

What’s New in
Omnis Studio 12

Omnis Software
October 2025

76-102025-01

The software this document describes is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a
retrieval system or translated into any language in any form by any means without the written permission of Omnis
Software.

© Omnis Software, and its licensors 2025. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2025 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Specifically, this product uses Json-smart published under Apache License 2.0
(http://www.apache.org/licenses/LICENSE-2.0)

© 2001-2025 Python Software Foundation; All Rights Reserved.

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT
license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark
of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2025 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

Portions Copyright (c) 1996-2025, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

http://kishikawakatsumi.com/

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL .. 4

SOFTWARE SUPPORT, COMPATIBILITY AND CONVERSION ISSUES 5
Library and Datafile Conversion ... 5
Omnis Studio Licensing ... 5
oXML ... 5

WHAT’S NEW IN OMNIS STUDIO 12 REVISION 42449 6

LICENSING AND ACTIVATION .. 6
JAVASCRIPT REMOTE FORMS .. 7

Subform Palettes ... 7
Return Values Using a Promise ... 8
Subform Sets ... 8

JAVASCRIPT COMPONENTS ... 9
Data Grid Control ... 9
Drag and Drop ... 9
Tree List Control .. 9
Toolbar Control .. 10
Rich Text Editor ... 10
Markdown Control .. 10
Segmented Bar Control .. 10
Label Object ... 10

LIBRARIES AND CLASSES ... 11
Omnis Studio Data Types .. 11

OMNIS STUDIO ENVIRONMENT ... 11
User Components Library .. 11
Keyboard Shortcuts.. 12

WINDOW COMPONENTS .. 12
Writing Tools and Image Playground 12
OBrowser ... 14
FishEye Control ... 14

SQL CLASSES .. 15
Table Instance Notation ... 15

OW3 WORKER OBJECTS ... 15
HTTP Worker ... 15
OAUTH2 Worker .. 16
SMTP Worker .. 16
OW3.$createmimemessage() .. 17

OMNIS STUDIO VCS.. 18
Time Zones (Postgres) ... 18
VCS API ... 18

FUNCTIONS .. 19
OIMAGE.$crop() .. 19
sys() ... 19
join() ... 19

About This Manual

4

About This Manual
This document describes the new features and enhancements in Omnis Studio 12.
See the Studio Now tab in the Studio Browser for details of bug fixes in this revision.

See the Install.txt file to find out System Requirements for running the Development
and Server versions of Omnis Studio 12.

NOTE: Where a new feature or an enhancement relates to an Enhancement Request
or Customer reported fault, the fault reference is included to enable you to track your
own ERs and reported faults.

 About This Manual

 5

Software Support, Compatibility and
Conversion Issues

The following section contains issues regarding software support, compatibility and
conversion in Omnis Studio 12.

Library and Datafile Conversion
Converting 11.x Libraries

All Omnis Studio 11.X or earlier libraries need to be converted to run in Omnis Studio

12.X. ONCE A STUDIO 11.X or 10.X LIBRARY HAS BEEN OPENED WITH
OMNIS STUDIO 12.X IT CANNOT BE OPENED WITH AN EARLIER VERSION
– THE CONVERSION PROCESS IS IRREVERSIBLE.

Converting 8.x or earlier Libraries

ALL VERSIONS OF OMNIS STUDIO 12.X WILL CONVERT EXISTING
VERSION 8.1.X, 8.0.X, 6.1.X, 6.0.X AND 5.X LIBRARIES – THE
CONVERSION PROCESS IS IRREVERSIBLE.

DISCLAIMER: OMNIS SOFTWARE LTD. DISCLAIMS ANY RESPONSIBILITY FOR, OR LIABILITY

RELATED TO, SOFTWARE OBTAINED THROUGH ANY CHANNEL. IN NO EVENT WILL OMNIS

SOFTWARE BE LIABLE FOR ANY INDIRECT, PUNITIVE, SPECIAL, INCIDENTAL OR

CONSEQUENTIAL DAMAGES HOWEVER THEY MAY ARISE AND EVEN IF WE HAVE BEEN

PREVIOUSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Omnis Studio Licensing
The way Omnis Studio is licensed in version 12 has changed. Please see the section
‘Licensing and Activation‘ below, or for more information see the 'Licensing and
Activation' document (pdf) accompanying this release, under the Studio NOW panel >
Documentation section.

You will require a new software license to run Omnis Studio 12. Contact your local
sales office to buy a license or obtain an upgrade license under your current support
program; go to the Contacts page on the Omnis Studio website: www.omnis.net

oXML
Various third-party libraries used in the Omnis Studio oXML external component have
been updated. (Revision 42271, ST/EC/1962)

❑ xerces (parsing and manipulating XML data) updated to 3.3.0

❑ ws (WebSocket library) updated to 8.18.3

❑ pbkdf2 (authentication) updated to 3.1.3

http://www.omnis.net/

What’s New in Omnis Studio 12 Revision 42449

6

What’s New in Omnis Studio
12 Revision 42449

The following enhancements have been added to Omnis Studio 12 Revision 42449.
See the Studio Now panel in the Studio Browser for information about faults fixed in
this release and links to the online docs.

Licensing and Activation
The way Omnis Studio is licensed in version 12 has changed, as we move from
‘lifetime’ license types to subscription-based licensing. Implementing online licensing
and activation offers a range of benefits for you as developers when deploying your
applications, including:

❑ License validation ensures only authorized users can use your software.

❑ Activation keys tied to specific devices or accounts reduce unauthorized
distribution.

❑ Supports tracking of license usage, activations, and expirations.

❑ Allows deactivation or reallocation of licenses when needed.

❑ Helps enforce compliance with terms of service or usage limits.

When you first start Omnis Studio Professional Edition you no longer enter a serial
number, rather you must Activate your software license to use Omnis Studio – the
activation process requires that you have to be connected to the internet and create
your own Omnis Studio ID (although offline activation is available in special cases
where end user computers are never connected to the internet).

Similarly, activation is required for Desktop User licenses (these were called Runtime
or Client licenses) and App Server deployment licenses, although activation ‘tickets’
can be generated and embedded into your deployment software to remove the need
for end users to activate your software.

Software Development Licenses can be managed online in a new Licensing
Dashboard at: dashboard.omnis.net, as well as Desktop and Server deployment
licenses.

Please read the ‘Omnis Studio Licensing and Activation’ document (pdf) for further
information about the new licensing and activation in Omnis Studio, which is available
under the Studio Now > Documentation option in the Studio Browser.

https://dashboard.omnis.net/

 JavaScript Remote Forms

 7

JavaScript Remote Forms
Subform Palettes
Pointing a Subform Palette to a sub-element

You now have greater control over the target of a Subform Palette dialog when pointing
at more complex controls, for example, a Data grid where you can point to a specific
line or cell in the grid. (Revision 42175, ST/JS/3611)

For controls that contain sub-elements, such as lists or grids, the subform palette
window can be positioned relative to a particular item or line within the control rather
than to the control itself. This is achieved by adding a selector to the control name in
cControl, separated by a colon (:), to determine the target sub-element or line
(cControl is used in the subformpaletteshow client command to point the subform
palette at a control).

For example, for a Data Grid control, the subform palette could point at a row in the
grid with the selector comprising a rowSelector only, this being either a row number or
a search term such as “Price=299.99". The corresponding cControl string would be
something like: “DataGrid:3” to target row 3 of the grid, or “DataGrid:Price=299.99" to
target the row whose Price value is “299.99”.

Additionally, the subform palette could point at a specific grid cell, with the selector
being a data column number or name (the columnSelector), followed by a dot then the
rowSelector. The corresponding cControl string would be something like:
“DataGrid:Product.3” to target the product cell in row 3 of the grid, or
“DataGrid:Product.Price=299.99" to target the product cell of the row whose Price
value is “299.99”.

The selector syntax for each of the controls that have sub-elements is as follows:

❑ Complex Grid
[targetSelector.]<rowSelector> where targetSelector is the name of a control within
the complex grid, and rowSelector is a number or search term

❑ Data Grid
[<column number or name>.]<rowSelector> where rowSelector is a number or
search term

❑ List
<rowSelector> which is a number or search term indicating the target line in the list

❑ Native List
<rowSelector> which can be of the form:
"5" to target row 5 of a flat list. or "g2:5" to target row 5 of group 2 in a grouped list.
"myCol=Something" to target the first row where the 'myCol' column has a value of
"Something".
For grouped lists, use "g2:myCol=Something"

❑ Segmented Bar
The selector is the number of the target segment

❑ Tab Bar
The selector is the number of the target tab

❑ Tile Grid
[targetSelector.]<rowSelector> where targetSelector is the string “button". If the
targetSelector is absent the tile will be pointed at. If it is present, the button of the
tile will be pointed at. The rowSelector is a number or search term

❑ Toolbar
The selector is the number of the target toolbar item

❑ Tree List
A Tree List allows for a subform palette to target an individual node provided it has

What’s New in Omnis Studio 12 Revision 42449

8

already been opened, otherwise the node element will not yet exist to point at. For
a flat tree the selector is the ident, for a dynamic tree the selector is the node ident

Setting cControl

When using the subformpaletteshow client command to open a subform palette you
can use "<controlName>:0" (zero) in the cControl parameter to point to the control as a
whole, rather than an element within the control. (Revision 42300, ST/JS/3845)

Return Values Using a Promise
The promise returned from the subformdialog and paletteshow client commands,
and when loading a subform, now returns an object with errorText and form members –
this is potentially a breaking change, so you should review the code where you have
used a promise. (Revision 42276, ST/JS/3838)

When the promise representing a subform loading resolves (the 'then()' function fires),
either in the subformdialog and paletteshow client commands, or when assigning a
subform control's $classname, it was previously passing an 'errorText' parameter.

However, it is now passed an object as its parameter, which has an 'errorText'
member, and a 'form' member. The 'form' member is a reference to the form instance
which has loaded. As before, if the 'errorText' member is populated, this indicates an
error loading the form. For example:
Do $cinst.$clientcommand("subformdialogshow",row(...) Returns lPromise

JavaScript:lPromise.then((result) => {

JavaScript: lForm = result.form;

Do lForm.$myMethod()

JavaScript:});

Subform Sets
The 'subformSetParamsAreLocalized' item has been added to the Omnis Studio
configuration file (config.json) to allow parameters passed to subform sets to use the
server's localized function and decimal separators. (Revision 42312, ST/JS/3846)

There is a new item 'subformSetParamsAreLocalized' in the 'jsClient' group in the
Omnis Studio configuration file. If true, parameters passed to Subform Set forms use
the Omnis Studio server's localized parameter separator character to separate the
parameters. For example, setting $language to Italian will set the parameter separator
to ";" (colon), and decimal point character as "," (comma). If
'subformSetParamsAreLocalized' is false, commas are used as the separator,
regardless of the localized parameter setting.

Due to this change in behavior, you should review any code that sets parameters
passed to subform sets and where you may have set the localized parameter
separator.

Note you can return the parameter separator using the sys(93) function, which you
could use to embed into your list of parameters passed to subforms.

 JavaScript Components

 9

JavaScript Components
Data Grid Control
Drag and drop for data cells

The $celldraganddrop property has been added to the Data Grid control to allow you
to drag and drop individual cells of data, rather than rows which was the case in
previous versions. (Revision 42262, ST/JS/3772)

For Data Grids you can set $celldraganddrop to kJSDataDragCells to allow the data in
a cell to be dragged out for the data grid, and dropped onto a list, for example. In this
case, pDragValue will contain the data in the dragged cell, and not the whole row.

The Data grid also has the option kJSDataDropCells in the $celldraganddrop property.
When this is set to true the current destination cell is highlighted instead of the row
when data is dropped onto the data grid.

Drop event parameters

A parameter pDropColName has been added to drop events for Data Grids to indicate
the data column name of the target column. (Revision 42332, ST/JS/3826)

The pDropColName event parameter has been added to the evCanDrop, evWillDrop
and evDrop events for Data Grids to indicate the name of the list column on which the
drop is to occur.

Drag and Drop
Drag data type

The pDragDataType parameter has been added to the evDrop and other drag and drop
events to indicate the data type of the dragged data. (Revision 42269, ST/JS/3822)

The evDrag, evDrop, evWillDrop, and evCanDrop events have a new parameter
pDragDataType, which is the Omnis Studio data type of the dragged data, e.g.
kCharacter, kList, etc.

evDrag parameters

Some new parameters have been added to the evDrag event to provide more
information about what data was dragged from list-based controls. (Revision 42281,
ST/JS/3833)

The following parameters have been added to the evDrag event:

❑ pDragRow
The row of the Complex Grid from which the drag occurs. Zero if the control does
not belong to a complex grid.

❑ pDragId
The identifier of the area of the control from which the drag has occurred. Either a
line number or ident, or zero if the control is not list-based. In the case of a list-
based control with multiple lines selected, the value is in the form of a list of line
numbers.

❑ pDragCol
Data grid only. The column number of the cell from which the data has been
dragged. Zero for other controls.

Tree List Control
Icon Color

The $::iconcolor property has been added to the JS Tree List control allowing you to
set the color of SVG icons shown on the nodes in the tree. When set to kColorDefault
(the default), the icons are the same color as the node text (assuming the icons are
themed using the SVG Themer tool). (Revision 42226, ST/JS/3787)

What’s New in Omnis Studio 12 Revision 42449

10

Icon Spacing

The $icontextspacing property has been added to the JS Tree control allowing you to
set the spacing between the node icon and the text; the default is 4 pixels. (Revision
42360, ST/JS/3867)

Toolbar Control
The $showoverflowicons property has been added to the Toolbar control to allow you
to display icons in the overflow menu items. (Revision 42211, ST/JS/3801)

When the $showoverflowicons property is set to kTrue (default is kFalse), the overflow
menu items can include icons (icons were not shown in the overflow menu in previous
versions).

Rich Text Editor
You can now insert tables when editing content using the Rich Text Editor. (Revision
42334, ST/JS/3843)

You can insert a table into the content edited in the Rich Text Editor using the new
table button on the editor's toolbar. The button is hidden when opening libraries created
in a previous version of Omnis Studio.

To support tables in the Rich Text Editor, some extra files have been added to the html
folder, as follows:
html/scripts

 quill-table-better.js

html/css

 quill-table-better.css

Markdown Control
Scroll Shadows

The $scrollshadowwidth and $scrollshadowcolor properties have been added to
the JS Markdown control allowing you to add a shadow to the control when there is
more data to be scrolled – the shadow will appear on the relevant edge of the control to
show that there is more content that can be scrolled, either in a vertical or horizontal
direction. (Revision 42301, ST/JS/3836) This enhancement also applies to the
Markdown window class control.

Scroll to position

The $scrolltoposition property has been added to the JS Markdown control which
means the control will be scrolled to the specified position when new data is added; it
can be set to one of the following constans: kJSMarkdownMaintainScroll (the default),
kJSMarkdownScrollToTop, or kJSMarkdownScrollToBottom. (Revision 42359,
ST/EC/1969)

This enhancement also applies to the Markdown window class control, where
scrolltoposition is set in the $htmlcontroloptions property; in this case, negative number
values indicate scrolling to the top, positive numbers to the bottom, and zero maintains
the current scroll position.

Segmented Bar Control
The $segmenttooltip property has been added to the Segmented Bar control to allow
you to add a tooltip to each segment. (Revision 42278, ST/JS/3840)

Label Object
The $issingleline property has been added to the Label Object. (Revision 42293,
ST/JS/3844)

If $issingleline is true, the text will not wrap and will show ellipses if it does not fit in the
control's bounds.

 Libraries and Classes

 11

Libraries and Classes
Omnis Studio Data Types
A new item numericCompareDps has been added to the configuration file
(config.json) which specifies the number of decimal digits that should be tested when
comparing Number types. (Revision 42342, ST/PC/597)

For Number types 0..14dp and floating dp, Omnis Studio considers two values to be
equal only if they have exactly the same fractional part (stored using 52 bits). There is
a new entry in the config.json file; numericCompareDps which can be used to specify
the number of decimal digits that should be tested when comparing Number types.
Although zero (disabled) for backward compatibility, numericCompareDps accepts
values in the range 0..19. For example, if numericCompareDps is set to 8, Omnis
Studio will consider the following two values to be equal:
Calculate lNum1 as 3.14159265

Calculate lNum2 as #PI

Calculate #F as lNum2=lNum1

Omnis Studio Environment
User Components Library
You can now store your own components and wizard templates in a separate library
and display them alongside the built-in components in the Component Store. In
previous versions, your own components had to be added to the built-in Component
Store library. Such user components will appear in the same groups as the built-in
Component Store, or in a separate group of your own. (Revision 42162)

Your own components and wizards can now be stored in a User Components
Library, which is an Omnis Studio library called usercomps.lbs, and placed in the
Studio folder in the Omnis Studio tree. If such a library is present, Omnis Studio will
load its components and wizards immediately after those in the built-in Component
Store library – so the Component Store now displays the combined contents of
comps.lbs and usercomps.lbs.

To add your own components, create a new library called usercomps.lbs in the Studio
folder, alongside the existing comps.lbs. You must restart Omnis Studio before Omnis
Studio will recognize this as a User Components library. Similarly, you must restart
Omnis Studio after copying usercomps.lbs into the Studio folder.

To show the component libraries, select the Show Component Library option from
the Component Store context menu (Right-click or Ctrl-click on its background).
Showing and hiding the component library now shows both comps.lbs and
usercomps.lbs (if it is present).

To create your own components in usercomps.lbs, you could copy existing
components from the built-in comps.lbs into your usercomps.lbs, and amend those, to
save time. For example, to do this for JS components, create a new Remote form in
usercomps.lbs, open the remote form class JSFormComponents in comps.lbs, then
drag an existing component from this remote form and drop it onto your new remote
form in usercomps.lbs. Then adjust its properties as required including the name.

The type, name and Component store group of your own components need to be set.
Classes and components in usercomps.lbs library have the $componenttype and
$componentinfo properties, as in previous versions (note these properties are only
visible if the usercomps.lbs has been loaded using the Show Component Library

What’s New in Omnis Studio 12 Revision 42449

12

option, not using the standard Open Library option). For further information about
creating components and setting these properties, see the online docs: Editing the
Component Store Library.

If there are duplicate components, those in usercomps take precedence, and replace
those in comps.lbs. A duplicate in this case is considered as follows: for objects, such
as window objects, a duplicate is an object with the same group and name (where case
is not significant). For classes, new class default is a duplicate if the class type is the
same; otherwise, wizards and templates are duplicated if the class name is the same.
Note that wizards and templates in usercomps.lbs are identified in the browser Class
Wizard panel by having the library name prefix “User Component Library”.

Field styles in usercomps.lbs should have different names to those in comps.lbs – this
only becomes an issue if a style in comps.lbs is different to one in usercomps.lbs, since
when adding an object from the Component Store, Omnis Studio only copies the
object’s field style from the applicable component library into the destination library if
the style is not present.

There is a new hidden notation property, $modes.$usercompstore (similar to
$modes.$compstore) that returns an item reference to the User Component Store
library, or it returns null if no user component store library is present.

A class marked as kCompStoreNewClassDefault can contain a $setup() method that is
called as the final step in creating a new class. The first parameter of this method is an
item reference to comps.lbs or usercomps.lbs, depending on the library containing the
new class template.

As usercomps.lbs is a separate library, you can store and manage it in the Omnis
Studio VCS, like any other Omnis Studio library. You can also export it to JSON,
including the value of $componenttype (it exports kCompStoreHidden for all non-
component libraries); this was not possible with the existing comps.lbs.

Keyboard Shortcuts
The following shortcut keys have been added. (Revision 42425, ST/HI/2069)

The custom menu item F11 on Windows and standard Window menu item Cmnd-`
(backtick) on macOS have been added to allow you to cycle forward through open
windows in Omnis Studio. The Shift modifier will cycle backward.

On macOS this menu item is standard and will show in the Finder. If the keyboard
language is changed, e.g. to German then the short cut key will also change (Cmnd-<).
This is likely to be the same key on the keyboard. The Shift modifier is not supported in
this case since that key combination does not map to a valid character. Therefore, in
some languages only cycle forward is supported.

Window Components
Writing Tools and Image Playground
On macOS, support for Apple’s Writing Tools has been added to all Edit fields (Single
line edit, Multi-line edit, Combo box, etc) to allow you to proofread, rewrite, and
summarize text in the field, or to generate text using AI to insert into the field. In
addition, Image Playground is available using a new method for AI-assisted image
generation based on text prompts and descriptions. (Revision 42440, ST/HE/2130)

Apple Intelligence is required and must be enabled to use Writing Tools and Image
Playground, which is only available on Apple Silicon (M) series computers running
macOS Sequoia 15.1 or later.

https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/01omnistools.html#editing-the-component-store-library
https://omnis.net/developers/resources/onlinedocs/index.jsp?detail=Programming/01omnistools.html#editing-the-component-store-library

 Window Components

 13

Writing Tools

The Writing Tools are available on the main Omnis Studio Edit menu on macOS when
entering text into a Single Line Edit Field, plus you can right-click (Cmnd-click) on the
field to show the Writing Tools and access the Services menu. Selecting the Show
Writing Tools option opens the tools popover allowing the end user to proofread or
rewrite the text in the field.

The Compose menu option allows the end user to generate some text using ChatGPT
based on a text prompt or question. Having inserted the generated text, you can edit it
or refine it using the Writing Tools from the field context menu.

The Services menu option allows the selected text to be passed to an external service
such as a Text editor. To enable items on the Services menu, use the Keyboard
shortcuts in the main Settings panel.

You can disable the Writing Tools for the whole application by setting the
$writingtools Omnis preference ($root.$prefs.$writingtools) to kFalse. To disable the
Writing Tools for an individual edit field, set its $disablewritingtools property to kTrue.

Image Playground

Support for Image Playground on macOS allows you to add AI-assisted image
generation into your applications.

The $canuseimageplayground Omnis preference ($root.$prefs) returns kTrue if
Image Playground is available or kFalse if not. When Apple Intelligence is not
supported or is turned off this will return kFalse.

The $getplaygroundimage() method allows you to generate an image using Image
Playground and has the following parameters:

❑ $root.$getplaygroundimage(cDescription,&iImageBinary[,&cFilePathURL])
Displays a standard system interface to generate an image from a description in
cDescription. The image is returned as a PNG in iImageBinary with a temporary file
URL in cFilePathURL if required.

The returned image can be inserted into a Picture field or stored in a file.

What’s New in Omnis Studio 12 Revision 42449

14

In addition, if Image Playground is available, when you right-click (Cmnd-click) on the
background of a design window the Image Playground option will be shown, allowing
you to generate an image which is added to the background of the window class.

OBrowser
Cursor Tracking

The $enablecursortracking property has been added to the OBrowser window
component to allow cursor changes within browser content; affects macOS only.
(Revision 42402, ST/EC/1971)

You can set the $enablecursortracking property to kTrue to allow embedded web
content to control cursor updates via system cursor tracking. For example, to allow
CSS managed cursor state in the browser. This defaults to kFalse to avoid conflicts
with the Omnis-managed cursor state. Once enabled this will affect all cursor tracking
within the same window.

Component Order

The $disablecomponentorder property has been added to the OBrowser window
component to allow other window controls to be placed over it by preventing the
OBrowser component coming to the front when it gets the focus. (Revision 42182,
ST/WO/2532)

When set to kTrue, the $disablecomponentorder property disables any component
order changes in the window. Therefore, the OBrowser component will not be brought
to the front when it gets the focus, allowing any other components placed over the
OBrowser component to stay on top. The property is kFalse by default to maintain the
usual component ordering.

FishEye Control
Content Scrolling

The Fisheye control now allows content to be clipped to the window and for content to
be scrolled using improved scroll support. (Revision 42230, ST/EC/1879)

When set to kTrue, the new $cliptosize property ensures that content is shown only
within the dimensions of the window containing the control. The default is kFalse, which
means large content areas could potentially be displayed beyond the window or screen
border (which is the behavior in previous versions).

Content can now be scrolled to bring items into view. You can use the standard scroll
gesture with a trackpad, use the left mouse button to click and drag with a mouse, or
use the mouse wheel. You can set the new $usewheeldelta property to kTrue to
increase granularity of mouse wheel scrolling (defaults to false). If using a mouse with
a wheel on Windows then enable $usewheeldelta to make the content scroll according
to the wheel delta, which will improve the granularity of the scrolling.

In addition, content in the FishEye control will now be visible and scrollable if not
tracking when $magnifyall and the new property $magnifyallscroll are true. (Revision
42291, ST/EC/1963)

The $resetonresize property has also been added which when set to false will preserve
the position of scrolled content when the field is resized.

 SQL Classes

 15

SQL Classes
Table Instance Notation
The $excludefromselect property has been added to table instances. (Revision
42433, ST/TA/029)

When $excludefromselect is set to kTrue, the column is omitted from the result of
$selectnames() (either using the table instance method, or using a DAM/session object
method) and from results generated by $select(). When $fetch() is called, any excluded
columns will contain NULL values. For example, the following will exclude all binary
columns:
Do $cinst.$cols.$sendall($ref.$excludefromselect.$assign(kTrue),

$ref.$coltype=kBinary) ## excludes binary columns

OW3 Worker Objects
HTTP Worker
The HTTP Worker has a new property $streamresponse and $ondata() callback
method allowing you to stream content (data) to the server rather than waiting for the
whole response to be returned before calling $completed. (Revision 42354,
ST/EC/1967)

$streamresponse

If $streamresponse is set to true, data received from the server will be sent through to
the $ondata callback as it is received, rather than waiting for the whole response before
calling $completed. If $streamresponse is true, $completed will still be called on
completion, but data will no longer be sent in the responseContent column of
$completed (to reduce memory usage).

$ondata

The $ondata callback method receives a row as its single parameter, which varies
based on the Content-Type of the response. The row has the following columns:

❑ httpStatusCode: The HTTP status code of the response, usually 200 for a good
response

❑ httpStatusText: Any status text sent with the response

The final column of the row depends on the Content Type of the response:

❑ events: If the Content-Type of the response indicates that this is a Server-Sent
Event (SSE) stream (“text/event-stream”), the row will have an ‘events’ column of
type List. This is a list of ‘event’ rows, where each column is a Character column
matching the event ‘field’

❑ ndjson: If the Content-Type of the response indicates that this is a newline-
delimited JSON response (“application/ndjson” or “application/jsonl”), the row will
have an ‘ndjson’ column of type List. This is a list of ‘data’ rows, each row being an
individual JSON object converted to an Omnis Studio row

❑ content: Any other Content-Types will be returned as raw binary data in a ‘content’
column

Important Considerations

As $ondata may be called many times in quick succession, so you should make sure to
minimize the amount of work you do from this callback. If your execution takes longer
than the time until the next $ondata call, these will start to back up.

What’s New in Omnis Studio 12 Revision 42449

16

Similarly, adding a breakpoint to an $ondata method will not prevent further calls to
$ondata being added to the event queue. In this case, these calls will back up and
could potentially overwhelm the event queue.

If you want to debug $ondata, or do a lot of work from it, it is recommended that you
increase $minstreamdelay to a higher value so fewer calls to $ondata are made.

$minstreamdelay

Data can be returned from the connection very quickly, and if calls to $ondata back on
the main thread were made too frequently, performance could suffer, or in extreme
cases the Omnis Studio event queue could become overwhelmed, effectively hanging
Omnis Studio.

The $minstreamdelay property specifies the minimum number of milliseconds to wait
between calls to $ondata (the default is 100ms). Any data received during this time will
be buffered and sent with the next $ondata call.

OAUTH2 Worker
Using OpenID tokens

The $openidtoken property has been added to the OAUTH2 Worker object allowing
you to return the “openid” with your authorization. (Revision 42217, ST/EC/1958)

The $openidtoken property allows you to add another layer to authorization. If your
authorization endpoint supports OpenID Connect (OIDC), and you include "openid" in
the scope (along with other relevant scopes, such as 'email', 'profile', etc), the
$openidtoken property will be populated with the OpenID token after calling
$authorize(). The $openidtoken property is also saved and loaded automatically with
the $save() and $load() methods.

The content in $openidtoken is the raw OpenID Connect JSON Web Token (JWT). It is
then your responsibility to parse this and verify its signature, if it's important that it could
not have been tampered with.

A JWT comprises the following components: payload, headers, and signature:

❑ payload is the content

❑ headers contain metadata about the token, and crucially, information about the
way the signature was generated:
'alg': the algorithm used to generate the signature, e.g. "RS256"
'kid': (Key ID) the id of the public key you should use to verify the signature.

The provider will generally have some HTTP endpoint you can query to get the current
keys, then you can find the one which matches the 'kid'.

You can use the $initverifysignature() method in the Hash Worker to verify the
signature, once you have the appropriate public key.

SMTP Worker
When sending emails with the OW3 SMTP Worker, the Body Part Headers can now be
provided in the vContent parameter MIMEList in the $init() method. (Revision 42174,
ST/EC/1952)

The MIMEList sent as vContent in the $init() method for the OW3 SMTP Worker now
supports a tenth column bodypartheaders of type Row, representing the Body Part
Headers. Each column in this row will be added as a header, whose name matches the
column name, and the value matches the column value (columns should be of type
Character). This is the same as the tenth column returned from
OW3.$splitmultipartdata().

 OW3 Worker Objects

 17

This allows you to set any header, such as "Content-Id" or "Content-Description". If you
set the Content-Id, bear in mind that it should be of the form "<local part>@<domain
part>". A common convention is just to use "cid" as the domain, e.g. "myfile_id@cid".

OW3.$createmimemessage()
The $createmimemessage() function has been added to the OW3 package to allow
you to create a raw MIME email message to then send, for example, via a third-party
API such as provided by GMail. (Revision 42202, ST/EC/1955)

Function group Execute on client Platform(s)

OW3 NO All

Syntax

OW3.$createmimemessage(vFrom,lTo,lCc,lBcc,cSubject,iPriority,lHeaders,vContent)
Returns lBinaryData

Description

Creates a raw MIME email message from given input. Returns Binary data. The
parameters are as follows (the same as the SMTP Worker's $init() method, minus
those for the SMTP connection/credentials):

Parameter Description

vFrom The email address of the message sender. Either a character value e.g.
user@test.com or a row with 2 columns where column 1 is the email
address e.g. user@test.com and column 2 is descriptive text for the
sender, typically their name

lTo A one or two column list where each row identifies a primary recipient of
the message. Column 1 contains the email address e.g. user@test.com
and column 2 if present contains descriptive text for the recipient,
typically their name

lCc Empty if there are no CC recipients, or a one or two column list where
each row identifies a carbon copied recipient of the message. Column 1
contains the email address e.g. user@test.com and column 2 if present
contains descriptive text for the recipient, typically their name

lBcc Empty if there are no BCC recipients, or a single column list where each
row contains the email address of a blind carbon copied recipient of the
message e.g. user@test.com. Unlike lTo and lCc, lBcc does not allow
more than 1 column, as blind carbon copied recipients are not added to
the message header and therefore the descriptive text is not required

cSubject The subject of the message

iPriority A kOW3msgPriority... constant that specifies the priority of the message

lHeaders A two-column list where each row is an additional SMTP header to send
with the message. Column 1 is the header name e.g. 'X-
OriginalArrivalTime' and column 2 is the header value e.g. ’23:02'

vContent Message content. Either binary raw content, or a list to be sent as MIME.
See the documentation for the MailSplit command to see how a MIME
list is structured; however note that the charset in the OW3 MIME list is a
kUniType... constant

What’s New in Omnis Studio 12 Revision 42449

18

Example

When using or testing this function, you may like to use the RESTful API provided by
Gmail, which requires you to send raw MIME content. Once you've authorized with the
oauth2 worker, you can attach the oauth2 worker to a HTTP worker and send the email
message using something like the following:
Do lMimeList.$define(lLevel, lContentType, lContentSubType, lFileName,

lCharData, lBinData, lCharSet, lEncoding, lContentDisposition,

lBodyPartHeaders)

Do lMimeList.$add(0,'text','plain',,lText,,"utf-8","base64",)

Do lToList.$define("")

Do lToList.$add("user@gmail.com")

Do OW3.$createmimemessage("user@gmail.com", lToList,,,"My test email",

kOW3msgPriorityHigh, lHeaders, lMimeList) Returns lBinData

Do OXML.$base64encode(lBinData,lErr) Returns lB64

Do bintobase64(lBinData,kTrue,kFalse) Returns lB64

Do lContentRow.$define()

Do lContentRow.$cols.$add("raw",kCharacter,kSimplechar)

Calculate lContentRow.raw as utf8tochar(lB64)

Do

iHTTP.$init("https://gmail.googleapis.com/gmail/v1/users/me/messages/send",k

OW3httpMethodPost,,lContentRow) Returns #F

Do iHTTP.$start()

Omnis Studio VCS
Time Zones (Postgres)
If you are using Postgres as your VCS repository, and you have set the $usetimezone
session property, you can no longer set your time zone in the VCS Options > Display
Options window. In this case, times are returned from the server with no further
conversion. (Revision 42200, ST/VC/845 & ST/VC/847)

VCS API
The $unlockClass method has been added to the VCS API. (Revision 42321,
ST/VC/838)

Unlock Class

The $unlockClass method unlocks a class or list of classes in the specified library.
Do iAPIObjRef.$unlockClass(cProject,lClassList,rLibRef,cToken,cErrors) Returns

bStatus

cProject is the project name. lClassList is a single column list of the classes you want
to unlock. rLibRef is a reference to the open library that holds the classes which are
shown as locked.

 Functions

 19

Functions
OIMAGE.$crop()
The OIMAGE.$crop() function has been added to allow you to crop an image.
(Revision 42422, ST/FU/945)

Function group Execute on client Platform(s)

OIMAGE NO All

Syntax

OIMAGE.$crop(xImage, iX, iY, iWidth, iHeight, &xNewImage [, wParams = #NULL,
&cErrorText])

Description

Crops xImage to iWidth by iHeight at iX and iY. Returns Boolean true and xNewImage
on success, or false and cErrorText if an error occurs.

wParams is an optional row variable of parameters. The following columns can be
specified in wParams:

❑ sampler
The sampling method to be used when cropping. Either kOIMAGEsamplerBilinear
or kOIMAGEsamplerNearestNeighbour. Defaults to kOIMAGEsamplerBilinear if this
column is not present, or if wParams is omitted.

❑ gray
A Boolean that indicates if the new image is to be a grayscale image. Defaults to
kFalse if this column is not present, or if wParams is omitted.

❑ quality
If the input image type is JPEG this column contains the JPEG image quality (1 to
100) of the new image. Defaults to 80 if this column is not present, or if wParams is
omitted.

sys()
sys(295) has been added and returns the pathname of the folder containing non-
executable support folders and files, e.g. htmlcontrols and iconsets. (Revision 42365,
ST/FU/941)

join()
You can now use a column name as a parameter for the join() function, as well as the
column number, as in previous versions. (Revision 42245, ST/FU/930)

	What’s New in Omnis Studio 12
	About This Manual
	Software Support, Compatibility and Conversion Issues
	Library and Datafile Conversion
	Converting 11.x Libraries
	Converting 8.x or earlier Libraries

	Omnis Studio Licensing
	oXML

	What’s New in Omnis Studio 12 Revision 42449
	Licensing and Activation
	JavaScript Remote Forms
	Subform Palettes
	Pointing a Subform Palette to a sub-element
	Setting cControl

	Return Values Using a Promise
	Subform Sets

	JavaScript Components
	Data Grid Control
	Drag and drop for data cells
	Drop event parameters

	Drag and Drop
	Drag data type
	evDrag parameters

	Tree List Control
	Icon Color
	Icon Spacing

	Toolbar Control
	Rich Text Editor
	Markdown Control
	Scroll Shadows
	Scroll to position

	Segmented Bar Control
	Label Object

	Libraries and Classes
	Omnis Studio Data Types

	Omnis Studio Environment
	User Components Library
	Keyboard Shortcuts

	Window Components
	Writing Tools and Image Playground
	Writing Tools
	Image Playground

	OBrowser
	Cursor Tracking
	Component Order

	FishEye Control
	Content Scrolling

	SQL Classes
	Table Instance Notation

	OW3 Worker Objects
	HTTP Worker
	$streamresponse
	$ondata
	Important Considerations
	$minstreamdelay

	OAUTH2 Worker
	Using OpenID tokens

	SMTP Worker
	OW3.$createmimemessage()
	Syntax
	Description
	Example

	Omnis Studio VCS
	Time Zones (Postgres)
	VCS API
	Unlock Class

	Functions
	OIMAGE.$crop()
	sys()
	join()

