus, you can use the find and 
replace menu of the method editor (or its find next and find previous shortcuts) to select 
the next or previous matching method. There is also a new context menu item for the 
method list called "Select Found Methods", which selects all matching methods. There 
is a new menu option óSearch Method Treeô on the Find and Replace menu that puts 
the cursor in the method search box, which also has a keyboard shortcut named 
"searchMethodTree" that appears in keys.json - note that the default disable all 
breakpoints shortcut has changed as a result of this change.  

The savePropertySearchDelay item in the ide section of the config.json file has been 
renamed saveSearchDelay, and now applies to both property and method name 

searches.  

There is a new item on the View menu, "Show Method Tree Search Box", that allows 
you to toggle the method search box (the default is enabled). The state is saved with 
the window setup.  



  Method Editor 

  55 

Showing Built-in Class Methods 
It is now possible to view the built-in methods for a class in the code editor, making it 
easier to view their parameters and override them, if required. There is a new option in 
the View menu in the method editor, Show Built-in Class Methods, which allows you 
to toggle the option. When checked (the default), the class methods node in the 
method name list includes the built-in class methods for instances of the class type 
being edited, including $control, $construct, and $destruct ï this is the case for remote 
forms, remote tasks, window classes, and other classes that can be instantiated. In 
addition, $canclose will be shown for the relevant instance types, while $select and 
$fetch are shown for table classes. Many other methods could be shown depending on 
the class type, including $filereadcomplete, $init, $term, $sfsorder, $sfscanclose, 
$pushed, $sqldone, $suspended, $resumed, $loadfinished, $previewurlclicked, 
$pdfcomplete.  

The built-in methods behave in a similar way to inherited methods, that is, you can 
override them, or set them back to using the default, by using "Built-in Method..." option 
from the menus (this is analogous to using Inherit Method... for an overridden inherited 
method). When you override a built-in method, Omnis pre-defines the parameters of 
the new method to match those required by the built-in method.  

The names of the built-in class methods are shown in the tree using the no set property 
color (this is consistent with how built-in method names are drawn in the Interface 
Manager).  

There is a new theme member overriddenbuiltinmethodstyle that can be used to 
give the name of an overridden built-in method a different text style when it is shown in 
the tree. This new theme member is in the IDEmethodEditor group of the 
appearance.json file, and can have the same possible values as 
overriddenmethodstyle; it defaults to 2 (italic).  

Remote Debugger 
You can now edit methods and code that you are debugging in the Remote Debugger. 
In Studio 10.0 & 10.1 you could debug and step through code on a remote server app, 
but you could not make any changes to the code: however, in this version you are able 
to make limited changes to your code.  

The Remote Debugger client now has two options for opening a session: either Open 
Debug Session, or Open Edit Session. A ñDebug sessionò works just like 10.1, so it 
can be used for remote debugging.  

An ñEdit sessionò allows you to edit methods via the remote debug interface window, 
that is, you can apply edits, and you can create new variables via the fix error dialog. 
Note that until you try to save the method back to the server, you will not know for sure 
if the method will be accepted, since only part of the library is available when editing - 
you can use instance, class, local, task and parameter variables (from the class or a 
superclass) or any file class variable in a file class used by the method. Using variables 
from other file classes, or using notation, functions or commands available on the 
server (but not the client), will be displayed as an error if you edit a line containing 
something only available on the server. However, you can still save the method 

successfully in this case.  

In edit mode, methods default to read-only in the remote debug window. You need to 
explicitly press "edit method" in the toolbar to edit the method, after which you cannot 
do anything else with the window until you press Save or Cancel or close the window.  

Remote Debug Menu 

There is a new Omnis preference $showremotedebugmenu ($root.$prefs) to control 
whether or not the Remote Debug menu is displayed. It defaults to kFalse, and is not 
saved. Therefore, if you want a library to display the Remote Debug menu, you must 
assign kTrue to this property in your startup code.  



Whatôs New in Omnis Studio 10.2 

56   

Server Port 

The default server port for the remote debugger ("debugPort" in the config file) is now 

6102.  

Resolved Name Colors 
New syntax colors and styles have been added to the Code Editor to highlight field 
names and parameters that are ñresolvedò or ñunresolvedò for certain commands that 
reference field names and notation group members.  

The Code Editor can now optionally (defaults to on) display names it has resolved 
using a new resolvednamecolor and resolvednamestyle, and names it has failed to 
resolve using unresolvednamecolor and unresolvednamestyle.   

If useresolvednamecolorsandstyles is true (all members are in the IDEmethodSyntax 
section of appearance.json) the code editor tries to resolve certain names, and if 
successful draws them using the resolvedname color and style; if unsuccessful it draws 
them using the unresolvedname color and style.  

Examples of where this applies are the parameters of the Redraw command, Queue 
set current field command, names in notation such as $cinst.$objs.name, and method 
names in calls such as $cinst.$mymethod(). 

If a name is drawn using the unresolvedname color and style it does not necessarily 
mean there is an issue, e.g. it could be a notation reference such as $cinst.$objs.name, 

where the object is dynamically added and named at runtime.  

Appearance Colors 
There are some new colors in the Code Editor, defined in the IDEMethodEditor section 
of appearance.json file (and included in the theme files):  

Ç codeassistantpopupcolor 

The background color of the Code Assistant popup window.  

Ç treelinesmatchingsearchcolor 
The background color of unselected method editor tree lines that match the current 
method search.  

Ç methodeditorcodeleftmarginbackgroundcolor 
The background color of the left margin of the code editor (where the Go point and 
breakpoints are shown).  

Ç overriddenbuiltinmethodstyle 

The background color of an overridden built-in method in the method list  

Ç executionpositioncolor  
lines are drawn above and below the Go point code line and Call stack return lines 
using the new color  

Ç methodeditorcodereadonlybackgroundcolor  
background color showing that a class is read-only and therefore its methods 
cannot be edited  

Ç styledbadgebackgroundcolor and styledbadgetextcolor 
The background color and text color of badges drawn in styled text in the Code 
Folding in the Code Editor, and defined in the IDEGeneral section of 
appearance.json. A badge is also shown on the Trace Log node of the Studio 
Browser tree, to show the number of trace log lines.  

Panel Popup Menu 
The Panel Popup menu, previously underneath the Code Editor area, has been moved 
to the lower left corner of the Method Editor window, below the method name list, but 
otherwise the buttons perform the same action.  



  Method Editor 

  57 

 

The equivalent options are on a new hierarchical menu called Bottom Panel on the 
View menu in the Code Editor.  

 

Save Image in Debugger 
You can now save an image from the debug variable panel in the Code editor using a 
new Save picture button (folder icon). The new button is available when viewing image 
data in the debug variable panel, in the modify tool strip to the right of the image.  

 

The Save picture button is enabled when not modifying the variable value, and when 
the debugger recognizes a JPEG, GIF or PNG (the latter includes shared pictures 
stored as PNG, in which case the saved image is a PNG without the shared picture 
header).  

The new button uses the binaryEditOperations keyboard shortcut.  

To line 
You can now Alt-click in the left margin of the Code Editor to execute the debug 
command "To line" provided that code is executing.  

Do and Quit method commands 
Normally, all commands matching the first typed character appear in the Code 
Assistant list, but you can limit or change which commands are shown, or selected by 
default if there is only one matching command, by enabling the Use Minimum 
Lengths option on the Filter Commands submenu (note the state of this option is 
saved in the Save Window Setup). This option is now enabled by default, meaning that 
the Do command will be selected by default when you type 'D' (rather than the Default 
command), and Quit method will be selected by default when you type 'Q' (rather than 

the Queue commands).  

Variable tips 
Precedence is now given to variables over functions when generating tooltips for the 
Code Editor, for example, when a variable name is the same as a function name 
(although this is generally not recommended).  



Whatôs New in Omnis Studio 10.2 

58   

Documentation tab 
You can now change the width of the fields on the documentation tab in Code Editor by 

dragging their borders.  

The positions are not saved, and will revert to equal distribution when resizing the code 
editor or changing method.  

Boolean Variables 
Omnis no longer treats empty and false as two different values of Boolean variables, 
when displaying them in the debugger. Therefore the debugger variable panel, variable 
tooltips, variable context menu and variable window now all display and treat empty as 
False or NO as appropriate.  

Copy Lines 
There is a new option in the Code Editor context menu, Copy Lines, to allow you to 
copy the complete code in the current line (the line containing the caret), or all 
complete lines in the current selection.  

Select Object 
A search box has been added to the Select Object dialog (opened when you select the 
subtype of an object or object reference variable). A Search box has also been added 

to Set Superclass dialog.  

Sta: command and Square Brackets 
In previous versions, there was a problem entering quoted square bracket expressions 
in the Sta: command, which has been fixed in this version, but as a result of the fix, the 
close square bracket (]) is now not added automatically when editing a Sta: command.  

When you split a text block command parameter using Return (carriage return) the 
ñSta:ò command prefix is now inserted into the text block automatically.  

Text: and parenthesis 
In previous versions, the Text: command with just an open bracket ( as its parameter 
would not tokenize and caused an error. Therefore, the way the Code Editor handles ( 

at the end of a code line has been modified.  

If Omnis encounters ( at the end of a command line, it prompts for options (Carriage 
return etc). If there is another character after the (, without a trailing comma, Omnis 
stops looking for options, and treats the characters as text. This leaves the special 
case of ( on its own at the end of the text. You can enter this using square bracket 
notation with a constant [kOpenParen]. There is also a new kCloseParen constant.  

Omnis Help 
The behavior of the inline Omnis Help system after pressing F1 or using the Help menu 
while using the new Code Editor has been improved. The new behavior is as follows:  

1. If no text is selected in the Code Editor, it tries to obtain the text from the syntax 
item containing the caret - if there is nothing useful, no help will be displayed, 
otherwise it will pass the text for the syntax item to the help system, e.g. 
óCalculateô for a Calculate command when the caret is in the command name.  

2. If some text is selected, and all selected text is on a single line, the editor 
passes the selected text to the Help system. If the selected text spans lines, no 
help will be displayed. 

After performing 1 or 2, the Help system opens. If the text passed to the Help system 
uniquely identifies a single help page, that help page is displayed. Otherwise, the help 

window opens at the search tab, searching for the text passed to the Help system.  



  MultiProcess Server 

  59 

Help for Built-in Functions 
In previous versions, the Code Assistant displayed a short text description for built-in 
functions, but now the full help page for the function is shown. There is a new entry 
useOmnisHelpPagesForFunctionHelp in the codeAssistant section of config.json which 
you can set to control this behavior.  

If a help page does not exist for the function, or useOmnisHelpPagesForFunctionHelp 

is set to false, the code assistant reverts to showing the text description.  

Auto tab: Table instance data 
There is a new entry "Table instance data" at the start of the Auto tab when debugging 
code in a table instance. Simple references like $cinst.name will show in the Auto tab, 
when name is not a variable in the normal variable scopes, e.g. a column in a row in a 

table instance.  

  

MultiProcess Server 
Under normal operation, the multi-threaded Omnis Server does not take full advantage 
of multi-core processors, because it uses a time-slicing model that single threads the 
execution of Omnis code in all situations, other than when some sort of external call 
(e.g. a DAM call) is in progress. The concept of the MultiProcess Server (MPS) for the 
Linux Headless server has been designed to eliminate this short-coming and deliver 
significant performance improvements in your applications, by using a multiprocess 

rather than multithreaded server model.  

When using the MPS in the Omnis Linux Headless Server:  

Ç There is a single main server process that receives requests from clients.  

Ç There is a separate child process for each client, represented by a single remote 

task.  

The main server process passes the request to a child process which executes the 
request. The child process then passes its response back to the main process, which 
then sends the response to the client.  

Each child process is created using a forking system; however, the server is 
implemented so that when a child process becomes free (because its remote task 
destructs), it can be added to a pool of free child processes, ready to be associated 
with a new remote task. This greatly improves performance.  

One of the main features of the new MPS is that it can be plugged into an existing 
server configuration, and it will still work with the load sharing process; in other words, 
it still has exactly the same interface via its server port.  

Another major advantage of using the MPS is that since execution is isolated to a 
single client per process, any problem in the child process (a crash perhaps), will only 
result in a single client receiving an error, and the server will continue running.  

With the implementation of the MPS, there is some new functionality and some 
changes to existing functionality, with regards to opening libraries, and the way class 

data is cached, which are described below.  

Configuration 
To use the MultiProcess Server (MPS), you need to add (or enable) some new entries 
in the ñserverò section of the server configuration file (config.json) for the Linux 
Headless Server. The new entries are:  

Ç multiProcess 
When multiProcess is true, the Linux Headless Server will start up in multiprocess 



Whatôs New in Omnis Studio 10.2 

60   

mode; in this case, the entries start, stacks and timeslice in the server section of 

config.json are ignored as they are not relevant.  

Ç maxChildProcesses  
is the maximum number of child processes.  

Ç maxFreeChildProcesses  

is the maximum number of free child processes (not associated with a remote task).  

The new options are written to the server section of config.json like this:  
  
    "s er ver" : {  

         ñmult i Pr oces sò: t ru e 

         ñmaxChi l dPr ocesse sò:  c,  

         ñmaxFr eeChi ld Pro cessesò,f  

    } ,  

 

In addition, the headless server in all its variants (single-threaded, multi-threaded and 
multi-process) supports some new entries in the server section of config.json that 
provide some control over reading requests from a client:  

 
         "time out Reads" :  tru e,  

         " r eadTi meou t " :  s  

 

These entries indicate if the server will timeout a connection from a client if the 
complete request is not received in readTimeout seconds.  

Configuration files 

Child processes never write to the files omnis.cfg and config.json.  

Libraries 
The MPS starts up just like the normal headless server. As such, it opens libraries in 
the startup folder, and constructs their startup tasks. There are however some rules 
that need to be followed, because of the way the forking process works:  

Ç No DAM connections can be left open after the startup task constructors have run. 

Ç No files opened by FileOps or other externals should be left open after the startup 
task constructors have run. This is because their file descriptors will be shared by 
each child process, because of how the forking process works. 

Ç A child process can only write to a library that it has opened or created itself (this is 
opened with exclusive access by the child process). If the child process attempts to 
save a class to a library it did not open or create, Omnis ignores the error and 
returns success rather than an error code. 

Ç A child process can only close a library that it has opened or created itself. 

Ç osadmin cannot open and close libraries in the MPS.  

Internally, when the forking occurs, the child process closes and re-opens the file 
descriptor (read-only, shared) for all open library files, since the otherwise shared file 
descriptor with the main process has a common shared file offset. Additionally, byte 
range locking calls in the child become no-ops.  

Classes 
As part of startup of the MPS, Omnis caches all class data from all open startup 
libraries in memory. This allows the class data to be immediately available to a child 
process after it is created using the forking process. As stated earlier, you cannot write 
to the startup libraries. Therefore, you should not modify classes belonging to these 



  MultiProcess Server 

  61 

libraries in a child process, since the child process will typically be used for many 

remote task instances during its lifetime. However, this is not enforced.  

Commands 
You cannot use the following commands in the MPS:  

Ç Start server and Stop server.  

Ç Set timer method and Clear timer method.  

All of the above generate the error 125446 (cannot use this command, function, or 
notation, in the multi-process server).  

You cannot use the command Quit Omnis in a child process of the MPS. Attempting 
this generates the error 125437 (cannot use this command, function, or notation, when 

running in a child process in the multi-process server). 

Finally, the commands Begin critical block and End critical block have no effect in the 
MPS. This is because each child process handles a single remote task.  

New sys() functions 
There are two new sys() functions:  

Ç sys(243) returns true if and only if Omnis is running in MPS mode.  

Ç sys(242) returns the child process ID, a character string that uniquely identifies the 
child process that is currently running. When the method is not running in the MPS, 
or not running in a child process, this has the value ñ0ò.  

sys(242) can be used to identify the child process that is to process a request from a 
client: see the section ñUsing The Same Child Processò later in this document.  

Process init method ($processinit) 
When the MPS creates a new child process via the forking process, the child process 
runs the $processinit() custom method (if present) in the startup task of each open 
startup library. You can use $processinit() to carry out any initialization required to set 
up the environment in which all remote tasks handled by the child process will run.  

Database Connections 
Each child process has its own SQL database connections. You could use 
$processinit(), for example, to create a server pool containing a single database 

connection, that you can then use for all remote tasks that the child process handles.  

Remote Task Methods 
$maxusers 

The MPS does not support the $maxusers property of a remote task.  

$sendall() 

Due to its multi-process architecture, the MPS does not support notation such as 
$iremotetasks.$sendall(), because if you execute this in a child process, it will only 

apply to the currently executing remote task.  

To overcome this, Omnis now includes (for all platforms, and all variants of server: 
single-threaded, multi-threaded and MPS), some new notation that allows you to 
ñbroadcastò a message to all remote tasks, including those running in another child 

process in the MPS.  

Sending messages to Remote task instances using $broadcast() 

There is a new method of the $iremotetasks group of remote task instances called 
$broadcast() that can be used to send or ñbroadcastò a message via a public method to 
all task instances; its syntax is:  
















































































































































































































































































































































