

What’s New in
Omnis Studio 8.1.7

Omnis Software
April 2019

48-042019-01a

The software this document describes is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a
retrieval system or translated into any language in any form by any means without the written permission of Omnis
Software.

© Omnis Software, and its licensors 2019. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2019 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Specifically, this product uses Json-smart published under Apache License 2.0
(http://www.apache.org/licenses/LICENSE-2.0)

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT
license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark
of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2003 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

J2SE is Copyright (c) 2003 Sun Microsystems Inc under a license agreement to be found at:
http://java.sun.com/j2se/1.4.2/docs/relnotes/license.html
Portions Copyright (c) 1996-2008, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

http://kishikawakatsumi.com/

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL ... 10

SOFTWARE SUPPORT AND COMPATIBILITY 11
Serial Numbers and Licensing .. 11
Library and Datafile Conversion .. 11
macOS Support and Version Check 11
Renaming OS X to macOS ... 12
Sync Server .. 12
Java 8 ... 12
Web Services .. 12
OpenSSL .. 13
Welcome and New Users .. 13
CPU type: sys(110) ... 13
External Components .. 13
Picture Formats ... 13
FileOps Functions ... 13
VCS Branching ... 13
Mac Touch Bar .. 14
Windows Path names ... 14
PDF Font Mapping .. 14

WHAT’S NEW IN OMNIS STUDIO 8.1.7 15

LOCALIZATION ... 15
Changing System menu items (macOS) 15

JAVASCRIPT COMPONENTS .. 15
JavaScript Component Templates 15

OMNIS PROGRAMMING ... 15
Maximum Number of Methods .. 15

WHAT’S NEW IN OMNIS STUDIO 8.1.6 16

OBROWSER ... 16
JavaScript Client Bridge .. 16
HTML Controls & Dates .. 16
oBrowser & localStorage on macOS 16

JAVASCRIPT COMPONENTS .. 16
Control Classnames .. 16

JAVASCRIPT REMOTE FORMS ... 19
evLayoutChanged & pBreakpoint .. 19

LIBRARIES ... 19
Library Conversion .. 19

HEADLESS SERVER .. 19
Running as a Service .. 19

SQL PROGRAMMING .. 20
OmnisSQL & National Fields ... 20

DEPLOYMENT .. 20
App Server Licensing .. 20

WHAT’S NEW IN OMNIS STUDIO 8.1.5 21

SQL PROGRAMMING .. 21
$definelistorrow method .. 21
$usescale .. 21

WINDOW PROGRAMMING .. 21
Edge Float Properties in Subclasses 21

Table of Contents

4

JAVASCRIPT COMPONENTS .. 21
Labels and Date variables ... 21

WINDOW COMPONENTS ... 22
Toolbar button text on macOS .. 22

FUNCTIONS ... 22
sys(237) .. 22

WHAT’S NEW IN OMNIS STUDIO 8.1.4 23

OW3 HTTP WORKERS .. 23
WebSocket Server Support ... 23

WINDOWS CLASSES ... 25
Drag and Drop .. 25

THEMES .. 26
Appearance Theme... 26

WHAT’S NEW IN OMNIS STUDIO 8.1.3 27

JAVASCRIPT COMPONENTS .. 27
Rich Text Editor .. 27

OW3 WORKER OBJECTS .. 28
FTP Directory List ... 28

WINDOW COMPONENTS ... 28
HTML Controls .. 28

WHAT’S NEW IN OMNIS STUDIO 8.1.2 29

JSON COMPONENTS ... 29
Read-only Properties .. 29

WINDOW CLASSES ... 29
Diacritical Characters .. 29

WHAT’S NEW IN OMNIS STUDIO 8.1.1 31

OW3 WEB WORKER OBJECTS .. 31
JSON CONTROL EDITOR .. 31
SQL QUERY BUILDER .. 31
CMND+. KEYPRESS ON MACOS ... 31

WHAT’S NEW IN OMNIS STUDIO 8.1 32

EXPORTING LIBRARIES TO JSON .. 34
Exporting Libraries .. 34
Importing Libraries .. 35
Directory and JSON File Structure 36
Library Dependencies ... 37
External File classes & Tokenization 38

JSON COMPONENTS ... 38
JSON Control Editor .. 38
JSON Control Definition .. 40
JSON Control Object ... 41
JavaScript ... 48

JAVASCRIPT FORMS .. 49
Responsive Forms .. 49
Component Transitions ... 54
Client Caching ... 54
Remote Menu Icons .. 54
Subform Sets .. 55

HEADLESS OMNIS SERVER ... 55
Considerations .. 55
Installing the Headless Server (Linux) 56

 Table of Contents

 5

Headless Server Admin Tool ... 57
CODE SIGNED OMNIS (MACOS) .. 59

Firstruninstall and Application Support folders..................... 59
Updating Components .. 59
Deployment ... 59
Patching a signed tree .. 60

WEB AND EMAIL COMMUNICATIONS... 61
OW3 Worker Objects .. 61
Base Worker Support .. 61
HTTP Worker .. 64
SMTP Worker ... 69
FTP Worker .. 73
IMAP Worker... 78

PUSH NOTIFICATIONS ... 82
Push Notifications Admin Tool .. 83
Client Command and Methods .. 83

PROPERTY MANAGER .. 83
Property Filter ... 83
Property Search .. 84

STUDIO BROWSER ... 85
Search Filter ... 85

JAVASCRIPT COMPONENTS .. 86
Edit Controls ... 86
Combo boxes and Data grids .. 87
File Control ... 87
Icons Folder Name .. 87
evAfter event queue .. 88
Navigation Bar .. 88
Error Text .. 88
Text Styles .. 88
Complex Grid .. 88
Paged Panes .. 89
Labels ... 89
Grid Section .. 89
Field List ... 89
Maps ... 89
Data Grids ... 89

WEB SERVICES .. 90
RESTful POSTs .. 90
Queueing RESTful requests & Licensing 90
RESTful remote task constructor... 90
Remote Task instances ... 90
CORS configuration .. 90

METHOD EDITOR ... 91
Method Lines .. 91
Displaying Control Characters ... 91
Inherited Methods ... 91
Code Assistant .. 92
Renaming Methods ... 92

SQL WORKERS ... 92
Additional Notifications .. 92

WINDOW COMPONENTS ... 93
Multi-line Entry Fields .. 93
Disabling Plug-ins in oBrowser (macOS) 93
Headed Lists and Tree Lists .. 93

WINDOW PROGRAMMING .. 93

Table of Contents

6

Window Transparency .. 93
Screen Size .. 94

LIST PROGRAMMING... 94
Select Duplicates .. 94
$first() and $next() Methods .. 94

THEMES .. 95
Custom Themes and Exporting ... 95

REPORTS .. 95
Zoom In/Out .. 95
Paper Size .. 96

WEB COMMANDS ... 96
HTTPSetAuthentication ... 96
HTTPMethod... 97
HTTPOpen .. 98
FTPConnect .. 98
FTPConnect and TLS ... 98

SMTP WORKERS... 98
Mailshots ... 98

FUNCTIONS ... 99
SHA functions ... 99
iso8601 functions .. 99
sys() .. 99
FileOps ... 100

COMPONENT STORE .. 100
Adding Controls to a Form .. 100

OMNIS CONFIGURATION ... 100
Template Configuration File .. 100
Configuration File Methods ... 100

VCS ... 101
VCS Branching ... 101
Showing Checked Out Classes ... 101
Checking Out Classes ... 101

WINDOW COMPONENTS ... 101
Combo Boxes ... 101

OJSON .. 102
Static Methods .. 102

XML ... 102
Using Schema Files for Validation 102

LOCALIZATION ... 103
String Table Editor .. 103

COMMANDS ... 103
Text: and Sta: Commands... 103

WEB SERVER PLUGINS .. 103
VC++ Runtime Library ... 103

SQL QUERY BUILDER .. 103

WHAT’S NEW IN OMNIS STUDIO 8.0.3 104

SQLITE ENCRYPTION ... 105
DICTATION FOR EDIT FIELDS ... 106

Enabling Dictation ... 106
Using Dictation in Edit fields .. 106
Dictation Levels ... 106

APPLE EVENTS .. 107
Apple Events Object.. 107
Apple Event Methods .. 107

MAP CONTROL .. 108

 Table of Contents

 7

Custom Markers .. 108
Polygon Objects .. 110

PAGED PANES ... 111
Animated Transitions .. 111

WORKER OBJECTS .. 111
Push Notifications ... 111

POSTGRESQL ... 111
JSON column types .. 111

FUNCTIONS ... 112
Hardware ID .. 112
Icon Functions ... 112
sys(234) function ... 112

NATIVE SWITCH ... 112
WINDOW CLASSES ... 112

Debugging code in oBrowser .. 112

WHAT’S NEW IN OMNIS STUDIO 8.0.2 114

MOBILE APP DEPLOYMENT ... 116
Windows 10 Wrapper .. 116
Sync Server .. 116

JAVASCRIPT CLIENT ... 117
Custom Loading Indicator ... 117
Rich Text Editor Control .. 117
Component Icons .. 119
Server Date and Time Setting ... 119
Subform Sets .. 119
Subform Instance Parameters ... 119
Device Control .. 119
Component Borders .. 120
JavaScript & External Component Icons 120

WORKER OBJECTS .. 120
WEB SERVICES .. 120

Date and Date-time values .. 120
ISO8601 date functions ... 121
CORS ... 121

METHOD EDITOR ... 122
Method Templates .. 122
Creating Unrecognized Variables 123
List Variable Values .. 123
Sorting Variables ... 124
Adding Blank Method Lines ... 124

DATE AND NUMBER FORMATTING .. 124
FILEOPS .. 125

Errors .. 125
Pathnames .. 125
Large Files .. 125

TEXT ESCAPES FOR URIS .. 126
GENERATING UUIDS .. 126
DEPLOYMENT .. 126

Changing the Hide/Quit Omnis Option 126
CALL DLL .. 127

Call/Register DLL .. 127
JAVA OBJECTS .. 127

Java Options ... 127
WINDOW CLASSES ... 127

Debugging code in oBrowser .. 127

Table of Contents

8

WHAT’S NEW IN OMNIS STUDIO 8.0.1 128

AVPLAYER .. 128
Properties ... 128
Methods .. 129
Events ... 129

COLOR THEMES AND APPEARANCE ... 129

WHAT’S NEW IN OMNIS STUDIO 8.0 130

64-BIT AND COCOA ON MACOS ... 132
Cocoa APIs ... 132
HD Graphics and Fonts ... 132
External Components .. 132
64-bit DAMs .. 132
HFS and Path Separators ... 133
Shared Access to Libraries and Datafiles 133

APP BUILDER ... 134
Creating a New Library ... 134
Creating an app from your Database 134

DEVELOPER HUB ... 135
Hub ... 135
Applets and Samples .. 135
Faults .. 136
Options ... 136

CODE ASSISTANT ... 136
Short Cut Keys and Help ... 137
What Help does the Code Assistant Provide? 138
Method History .. 142
Command Blocks .. 142
Client-side Scripting .. 142
Method Notes.. 142

COLOR THEMES AND APPEARANCE ... 143
Appearance Property .. 143
Appearance and Theme Files ... 144
Appearance Configuration File Contents 144
Changing and Testing Colors .. 148
Additional Notes .. 148
Window Frame Appearance on Windows 148

DRAG AND DROP DATA .. 149
Example Library .. 149
Dragging Data ... 150
Dropping Data ... 150
Events ... 150
Drag Values .. 153
Dragging and Dropping Files ... 154
Drag and Drop for Thick Client .. 155

HTML COMPONENTS FOR DESKTOP APPLICATIONS 156
Creating Omnis HTML Controls .. 157
Adding HTML controls to your window 163
Ports ... 164
Events ... 164
Browser Component ... 165
Configuration... 168

HIGH DEFINITION DISPLAYS .. 169
Compatibility Issues .. 169
HD Icons and Graphics ... 169

AUTO UPDATES ... 173

 Table of Contents

 9

SEGMENTED CONTROL ... 174
Properties ... 174
Events ... 175

LIST PAGER ... 175
Changing the Pager’s Appearance 175

WORKER OBJECTS .. 175
Push Connections ... 175

MISCELLANEOUS ENHANCEMENTS .. 177
JSON Objects ... 177
Edge Float Constants .. 177
Web Services .. 177
HTTP client workers .. 178
Screen Report Fields .. 178
Icon Sets ... 179
IMAP ... 179
Multi-line Fields ... 179
Rich Text Editor Control .. 179
External Class Editor ... 180
Subforms .. 180
Datafile Browser .. 180
Omnis Window Title .. 180

About This Manual

10

About This Manual
This document describes the enhancements in Omnis Studio 8.1.7, plus all 8.1.x &
8.0.x releases, as well as 8.0, including many new features in the JavaScript Client and
in the Studio IDE.

Please see the Readme.txt file for details of bug fixes and any last-minute notes for the
8.1.x release. See the Install.txt file for information about installation.

If you are new to Omnis Studio
When you start Omnis Studio for the first time the Welcome window will be displayed,
which provides a short interactive tutorial, or walkthrough, that allows you to create a
simple app that you can open on your desktop or web browser. The Advanced option
lets you skip the tutorial and go straight to the Omnis Studio IDE.

After you close the Welcome window, you will see the Studio Browser which provides
access to all the main tools in Omnis Studio (if this is not showing press F2, or click on
the Compass icon marked ‘Browser’ on the main Omnis toolbar). The Hub should be
selected in the Studio Browser which provides information and videos to help you get
started in Omnis Studio, as well as information about recent reported faults in Omnis
Studio. You can look at some example Omnis applications under the Applets and
Samples options: you can open each example in your web browser or within the
Omnis IDE, and you can examine the Omnis code in the associated library under the
Libraries option in the Studio Browser.

Creating a new library
To create a new Omnis application (library) you can click on the Libraries option in the
Studio Browser, click on the New Library option and step through the process of
creating an Omnis application using the App Builder. This provides a number of
different options for starting your application, including from a sample database, your
own database, or by importing some data from a comma- or tab-separated file.

 Software Support and Compatibility

 11

Software Support and Compatibility
Serial Numbers and Licensing
If you are upgrading from any previous version of Omnis Studio, including 8.0.x, 6.1.x,
6.0.x or 5.x (and before), you will require a new serial number to run the Development
version of Omnis Studio 8.1.x. Contact your local sales office for further details about
new development and deployment licenses for Omnis Studio 8.1.x.

JavaScript Client App Server Licensing

Multiple connections to the JavaScript Client App Server from a single client browser
are now counted as only one use of a Server license. In versions prior to Studio 8.1.x,
multiple connections from a single client browser were being counted as separate
users and consuming server licenses.

When the JavaScript Client communicates with a web server, it generates a UUID to
identify itself, and (from Studio 8.1.6) saves it in localStorage which it sends as a
parameter whenever it connects to the server. (Prior to this version, the UUID was
stored in a cookie which required any clients to have cookies to be enabled for this
licensing mechanism to work.)

Web Services Serial Number

You no longer require a Web Services serial number to use the REST based web
services feature in the Professional Edition of Omnis Studio 8.1.x or above. However,
in order to use the HTTPClientWorker object to create a Web Services client you still
need to install and configure Java (not required for the new OW3 CURL based worker
objects). If you are creating your own Web Services, from your Omnis code, your
server will still require a deployment Omnis App Server license when you are ready to
deploy your app.

Runtime Maintenance Agreements

With Omnis Studio 8.0.x or above we have introduced a new Runtime Maintenance
Agreement (RMA). For further details about these new agreements, please contact
your local sales office.

Library and Datafile Conversion
Omnis Studio 8.1.x will convert existing version 8.0.x, 6.1.x, 6.0.x and 5.x libraries –
THE CONVERSION PROCESS IS IRREVERSIBLE.

Omnis Studio 8.1.x will convert version 5.x Omnis datafiles (note that non-Unicode
datafiles will be converted to Unicode), but 8.0.x, 6.1.x and 6.0.x datafiles will not be
converted in Omnis Studio 8.1.x.

IN ALL CASES, YOU SHOULD MAKE A SECURE BACKUP OF ALL LIBRARIES AND
OMNIS DATAFILES BEFORE OPENING THEM IN OMNIS STUDIO 8.1.X.

NOTE: The Omnis Datafiles browser is not displayed in the Studio Browser when you
first start Omnis Studio 8.1.x: to display the Omnis Datafiles browser, you need to
enable it under the new Options setting under the Hub option in the Studio Browser.

macOS Support and Version Check
Omnis Studio 8.1.x 64-bit is certified to run against a minimum of macOS version 10.11
(El Capitan) or higher. Omnis may continue to run on 10.9 and 10.10, but these are not
supported and any issues specific to these versions of the OS will not be addressed.

The Omnis Studio 64-bit application will check the version of macOS and will not run if
it is older than the minimum requirement to run Omnis Studio on macOS. In this case,
Omnis Studio will be marked with a disabled icon.

About This Manual

12

Renaming OS X to macOS
With the release of macOS Sierra, Apple renamed “OS X” to “macOS”, therefore we
renamed all occurrences of “OS X” and “OSX” to “macOS” in Omnis Studio (starting
with 8.0.3 and above). The changes in Omnis Studio are mainly in the notation, such
as property names and descriptions, theme colors for $appearance, and in the online
docs, as well as the Omnis Help. For example, all $osx… properties have been
renamed to $macos…, and some constants have been renamed, such as kMacOSX to
kmacOS.

This change should not affect the majority of your code since this is a straightforward
update in the string resources in Omnis Studio, but you should check your libraries for
any literal occurrences of “OS X” and similar usage and update those accordingly.

Sync Server
A new version of the Sync Server, version 2.3, which was released with Studio 8.0.3,
uses a RESTful interface to allow the Omnis Server to communicate with mobile
clients: note new wrappers are required for this version of Sync Server. See the Sync
Server section below for further details.

Java 8
To use Java in Omnis Studio 8.0.x or later for development and deployment (such as
Java Objects) you now need to install and reference Java Version 8, which is available
from Oracle: you can download the Java Developer Kit (JDK), for Windows or macOS,
or Java Runtime Environment (JRE), for Windows only, from the following location:

❑ http://www.oracle.com/technetwork/java/javase/downloads

Java Configuration

Having installed the latest JDK or JRE you need to configure the JVM, either using a
new entry in the Omnis configuration file (config.json), or by setting an environment
variable: OMNISJVM64 or OMNISJVM32, depending on whether you are running the
64-bit or 32-bit version of Omnis Studio. If you specifiy a value in config.json, it
overrides the value in the environment variable.

To setup the JVM in the config.json file, update the “jvm” entry in the “java” object in the
configuration file, for example, on Windows:
"java": {

 "jvm":"c:\\Program Files\\Java\\jre8\\bin\\server\\jvm.dll",

 "resetClassCacheOnStartup": false

 }

Or on macOS:
"java": {

 "jvm":"/Library/Java/JavaVirtualMachines/jdk1.8.0_45.jdk/

Contents/Home/jre/lib/server/libjvm.dylib",

 "resetClassCacheOnStartup": false

 }

You can set the JVM in the config.json file on a Linux server in a similar manner.

Web Services
Support for REST based Web Services was introduced in Omnis Studio 6.1, including
support for Swagger definitions to define an Omnis RESTful API for creating your own
web services from Omnis code. From Studio 8.0 onwards, Omnis supports Swagger
2.0 rather than 1.2 for RESTful web services. This only affects the Swagger files Omnis
generates, and there is now just one definition per service. There is a ‘Save to File’ link
to save the Swagger file for a service to disk under the Web Service Server node in the
Studio Browser.

 Software Support and Compatibility

 13

In addition, the defaultreslist.json file has been replaced with a file called default.json
(in the same location). The nickname property (in both the method editor and notation)
has been replaced with operationid, therefore $httpoperationid replaces $httpnickname.

Omnis uses the first non-empty description it can find for a remote task in the service
as the description of the service in the Swagger file.

OpenSSL
There are a number of Web commands that relied on OpenSSL in previous versions to
provide secure communications: these included FTPConnect, HTTPOpen,
TCPConnect, POP3Connect, and so on. We have removed the reliance on OpenSSL
which means you no longer have to install it to use secure connections in these
commands. Instead, the built-in security technology will be used, so on Windows
‘Secure Channel’ (Schannel) is used, on macOS ‘Secure Transport’ is used, and on
Linux OpenSSL will continue to be used since it is the default security technology on
Linux. See the Omnis Help for details about these commands (FTPConnect, etc).

Welcome and New Users
When you first launch Studio 8.1 a Welcome window will open allowing you to create a
small “Hello World” type application containing a JavaScript remote form or a window
class. The Advanced otion will take you straight to the Omnis IDE, or if you don’t want
the Welcome window to appear again, you can uncheck the ‘Show at Startup’ option.

The Applets and Samples that used to appear in the old Welcome screen have been
added to the Hub in the Studio Browser. The tutorial is available in Chapter 1 of the
Web Development manual on the Omnis website, including a ZIP file of the Tutorial
example libraries.

In addition, a new tool called the App Builder, that allows new users to create or
prototype applications quickly and easily, has been added to the ‘New Library’ option
under the Libraries option in the Studio Browser.

CPU type: sys(110)
The sys(110) function returns the CPU type of the computer running Omnis. This
function is no longer supported in Studio 8.0.x or higher, on the 64-bit versions of
Omnis Studio, on all platforms. Since there is such a variation of processor types,
across all types of computers and devices, this function is no longer a reliable indicator
of the computer type or platform Omnis is running on.

External Components
The external components Flic, MCIplay, NPAPI, Pcx, Stix and Wbmp are no longer
supported in this release and have been removed from the Xcomp directory for all
platforms.

Picture Formats
The WBMP and PCX picture formats are no longer supported in this release. This
affects the pictconvto/from functions and any other places where you set the picture
format.

FileOps Functions
The $readentirefile and $writeentirefile FileOps functions are no longer supported and
have been removed from the Functions tab in the Catalog.

VCS Branching
Access to branching in the VCS has been removed from the Studio Browser, although
VCS branching will continue to work in existing projects for backwards compatibility:
see the section on VCS for details.

About This Manual

14

Mac Touch Bar
The Mac Touch Bar API can be enabled/disabled via plist; it is disabled by default.
There is a new Boolean entry called "enableTouchBar" in the Info.plist inside the Mac
application package. To enable the touch bar set this to YES.

Windows Path names
Under Windows, if you use paths of 240 characters in length or longer, you must use \
(back slash) as the separator in such paths. For paths under 240 characters you can
use either \ or / in paths. This applies for all commands and functions in Omnis that
require a path as a parameter.

PDF Font Mapping
When using custom fonts for PDF printing there may be a mis-match between the
name of a font and its Window registry entry, which results in the font not being found
and the report not being rendered correctly. To rectify this, you can add mappings to
the "pdf" entry in config.json (that apply to the Windows platform only), to map a font
name to its entry in the registry. For example, you can map the font name "Proxima
Nova Rg" to its registry entry "Proxima Nova Regular", using the following item in the
config.json file.
 "pdf": {

 "plainSuffixes": "Regular,Standard,Normal,Normale",

 "Proxima Nova Rg": "Proxima Nova Regular",

 "Proxima Nova Rg Bold": "Proxima Nova Bold"

 },

 Localization

 15

What’s New in Omnis Studio
8.1.7

Omnis Studio 8.1.7 contains the following minor enhancements, and some fault fixes
which are listed in the Readme text file available with the download.

Localization
Changing System menu items (macOS)
You can change the Hide Omnis and Quit Omnis options in the Omnis Studio runtime
on macOS by adding strings to the Studio String Table (studio.stb). You can now
localize items in the Preferences and Services menus. Note you can find specific
strings in Omnis Studio using the Find strings… option by right-clicking on the string
table name in the Catalog.

JavaScript Components
JavaScript Component Templates
When you add a JavaScript Component to a remote form in your code at runtime,
Omnis now uses a template to create the object with all the required properties and
methods. There is a template for every type of JavaScript Component, and the
templates are located in the \studio\componenttemplates folder.

The component templates match the default components in the Component Store, and
should not be edited. There are templates for Report and Window class components as
well.

Omnis Programming
Maximum Number of Methods
The maximum number of methods per class has been increased to 4096 from 501.
(ST/PF/622)

What’s New in Omnis Studio 8.1.6

16

What’s New in Omnis Studio
8.1.6

Omnis Studio 8.1.6 contains the following minor enhancements, and some fault fixes
which are listed in the Readme text file available with the download.

OBrowser
A number of enhancements have been made to the OBrowser window component, to
enable the use a new HTML control JSCBridge that allows you to run the Omnis
JavaScript Client within OBrowser in a desktop (fat client) form, and to enhance HTML
controls including support for dates.

JavaScript Client Bridge
The JavaScript Client Bridge (JSCBridge) is a new HTML control that allows you to
run the Omnis JavaScript Client within OBrowser in a standard Window Class, which
means you can open a Remote Form in the desktop (fat client) version of Omnis
Studio, passing data between the form and Omnis.

The JSCBridge control source code and documentation is available on the Omnis
Studio GitHub repository:

https://github.com/OmnisStudio/Omnis-JSCBridge

HTML Controls & Dates
The OBrowser window class component allows you to embed HTML controls on a
window class.

HTML controls can now use Date variables as their $dataname. In order to use dates,
the .htm file for the control needs to include a link to a new JavaScript file omn_date.js
which enables dates: this has been added to the template included in this version, but
you will need to add it to any existing html for controls.

HTML controls can now also pass dates when calling sendControlEvent(), either
directly, or as a column in a row/JS object. In addition, HTML controls can pass nested
rows/JS objects with sendControlEvent().

The omnisOnWebSocketOpened() method now receives the Web Socket port as a
parameter.

For more information about creating HTML controls for desktop (fat client) apps, refer
to the Omnis Programming guide on the Omnis website.

oBrowser & localStorage on macOS
oBrowser on macOS now overrides the WebView's handling for localStorage for file
URLs (only). It writes the localStorage keys & values to a file called localStorage.json in
the clientserver/client/ folder.

JavaScript Components
Control Classnames
All JavaScript controls now have a base class name to allow you to control the
appearance of controls using CSS, and apply a consistent appearance for each type of
JavaScript control. The classnames listed below can be added to the ‘user.css’ and
CSS properties applied to the classname to control the appearance of each type of

https://github.com/OmnisStudio/Omnis-JSCBridge

 JavaScript Components

 17

control. Note these classnames are contained in the JavaScript controls by default and
if they are added to the user.css are applied to the control automatically, that is, the
new classnames do not need to be included in the $cssclassname property to be
applied. You can add further styles to user.css and quote them in $cssclassname to
apply those additional style properties to individual controls (as in previous versions).

JS Control Class Name Additional notes

‘Frame’ element

for all controls

omnis-[control]-frame

Activity Control omnis-activity

Background Control omnis-background

BarChart Control omnis-barchart

Button Control omnis-button

Checkbox Control omnis-checkbox

ComboBox Control omnis-combo The dropped list has “ctrl-drop-list”

assigned.

If ($cssclassname) the opened items

list will be assigned the class of the

first class in $cssclassname suffixed

with ”-dropped-list”

Complex Grid omnis-complexgrid omnis-complexgrid-header and omnis-

complexgrid-hheader for header and

horizontal header areas.

Each row has omnis-complexgrid-row and

either ‘odd’ or ‘even’ depending on their

line number.

If ($cssclassname) the header/hheader will

have class $cssclassname+”-header” and

“-hheader”

Date Picker Control omnis-date

Data Grid Control omnis-datagrid

Droplist Control omnis-droplist The dropped list has “ctrl-drop-list”

assigned.

If ($cssclassname) the opened items

list will be assigned the class of the

first class in $cssclassname+”-

dropped-list”

Edit Control omnis-input

File Control omnis-file

HTML Object omnis-html

Hyperlink Control omnis-hyper

What’s New in Omnis Studio 8.1.6

18

JS Control Class Name Additional notes

Label Object omnis-label

List Control omnis-list

Map Control omnis-map

Menu - used for

context menus,

popup menus and

tab menus

omnis-menu omnis-menu-main for containing <div>

omnis-menu-table for table <div> omnis-

menu-row for row <div>

omnis-menu-cellcheck for check or icon

element in the menu

omnis-menu-celltext for the text element

omnis-menu-cellcascade for the cascading

menu element

Popup and tab menus will implement If

($cssclassname) the opened items list will

be assigned the class of the first class in

$cssclassname+”-opened-menu”

Native List Control omnis-nativelist

Native Slider Control omnis-nativeslider

Native Switch Control omnis-nativeswitch

Navigation Bar Control omnis-navbar

Navigation Menu
Object

omnis-navmenu

Page Control omnis-pagectl

Paged Pane omnis-pagedpane

Picture Control omnis-picture

Popup Menu Control omnis-popup Also contains the classes from omnis-

menu as it uses this object for the menu

element of the control.

PieChart Control omnis-piechart

Progress Bar Control omnis-progress

RadioGroup Control omnis-radio

Rich Text Editor
Control

omnis-rich

Segmented Control omnis-segmented

Slider Control omnis-slider

Subform omnis-subform

Switch Control omnis-switch

 JavaScript Remote Forms

 19

JS Control Class Name Additional notes

Tab Control omnis-tabs Also contains the classes from omnis-

menu as it uses this object for the menu

element of the control.

TransButton Control omnis-trans omnis-trans-text

To address text element of a trans

button.

Video Control omnis-video

For example, to add CSS styling to all the Edit controls in your remote forms you could
add the following CSS to the user.css file in the ‘html/css’ folder in the main Omnis
folder: in this case, the base classname .omnis-input is used with the properties 2px
solid grey border and a 6px radius.
.omnis-input {

 border: 2px solid grey;

 border-radius: 6px;

}

JavaScript Remote Forms
evLayoutChanged & pBreakpoint
In previous versions the pBreakpoint parameter was reported as a string when
evLayoutChanged was detected in a client executed method; this is now reported as
an integer value, which matches the behaviour of evLayoutChanged in server methods.
This may affect existing libraries which compare pBreakpoint with a string.

Libraries
Library Conversion
When you try to open a library that needs to be converted, Omnis will prompt you to
ask if you want to convert the library: this applies to libraries you open in the
development version of Omnis and any libraries located in the Startup folder that are
loaded automatically.

There is a new option to suppress conversion prompts when a library that needs to be
converted is opened from the Startup folder. The new option
"disableAllLibraryConversionPrompts” has been added to "defaults" section of the
Omnis Configuration file (config.json). The default is false, so set this option to true to
prevent library conversion prompts.

Headless Server
Running as a Service
The "headlessAcceptConsoleCommands" setting in the Server group of the Omnis
configuration template file (config.json) has been changed to false. Previously this was
set to True which meant that all Console Commands were recorded which meant that
100% of CPU was used when the Headless server was run as a service: this new
option ensures this is turned off by default, but will need to be enabled to accept all
Console Commands.

What’s New in Omnis Studio 8.1.6

20

SQL Programming
OmnisSQL & National Fields
In previous 8.1.x versions there was an issue when using the OmnisSQL DAM and
LIKE in a WHERE clause to search data in National fields. The issue has been fixed by
adding a new compare mechanism, but to use the new behavior you need to enable an
entry in the Omnis Configuration file (config.json), "nationalFieldCompareChars", in the
"defaults" section.

This entry defaults to false, meaning the old behavior is maintained for compatibility
with existing data files, so you only need to set this option to true if there is an issue in
your code.

Having set this option to true, you also need to drop and rebuild the indexes from any
files containing national fields.

Deployment
App Server Licensing
In order to enforce licensing for JavaScript Client based apps, the UUID of each client
is logged with the Omnis App Server. Prior to this version, the UUID was stored in a
cookie in the client computer which required any clients to have cookies to be enabled
for this licensing mechanism to work. However, the method for storing the client UUID
has changed in this version: the UUIDs are now stored in the ‘localStorage’ on each
client which is now used to manage client licenses on the Omnis App Server.
Therefore, clients no longer have to have cookies enabled for App Server Licensing to
be enforced.

 SQL Programming

 21

What’s New in Omnis Studio
8.1.5

Omnis Studio 8.1.5 contains the following minor enhancements, and some fault fixes
which are listed in the Readme text file available with the download.

SQL Programming
$definelistorrow method
There is a new method for session objects, $definelistorrow(&vListOrRow,
cTableName) which defines a list or row variable from a server table. The method
returns a Boolean, true for success.

If you pass $cinst as the list or row argument from within a table class, the call
maintains and updates the table instance associated with the parameter. If the server
table contains a primary key, $definelistorrow sets $excludefromwhere to kTrue for
non-primary key columns.

$usescale
There is a new property, $usescale (a Boolean property), for the ODBC DAM. If kTrue,
Omnis number dp columns are bound using a precision of 15 + the dp value. If kFalse
(the default), number dp columns are bound using a precision of 15. Also affects
$createnames().

Window Programming
Edge Float Properties in Subclasses
In Studio 8.1 the behavior changed with regards to Float properties for fields and
controls in Subclasses. If you open a window which has a superclass, and which
overrides $width or $height, children in the superclass now float to reflect the difference
in size between the superclass and the class.

There is a new entry setting, "floatWindowSubclass" (default true), in the "defaults"
section in config.json, which allows you to override the new Subclass window floating
behavior. You can set this to false to revert to the previous floating behaviour with
subclasses (i.e. not floating if width or height are overridden).

JavaScript Components
Labels and Date variables
Label fields now support Date variables as their $dataname, taking their display format
from #FDT, #FD, or #FT depending on whether they have a date/time component.

What’s New in Omnis Studio 8.1.5

22

Window Components
Toolbar button text on macOS
In previous macOS versions, if the text on a toolbar button was quite long it was not
displayed, while other shorter names were displayed, giving an inconsistent
appearance.

In this version on macOS, toolbar buttons will resize to accommodate longer text
names, and so the button names are always displayed, unless $showtext is off. This is
more in line with the behavior on Windows.

Functions
sys(237)
There is a new sys() function, sys(237), which will return an item reference to the
method currently being edited (in design mode), if the method editor is the top window
and only one method is selected. For example:
Set reference item to sys(237)

If item

 OK message {[item.$fullname]}

Else

 Send to trace log no method

End If

 OW3 HTTP Workers

 23

What’s New in Omnis Studio
8.1.4

Omnis Studio 8.1.4 contains the following minor enhancements, and some fault fixes
which are listed in the Readme text file available with the download.

OW3 HTTP Workers
The OW3 HTTP worker now supports WebSocket client connections to a WebSocket
server. The HTTP worker can be used to build a client interface since all WebSocket

connections start off by exchanging HTTP headers that eventually upgrade the
connection to a WebSocket connection.

WebSocket Server Support
$init

To initialise the OW3 HTTP worker object so that it is ready to create a WebSocket
client connection, call $init with parameters as follows:

Parameter Description

cURI The URI of the WebSocket server, which must include the URI scheme
(ws or wss) e.g. wss://demos.kaazing.com/echo
You cannot omit the URI scheme, because the HTTP worker defaults to
using http.

iMethod Must be kOW3httpMethodGet

lHeaders A two column list where each row is an HTTP header to add to the
HTTP request.
The worker automatically adds these headers when connecting to a
WebSocket server, so do not add these headers:
connection: upgrade upgrade: websocket
sec-websocket-version: 13
sec-websocket-key: <key value>

vContent Not used

iAuthType A kOW3httpAuthType... constant that specifies the type of authentication
required for this request. If you omit this and the remaining parameters,
authentication defaults to kOW3httpAuthTypeNone.

cUserName The user name to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest.

cPassword The password to use with authentication types kOW3httpAuthTypeBasic
and kOW3httpAuthTypeDigest

The standard OW3 properties $state, $errortext, $errorcode, $threadcount,
$protocollog, $timeout, $callprogress and $curloptions all apply when connecting to a
WebSocket server.

The standard OW3 methods $getsecureoptions and $setsecureoptions apply when
connecting to a WebSocket server.

What’s New in Omnis Studio 8.1.4

24

$run and $start

You cannot use $run to establish a WebSocket connection, since multiple threads are
required to make it usable. So if you try to use $run, the worker returns kFalse and sets
$errorcode and $errortext.

To establish a WebSocket connection, call $start. If $start succeeds, then the worker
attempts to establish the connection to the WebSocket server in another thread.

If the connection cannot be established, the worker generates a notification to
$completed, with a non-zero value in the errorCode member of the notification row
parameter.

If the connection is established successfully (and is therefore open and ready for data
transfer), the worker generates a notification to the new method $ws_onconnect.
Override this method to receive this notification. $ws_onconnect receives a single row
variable as its parameter. This row variable has a single column, responseHeaders,
which is a row with a single column for each response header received from the server
in the final HTTP protocol exchange resulting in the 101 (web socket protocol
handshake) HTTP status code.

As soon as you have received the $ws_onconnect notification, the WebSocket is ready
to send and receive data.

$wssend

After you have received the $ws_onconnect notification, you can send data using the
method $wssend:

$wssend(vMessage)

Sends the supplied message on a connected web socket. Returns true if successful,
which means the message has been queued for sending.

If vMessage is a character value, the worker converts it to UTF-8 before sending it as a
text message; otherwise the value is treated as binary and sent as a binary message.

Receiving Data

Each message received from the WebSocket server generates a $ws_onmessage
notification. Override this method to receive these notifications. $ws_onmessage
receives a single row variable parameter, with 2 columns (named data and utf8).
Column data is the binary data and column utf8 is boolean true if the data is UTF-8.

$wsclose

The client can close the WebSocket connection by calling the method $wsclose:

$wsclose([bDiscardUnsentMessages=kFalse,iStatusCode=1000,cReason=‘'])

Closes the connection to the web socket server. $completed() will be notified when the
connection has closed. The row passed to $completed has closeStatus and
closeReason columns that receive the values sent in the close frame to the server.

Pass bDiscardUnsentMessages as kTrue, to discard any completely unsent queued
messages before sending the close frame to the server.

iStatusCode is an integer status code that indicates the reason for closure (one of the
values in section 7.4 of RFC6455).

cReason is some optional text that indicates the reason for closure.

Server close

The server can send a close frame to the client, telling the client it is closing the
connection. The client responds with a close frame, before the connection closes.
Again, $completed is notified to tell the object that the connection has closed.

The row passed to $completed has closeStatus and closeReason columns that receive
the values sent in the close frame from the server.

$cancel

You can use $cancel to terminate the connection in a non-graceful manner.

 Windows Classes

 25

Ping-pong

If the client receives a Ping from the server, it automatically responds with a Pong. You
can also set up the client to automatically Ping the server, and generate an error
(closing the connection) if a Pong is not received. To do this, use these two properties:

$wspinginterval: If non-zero, and the connection is to a web socket server, the HTTP
worker sends a Ping frame to the server every $wspinginterval seconds of inactivity,
and closes the connection if a Pong frame is not received after $wspongtimeout
seconds. Defaults to zero.

$wspongtimeout: The number of seconds (1-60, default 5) the client waits to receive a
Pong frame after sending a Ping frame as a result of the $wspinginterval timeout
expiring.

Timeout

The object restarts the $timeout timer each time it sends or receives some data.

Windows Classes
Drag and Drop
There has been a number of enhancements or changes to the behavior to the drag and
drop functionality for dropping external system files onto window class fields. For
example, you can now drop a file into a node in a tree list. The enhancements also
bring the platforms more into line.

In the past, regarding drag and drop, when a user wanted to drop files into Omnis they
would set kAcceptFiles on a field, and specifically under Windows they would set
kAcceptFileData. This would allow them to drag external system files onto the field.
When they released the mouse, Omnis would send an evCanDrop, then if this returned
kTrue, Omnis sent an evDrop event.

In the case of kAcceptFileData, Omnis would send the filename and filedata in a row,
although this was only supported on Windows. In the case of kAcceptFiles, Omnis
would send the filename the file extension, but no path, in a row. Dragging system
content deeper into a field was not supported, for example, dragging into a tree with
nodes.

The updated drag and drop support:

❑ On evCanDrop for kAcceptFiles the full filenames/path is sent, not just filename

❑ On evCanDrop for kAcceptFileData the filenames/path and data is sent on macOS
as well as Windows.

❑ evCanDrop is sent as the mouse moves in, out, or within of fields

❑ evCanDrop and evDrop now will trigger on fields such as trees as the mouse
hovers over nodes that can open

❑ Supporting kAcceptFiles and kAcceptFileData on a field will result in just
kAcceptFileData (macOS brought into line with Windows)

Omnis now attempts to read the system dragged filelist & file data on the first entry of a
field and disposes these when the drag and drop is complete, or cancelled.

You can disable the new drag and drop support, and revert to the previous evCanDrop
support by setting a new flag, classicwindowssystemdragdrop, in the Omnis
configuration file (config.json).

What’s New in Omnis Studio 8.1.4

26

Themes
Appearance Theme
Selected Tab Text Color

A new theme color, "colortabselectedtextmacos", has been added to the $apperanace
property (and stored in the appearance.json file) which controls the color of the text on
a selected tab, on macOS only.

 JavaScript Components

 27

What’s New in Omnis Studio
8.1.3

Omnis Studio 8.1.3 contains the following minor enhancements, and some fault fixes
which are listed in the Readme text file available with the download.

JavaScript Components
Rich Text Editor
Data Format

The JS Rich Text Editor has a new property, $dataformat, which controls the format of
the document data stored in $dataname for the control. It can be one of the following
constants:

❑ kJSRichTextDataFormatJSON
The document data will be stored in the $dataname as JSON, as a Quill 'Delta'
object. This is the best option for restoring the data later, as it preserves all
formatting.
When setting the data, you can assign JSON (Delta), HTML or plain text: this
should be detected and converted as necessary.

❑ kJSRichTextDataFormatHTML
The document data will be stored in the $dataname as HTML. This may lose some
minor formatting. This format is suitable to use if you are going to use the data
elsewhere in your code, but not for storing the document data and restoring into the
Rich Text Editor.
When setting the data, you can assign HTML only.

❑ kJSRichTextDataFormatPlain
The document data will be stored in the $dataname as Plain text. This will lose
most formatting.
When setting the data, you can assign Plain Text only.

The $dataformat property can be changed in your code to populate the $dataname with
data of the specified format. Note that if you do this in a server-executed method, the
$dataname won't be updated until the client next contacts the server.

Appending Data

The JS Rich Text Editor has two new methods to allow you to add data either before or
after the current content in the Rich Text Editor.

❑ $appenddata(cData, bNewLine)
$prependdata(cData, bNewLine)
allow you to append or prepend data to the content in $dataname in a Rich Text
editor control.

If you pass bNewLine as kTrue, the data will be added on a separate line. These
methods can only be executed on the client.

The data format of the passed data depends on the value of $dataformat. If
$dataformat is JSON, the data could be sent as plain text, HTML or JSON (a Quill
Delta object).

What’s New in Omnis Studio 8.1.3

28

OW3 Worker Objects
FTP Directory List
FTP does not have a standard syntax for the data returned by the LIST command, so
in previous versions the ListDirectory action in the OW3 FTP worker object returned the
whole directory list in a single column list. The FTP worker now attempts to parse the
results of the ListDirectory action, based on some typical syntaxes supported by many
servers. This applies when the list directory action (kOW3ftpActionListDirectory) is
being used to generate a detailed list, i.e. when vParam is set to false: the detailed list
has 8 columns, as follows:

1. The full text returned by the server. This maintains compatibility with previous
versions of the OW3 FTP worker, and may contain additional information not
extracted by the parser.

2. The file name.

3. Boolean. True if the entry is probably a directory.

4. Boolean. True if the entry is probably a file.

5. File size in bytes.

6. Modification date of the file.

7. Boolean. True if the modification date is in the local time zone of the client.
False means the time zone of the modification date is unknown.

8. If not empty, the server id of the file or directory. A character string.

Window Components
HTML Controls
You can add your own HTML controls to a window class using the oBrowser window
component: these have to be added to the htmlcontrols folder. There has been a small
enhancement to allow the htmlcontrols folder to be located in the Application Support
folder on macOS. This will allow you to add your own HTML controls and the Omnis
Runtime app to remain code signed.

The obrowser section of config.json now has a new member:
 "defaultHtmlcontrolsFolderInDataFolder": false

If you set this to true, Omnis looks for the htmlcontrols folder in the data folder rather
than the program folder (provided that the obrowser htmlcontrolsFolder member is
absent or empty).

 JSON Components

 29

What’s New in Omnis Studio
8.1.2

Omnis Studio 8.1.2 contains the following minor enhancements, and some fault fixes
which are listed in the Readme text file available with the download.

JSON Components
Read-only Properties
The property object for JSON defined controls has a new Boolean member,
editreadonly, which can be set to true to make the property read-only. Defaults to
false if omitted.

Window Classes
Diacritical Characters
End users can now enter various characters with diacritical marks by using a popup.
The new Diacritical Character popup is available on end user windows (window
classes) in any entry field that accepts text including Entry fields, Multi-Line Entry fields
and Combo boxes, as well as in most edit boxes in the Studio IDE, including the
Method Editor. (Note this feature is not available for JavaScript Edit controls in remote
forms, although if your app is running on a mobile device the soft keypad may provide
a similar function for entering diacritical characters.)

To enter a diacritical character, the end user needs to hold down the character key,
and if the character has additional diacritical options, a popup will be shown containing
that character with a range of diacritical marks applied from which a selection can be
made. For example, the end user can hold down on the ‘a’ character key and a small
dialog will popup containing a number of diacritical variations for the ‘a’ character, as
shown:

When the popup is shown the end user can press the Left and Right arrow keys to
move back and forth, and then press Return to select a character. Clicking the mouse
or pointer on a character will also select a character. In addition, the top row in the
popup contains a number index and pressing a numeric key will select the
corresponding character. The Shift key can also be used along with the character key
to enter an uppercase diacritical character.

Pressing Escape or clicking away from the popup will dismiss the popup.

When a character is selected, the popup is dismissed and the last typed character in
the original field will be replaced with the selected character.

Popup Content

The popup content varies from language to language. To support different languages a
new folder called “Keyboard” has been added to the “Local” folder in the Omnis tree. If
you remove this folder no diacritical popup will be shown.

What’s New in Omnis Studio 8.1.2

30

Five languages are supported: English, French, German, Italian, and Spanish. There is
a file for each of these languages: en.json, fr.json, de.json, it.json and es.json. When
the popup is required, Omnis will load the popup content based on the language of the
client, for example, when using English on the client the en.json file is loaded from the
Keyboard folder.

You can add more files to this folder to support more languages. The json files have
the following structure:
 "diacritical": {

 "A" : "A À Á Â Ä Æ Ã Å Ā",

 "C" : "C Ç Ć Č",

 "E" : "E È É Ê Ë Ē Ė Ę",

 "I" : "I Î Ï Í Ī Į Ì",

 "L" : "L Ł",

 "N" : "N Ñ Ń",

 "O" : "O Ô Ö Ò Ó Œ Ø Ō Õ",

 "S" : "S Ś Š",

 "U" : "U Û Ü Ù Ú Ū”

 }

Omnis will search this file for the character key being held down and using the above
table present a popup with the various options and index numbers.

You can disable this feature for individual fields in a window class by setting the
$disablediacriticalpopup property to kTrue, which is on the Action tab.

macOS Keyboard Layout

On macOS, the user has an option to show a keyboard language menu allowing them
to switch between different STANDARD language keyboard input layouts.

With the option diacriticalpopupuseosxkeyboardlayout in config.json set to true,
depending on the selected keyboard layout in macOS, Omnis will ignore its own
‘current’ language setting and load a file from the keyboard folder. A ‘language to file
mapping’ must also exists in config.json.

For example, if Omnis is in English but diacriticalpopupuseosxkeyboardlayout is true,
and the user has selected French from the standard keyboard layout menu in macOS,
Omnis will load the ‘fr.json’ file for the diacritical character popup content.
 "diacriticalpopup": {

 "diacriticalpopupuseosxkeyboardlayout": true,

 "com.apple.keylayout.British": "en",

 "com.apple.keylayout.German": "de",

 "com.apple.keylayout.French": "fr",

 "com.apple.keylayout.Spanish": "es",

 "com.apple.keylayout.Italian-Pro": "it",

 "com.apple.keylayout.Italian": "it"

 }

Diacritical input in the IDE

Assuming the keyboard folder is present in the local folder within the Omnis tree, the
IDE will provide the diacritical character popup wherever text entry is required. To
disable the feature for the IDE, remove or rename the Keyboard folder.

 OW3 Web Worker objects

 31

What’s New in Omnis Studio
8.1.1

Omnis Studio 8.1.1 contained a few minor enhancements described below, and some
fault fixes listed in the Readme text file available with the download.

OW3 Web Worker objects
An IMAP worker object has been added to the OW3 Worker Objects external package,
adding to the existing HTTP, SMTP and FTP worker objects released with Studio 8.1.
See the Whatsnew81.pdf or the 'Extending Omnis' online manual for details:
http://www.omnis.net/documentation/index.jsp

An example library for each Web or Email protocol has been added to the Samples
group under the Hub to demonstrate the use of the new OW3 Worker Objects (look for
HTTP, SMTP, FTP and IMAP in the list).

In addition, the RESTful Weather example app now uses the HTTP worker object from
the OW3 external package, which is described in the tech note: TNWS0002 "RESTful
Web Services: implementing a Client" available here:
http://www.omnis.net/technotes/tnws0002.jsp

JSON Control Editor
When you build a new JSON defined JavaScript control you no longer need to restart
Omnis to make it available in the Component Store: there is a new 'Reload' button in
the JSON Component Editor that loads any new JSON controls that have been built
using the 'Build' button.

The 'Reset' button has been renamed 'New' and it loads a new copy of the JSON
control template.

SQL Query Builder
Some enhancements have been added to the SQL Query Builder, which is available in
the SQL Browser inside the Studio Browser.

A 'Create table class' option has been added to a new 'Other' toolbar menu option for
creating a table class from the current query; the option creates a $load method in the
table class contains the query from the Query Builder. The option also gives you the
option to create a window class and/or a remote form for viewing the data via the new
table class; the form contains code which calls the $load method in the table class.

An 'Export Data' option has been added to the 'Other' toolbar menu to allow you to
export the results data.

Plus the 'Create Statement on Clipboard' option has been added to the 'Other' menu
option; the Omnis code generated by this option is suitable for pasting into an Omnis
method.

Cmnd+. keypress on macOS
There is a new setting in the Omnis Configuration file (config.json) in the macOS group.
When set to True (the default), the "allowStopInRuntime" option will ensure that the
Cmnd+. (Cmnd plus period) key press will stop execution (e.g. break a loop) in a
runtime on macOS.

http://www.omnis.net/technotes/tnws0002.jsp

What’s New in Omnis Studio 8.1

32

What’s New in Omnis Studio
8.1

The following major enhancements were added to Omnis Studio 8.1, as well as several
other minor enhancements also listed in this document:

❑ Exporting Libraries to JSON
you can now export/import Omnis libraries in JSON format which means you can
manage and share your Omnis libraries in a third-party VCS repository, such as
GIT or SVN

❑ Responsive JavaScript Forms
JavaScript remote forms now allow you to set custom breakpoints for different
screen widths (replacing the existing fixed screen sizes), which means the
appropriate form layout and controls will be loaded for the current device; in
addition, form controls can transition smoothly when changing the remote form size
or orientation

❑ JSON Controls
you can now define your own remote form controls using JSON or wrap ready-
made JavaScript components from a third-party; this provides a new, or alternative
method to creating external JavaScript components using C++

❑ Headless Omnis Server
there is a new “headless” version of the Omnis App Server, available on Linux only,
that allows you to deploy your JavaScript Client based web and mobile
applications; there is a new Admin tool to help you configure the headless server

❑ Code Signed Omnis on macOS
the Omnis Studio application package is now code signed on macOS, which
provides increased security for you and your end users; consequently, files that
may need modification (libraries) are copied to the Application Support folder when
Omnis is first run

❑ Web and Email Communications
there is a new external package, called OW3, that provides a Worker Object
containing various methods for performing “low-level” Web- and Email-based
communications (HTTP, SMTP, FTP, and IMAP); the new package uses CURL,
does not need Java to be installed and configured, and supercedes the previous
external commands and web workers

❑ Push Notifications
Push Notifications are now supported in iOS, Android, and Windows 10 wrappers
(version 2.0+) which means you can send messages to clients using your mobile
apps; support for notifications is now built into the Wrapper SDKs, and there is a
new admin tool under the Tools menu to allow you to set up notifications on clients
and the Omnis Server

❑ Property Manager and Studio Browser
the Property Manager has some significant enhancements that will help new and
existing users, including a filter for showing a subset or all properties and a Search
box for locating specific properties: in addition, the Studio Browser has a Search
box to filter the current view to help you locate classes and other items

❑ JavaScript Components
there are some new properties in JavaScript Edit fields to auto correct, capiltalize,
and complete words as the end user types; the automatic correction feature is also
available for the editable part of Combo boxes and in Data grids; the JS File control
now allows a number of files to be downloaded specified in a list; there is a new

 Cmnd+. keypress on macOS

 33

property $showheaderlines for Headed Lists and Tree Lists; if true (the default),
header separator lines are drawn in the header

❑ Web Services
RESTful web services now support POSTs with the content type "application/x-
www-form-urlencoded”, such as the content type that would be generated by an
HTML form on a web page; plus RESTful requests are now queued by the Omnis
Server until they succeed

❑ Method Editor
method lines longer than 255 characters now fully display in the method editor;
control characters are now displayed in data or content when inspecting a variable
in the Method Editor; inherited methods are no longer prefixed with comments from
the inherited method; you can use the shortcut key Ctrl+Shift+I to inherit or override
the current method; the Code Assistant now recognises custom properties

❑ SQL Workers
now support an interim $progress method which can be called whilst the worker is
running to provide notifications

❑ Window Programming
window classes and the majority of window components now have the $alpha
property; multi-line fields now have the property $linecount to limit the number of
lines of text/data that can be entered into the field; $toplevelhwnd has a new
property $screen, that allows you to track the location and dimensions of the
screen, as the window changes position

❑ Lists
there is a new method $selectduplicates to select duplicate lines in the list; the
$first() and $next() list methods now take an additional optional condition parameter
which must be met in order to match the first or next line

❑ Themes
you can now have multiple custom themes, and you can export and import your
themes

❑ Reports
the report class editor toolbar now has Zoom In and Zoom Out buttons which
control the DPI value used for report coordinates and rendering fonts; and the A6
paper size has been added

❑ Web commands
there are two new commands for authentication and executing a HTTP method,
and a new parameter UseProxy in HTTPOpen; FTPConnect has a new optional
parameter to allow you to specify the Charset

❑ Functions
there are two new functions to generate 256-bit or 512-bit signatures; and the
iso8601 functions provide better handling for hundredths of a second and
milliseconds

What’s New in Omnis Studio 8.1

34

Exporting Libraries to JSON
Omnis Studio 8.1 allows you to export an Omnis library to a directory tree containing a
number of text files in JSON format representing your library, including all the classes,
controls and methods in your library. Additionally, Studio 8.1 will also allow you to
import an Omnis library from such a JSON tree.

Providing the ability to export and import Omnis libraries in JSON format will allow
developers to use a third-party version control system such as GIT or SVN to manage
Omnis applications or library source code. In particular, this will allow efficient and
secure application development in a team of Omnis developers, as well as the sharing
of Omnis libraries and third-party tools among members of the Omnis community.

Exporting Libraries
To export a library to JSON, you need to select the library under the main Libraries
option in the Studio Browser. After selecting the library the Export Lib to JSON option
will be visible in the library options, allowing you to export the library to JSON (after you
export a library, the Update and Rebuild options will also appear).

If you have multiple libraries open in the Studio Browser, the Export, Update and
Rebuild options will apply to the currently selected library. By default, different libraries
will be exported to different JSON trees, under the export folder, using the library name
as the default name for your JSON tree. As you use the Export, Update and Rebuild
options, Omnis will maintain an internal table of which library belongs to which JSON
export tree to allow you to work on multiple libraries or projects simultaneously.

Export Lib to JSON

The Export Lib to JSON option exports the currently selected library to a new JSON
tree. The location of the export folder defaults to ‘exports’ in the main Omnis tree, and
the export process automatically creates and names a sub-directory in the export folder
using the name of your library.

Update JSON tree

The Update JSON tree option exports the library to its associated JSON tree, which in
effect will update any classes or methods that have changed, or add any new classes
in your library. You Should Note that the update option deletes the existing JSON tree,
and replaces it with a completely new JSON tree built from the updated library.

The update process first checks for any conflicts and reports these if any are found. For
example, Omnis will report an error if a JSON file or folder is missing or has been

 Exporting Libraries to JSON

 35

renamed. You need to rectify these errors before you can update, or you can ignore the
conflicts in the error log window and proceed with the update.

Rebuild from JSON

The Rebuild from JSON option archives the current library open in the Studio Browser
to the ‘archives’ folder and replaces it with a new library built from the associated JSON
tree.

Each time you use the Rebuild option, Omnis places a new copy of the current library
in the archives folder and appends a number to the name of the library. The last
version of the library in the archive folder is then used during the restore process as the
most recent archive.

Once the Rebuild option has been run, the Restore Library option appears.

Restore Library

The Restore Library option overwrites the current library in the Studio Browser with
the previously archived version.

Library and JSON mapping

The Studio Browser maintains a log of which library maps to which JSON folder, which
is essential when working with multiple libraires. A file called ‘exports.json’ is created in
the ‘studio’ folder that contains the mapping for all your exported libraries, so for each
library there is a record of the name and path of the Omnis library file, the name and
path of its associated JSON folder, and the path of the archived library, if it exists; note
the name of the most recent archive library is used.

Importing Libraries
You can import a library into the Studio Browser from an existing JSON tree that was
previously exported from Omnis Studio using the Export Lib to JSON option. For
example, you could check out an Omnis JSON tree from a third-party VCS, such as
GIT or SVN, and import it into Omnis to start a new project.

Note you cannot open a library from a JSON tree using the standard Open Library
option in the Studio Browser (which can only open a .LBS file). You have to import a
JSON tree first to create the library before it can be opened in the Studio Browser.

New Library from JSON

To import a library from a JSON tree, you need to select the Libraries node in the
Studio Browser and click on the New Lib from JSON option.

The New Lib from JSON option imports a JSON tree that was previously exported
from Omnis and creates a new Omnis library file (.LBS). When you have created the
new library, its classes will appear in the Studio Browser.

What’s New in Omnis Studio 8.1

36

Directory and JSON File Structure
The following sections describe the JSON file & folder structure of a library exported
from Omnis Studio using the Export Lib to JSON option, which may help you
understand how the exported JSON could be managed. Note that all text files exported
from Omnis use UTF-8 encoding, including the .json and .omh files, and are formatted
suitable for viewing in a text editor.

An Omnis library is represented by a folder that contains the file called ‘library.json’:
this folder has the same name as the library and is referred to as the ‘library folder’.
library.json contains top-level information about the library, such as the library
preferences and version number.

Within the library folder, there is a tree of class directories that represents the folder
structure of the Omnis library. Each class in your library has its own directory, and if the
class itself is an Omnis folder class, it contains sub-directories for the Omnis classes
contained in that Omnis folder.

Each class directory has the same name as the class name (see the note on directory
and file naming below). Every class directory contains a JSON file named ‘class.json’.
This contains top-level information about the class, including:

❑ Class type

❑ Class properties

❑ For classes that support methods: definitions of class and instance variables, and
for task and remote task classes, definitions of task variables.

File classes also have a file called ‘indexes.json’ within the class directory, if the file
class defines any indexes.

If the class supports methods, the class directory also contains a JSON file named
‘methods.json’ provided that there are some class methods. methods.json contains an
array of the class methods, where each entry contains various properties of the method
and definitions for parameters and local variables.

There is a file in the class directory for each method defined in methods.json, named
<method name>.omh (subject to the file naming rules below), that contains the method
code. The ‘.omh’ file extension is proprietory to Omnis, but the file format is text like the
other files.

If the class can contain objects, then there are two different structures depending on
the class type:

❑ For file, query, schema and search classes, all objects and their properties etc. are
in a single file called ‘objs.json’ in the class directory. objs.json contains an array of
objects.

❑ For all other class types that can have objects, the class directory can have a
number of sub-directories:
 - objs
 - bobjs
 - inheritedobjs

The ‘objs’ directory contains a sub-directory for each object in the class, where the
directory name is the object name (subject to the directory naming rules below). Each
object sub-directory contains a file named ‘object.json’ that contains object properties
etc, and if the object has methods, there is an identical structure to that used for the
class methods: a methods.json file, and <method name>.omh files.

The ‘bobjs’ directory is only present for window classes (JavaScript forms do not have
background objects). It contains a sub-directory for each background object in the
class, named using the object ident (subject to the directory naming rules below as
older libraries can unfortunately contain objects with duplicate idents). Each
background object sub-directory contains a file named object.json that contains object
properties, etc.

 Exporting Libraries to JSON

 37

The ‘inheritedobjs’ directory is only present for classes that support inheritance. It
contains a sub-directory for each superclass object that either defines or overrides a
method in the subclass. Each sub-directory contains methods.json and <method
name>.omh files just like those used for class and object methods, representing the
methods defined or overridden for the object.

Binary Data

There are various properties which require a binary representation in the JSON library
representation. These are handled in two ways:

1. If Omnis recognises a PNG, e.g. in #ICONS or a report background picture, it
outputs a PNG file to the tree, and the JSON contains the name of the PNG file.

2. Otherwise, Omnis outputs the BASE 64 encoding of the binary data to the
JSON file.

Directory and File Naming

Where possible, directories and files are named using the Omnis name (class name,
object name, object ident, or method name). However, there are some considerations:

1. Although it is not recommended for naming objects in Omnis, class and object
names can contain characters that are not allowed in file system names, e.g.
path separators for all platforms, ?, *. To cater for this, the JSON library
representation escapes these characters as % followed by the 2 lower case hex
characters that represent the escaped character. As a consequence, Omnis
also escapes the % character.

2. Omnis libraries can contain classes where the names only differ by their case.
In addition, they can contain objects with duplicate names. In these cases, the
JSON library representation prefixes the name with the string %_<n>_ where
<n> is an integer index (for objects this is the order value, and for classes this is
a value starting at 1 and incremented for each class with the same case-
insensitive name; note that Omnis always exports classes in ascending name
order, meaning that the prefix for each class in a set of classes with the same
case-insensitive name will be the same each time you export the classes,
unless you add or remove a class with the same case-insensitive name).

Library Dependencies
Libraries can depend on other libraries. In many cases, the presence of the external
library is not required for Omnis to successfully import or export the JSON library

representation. However, there are three cases that affect tokenization, and as a
consequence, mean the external library or libraries must be open when exporting or
importing a library:

1. Design task. If the design task is in an external library, the external library must
be open.

2. Superclass. If the superclass is in an external library, the external library must
be open.

3. External file classes. If the code or tokenized properties use a variable in a file
class in an external library, the external library must be open.

The export option detects the required external libraries in cases 1-3 above while it
generates the JSON library representation. It adds an error to the error list when it
encounters a reference to an external library that is not open, and returns kFalse. In
addition, if the export succeeds, it adds an array to library.json named “includes”: this is
an array of all required external libraries. The import library option will fail if any of the
included libraries are not open.

What’s New in Omnis Studio 8.1

38

External File classes & Tokenization
By default, Omnis tokenizes variables in external file classes using the file name and a
field token. For development, you should use both file and field names (to avoid
untokenization issues when the external library is not open), whereas for deployment it
might be more desirable for performance to use both file and field tokens.

In Studio 8.0, the only control over these tokenization options is via the browser context
menu Retokenize… option. For Studio 8.1, there are some new root preferences that
you can use to control this:

❑ $tokenizeexternalfilenames: If true, Omnis uses tokens rather than text when
tokenizing external file names

❑ $tokenizeexternalfieldnames: If true, Omnis uses tokens rather than text when
tokenizing external field names

You can use these preferences when importing a library to control how the output
library tokenizes variables in external file classes. The values of these preferences are
stored in the “defaults” entry in config.json.

JSON Components
You can now define your own remote form controls using JSON and JavaScript, and
use them on JavaScript Remote forms in your web and mobile applications. Using the
same technique, you can wrap ready-made JavaScript components available from any
third-party, opening up endless possibilities for new controls to use in your Omnis apps.

This new method of creating JavaScript components provides an alternative to creating
external components using C++ and our JavaScript SDK, which is the current method
used for creating JavaScript components. It also means you only need to understand
JSON and JavaScript, together with our JavaScript interfaces on the client, in order to
create and use the new JSON defined JavaScript controls, either in your own web or
mobile apps, or to provide to the wider Omnis community.

Having built a JSON defined component using the JSON Control Editor, the component
will appear in the Component Store in a new JSON Components group. You can drag
the component onto your JavaScript remote form and set its properties using the
Property Manager.

The design mode rendering of the JSON controls on a remote form is very basic, and
does not reflect the actual control as it might appear on a remote form at runtime,
although for some controls that do not require a visual interface this is not a problem. In
a later version, we may improve the appearance of the JSON controls in design mode.

JSON Control Editor
A JSON control is defined in a JSON file, called a JSON Control Definition (JCD) file,
which you can create or edit using any text or JSON editor – if you are very familiar
with JSON you may like to create the JCD using an editor. Alternatively, you can create
the new JSON controls (create a JCD file) using a new tool available under the
Tools>>Add Ons menu, called the JSON Control Editor.

 JSON Components

 39

The JSON Control Editor contains a template control that has all the necessary
properties to create a basic JSON control. The editor allows you to set the properties
for the control under each tab. To create a component, you edit the properties, click on
Save, click on Build to build the control, and then click on Reload to load the
component into the Component Store. The New button removes any changes you have
made to the default template and allows you to start again. In order to setup the
properties and methods for your control you will need to refer to the later JSON
definitions later in this section.

Control Name

The name of the control must be unique, so you will need to change the Control Name
in the editor (or just accept the default name if you are testing the editor). The default
control name is prefixed with ‘net.omnis’ to show the preferred naming convention, but
you should change this to your own company name, e.g. com.mycompany.mycontrol1,
or use any appropriate naming convention. If you do use a dot in the control name,
Omnis converts it to underscore, since dots cause an issue with the Omnis notation.

Control Properties

The following tabs are available to set the properties of the control:

❑ Flags
allows you to set whether or not events are enabled, whether or not the control has
a transparent background, whether or not drag events are enabled, and so on

❑ Standard properties
an array of standard properties supported by the control, in addition to the basic
properties such as name

❑ Properties
an object defining the control-specific properties of the control; the name of each
member of the properties object is the name of the control property, without the
leading $, e.g. id, type, etc.

❑ Multivalue properties
allows you to set up a control to have multiple values for certain properties

❑ Constants
an object defining the constants for the control, e.g. value, desc, etc.

❑ Events
defines the events that the control generates (in addition to those specified by the

What’s New in Omnis Studio 8.1

40

flags member) and including the standard events such as evClick; the name
includes the “ev” prefix

❑ Methods
specifies the client-executed methods that the control provides; the method name
includes the “$” prefix

❑ Html
specifies how the initial HTML sent to the client for the control is generated

The Save option places the JSON control file in html/controls folder. The Build option
places the JavaScript file for your control in the html/scripts folder in your development
tree. It also prompts you to include a reference to the JavaScript file for the control in
the jsctempl.htm file, which will ensure that the control is available for testing any
remote forms that contain the new control.

When you have built a JSON control you need to restart Omnis for it to load. After
restarting Omnis, the control will appear under the JSON Components tab in the
Component Store ready to use in your remote forms. When you deploy your app, you
need to place the JSON and JavaScript files in the corresponding folders in your Web
Server tree, and check that they are referenced in the html page containing your
remote form.

You could open the ‘control.json’ file created in the JSON Control Editor when you build
the control from the template: this file will show you the typical structure of the JSON
file required to define a new component.

Using Ready-made JS Components

When using ready-made JS components, that you have obtained from a third-party,
you need to add the .js file(s) to the html/scripts folder in the Omnis tree, and any other
CSS and image files required for the control need to be put in the appropriate folder(s).
You will also need to add any properties, methods, and events in your JS control to the
JSON definition file via the JSON Control Editor. There is a tech note on the Omnis
website that describes the process of using a ready-made JS component in Omnis:

❑ TNJC0009: Adding Ready-made JavaScript components to Omnis

You will also need to refer to the JavaScript Control Reference in the JS SDK docs
which you can find here:

http://sdkdocs.omnis.net/jssdk

JSON Control Definition
This section describes the different properties that can be defined in the JCD file for the
control and edited under the separate tabs in the JSON Control Editor (or when editing
separate members using a text editor).

There is a new folder in the Omnis tree, html/controls, which contains a sub-folder for
each JSON control you have defined. The names of these sub-folders are not critical,
but it makes sense to use the same name as the control name.

The JSON Control Editor will create html/controls folder when you build your first
control, otherwise if you are building your own controls you will need to create this
folder (note this is not to be confused with the ‘htmlcontrols’ folder that contains
controls that can be loaded in the oBrowser object).

Each control folder must contain a file named control.json. In addition, it can contain
PNG files - these can have any name, but they need to comprise a subset of the
16x16, 16x16_2x, 48x48 and 48x48_2x PNG files used for the control icon in the
Component Store, and also used when rendering the control on the remote form
design window. The PNG files must have the extension .png.

There is a new external component named ‘jsControls’ in the jscomp folder, which
handles all JSON defined controls. It loads and validates the controls at startup. All

http://www.omnis.net/technotes/tnjc0009.jsp
http://sdkdocs.omnis.net/jssdk

 JSON Components

 41

controls which pass validation are loaded into the new JSON Components group in the
Component Store. If a control fails validation, jsControls opens the trace log, and adds
a message to indicate there is a problem with the control. The exact problem can be
found in a file called control_errors.txt in the control’s folder.

Each control must have a unique name. This is defined in control.json (see below), and
you should use a convention similar to Java except that Omnis uses underscore rather
than a dot, e.g. net_omnis_control1 could be the name of a control (using dots causes
issues in the Omnis notation).

JSON Control Object
Every control has a JSON file called ‘control.json’ containing a JSON object defining
the control. The members of this object are defined in the following sections.

name

The name member is mandatory and it specifies the name of the control; it becomes
the external component control name. It is also used to create the JavaScript control
class name, as ctrl_<name>.

For example.
 "name": “net_omnis_control1"

In this case the JavaScript control class would be ctrl_net_omnis_control1.

flags

The flags member is mandatory. It is an object that allows certain features of the
control to be configured. Each member of flags is optional, and defaults to false if it is
omitted. Valid members are:

❑ beforeafterevents and beforeevents (are mutually exclusive)
indicate if the control supports either evAfter and evBefore, or just evBefore
respectively. If both are omitted, the control supports neither event (see also the
events member)

❑ backcolorandalpha
indicates if the control has backcolor and backalpha properties.

❑ noenabled
indicates if the control does not have the enabled property.

❑ transparentbackground
indicates that the control has a transparent background, and does not have
backcolor and backalpha properties. Must not be used with backcolorandalpha set
to true.

❑ hasdefaultborder
indicates if $effect for the control can have the value kJSborderDefault.

❑ hasdisplayformat
indicates if the control has date and number format properties.

❑ hasdragevents
indicates if the control has drag events (see also the events member).

For example:
 "flags": {

 "beforeafterevents": true,

 "backcolorandalpha": true,

 "noenabled": true,

 "hasdefaultborder": false,

 "hasdisplayformat": true,

 "hasdragevents": true

 },

What’s New in Omnis Studio 8.1

42

standardproperties

The standardproperties member is optional. It is an array of standard properties
supported by the control; inclusion in the standardproperties member means the
control will have the property. These are over and above the basic properties that apply
to all controls e.g. active, name, etc.

Valid members of the standardproperties array are: “dataname", “effect", “bordercolor",
“borderradius", “linestyle", “font", "textcolor", "align", “fontstyle", “fontsize", “horzscroll",
“vertscroll", "autoscroll", “dragmode”.

For example:
 "standardproperties": [

 "dataname",

 "effect",

 "bordercolor",

 "borderradius",

 "linestyle",

],

properties

The properties member is mandatory. It is an object defining the control-specific
properties of the control. Each member of the properties object is itself an object that
contains members that describe the property. The name of each member of the
properties object is the name of the control property, without the leading $. Valid
members of each property object are:

❑ id
The identifier of the property. A positive integer. This is mandatory, and it is a
critical field in that Omnis stores this value in the copy of the object saved in the
class, in order to identify the property. This means you must not change id values
after you start to use the control on a remote form. id must be unique for all
properties for the control. When jsControls loads the control, it will validate property
id uniqueness. It usually makes sense to start numbering your properties at 1.

❑ desc
The description of the property. A character string. This is mandatory, and is used
by the IDE, for example, as the property tooltip in the Property Manager.

❑ tab
An optional member. A character string that identifies the Property Manager tab to
be used for the property. Defaults to the Custom tab if omitted. Otherwise, it must
have one of the following values: custom, general, data, appearance, action, prefs,
text, pane, sections, java or column.

❑ type
A mandatory member. A character string that identifies the type of the property.
This can be one of the basic types (number, integer, character, boolean or list) or a
specific type (color, dataname, font, icon, pattern, fontstyle, linestyle, multiline, set,
or remotemenu).

❑ runtimeonly
An optional member. A boolean which is true to indicate that the property is a
runtime only property. Defaults to false if omitted.

❑ findandreplace
An optional member. A boolean which is true to indicate that the property is
searched by find and replace. Defaults to false if omitted.

❑ extconstant
An optional member. A boolean which is true to indicate that the property is
constrained to a range of constants defined by this control. This affects the property
manager popup. It can be used for both integer type properties, and set type

 JSON Components

 43

properties; in the latter case, the first member of the range must be a constant that
has the value zero, and represents the empty set.

❑ intconstant
An optional member. A boolean which is true to indicate that the property is
constrained to a range of constants defined by the Omnis core. This affects the
property manager popup. It can be used for both integer type properties, and set
type properties; in the latter case, the first member of the range must be a constant
that has the value zero, and represents the empty set. extconstant and intconstant
must not both be set to true.

❑ constrangestart and constrangeend
These members must be present if either extconstant or intconstant is true. In the
case of intconstant, they are integer constant idents that specify the range of
constants - you can see the idents for core constants in the $constants group in the
notation inspector. In the case of extconstant, these are the names of constants
defined by this control; the members of the range are the constants starting with
constrangestart, and ending with constrangeend, in the order they occur in
control.json. Note that when used with a set, the constant values need to
correspond to the bit mask used to represent the set.

❑ min and max
These members are optional, and only apply when the type is integer. They specify
minimum and maximum values for the property.

❑ initial
This member is optional. It can be used to specify an initial value for the property.
For number types, it can be a floating point number. For character types, it is a
character string. For integer types, it is an integer. For boolean types it is a
boolean. The initial value is used, for example, when dragging a new copy of the
control out of the Component Store (provided that a copy of the control is not
already stored in the Component Store).

❑ editreadonly
An optional member. A boolean which is true to indicate that the property is a read-
only property. Defaults to false if omitted.

For example:
 "properties": {

 "headercolor": {

 "id": 1,

 "desc": "The header color of the control",

 "type": "color",

 "tab": “appearance”,

 "initial": 255

 },

 "headericon": {

 "id": 2,

 "desc": "The header icon of the control",

 "popuptype": "icon",

 "tab": "appearance"

 },

 "rangeofexternalconstants": {

 "id": 3,

 "desc": "Range of external constants",

 "type": "integer",

 "extconstant": true,

 "constrangestart": "kNetOmnisControl1Range1",

 "constrangeend": "kNetOmnisControl1Range3",

 }

What’s New in Omnis Studio 8.1

44

 }

multivalueproperties

The multivalueproperties member is optional. It allows you to set up a control to have
multiple values for certain properties. It is an object with members as follows:

❑ itemlistproperty
This is mandatory. When a control supports properties with multiple values, the
properties are stored in a list. Each row of the list contains the set of properties for a
particular tab or column. We call the tab or column (or something else) an item.
This property must have type list, and it is automatically hidden from the property
manager.

❑ itemcountproperty
This is mandatory. It is the name of an integer property defined by the properties
member, that can be set to specify the number of items in the item list. You can
specify a max value for this property in order to restrict the number of items,
otherwise it is restricted to no more than 256 items.

❑ currentitemproperty
This is mandatory. It is the name of an integer property defined by the properties
member, that identifies the current item displayed in the property manager, and to
which property changes apply to multi-value properties.

❑ moveitemproperty
This is mandatory. It is the name of an integer property defined by the properties
member, that can be used to move the current item to a new position in the item
list.

❑ properties
This is mandatory. It is an object that specifies the properties that have multiple
values, and where they are stored in the list. Each member must be the name of a
property in the main properties object; the value of each member is the list column
in the item list where the property value is stored. It is important not to change the
column number once you have started using the control.

For example:
 "multivalueproperties": {

 "currentitemproperty": "curitem",

 "itemlistproperty": "itemlist",

 "moveitemproperty": "move",

 "itemcountproperty": "itemcount",

 "properties": {

 "mvprop1": 1,

 "mvprop2": 2

 }

 }

 }

constants

The constants member is mandatory. It is an object defining the constants for the
control. Each member of the constants object is itself an object that contains members
that describe the constant. The name of each member of the constants object is the
name of the constant. Valid members of each constant object are:

❑ value
The value of the constant. An integer. This is a mandatory member.

 JSON Components

 45

❑ desc
The description of the constant. A character string. This is mandatory, and is used
by the IDE for example as the tooltip in the catalog.

❑ group
The catalog group to which the constant belongs. This is optional. By default, all
constants defined for the control belong to the group “RF:jsControls-<control
name>”. You can use this member to replace the control name with something
else. All constants occurring after the constant with the group specified belong to
this group, until a new group is specified (if any).

For example:
 "constants": {

 "kNetOmnisControlHeaderColor": {

 "value": 123,

 "desc": "The description of this constant"

 },

 "kNetOmnisControl1Range1": {

 "value": 3,

 "desc": "Range constant 1”,

 “group": “Ranges"

 },

 "kNetOmnisControl1Range2": {

 "value": 5,

 "desc": "Range constant 2"

 }

 }

events

The events member is optional. It specifies the events that the control generates (in
addition to those specified by the flags member, i.e. before, after, and drag events).
Each member of the events object identifies an event. The name of each member is
the name of the event, including the “ev” prefix. Certain standard events can be
specified: evClick, evDoubleClick, evTabSelected, evCellChanges, evHeaderClick and
evHeadedListDisplayOrderChanged. Valid members of each event object are:

❑ id
Must not be specified for standard events. Otherwise, this is mandatory, and is the
positive integer id of the event. This id must match the event id you use in the
JavaScript implementation of the control, and must be unique within the context of
this control.

❑ desc
Must not be specified for standard events. Otherwise, this is mandatory, and is a
text string describing the event.

❑ parameters
The event parameters of the event. This is an array. Each array member is an
object with members as follows:
name
This member is mandatory. The parameter name. Do not include the p character
prefix - Omnis will add this. Note that if you use re-use an event parameter name,
then the remaining members of this object are ignored, and overridden by the
original definition of the parameter - the first control (or Omnis core) using a name
sets the type and description of that parameter.
type
This member is mandatory. The data type of the parameter. integer, character,
boolean or list.

What’s New in Omnis Studio 8.1

46

desc
This member is mandatory. A text string describing the parameter.

For example:
 "events": {

 "evNetOmnisControlOpened": {

 "id": 1,

 "desc": "The event sent when the control opens",

 "parameters": [

 {

 "name": "name",

 "type": "character",

 "desc": "The name event parameter"

 },

 {

 "name": "name2",

 "type": "integer",

 "desc": "The second event parameter"

 }

]

 },

 "evClick": {

 "parameters": [

 {

 "name": "zname1",

 "type": "character",

 "desc": "The zname1 event parameter"

 },

 {

 "name": "zname2",

 "type": "integer",

 "desc": "The zname2 event parameter"

 },

 {

 "name": "horzcell",

 "type": "character",

 "desc": "the horz cell event parameter"

 }

]

 }

methods

The methods member is optional. It specifies the client-executed methods that the
control provides. Each member of the methods object identifies a method. The name of
each member is the name of the method, including the “$” prefix. Valid members of
each method object are:

❑ id
This is mandatory, and is the positive integer id of the method. It must be unique
within the context of this control. It is used internally by the Omnis core.

❑ desc
This is mandatory, and is a text string describing the method.

❑ type
This is mandatory. The return type of the method. integer, boolean, character or list.

 JSON Components

 47

❑ parameters
This member is optional. It is an array describing the parameters of the method.
Each member of the array is an object with the following members:
name
This is mandatory. The name of the parameter. Omnis will insert a data type
character at the start of this name.
desc
This is mandatory. A text string describing the parameter.
type
This is mandatory. The data type of the parameter. integer, boolean, character or
list.
altered
Optional. A boolean, default false. If true, the parameter is marked as one that will
be altered.
optional
Optional. A boolean, default false. If true, the parameter is marked as optional.

For example:
 "methods": {

 "$mymethod1": {

 "id": 1,

 "desc": "This is my method",

 "type": "integer",

 "parameters": [

 {

 "name": "p1",

 "type": "character",

 "altered": true,

 "desc": "The parameter p1"

 },

 {

 "name": "p2",

 "type": "integer",

 "desc": "The parameter p2",

 "optional":true

 }

]

 }

 }

html

The html member is mandatory. It specifies how the initial HTML sent to the client for
the control is generated. It is an object with members as follows:

❑ template
Mandatory. A character string that is a template for the inner div of the control. For
example: <div %o %s data-props='%p' data-mvprops=‘%m’></div>:
jsControls replaces %o with the JavaScript client attributes for the client element,
which includes the id attribute of the client element: this element must be specified.
jsControls replaces %s with the style attribute for the div, based on the normal
Omnis processing and the properties the control supports.
jsControls replaces %p with the control properties that are not multi-value. %p is
replaced with a JSON string, representing an object, where each member of the
object is named by the property name, with value of the property value. The value
may have been mapped by Omnis to what the client will require, for certain property
types such as color and icon. The client JavaScript can use this string to create an

What’s New in Omnis Studio 8.1

48

object containing its property settings.
jsControls replaces %m with the multi-value control properties. %m should be
omitted if the control does not use such properties. %m is replaced with a JSON
string, similar to %p, except that it is an array of objects, with an array entry for
each multi-value item.

❑ extrastyles
Optional. A string of length up to 255 characters of extra style attributes to include
in the style attribute replacing %s in the template, e.g. “margin:2px”.

❑ padding
Optional. An integer used to set padding (in pixels) in the style attribute replacing
%s.

❑ relativeposition
Optional. Boolean, default false. If true, the style attribute replacing %s includes
position relative rather than absolute.

❑ nowrap
Optional. Boolean, default false. If true, the style attribute replacing %s includes
white-space nowrap.

For example:
 "html": {

 "template": "<div %o %s data-props='%p' data-mvprops='%m'></div>",

 "extrastyles":"margin:1px;"

 }

The resulting inner div for the control looks like this:
<div style='position:absolute; top:0px; left:0px; height:106px; width:88px;

font- family:'Times New Roman',Georgia,Serif; font-size:12pt;font-

weight:bold; font- style:italic;text-align:right;color:#00FFFF; overflow-

x:auto; overflow-y:auto;margin:1px;' data-backgroundcolor='#555555;

rgba(85,85,85,1.0000)' data-dragmode='1' data- effect='1' data-linestyle='1'

data-bordercolor='16711935' data-

props='{"headercolor":"#FF0000","headericon":"icons/datafile/omnispic/001663

n16.png? 46", "rangeofinternalconstants":14, "rangeofexternalconstants":5,

"headerpattern": 1, "headerfontstyle":4, "headerlinestyle":7,

"headermultiline":"Lots of text entered like this\rwith multiple\rlines\r",

"headerset": 13, "headerremotemenu":"NewRemoteMenu", "headerfont":"Courier

New,Monospace"}' data- mvprops='[{"mvprop1":1,"mvprop2":false,"mvprop3":""},

{"mvprop1": 2,"mvprop2":true, "mvprop3":"NewRemoteMenu"}, {"mvprop1":

2,"mvprop2":true,"mvprop3":"aaaa"}]'></div>

Note that it is important to use single quotes around the attributes in the template, since
JSON includes double quotes. jsControls escapes any single quotes in the JSON it
inserts into the place-holders as \u0027.

customtabname

The customtabname member is optional. If specified, it is the name of the custom
properties tab for the control shown in the Property Manager.

JavaScript
When you have created a JSON control and added it to your Omnis tree, you can add
the supporting JavaScript file to the remote form template in the HTML folder (the
JSON Control Editor will do this automatically). To do this you can add:
<script type="text/javascript"

src="scripts/ctl_net_omnis_mycontrol.js"></script>

to the scripts section of the jsctempl.htm file (in the html folder) so the control is always
included in the test HTML page for your remote form; it also needs to be included in the
HTML page serving your deployed web or mobile app.

 JavaScript Forms

 49

JavaScript Forms
Responsive Forms
Responsive design is a technique used to design form layouts that cater to different
devices or screen sizes, including mobile phones, tablets, and desktop screens. The
motivation for employing responsive design is to create a single form, with one set of
code methods, that adapts its layout automatically when it is displayed on a range of
different devices, or when the client browser is resized. For standard web pages,
responsive design is implemented using CSS media queries and breakpoints, and
Omnis takes a similar approach by allowing you to specify a number of layout
breakpoints in a single JavaScript remote form, where each breakpoint corresponds to
a different layout for the fields and other controls on your remote form.

Existing remote forms in converted libraries will continue to use the $screensize
property to specify the layout for different devices. All new remote forms created in the
Studio Browser via the New Class option or the Form wizards are set to the new
responsive layout type by default. There is a migration tool, available under the
Tools>>Add-Ons menu, that will allow you to migrate existing JavaScript remote forms
to the new responsive type. (Note the existing Sync Screen tool only applies to the old
$screensize based remote forms.)

Form Layout Type

JavaScript remote forms have a new property, $layouttype, which is a kLayoutType...
constant that specifies how the layout of the form is designed. This property is only
assignable when the remote form does not contain any controls (therefore, you cannot
switch an existing remote form in a converted library to the responsive type, if it
contains controls). The possible values for $layouttype are:

❑ kLayoutTypeResponsive
The remote form has a responsive layout with layout breakpoints, as specified in
the form toolbar and stored in the $layoutbreakpoints property as a comma-
separated list. A remote form can have a different layout for the fields and other
controls for each breakpoint value.

❑ kLayoutTypeScreen
This option corresponds to remote forms prior to Studio 8.1, and uses the old
$screensize property containing a number of fixed screen sizes. An existing remote
form in a library converted to Studio 8.1 will be set to this layout type (you can use
the migration tool to convert a form to responsive).

❑ kLayoutTypeSingle
The remote form has a single layout. This type could be used for applications
intended to be deployed on desktop web browsers only: you can use the $edgefloat
property for controls to resize or reposition them when the browser window is
resized. There is no $screensize property for this layout type and it does not allow
breakpoints to be set.

You can return the value of $layouttype in a remote form instance, but you cannot set it
in your code. A responsive remote form does not have the following properties, since
they are not relevant to responsive design: $resizemode, $screensize, $width, $height,
$horzscroll, or $vertscroll.

What’s New in Omnis Studio 8.1

50

Creating Responsive Remote Forms

You can create a new Responsive Remote form class in the Studio Browser using the
New Class>>Remote Form option, and in this case, the $layouttype property is set to
kLayoutTypeResponsive. The remote form wizards, available under the New Class
option in the Studio Browser, also create remote forms with the responsive layout type.
If you want to change the layout type, you must change it before you add any controls
since you cannot change the form layout type once it contains any controls.

A new responsive remote form contains a number of preset layout breakpoints: these
are set to 320, 768, and 1024 which correspond to the relative widths for phones,
tablets and desktop computers (the same screen widths available for remote forms in
previous versions that used $screensize). You can change these breakpoints to suit
the layouts you wish to support in your application (note the default breakpoint values
for new remote forms are set in $initiallayoutbreakpoints).

Each layout breakpoint must be a positive integer in the range 100 to 32000, with at
least 32 pixels between any breakpoints (therefore, you cannot create a breakpoint
with an existing value, or within 32 pixels of an existing breakpoint).

Clicking on a layout breakpoint in the toolbar makes it the current layout. You can
change, delete or add new layout breakpoints using the toolbar at the top of the remote
form design screen, as follows:

❑ To change the value of a layout breakpoint, you can drag the right edge of the
current breakpoint in the toolbar, or you can double-click on the number in the form
toolbar and enter a new value (or press Ctrl/Cmnd-E to edit the value).

❑ To delete a breakpoint, click on the Delete (X) button when the breakpoint is
selected, or press Ctrl/Cmnd-D when the breakpoint is selected (the delete button
is not shown when there are only two breakpoints, since this is the minimum
number of breakpoints for a responsive form and therefore one cannot be deleted).

❑ To add a new layout breakpoint, click on the ‘+’ button in the top-left corner of the
form toolbar, or press Ctrl/Cmnd-L when the remote form is selected, and enter a
breakpoint value.

You can right-click on a breakpoint (which also makes it the current breakpoint) to open
a context menu which provides options to edit the breakpoint value and delete the
breakpoint (the delete option is enabled only if there are two or more breakpoints).

Deleting Breakpoints

When you delete a breakpoint, the positioning and individual properties you have set
for all of the fields and controls in the layout are lost, so use this option with caution.
You can restore a deleted layout breakpoint immediately after deleting it using the
Undo option. If undo is not available, you will lose the breakpoint and any custom
settings for the all the fields and controls in that layout; in this case, you would have to
recreate the layout again.

Layout Breakpoints

A responsive remote form must have two or more layout breakpoints. Layout
breakpoints are widths measured in CSS pixels, so they represent logical sizes rather
than physical sizes. The JavaScript client chooses the layout for one of the breakpoints

 JavaScript Forms

 51

defined in the form based on the logical width of the area in which the remote form is to
be displayed in the browser on the device.

❑ For a desktop browser, the width would be the width of the browser window
(which can be resized), although note that responsiveness also applies to remote
forms displayed in a subform control (in which case the width is the width of the
subform control).

❑ For a mobile device, the width is most likely to be the width of the device screen
itself, although again, a form on a mobile device can be loaded in a subform control
which may be narrower than the device screen.

The client chooses the most appropriate layout for the device, from all the layouts
available in the form. Specifically, the client uses the layout for the largest breakpoint
that is less than or equal to the display area width, or if no such breakpoint exists
(because all breakpoint widths are greater than the display area width), the layout for
the smallest breakpoint.

Once the client has chosen a breakpoint, the client will apply floating and component
properties to make use of the available extra width (if any), and if there is no extra
width, the client will automatically turn on horizontal scrolling if necessary.

Layout Breakpoint Properties

Remote forms have a new property called $layoutbreakpoints, which stores the layout
breakpoints for a remote form. This is a comma-separated list of breakpoint values,
which must have at least two entries, and these values are shown and edited in the
toolbar in the remote form design screen: you cannot set layout breakpoints for a form
in the Property Manager. You can return the value of $layouttype in a remote form
instance, but you cannot set it at runtime.

When you create a new responsive remote form, the layout breakpoints in the form
(and the value of $layoutbreakpoints) are initialised with the value of a new library
preference, $initiallayoutbreakpoints. If you wish to create new remote forms with
different layout breakpoints you can edit this preference: to do this, select the library in
the Studio Browser and set the property under the Prefs tab in the Property Manager.

A responsive remote form has a property, $currentlayoutbreakpoint which is the value
of the current layout breakpoint. In design mode, the current breakpoint is highlighted in
the form toolbar: it is not shown in the Property Manager. At runtime, the value of
$currentlayoutbreakpoint may change if the end user resizes their browser window, or
changes the orientation of a mobile device.

Each layout breakpoint in a remote form has a property $layoutminheight, which is the
minimum height of the responsive layout, and shown in design mode as a single
horizontal line. When the available client height is larger than this value, controls can
float to use the additional vertical space, depending on their $edgefloat properties. The
default setting of $layoutminheight is zero which means the minimum height of the form
is set to the bottom-most coordinate of all controls plus an additional two pixels for
padding. Other non-zero values must be in the range 100 to 32000 inclusive.

What breakpoints should I use?

In general, you need to create a breakpoint for the smallest device within each
category of device you wish to support (phones, tablets, desktops). Therefore, the
value of the first breakpoint would be the logical width of the smallest phone you wish
to support (bearing in mind logical dimensions are not the same as the pixel
dimensions, which depend on the density of the screen). For example, the logical
dimensions of the iPhone 6 & 7 are 375 x 667, and the Samsung Galaxy S5 & S6 are
360 x 640, so you could set the first layout breakpoint to 360, or perhaps 350 to allow a
safe margin and to accommodate form layouts for both phones.

Similarly, to set the layout breakpoint for tablets you should consider the minimum
width for the range of tablets you wish to support. The default breakpoints defined in a
new remote form (320, 768, and 1024) provide support for a wide range of devices,

What’s New in Omnis Studio 8.1

52

both in vertical and horizontal orientations, but you may need to adjust the default
breakpoints to suit your requirements.

Adding Controls

You can add JavaScipt controls to a responsive form from the Component Store and
set their properties, in exactly the same way as in previous versions. When you add a
control to a responsive remote form it is added to the current layout and all other layout
breakpoints: initially, a control will be in the same position in all layouts, but you can
switch to another layout and change its position and other properties for that layout. If
you delete a control from one layout it will be removed from all other layouts.

Synchronizing Layouts

You can copy the layout from another layout to the current layout by right-clicking on
the background of the remote form, selecting the ‘Copy Layout from Breakpoint’ option,
and choosing the breakpoint value (values other than the current breakpoint are
shown). This has the effect of synchronizing the layouts across the different
breakpoints, in a similar manner to the Sync Screen tool available for old $screensize
based forms.

Control Size and Layout Properties

The following layout properties are stored for each control for each layout breakpoint,
that is, they can be set to different values for each layout: $left, $top, $width, $height,
$align, $edgefloat, $dragborder, and $errortextpos, plus the new property
$visibleinbreakpoint, which allows you to hide a control for certain layouts. For
example, you could use this property to show a vertical tabbar for one layout and a
horizontal tabbar for another layout.

When setting the $align, $edgefloat, $dragborder, $errortextpos and
$visibleinbreakpoint properties in the Property Manager, you can assign the selected
value to the control on all layouts by checking the ‘Set for all layout breakpoints’ option
in the property droplist.

Remote Form Inheritance

$layouttype cannot be overridden or changed in a subclass. $layoutbreakpoints cannot
be inherited: each class has its own set of layout breakpoints. $layoutminheight can be
overridden.

Responsive Form Methods

There are some new notation methods that can be used with a remote form class in
order to manipulate its layout breakpoints (note these cannot be used in remote form
instances):

❑ $addlayoutbreakpoint(iBreakpoint[,&cErrorText])
Adds a new layout breakpoint to the responsive remote form at position
iBreakpoint. Returns true for success, or false and cErrorText if an error occurs

❑ $movelayoutbreakpoint(iOldBreakpoint,iNewBreakpoint[,&cErrorText])
Moves breakpoint iOldBreakpoint for the responsive remote form to
iNewBreakpoint. Returns true for success, or false and cErrorText if an error occurs

❑ $deletelayoutbreakpoint(iBreakpoint[,&cErrorText])
Deletes the layout breakpoint at position iBreakpoint from the responsive remote
form. Returns true for success, or false and cErrorText if an error occurs

Responsive Form Events

A responsive remote form generates a new event, evLayoutChanged, when the
responsive layout breakpoint changes, that is, when a mobile device is rotated, or
when a browser window is resized: this event is also triggered when the form opens.
This has the event parameter pBreakpoint, which is the integer value of the new layout
breakpoint (e.g. 320, 768, or 1024).

 JavaScript Forms

 53

In addition, a responsive remote form still generates evScreenOrientationChanged on
mobile devices.

Remote Form Migration

There is a migration tool, available under the Tools>>Add-Ons menu, that allows you to
convert an existing JavaScript remote form to the responsive form type. The migration
tool creates new layout breakpoints corresponding to the old screen sizes available in
remote forms in previous versions, and tries to adjust the positioning and layout of
fields to fit those breakpoints. The migration tool creates a new responsive remote form
with breakpoints and modified screen layouts, based on an existing remote form, and
retains the old unmodified form in your library.

The migration tool will create breakpoints at 320, 768, and 1024 by default, and assign
them to the form layouts corresponding to the old screen sizes (the kSSZ... constants
set under $screensize): to create a breakpoint it must be set to True in the Migrate
column. The 480 breakpoint is available but is not enabled by default.

You can add a new breakpoint and assign that value to one of the old screen sizes; the
new Breakpoint value is added to the dropdown menu in the Breakpoint column. For
example, you may wish to create a breakpoint at 300 and assign it to the old phone
screen size (320x480) to ensure that all content is displayed on all types of phone.

The ‘Set $edgefloat kEFright’ option sets the $edgefloat property of certain controls to
kEFright to ensure that when the form is resized in the browser the right edge of those
controls is also resized or moved. In this case, only controls with no other controls to
their right, which are generally on the right-hand side of your form, are updated.
Specifically, the $edgefloat property of any buttons is set to kEFleftRight, rather than
kEFright, to ensure they float without resizing when the browser window is resized.

The ‘Update method lines with responsive class names’ option will replace all
references in your code to the old remote form name to the new name, so your code
continues to work.

When you have set up the appropriate options you can click the Make Responsive
button to create the new responsive form(s), which are placed in a new folder in your
library. You can modify them, or test them straight away using Ctrl/Cmnd-T.

Migration Log and detecting form width
When you have run the migration process, the tool creates a change log which will
contain any issues that may need your attention. This may include any places in your
code that use the old $screensize constants (kSSZjs...), which no longer apply to
responsive forms. In this case, you can use the event evLayoutChanged in the $event
method for the form to identify the current breakpoint, for example:

What’s New in Omnis Studio 8.1

54

On evLayoutChanged

 Calculate iCurrentBP as pBreakpoint

The evLayoutChanged event is called automatically when the form first loads as well
as when the form resizes. Using the above code you could use the value in iCurrentBP
to setup any further sizing or positioning of controls if required.

Component Transitions
JavaScript Remote forms have a new property, $animatelayouttransitions, which
specifies whether or not the controls on the form will animate to their new position and
size when the form layout or orientation changes on the client. If this property is set to
kTrue, all the controls on the form will animate on the transistion, e.g. when changing
from vertical to horizontal orientation. You can stop the animation for individual controls
by setting the $preventlayoutanimation property to true for the control. The new
transition properties apply to responsive remote forms and the existing $screensize
based forms.

The animation time is hard-coded to 500ms, but you can override this for individual
controls using JavaScript as follows:
Calculate lControl as $cinst.$objs.myButton1

JavaScript: lControl.animateLayoutTime = 1000; // Set layout transition

animation time to 1000ms for myButton1

Or, to set a new animation time for ALL controls on the form, execute the following in
the remote form's $init method:
JavaScript: ctrl_base.prototype.animateLayoutTime = 1000;

Client Caching
There is a new entry in the Omnis configuration file (config.json) that allows you to
control whether HTML pages are cached or not by the built-in HTTP server in Omnis
(which is used for testing forms in design mode). The ‘preventclientcaching’ item under
the ‘omnishttpserver’ entry in the config.json file is set to true by default and prevents
web pages from caching. When set to true, this would mean that every time a page is
accessed, the page and any linked scripts (JS files, CSS files) are loaded or refreshed
and not cached: note this is for testing purposes only, and does not apply when you
deploy your app. If you want pages to be cached you can set this item to false.

The new entry in config.json has the following format:
 "omnishttpserver": {

 "preventclientcaching": true

 }

When hosting your files on a web server (as recommended for deployment), this
setting does not apply - your web server will have its own settings to control client
caching behavior of files it serves.

Remote Menu Icons
You can now add icons to menu lines in Remote menus. The icons must be 16x16 in
size and can be chosen when you create the remote menu class, along with the text for
the menu line. The icon in each menu line is specified by $iconid. Checked menu lines
use the checked state of the icon if the icon is multi-state.

Note that $objs.$add for a remote menu instance does not have a parameter to add an
icon id. You can only set this after adding the menu line, by assigning $iconid for the
new line (since the new menu line needs to reference the icon on the server, which
cannot be done while executing $add).

 Headless Omnis Server

 55

Subform Sets
There is a new subformset_add constant: kSFSflagPreventDrag. If added to the 'flags'
parameter of a subformset_add command when using $clientcommand, the user will
not be able to drag the windows of the SFS.

Headless Omnis Server
There is a new “headless” version of the Omnis App Server on Linux that allows you to
run your JavaScript Client-based web and mobile applications in a headless
environment. The headless server is available for Linux only.

A so-called headless Omnis Server installed under Linux does not have a window-
based interface, but can be controlled remotely from the command line in a Terminal
window on the Linux machine, or you can configure the headless server using a new
Admin tool.

Considerations
Console Commands

There is a server config item in config.json ‘headlessAcceptConsoleCommands’, a
Boolean. When set to true (the default), the headless server provides a basic command
line interface when used in a terminal window.

Functions

The function isheadless() returns true when running in the headless server.

sys(231) returns zero in headless server.

sys(233) returns empty in headless server; it returns the title of the main Omnis
application window in the full server.

Java

You can start the JVM at startup by setting the ‘startjvm’ in the java section of
config.json to true: it cannot be started by any other mechanism on the headless
server.

Class Notation

If your Omnis code creates new classes using notation, there is a mechanism to
initialise new objects using template files, located in the ‘componenttemplates’ folder in
the ‘Studio’ folder. The folders are: componenttemplates/window,
componenttemplates/remoteform, componenttemplates/report containing the template
files to create window, remote form, and report instances, respectively. Each template
file name is complibrary_compcontrol.json, with spaces converted to _ (underscore): it
is a copy of an object.json file where only the properties and multivalueproperties
members are used. complibrary and compcontrol are the component library and control
name.

Restrictions

There are various restrictions or differences from full Omnis Server, as follows:

❑ Printing images to PDF in the headless server is restricted to PNG images (or true-
color shared pictures) only.

❑ There is no port support.

❑ You should use the ‘start’ entry in the ‘server’ section of config.json to start the
multi-threaded server

❑ The Test if running in background command always sets flag to true in the
headless server.

❑ Several commands and notation methods generate an error if executed in the
headless server e.g. open window, $open for a window, etc.

What’s New in Omnis Studio 8.1

56

❑ Picture conversion functions are not supported: pictconvto, pictconvfrom,
pictconvtypes, pictformat, pictsize (a runtime error is generated).

❑ Standard messages generated by the server (OK messages and errors) are sent to
the server log file, or could be routed to the Terminal if appropriate

Installing the Headless Server (Linux)
Download the installer from: www.omnis.net/download/

This install assumes you are running as Root or using sudo.

Update your version of Linux using the commands below that correspond to your
distribution of linux:
Centos/redhat: sudo yum update

Suse: sudo zypper update

Ubuntu/debian: sudo apt-get update

Once updated, you will need to install the dependencies that Omnis requires to run,
which are as follows:

❑ Centos/redhat: cups, pango

❑ Suse/Debian: Runs out of box

❑ Ubuntu: cups, libpango1.0

Once these are installed you can start the installer:
./Omnis-Headless-App-Server-8.1-x64.run

Follow through the installer as you would a normal install of Omnis Studio making sure
your serial is correct or the install will fail.

For Centos 7 and redhat the service will not automatically start after a reboot, you will
need to manually add Omnis (or whatever you called your service) to the service
autostart list using the following lines:
Sudo /sbin/chkconfig --add homnis

Sudo /sbin/chkconfig --list homnis (This line is to show that you have added

homnis correctly)

Sudo /sbin/chkconfig homnis on

You can now configure the Headless server using the Admin tool, as below.

To summarize the steps for each platform:

CENTOS7 & REDHAT

Required commands for Omnis to run on Centos:
Sudo yum update

Sudo yum install cups

Sudo yum install pango

Sudo /sbin/chkconfig --add homnis

Sudo /sbin/chkconfig --list homnis

Sudo /sbin/chkconfig homnis on

SUSE

The Headless Server should work out of the box on SUSE, but we would recommend
an update just in case:
sudo zypper update

Ubuntu 16.04, 17.04 & DEBIAN 9
sudo apt-get update

sudo apt-get install unzip

sudo apt-get install libpango1.0

sudo apt-get install cups

http://www.omnis.net/download/

 Headless Omnis Server

 57

Headless Server Admin Tool
There is an Admin tool that you can use to configure the Headless Omnis Server: the
Admin tool is implemented as a remote form and can be loaded in a web browser by
opening the web page called ‘osadmin.htm’ which is located in the ‘html’ folder of the
Omnis Server tree. However, before you can open this page to configure your headless
server, you will need to set the “data-webserverurl” parameter in the HTML file to the
location of your headless server (URL, IP address or Service name, and Port number,
e.g. http://192.1.1.68:5000), and then move the file to a location that allows you to open
the file in a web browser and has network access to the headless server (the Headless
Omnis Server installer should prompt you to set these options, but you may also like to
change them manually).

The Headless Server Admin tool has a number of tabs that let you view or configure
the server Activity, Logs, Settings, and Users. When you first open the admin tool in
your browser, you are requested to login: use the default username: omnis, password:
0mn1s (first character is zero). After logging in, you can change the password for the
default user, or create other users.

Activity

The Activity tab lets you see all Open Libraries on the server. You can use the
Refresh button to refresh the list.

The Open button lets you open a library on the server; note the construct method will
be run if present. You can click on a library in the list and close it using the Close
Library button; note that closing a library will suspend all clients connected to that
library.

The Active Tasks tab shows all current, active task instances or client connections on
the server; you can select a task or connection and view its details. You can kill or
close a task instance or connection using the Kill Task button; note that killing a task or
connection will suspend the operation of the application for the connected client.

Logs

The Logs tab lets you view the logs for the Server:

❑ Server
provides a log of the headless server activity (the location of the logs can be set
under the main Settings tab)

❑ Monitor
provides a log of all the active client connecttions (task instances)

What’s New in Omnis Studio 8.1

58

❑ Service
provides a log of all the errors or messages generated by the server including any
messages in the trace log or information about any web service requests.

Under the Service tab, the Configure button lets you set up what messages are
recorded in the log, including the attribute "folder" of "logToFile" which is the name of
the path relative to the Omnis Server tree where the service logs are generated. These
settings are added to the config.json for the server, under the “log” member:
"log": {

 "logcomp": "logToFile",

 "datatolog": [

 "restrequestheaders",

 "restrequestcontent",

 "restresponseheaders",

 "restresponsecontent",

 "tracelog",

 "seqnlog",

 "soapfault",

 "soaprequesturi",

 "soaprequest",

 "soapresponse",

 "cors",

 "headlessdebug",

 "headlesserror",

 "headlessmessage",

 "systemevent"

],

 "overrideWebServicesLog": true,

 "logToFile": {

 "stdout": true,

 "folder": "logs",

 "rollingcount": 10

 },

 "windowssystemdragdrop": true

 }

Settings

Under the Settings tab you can specify the location of the Server and Monitor logs,
plus the timer period and size of the logs. You can also set up the Server Port, number
of Server Stacks, and the Timeslice for the Headless server (and specified in the
config.json file), and you can restart the service from here.

The default service name of the Headless server is “homnis” which is specified in the
“server” member of the config.json file:
{

 "server": {

 …

 "service": "homnis"

Users

The Users tab lets you update users or create new ones. The default omnis user can
be changed here. When checked, the Re-start Option will allow a user to restart the
server.

 Code Signed Omnis (macOS)

 59

Code Signed Omnis (macOS)
The Omnis Studio application package on macOS is now code signed, which provides
increased security for you and your end users. A signed application can be trusted to
originate from the developer who signed it, and to not have been altered in any way by
any third-party, therefore guaranteeing the authenticity of an application. Signed
applications within macOS can automatically be granted permissions to perform
actions, such as accessing services from the network and running built-in software
such as AppleScript commands.

An application can only be signed if its code portion remains unchanged. For the
Omnis application, the code portion is located in the Omnis package, e.g.:
Omnis\ Studio\ 8.1\ x64.app/Contents/MacOS/

Firstruninstall and Application Support folders
Any files that are updated by Omnis must be stored as user application data located in
the user's home directory, that is, in the Application Support folder:
~/Library/Application Support/Omnis/

To do this, when Omnis starts up it will check for the existence of a folder called
‘firstruninstall’ in the macOS folder in the Omnis package. Any items which are
contained in this folder are copied by default to a folder in Application Support with the
same name as the Omnis package, e.g.:
~/Library/Application Support/Omnis/Omnis Studio 8.1 x64

The copy will not occur if the destination folder already exists, therefore avoiding any
files being overwritten.

This provides a mechanism to place all data folders and their contents into the
‘firstruninstall’ folder, e.g. icons, studio, startup. Once copied into Application Support
they are only updated in that location and leave the original macOS folder unchanged
and its signature valid.

Updating Components
With the signed version of Omnis Studio, an external or JavaScript component can be
added or updated in the user data folder. This allows the signed code part of Omnis to
remain unaltered, so it maintains a valid code signature. For example, a standard
component can be placed in the following folder:
~/Library/Application Support/Omnis/\Omnis\ Studio\ 8.1\ x64/xcomp

and a JavaScript component here:
~/Library/Application Support/ Omnis/\Omnis\ Studio\ 8.1\ x64/jscomp/

If the required folder does not exist it can be created by the user.

The user data folder is always searched first, so if a component with the same name
exists in the code section of the Omnis tree the user version will be loaded in
preference.

Deployment
When deploying your own application, you can update the distributed files in the Omnis
package to include your own libraries and components and to edit the name of the
application. Those files placed in the firstruninstall folder will be treated as user data
and will be copied to the Application Support folder.

By default, user data for each installation of Omnis goes into a subfolder of Application
Support called “Omnis” and the name of the Omnis package is used to provide the
folder for the individual installation.

So for example an installation here:
/Applications/Omnis Studio 8.1 Beta 3 x64.app

What’s New in Omnis Studio 8.1

60

Will have a default user data location of:
~/Library/Application Support/Omnis/Omnis Studio 8.1 Beta 3 x64

To customize the subfolder, edit resource 25599, and to customise the installation
folder, edit resource 25600. These resources are located in the Localizable.strings file
for the language used, e.g.
/Omnis Studio 8.1 x64.app/Contents/Resources/English.lproj/Localizable.strings

Both entries are empty for default behavior.
"CORE_RES_25599" = "";

"CORE_RES_25600" = "";

After you update the Omnis package files, the package will need to be re-signed with
your own signing identity. You cannot sign a file that has extended Finder information
attributes, so these need to be removed before signing. This can be done recursively
over the entire package by using the following command:
xattr -r -d com.apple.FinderInfo <package_path>

For example:
xattr -r -d com.apple.FinderInfo /Applications/My\ Application.app

Signing you own application requires a code signing identity which can be generated
by adding a development or production certificate via the Certificate section of the
Apple developer member center. The machine where signing is to occur must have the
certificate and private key installed. To list all valid code signing identities available on
a machine, use the following command from the terminal:
security find-identity -p codesigning -v

Which will, for example, produce the following output with key and identity listed:
1) 44FFBA8B7DFFB1AFFF36FD0613D6E5FC61FF8DFF "Certificate"

(CSSMERR_TP_NOT_TRUSTED)

2) B3EF62FF18E0FFB83D3A8FF3672CF80EFF367FFF "Mac Developer: John Doe

(24FFEXFF39)"

 2 valid identities found

To sign the package use:
codesign -f --deep --verbose -s <identity> <package_path>

For example:
codesign -f --deep --verbose -s "Mac Developer: John Doe (24FFEXFF39)"

/Applications/My\ Application.app

If the command completes with no errors, a similar line to the following should appear
in the output:
:signed app bundle with Mach-O thin (x86_64) [com.myCompany.MyApplication]

The application is now signed and ready for deployment.

Do not subsequently alter the contents of the package as this will invalidate the
signature.

You can verify the signature using the following:
codesign --display --verbose=4 <package_path>

Which will list items such as the signing authority, signing time, etc.

Patching a signed tree
If you wish to distribute an updated Omnis application (the program file), and replace
the application in an existing signed Omnis tree, then this can be achieved by doing the
following:

• Replace the binary in the original signed tree with the new version.

• Re-sign the Omnis tree with the same signing identity which you used to sign the
original tree.

• Take the patched binary out of the tree for distribution.

 Web and Email Communications

 61

Components can be patched without re-signing into the xcomp and jscomp folders of
the user data location, e.g.:
~/Library/Application Support/Omnis/Omnis Studio 8.1 x64

Always ensure the tree has a valid signature by running:
codesign --display --verbose=4

Web and Email Communications
There is a new external package, called OW3, that provides various Web Commands
that allow you to perform “low-level” Web- and Email-based communications which you
can build into your applications. The new OW3 external package in this release
contains support for HTTP, SMTP, FTP, and IMAP clients (support for IMAP was
added in Studio 8.1.1 patch).

In previous versions of Omnis Studio, the same web and email commands were
implemented as external commands, and then as worker objects, available respectively
under the External Commands group in the Method Editor and the Web Worker
Objects group in the Object Selection dialog. These implementations will continue to
work for backwards compatibility, but the Web Worker Objects are no longer supported
in this version, and we therefore recommend you use the new OW3 web and email
commands.

By using the OW3 Worker Objects you can execute a long-running task on a
background thread, such as running a large mailshot, that reports back to the main
thread when the task is complete. In addition, the OW3 new worker objects use the
open source CURL library, and native secure connection implementations for Windows
and macOS, so they should have fewer deployment issues than the implementations
available in previous versions.

OW3 Worker Objects
The new web and email commands in OW3 are accessed via a new set of worker
objects available under the OW3 Worker Objects group in the Object Selection dialog
in the Method Editor (not the Web Worker Objects group which contains the existing
worker objects). To use the web and email commands, you need to create an Object
variable and set its subtype to one of the OW3 worker objects, either the
HTTPClientWorker, SMTPClientWorker, or FTPClientWorker object under the OW3
Worker Objects group. Having created the variable you can call the web or email
commands (methods) using OBJECTVAR.$methodname.

The new OW3 worker objects use the same programming model as the SQL DAM
workers, and the old OWEB workers, available in previous versions. All OW3 worker
objects share the same base functionality, plus they have additional functions specific
to their respective web or email protocol.

An example library for each Web or Email protocol has been added to the Samples
group under the Hub to demonstrate the use of the new OW3 Worker Objects; look for
HTTP, SMTP, FTP and IMAP in the list (these were added in Studio 8.1.1).

Base Worker Support
This section describes functionality common to all OW3 worker objects.

Properties

OW3 worker objects all have these properties:

Property Description

$state A kWorkerState... constant that indicates the current state of the
worker object.

$errorcode Error code associated with the last action (zero means no error).

What’s New in Omnis Studio 8.1

62

$errortext Error text associated with the last action (empty means no error).

$threadcount The number of active background threads for all instances of this
type of worker object. In this case, type means the type of the
subclass of the common base class e.g. HTTP.

$timeout The timeout (in seconds) for requests. Zero means requests do
not time out. The desired value must be set before calling $run or
$start. Defaults to 10.

$protocollog If non-zero, the worker adds a log of protocol activity as a column
named log to its wResults row. The desired value must be set
before calling $run or $start. Defaults to kOW3logNone.
Otherwise, a sum of kOW3log... constants.
The kOW3log… constants are described in the Constants section
below.

$callprogress If true, and the worker is invoked to execute asynchronously
using $start, the worker periodically generates a notification to
$progress as it executes. Must be set before calling $start.
The $progress method is described in the Methods section below.

$curloptions Use this property to set internal CURL options not otherwise
exposed by the worker. A two-column list, where column 1 is a
number (the CURL easy option number) and column 2 is a string.
The internal option must use either an integer or string value.
Normally, you would not use this property, but if you do use it,
you will need to consult the libcurl header files and documentation
to obtain easy option numbers and values. You should use this
option with care, as there is a chance you could cause Omnis to
crash by passing an incorrect option value.

Constants

Protocol Logging

OW3 worker objects can all use these constants to control protocol logging. Sum the
constants to select the desired logging.

Constant Description

kOW3logNone No protocol logging occurs. Obviously, this value needs to be
used on its own.

kOW3logBasic Basic protocol information such as headers is logged.

kOW3logData Application data sent or received is logged up to a maximum
of 16k for each direction. If the data is not consistent with
UTF-8 encoding, it is logged as a binary dump format rather
than character.

kOW3logSecureData Secure connection data is logged.

kOW3logHTML The content of the generated log is HTML rather than plain
text. This can be written to a file and displayed using
OBROWSER on Windows and macOS platforms.

Methods

OW3 worker objects all have the methods described in this section. There are normal
methods that you call, and callback methods that you override to receive a notification.

 Web and Email Communications

 63

Normal methods

$run

Run the worker on the main thread. Returns true if the worker executed successfully.
The callback $completed will be called with the results of the request.

$start

Run the worker on a background thread. Returns true if the worker was successfully
started. The callback $completed will be called with the results of the request, or
alternatively $cancelled will be called if the request is cancelled.

$cancel

Cancels execution of worker on a background thread. Will not return until the request
has been cancelled.

$getsecureoptions

$getsecureoptions([&bVerifyPeer,&bVerifyHost,&cCertFile,&cPrivKeyFile,
&cPrivKeyPassword])

Gets the options that affect how secure connections are established.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

bVerifyPeer If true, the worker verifies the server certificate. The default is
true, and this results in greater security.

bVerifyHost If true, the worker verifies that the server certificate is for the
server it is known as. The default is true, and this results in
greater security.

cCertFile For macOS, the pathname of the .p12 file containing the client
certificate and private key, or its keychain name.
For other platforms, the pathname of the client certificate .pem
file. Empty if a client certificate is not required.

cPrivKeyFile Ignored on macOS.
For other platforms, the pathname of the private key .pem file.
Empty if a client certificate is not required

cPrivKeyPassword The private key password. Empty if a client certificate is not
required

$setsecureoptions

$setsecureoptions([bVerifyPeer=kTrue,bVerifyHost=kTrue,cCertFile='',cPrivKeyFile='',c
PrivKeyPassword=''])

Sets the options that affect how secure connections are established (call
$setsecureoptions before calling $run or $start).

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

bVerifyPeer If true, the worker verifies the server certificate. The default is
true, and this results in greater security.

bVerifyHost If true, the worker verifies that the server certificate is for the
server it is known as. The default is true, and this results in
greater security.

What’s New in Omnis Studio 8.1

64

cCertFile For macOS, the pathname of the .p12 file containing the client
certificate and private key, or its keychain name. For other
platforms, the pathname of the client certificate .pem file. Empty
if a client certificate is not required.

cPrivKeyFile Ignored on macOS. For other platforms, the pathname of the
private key .pem file.Empty if a client certificate is not required

cPrivKeyPassword The private key password. Empty if a client certificate is not
required

Callback methods

$completed

When a worker is started using either $run or $start, it reports its completion by calling
$completed. Override the $completed method of the worker object to receive this
notification. It is called with a single row variable parameter. The columns of the row
are specific to each type of worker object, so we describe them in each specific worker
object section.

$cancelled

To receive a notification that a request has been cancelled using $cancel, override the
$cancelled method of the worker object. It is called with no parameters.

$progress

To receive progress notifications, override the $progress method of the worker object.
OW3 worker objects generate notifications to $progress as and when some data has
been transferred. Progress notifications will not be generated any more than once a
second. Each notification receives a row variable parameter. The row has 4 columns.

Column Description

downloadTotalBytesExpected The total number of bytes expected to be
downloaded from the server. This may always be
zero, for example when the server is using chunked
HTTP transfer encoding.

downloadBytesSoFar The number of bytes downloaded from the server so
far.

uploadTotalBytesExpected The total number of bytes expected to be uploaded
to the server.

uploadBytesSoFar The number of bytes uploaded so far.

HTTP Worker
The HTTPClientWorker provides client HTTP support. For example, you can POST
data to a server, execute a RESTful request, or download a file from a server. The
following sections describe the HTTP worker properties, constants and methods.

Properties

The HTTPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$followredirects If true, the HTTP request will follow a server redirect in order to
complete the request. The desired value must be set before
calling $run or $start. Defaults to false

$proxyserver The URI of the proxy server to use for all requests from this
object e.g. http://www.myproxy.com:8080. Must be set before

 Web and Email Communications

 65

executing $run or $start. Defaults to empty (no proxy server).

$proxytunnel If true, and $proxyserver is not empty, requests are tunnelled
through the HTTP proxy

$proxyauthtype The type of HTTP authentication to use when connecting to
$proxyserver. A kOW3httpAuthType... constant.
kOW3httpAuthType constants are described in the Constants
section below.

$proxyauthusername The user name used to authenticate the user when connecting
to $proxyserver using $proxyauthtype.

$proxyauthpassword The password used to authenticate the user when connecting
to $proxyserver using $proxyauthtype.

$responsepath If not empty, the worker writes response content to the file with
this path rather then adding it to the wResults row. The file must
not already exist. The desired value must be set before calling
$run or $start. Defaults to empty

Constants

The HTTPClientWorker uses the following constants, specified in the iMethod
parameter in the $init method, in addition to the base worker constants described
earlier:

Constant Description

kOW3httpMethodDelete Sends a DELETE method

kOW3httpMethodGet Sends a GET method

kOW3httpMethodHead Sends a HEAD method

kOW3httpMethodOptions Sends a OPTIONS method

kOW3httpMethodPatch Sends a PATCH method

kOW3httpMethodPost Sends a POST method

kOW3httpMethodPut Sends a PUT method

kOW3httpMethodTrace Sends a TRACE method

kOW3httpAuthTypeNone Indicates that no HTTP authentication is required (in
this case a user name and password do not need to be
supplied)

kOW3httpAuthTypeBasic Indicates that basic HTTP authentication is required

kOW3httpAuthTypeDigest Indicates that digest HTTP authentication is required

kOW3httpMultiPartFormData Indicates that HTTP multipart/form-data content is to be
sent (this is described below)

Methods

HTTPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, iMethod, lHeaders, vContent [,iAuthType, cUserName, cPassword])

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

What’s New in Omnis Studio 8.1

66

The parameters are:

Parameter Description

cURI The URI of the resource, optionally including the URI scheme
(http or https) e.g. http://www.myserver.com/myresource. If you
omit the URI scheme e.g. www.myserver.com/myresource,the
URI scheme defaults to http. You can also include query string
parameters if desired e.g.
http://www.myserver.com/myresource?param1=test¶m2=test

iMethod A kOW3httpMethod... constant that identifies the HTTP method to
perform.

lHeaders A two-column list where each row is an HTTP header to add to
the HTTP request Column 1 is the HTTP header name e.g.
'content-type' and column 2 is the HTTP header value e.g.
‘application/json'. If you do not supply the header “accept-
encoding” the worker automatically decompresses content
compressed using gzip or deflate; however, if you supply this
header, the worker does not perform automatic decompression.

vContent kOW3httpMultiPartFormData or a binary, character or row
variable containing content to send with the request.
kOW3httpMultiPartFormData means send the content built using
the $multipart… methods described below. The worker sends
binary data as it is. The worker converts character data to UTF-8
and sends the UTF-8. A row must have a single column
containing the path of the file containing the content to send. If
you do not specify a content-type header in lHeaders, the worker
will generate a suitable type if it recognises the file extension
when using a row, or when using a character value it will use
text/plain;charset=utf-8. Otherwise, it will use application/octet-
stream. In addition, the worker will automatically add a content-
length header, so there is no need to pass this in lHeaders.

iAuthType A kOW3httpAuthType... constant that specifies the type of
authentication required for this request. If you omit this and the
remaining parameters, authentication defaults to
kOW3httpAuthTypeNone.

cUserName The user name to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest.

cPassword The password to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

Example

The following code could be used to prepare an HTTPClientworker object using $init,
and then $run can be used to execute the HTTP method. The method returns the
content of the web page stored in iURI, e.g. ww.omnis.net.
; $execute method

Do method checkHttpObject ;; sets up the HTTP object ref var

Do method setupLogging ;; sets up logging based on user choice

If len(iTempContent)

 Web and Email Communications

 67

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,iTempContent,iAuthList.iAuthType,iUser,

iPassword) Returns lOk

Else

 If iSendContentMode=1

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,row(iContentPath),iAuthList.iAuthType,i

User,iPassword) Returns lOk

 Else If iSendContentMode=2

 Do iHttp.$buildmultipart(iContentPath)

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,kOW3httpMultiPartFormData,iAuthList.iAu

thType,iUser,iPassword) Returns lOk

 Else If iSendContentMode=0

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,iContent,iAuthList.iAuthType,iUser,iPas

sword) Returns lOk

 End If

End If

If not(lOk)

 OK message {Error [iHttp.$errorcode]: [iHttp.$errortext]}

 Quit method kFalse

End If

If pRun

 Do iHttp.$run() Returns lOk

Else

 Do iHttp.$start() Returns lOk

 If lOk

 Calculate $cinst.$objs.ScrollBox.$objs.cancel.$enabled as kTrue

 Calculate $cinst.$objs.ScrollBox.$objs.execute.$enabled as kFalse

 Calculate $cinst.$objs.ScrollBox.$objs.executethencancel.$enabled as

kFalse

 End If

End If

If not(lOk)

 OK message {Error [iHttp.$errorcode]: [iHttp.$errortext]}

 Quit method kFalse

End If

Quit method kTrue

$multipartclear

$multipartclear()

Frees any previously generated multipart/form-data content. Note that calling $run or
$start with kOW3httpMultiPartFormData results in the multipart/form-data content being
automatically freed after use.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

$multipartaddfield

$multipartaddfield(cName, cFieldData [,lPartHeaders])

Adds a field part to the multipart/form-data content stored in the worker object. To send
this content specify kOW3httpMultiPartFormData as the vContent parameter to $init().

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

What’s New in Omnis Studio 8.1

68

Parameter Description

cName The name of the multipart/form-data field part.

cFieldData The value of the multipart/form-data field.

lPartHeaders A two-column list where each row is a header to add to the part.
Column 1 is the header name and column 2 is the header value.

$multipartaddfile

$multipartaddfile(cName, vFileData [,cFileName=‘', lPartHeaders])

Adds a file part to the multipart/form-data content stored in the worker object. A file part
indicates to the server that a file is being uploaded. To send this content specify
kOW3httpMultiPartFormData as the vContent parameter to $init().

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cName The name of the multipart/form-data file part.

vFileData A binary, character or row variable containing the file data for the
part. The worker sends binary data as it is. The worker converts
character data to UTF-8 and sends the UTF-8. A row must have a
single column containing the path of the file containing the
content to send. If you do not specify a content-type header in
lPartHeaders, the worker will generate a suitable type if it
recognises the file extension when using a row, or when using a
character value it will use text/plain;charset=utf-8. Otherwise, it
will use application/octet-stream.

cFileName The filename of the part. Must be specified if vFileData is binary
or character. If vFileData is a row (identifying a file) then this
overrides the default filename (the name of the file).

lPartHeaders A two-column list where each row is a header to add to the part.
Column 1 is the header name and column 2 is the header value.

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful.
Zero means success i.e. the HTTP request was issued and a
response received - you also need to check the httpStatusCode
to know if the HTTP request itself worked.

errorInfo A text string providing information about the error if any.

httpStatusCode A standard HTTP status code that indicates the result received
from the HTTP server.

httpStatusText The HTTP status text received from the HTTP server.

responseHeaders A row containing the headers received in the response from the
HTTP server.
The header values are stored in columns of the row.
The column name is the header name converted to lower case

 Web and Email Communications

 69

with any - characters removed, so for example the Content-
Length header would have the column name contentlength.
If the client receives multiple headers with the same name, it
combines them into a single header with a comma separated list
of the received header values. This is consistent with the HTTP
specification.

responseContent If you have not used $responsepath to write the received
content directly to a file, this is a binary column containing the
content received from the server.

log If you used $protocollog to generate a log, this column contains
the log data, either as character data, or UTF-8 HTML.
Otherwise, the log column is empty.

SMTP Worker
The SMTPClientWorker provides client SMTP support, allowing you to use the worker
to send emails, including bulk emails via a mailshot. The following sections describe
the SMTP worker properties, constants and methods.

Properties

The SMTPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request
fails. Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server
open when it completes its request. Defaults to false.
Note that even when this property is set to true, a
protocol error may cause the connection to close. Use
true if you are likely to send more emails using the same
server fairly soon.

$callmailshotprogress If true, and the worker is sending a mailshot
asynchronously via $start, the worker generates
notifications to $mailshotprogress as it executes.
$callmailshotprogress must be set before calling $start.
Defaults to false

Constants

The SMTPClientWorker uses the following constants in addition to the base worker
constants described earlier:

Constant Description

kOW3msgPriorityLowest The message has the lowest priority

kOW3msgPriorityLow The message has low priority

kOW3msgPriorityNormal The message has normal priority

kOW3msgPriorityHigh The message has high priority

kOW3msgPriorityHighest The message has the highest priority

What’s New in Omnis Studio 8.1

70

Methods

SMTPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, vFrom, lTo, lCc, lBcc, cSubject, cPriority, lHeaders,
vContent [,bMailshot=kFalse])

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (smtp or
smtps), e.g. smtp://test.com. If you omit the URI scheme e.g.
smtp.myserver.com the URI scheme defaults to smtp. If the server
uses a non-standard port, you can include it in the URI like this
example smtp://smtp.myserver.com:2525

cUser The user name to be used to log on to the SMTP server.

cPassword The password to be used to log on to the SMTP server

vFrom The email address of the message sender. Either a character value
e.g. user@test.com or a row with 2 columns where column 1 is the
email address e.g. user@test.com and column 2 is descriptive text for
the sender, typically their name

lTo A one or two column list where each row identifies a primary recipient
of the message. Column 1 contains the email address e.g.
user@test.com and column 2 if present contains descriptive text for the
recipient, typically their name

lCc Empty if there are no CC recipients, or a one or two column list where
each row identifies a carbon copied recipient of the message. Column 1
contains the email address e.g. user@test.com and column 2 if present
contains descriptive text for the recipient, typically their name

lBcc Empty if there are no BCC recipients, or a single column list where
each row contains the email address of a blind carbon copied recipient
of the message e.g. user@test.com. Unlike lTo and lCc, lBcc does not
allow more than 1 column, as blind carbon copied recipients are not
added to the message header and therefore the descriptive text is not
required.

cSubject The subject of the message

iPriority A kOW3msgPriority... constant that specifies the priority of the
message

lHeaders A two-column list where each row is an additional SMTP header to
send with the message. Column 1 is the header name e.g. 'X-
OriginalArrivalTime' and column 2 is the header value e.g. ’23:02'

vContent Message content. Either binary raw content (which the worker sends
exactly as it is), or a list to be sent as MIME. See the documentation for
the MailSplit command to see how a MIME list is structured; however,
note that the charset in the worker MIME list is a kUniType... constant
rather than a character string.

 Web and Email Communications

 71

bMailshot Allows a mailshot to be sent (default is kFalse). If true, the worker
sends a separate copy of the message to each recipient in the lTo list
(so that each recipient cannot see the addresses of the others); only
lTo is used, and lCc and lBcc must be empty.

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

Example

The $init method can be used to prepare the SMTPClientWorker object to be executed
using the $run or $start method. In this case, iSmtp is an object reference variable with
its subtype set to an object class, which has its $superclass set to the
SMTPClientWorker in the OW3 worker objects group.
; $start method

Do method setupLogging ;; set up logging

Calculate iSmtp.$timeout as iTimeout ;; set properties via window fields

Calculate iSmtp.$callprogress as iCallProgress

Calculate iSmtp.$keepconnectionopen as iKeepConnectionOpen

Calculate iSmtp.$requiresecureconnection as iRequireSecureConnection

Calculate iSmtp.$callmailshotprogress as iCallMailshotProgress

Do method $splitaddressentry (iFrom,lFromAddress,lFromDescription) Returns lOk

If not(lOk)

 OK message {From "[iFrom]" is invalid}

 Quit method kFalse

End If

Calculate lOk as $cinst.$makerecipientlist(lToList,iTo)

If not(lOk)

 OK message {From "[iTo]" is invalid}

 Quit method kFalse

End If

Calculate lOk as $cinst.$makerecipientlist(lCcList,iCc)

If not(lOk)

 OK message {From "[iCc]" is invalid}

 Quit method kFalse

End If

Calculate lOk as $cinst.$makerecipientlist(lBccList,iBcc)

If not(lOk)

 OK message {From "[iBcc]" is invalid}

 Quit method kFalse

End If

If iCallMailshotProgress

 Set reference lMailshotProgressItem to

$clib.$windows.wMailshotProgress.$openmodal("*",kWindowCenterRelative,$cinst

,lToList.$linecount,$cinst)

End If

Do iSmtp.$setMailshotProgressInst(lMailshotProgressItem)

If iNoMIME

 If len(lFromDescription)

 Do iSmtp.$init(

iServerURI,iUser,iPassword,row(lFromAddress,lFromDescription),lToList,lCcLis

t,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lBinConten

t,iMailshot) Returns lOk

 Else

 Do iSmtp.$init(

iServerURI,iUser,iPassword,lFromAddress,lToList,lCcList,lBccList,iSubject,iP

What’s New in Omnis Studio 8.1

72

riorityList.iPriorityValue,iExtraHeaderList,lBinContent,iMailshot) Returns

lOk

 End If

Else

 If len(lFromDescription)

 Do iSmtp.$init(

iServerURI,iUser,iPassword,row(lFromAddress,lFromDescription),lToList,lCcLis

t,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lMIMElist,

iMailshot) Returns lOk

 Else

 Do

iSmtp.$init(iServerURI,iUser,iPassword,lFromAddress,lToList,lCcList,lBccList

,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lMIMElist,iMailshot)

Returns lOk

 End If

End If

If not(lOk)

 OK message {$init error [iSmtp.$errorcode]: [iSmtp.$errortext]}

 Quit method kFalse

End If

If pRun

 Do iSmtp.$run() Returns lOk

Else

 Do iSmtp.$start() Returns lOk

End If

If not(lOk)

 OK message {$run error [iSmtp.$errorcode]: [iSmtp.$errortext]}

 Quit method kFalse

Else If not(pRun)

 Calculate $cinst.$objs.scrollbox.$objs.cancel.$enabled as kTrue

 Calculate $cinst.$objs.scrollbox.$objs.start.$enabled as kFalse

 Calculate $cinst.$objs.scrollbox.$objs.startthencancel.$enabled as kFalse

End If

Quit method kTrue

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success i.e. the message was successfully sent.

errorInfo A text string providing information about the error if any.

failedRecipients If the request was a mailshot, then this column is a three-column
list, with a row for each recipient to which the message was not
successfully sent. The columns of this list are address (the email
address of the failed recipient), errorCode and errorInfo (the latter
two columns have the same meaning as the equivalent columns in
this row).

log If you used $protocollog to generate a log, this column contains the
log data, either as character data, or UTF-8 HTML. Otherwise, the
log column is empty.

 Web and Email Communications

 73

$mailshotprogress

If the request is a mailshot, and $callmailshotprogress is kTrue, the worker generates a
notification to $mailshotprogress each time it sends (or fails to send) the message to a
recipient. $mailshotprogress is passed a row variable parameter with the following
columns:

Column Description

address The email address of the recipient.

sent Boolean, true if the message was successfully sent to this recipient

FTP Worker
The FTPClientWorker provides client FTP support, allowing you to use the worker to
transfer files. The following sections describe the FTP worker properties, constants and
methods.

Properties

The FTPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request
fails. Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server
open when it completes its request. Defaults to false.
Note that even when this property is set to true, a
protocol error may cause the connection to close. Use
true if you are likely to use the same server quite soon.

$servercharset The character set used by the server to encode file
names in commands and file lists. Default
kUniTypeAuto (meaning UTF-8 if the server supports it
or kUniTypeNativeCharacters if not). Otherwise a
kUniType... constant for 8-bit character sets.

$responsepath If not empty, the worker writes response content to the
file with this path rather then adding it to the wResults
row. The file must not already exist. The desired value
must be set before calling $run or $start. Defaults to
empty

Constants

The FTPClientWorker uses the following constants in addition to the base worker
constants described earlier. These constants are all actions specified in the iAction
parameter used with the $init method to indicate the action to perform, so this section
should be read in conjunction with the section describing the $init method:

Constant Description

kOW3ftpActionPutFile Upload file data to file cServerPath on FTP server.
vParam is file data (binary, character or row).
Worker converts character to server character set.
Row must have one column (path of file containing

What’s New in Omnis Studio 8.1

74

data to upload).
Note that all file transfers use FTP binary mode.

kOW3ftpActionAppendFile Identical to kOW3ftpActionPutFile except the action
appends the file data to an existing file on the FTP
server, or creates a new file containing the supplied
data if the file does not exist on the FTP server.

kOW3ftpActionGetFile Download file cServerPath from FTP server.
Downloaded file data is either written to
$responsepath (if not empty) or returned in the
wResults row. vParam is not required.
Note that all file transfers use FTP binary mode.

kOW3ftpActionDelete Delete directory or file cServerPath from the FTP
server. vParam is Boolean true if cServerPath is a
directory, false if it is a file.

kOW3ftpActionCreateDirectory Create directory cServerPath on the FTP server.
vParam is not required.

kOW3ftpActionListDirectory List the contents of directory cServerPath on the
FTP server returned to wResults.resultList. vParam
is Boolean true to list file names only (single column
list), or false to get a detailed list with 8 columns:
see below.

kOW3ftpActionSetPermissions Set the permissions of file or directory cServerPath
on the FTP server. vParam is a character string
specifying the new permissions of the file or
directory.
Note that not all servers support the SITE CHMOD
command used by this action.

kOW3ftpActionExecute If cServerPath is not empty, CWD cServerPath.
Then execute FTP control connection commands in
vParam.
vParam is either a character string or a single
column list of commands. E.g. to rename a file, you
could use:
RNFR oldname.txt
RNTO newname.txt
as two lines in the command list.
wResults.resultList has a row for each command
response.

Directory list for kOW3ftpActionListDirectory

FTP does not have a standard syntax for the data returned by the LIST command, so
the FTP worker attempts to parse the results of the ListDirectory action, based on
some typical syntaxes supported by many servers. The detailed list has 8 columns, as
follows:

1. The full text returned by the server. This maintains compatibility with previous
versions of the OW3 FTP worker, and may contain additional information not
extracted by the parser.

2. The file name.

3. Boolean. True if the entry is probably a directory.

4. Boolean. True if the entry is probably a file.

5. File size in bytes.

 Web and Email Communications

 75

6. Modification date of the file.

7. Boolean. True if the modification date is in the local time zone of the client.
False means the time zone of the modification date is unknown.

8. If not empty, the server id of the file or directory. A character string.

Methods

FTPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, iAction, cServerPath, vParam)

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (ftp or ftps)
e.g.
ftp://ftp.myserver.com.
If you omit the URI scheme
e.g. ftp.myserver.com
the URI scheme defaults to ftp

cUser The user name to be used to log on to the FTP server.

cPassword The password to be used to log on to the FTP server

iAction A kOW3ftpAction… constant that specifies the action to perform.

cServerPath A pathname on the FTP server. Paths are relative to the current working
directory on the FTP server. The worker only changes directory if you
supply a non-empty cServerPath parameter to kOW3ftpActionExecute,
so unless you do this, paths are relative to the root.
After changing working directory, if you supply cServerPath prefixed with
// then the path is relative to the root, e.g.
/myfile or
myfile
is a path relative to the current working directory, whereas
//myfile
is a path relative to the root.

vParam A parameter specific to the action. See the constant descriptions for
details of vParam for each action.

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

Example

You could create an FTP client window with various fields for FTP host name,
username, password, timeout setting, server character set, and a list of FTP
commands or actions as they are defined in the $init() method. A button could initiate
the FTP command, executing the appropriate action depending on the one chosen by
the end user, using the following code:
; start() method

; iFtp is an Object reference variable with the FTPClientWorker as Subtype

; iActionList (List) variable assigned to list of actions on the window

What’s New in Omnis Studio 8.1

76

Do method setupLogging

Calculate iFtp.$timeout as iTimeout ;; fields on the FTP window

Calculate iFtp.$callprogress as iCallProgress

Calculate iFtp.$keepconnectionopen as iKeepConnectionOpen

Calculate iFtp.$requiresecureconnection as iRequireSecureConnection

Calculate iFtp.$servercharset as iServerCharsetList.C2

Calculate iFtp.$responsepath as iResponsePath

If iActionList.C2=kOW3ftpActionPutFile|iActionList.C2=kOW3ftpActionAppendFile

 If iSendContentMode=0

 ReadBinFile (iContentPath,iContent)

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iContent) Returns lOk

 Else

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,row(iContentPath))

Returns lOk

 End If

Else If iActionList.C2=kOW3ftpActionSetPermissions

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iPermissions) Returns

lOk

Else If iActionList.C2=kOW3ftpActionExecute

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iCommandList) Returns

lOk

Else If iActionList.C2=kOW3ftpActionListDirectory

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iNamesOnly) Returns

lOk

Else If iActionList.C2=kOW3ftpActionDelete

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iPathIsDirectory)

Returns lOk

Else

 Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath)

Returns lOk

End If

; then $run or $start is called

If not(lOk)

 OK message {$init error [iFtp.$errorcode]: [iFtp.$errortext]}

 Quit method kFalse

End If

If pRun

 Do iFtp.$run() Returns lOk

Else

 Do iFtp.$start() Returns lOk

End If

If not(lOk)

 OK message {$run error [iFtp.$errorcode]: [iFtp.$errortext]}

 Quit method kFalse

Else If not(pRun)

 Calculate $cinst.$objs.scrollbox.$objs.cancel.$enabled as kTrue

 Calculate $cinst.$objs.scrollbox.$objs.start.$enabled as kFalse

 Calculate $cinst.$objs.scrollbox.$objs.startthencancel.$enabled as kFalse

End If

Quit method kTrue

 Web and Email Communications

 77

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful.
Zero means success i.e. the message was successfully sent.

errorInfo A text string providing information about the error if any.

ftpResponseCode The FTP response code from the last FTP command executed
when performing the action. An integer.

fileData Used for kOW3ftpActionGetFile only. If you have not used
$responsepath to write the file data directly to a file, this is a
binary column containing the file data received from the server.

resultList For kOW3ftpActionList:
A single character column list, containing the list entries received
from the server.
For kOW3ftpActionExecute:
A 2 column list, containing an entry for each command supplied in
vParam that was successfully executed. Command execution
stops as soon as a command fails; the status of the failed
command becomes the main error information in the row passed
to $completed.
Each row of the list contains the ftpResponseCode for the
command, and the response text that was received from the
server.

log If you used $protocollog to generate a log, this column contains
the log data, either as character data, or UTF-8 HTML.
Otherwise, the log column is empty.

Example

Following on from the $init example above, you could create code in the $completed
method to handle the response from the FTP server returned in the pResults
parameter: the code writes the log to an HTML file and displays it in the oBrowser
object.
; $completed method

Calculate iResponse as pResults

Calculate iErrorCode as pResults.errorCode

Calculate iErrorText as pResults.errorInfo

If iUsingLogBrowser

 Do FileOps.$deletefile(iLogHTMLPath)

 WriteBinFile (iLogHTMLPath,iResponse.log)

 Calculate iLogBrowser.$urlorcontrolname as

con("file://",replaceall(iLogHTMLPath," ","%20"))

Else

 Calculate iLog as iResponse.log

End If

Calculate iFailedRecipients as iResponse.failedRecipients

Do $cinst.$redraw()

Calculate $cinst.$objs.tabpane.$currenttab as 3

What’s New in Omnis Studio 8.1

78

IMAP Worker
The IMAPClientWorker provides client IMAP support, allowing you to use the worker to
manage emails stored on an IMAP server. The following sections describe the IMAP
worker properties, constants and methods. (IMAP was added in Studio 8.1.1.)

Properties

The IMAPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request fails.
Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server
open when it completes its request. Defaults to false.
Note that even when this property is set to true, a protocol
error may cause the connection to close. Use true if you
are likely to use the same server fairly soon.

$splitfetchedmessage If true, the worker splits the fetched message into headers
and a MIME list for any content. Defaults to true. If false,
the worker simply returns the raw fetched message data.

$defaultcharset Used when kOW3imapActionFetchMessage splits the
message, and no character set is specified for a MIME text
body part. The character set used to convert to character.
Default kUniTypeUTF8. A kUniType... constant (not
Character/Auto/Binary).

$removemessageid If true, the worker removes the Message-id header from
the message when performing the action
kOW3imapActionAppendMessage. Defaults to true.
Duplicating message ids may cause the IMAP server to
discard messages with duplicate ids, hence this property.

Constants

The IMAPClientWorker uses the following constants in addition to the base worker
constants described earlier. These constants are all actions used with the $init method
to indicate the action to perform, so this section should be read in conjunction with the
section describing the $init method:

Constant Description

kOW3imapActionListMailboxes List mailboxes in reference name cMailboxName.
vParam1 specifies the names to list. This
becomes the “mailbox name with possible
wildcards” parameter of the IMAP LIST or LSUB
command (see RFC 3501).
vParam2 (optional, default false) is Boolean true
to list subscribed mailboxes only.

kOW3imapActionListMessages Selects mailbox cMailboxName and lists the
messages it contains.
vParam1 is optional - if present, it is a single
column list of additional mail header names to
retrieve in addition to the standard mailbox list

 Web and Email Communications

 79

Constant Description

information e.g. the list could have 2 rows,
“Subject” and “X-Priority” to retrieve the message
subject and priority for each message.

kOW3imapActionFetchMessage Selects mailbox cMailboxName and fetches the
message with UID vParam1.
vParam2 (optional, default false) is Boolean true
to fetch message headers only.

kOW3imapActionSetMessageFlags Selects mailbox cMailboxName and sets flags for
message with UID vParam1.
vParam2 is a row of flags with values kFalse,
kTrue or kUnknown (leave flag unchanged):
row(answered, deleted, draft, flagged, seen)

kOW3imapActionAppendMessage Selects mailbox cMailboxName and appends a
message to the mailbox.
You can either:
Supply the entire message as binary data in
vParam1 or
Supply a 2 character column list in vParam1
(columns are header name and header value)
with binary raw content in vParam2
or
Supply a 2 character column list in vParam1
(columns are header name and header value)
with the content specified by a MIME list in
vParam2. See the documentation for the
MailSplit command to see how a MIME list is
structured; however note that the charset in the
worker MIME list is a kUniType... constant rather
than a character string.

kOW3imapActionExecute If cMailboxName is not empty select mailbox
cMailboxName.
Then execute IMAP commands in vParam1.
vParam1 is either a binary value or a single
column list of binary values. wResults.resultList
has a row for each command response.
Each binary value is an IMAP command to
execute, e.g. EXAMINE. You can generate
binary values using the correct character set
required by the IMAP protocol using the
$chartoutf7 method of the IMAPClientWorker.
The sequence of actions will stop as soon as an
error occurs.

Methods

IMAPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, iAction, cMailboxName, vParam1, vParam2) Called to
prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

What’s New in Omnis Studio 8.1

80

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (imap or
imaps), e.g. imap://ftp.myserver.com. If you omit the URI scheme, e.g.
imap.myserver.com, the URI scheme defaults to map

cUser The user name to be used to log on to the FTP server.

cPassword The password to be used to log on to the FTP server

iAction A kOW3imapAction… constant that specifies the action to perform.

cMailboxName The IMAP mailbox name (ignored for
kOWEimapActionListMailboxes). If you are using non-ASCII
characters in mailbox names, you may need to normalise the name
using the Omnis nfd() or nfc() function before passing it to $init().

vParam1 A parameter specific to the action. See the constant descriptions for
details of vParam1 for each action.

vParam2 A parameter specific to the action. See the constant descriptions for
details of vParam2 for each action.

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

$chartoutf7

$chartoutf7(cChar)

Returns a binary value (containing 7 bit characters) that is the IMAP UTF-7
representation of cChar (note that IMAP uses a special variant of UTF-7, and this
method generates that variant).

The parameters are:

Parameter Description

cChar A character string to be converted to IMAP UTF-7

$utf7tochar

$utf7tochar(xUtf7[,bAllowCRLF=kTrue])

Converts IMAP UTF-7 xUtf7 to character and returns the result. Optionally allows
CRLF sequences in the data and replaces them with CR in the result (note that IMAP
uses a special variant of UTF-7, and this method expects that variant in xUtf7).

The parameters are:

Parameter Description

xUtf7 A binary value containing IMAP UTF-7 to be converted to character.

bAllowCRLF If true, CRLF sequences are to be expected in the UTF-7 stream -
they are replaced with CR.

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success i.e. the message was successfully sent.

 Web and Email Communications

 81

errorInfo A text string providing information about the error if any.

resultList This column receives a list, the content of which depends on the
action. The action-specific lists returned here are described below
(actions kOW3imapActionSetMessageFlags and
kOW3imapActionAppendMessage do not return any data in this
column).

log If you used $protocollog to generate a log, this column contains the
log data, either as character data, or UTF-8 HTML. Otherwise, the
log column is empty.

<action-specific> Column 5 is present for certain actions, and contains action-
specific data. The action-specific data is described below.

kOW3imapActionListMailboxes:

Column Description

resultList The list of mailboxes that match the criteria pass to $init(). A 7
column list, with columns as follows (see RFC 3501 for more
details - the data in these columns is populated using the LIST or
LSUB response):
hasChildren: Boolean true if the mailbox has child mailboxes.
noInferiors: Boolean true if it is not possible for any child levels
of hierarchy to exist under this name; no child levels exist now
and none can be created in the future.
noSelect: Boolean true if it is not possible to use this name as a
selectable mailbox.
marked: Boolean true if the mailbox has been marked
"interesting" by the server; the mailbox probably contains
messages that have been added since the last time the mailbox
was selected.
unMarked: Boolean true if the mailbox does not contain any
additional messages since the last time the mailbox was selected.
separator: The mailbox hierarchy delimiter.
mailboxName: The name of the mailbox.

<action-specific> No action specific column.

kOW3imapActionListMessages:

Column Description

resultList The list of messages in the mailbox. This is a list with 9 standard
columns, followed by a column for each header specified in
vParam2 when calling $init() to prepare for this action. The
additional header columns are named by removing - characters
from the header name, and converting the result to lower case.

The 9 standard columns in the message list are:
UID: The unsigned integer UID of the message
size: The size of the message in bytes
internalDate: The internal date of the message.
answered: The Boolean answered flag for the message.
deleted: The Boolean deleted flag for the message.
draft: The Boolean draft flag for the message.
flagged: The Boolean flagged flag for the message.
recent: The Boolean recent flag for the message.
seen: The Boolean seen flag for the message.

What’s New in Omnis Studio 8.1

82

<action-specific> No action specific column.

kOW3imapActionFetchMessage:

Column Description

resultList If $splitfetchedmessage is kFalse, this column is not populated.
Otherwise, this column is a 2 character column list of mail headers:

Column 1 is the header name.
Column 2 is the header value.

<action-specific> If the action fetches the message content as well as the headers,
this column receives the content. It is either:
rawData: A binary column that receives the un-split fetched
message data
or
mimeList: A MIME list containing the content. See the
documentation for the MailSplit command to see how a MIME list is
structured; however note that the charset in the worker MIME list is
a kUniType... constant rather than a character string.

kOW3imapActionSetMessageFlags:

Column Description

resultList Not populated.

<action-specific> No action specific column.

kOW3imapActionAppendMessage:

Column Description

resultList Not populated.

<action-specific> If possible, the action extracts the UID of the appended message
from the IMAP server response. The UID is returned to this column
(named UID) and is non-zero if the UID could be extracted. (Note
that not all servers return the UID of an appended message).

kOW3imapActionExecute:

Column Description

resultList A single column list of binary values. Each row of the list contains
the sequence of responses returned from the server when
executing the corresponding command in the list (or single binary
value) passed to $init(). You would typically decode this using
$utf7tochar, using the option to expect CRLF and replace with CR.

<action-specific> No action specific column.

Push Notifications
Push Notifications are now supported in the Android, iOS, and Windows 10 JavaScript
Wrappers (version 2.0+) which means you can send messages to any clients that have
your mobile app installed (even if it is not running). In this respect, the ability to send
push notifications provides a powerful and interactive feature that proactively
encourages end users to open and use your mobile app.

A notification or message pushed to a client could include an important news item, a
message to users about a new entry into the database, or anything else you want your

 Property Manager

 83

end users to know about. You can include a payload of data to send with the
notification, which will be passed to your Remote Form, allowing you to react to the
user clicking on the notification.

Support for notifications is provided via the Cloud Messaging or Push Notification
Service on the respective platform, which must be enabled in your mobile app project
when it is built using the latest JavaScript Wrapper SDK. To setup notifications in your
app on Android and iOS, you will need to use Firebase from Google: on Windows 10
you need to setup the Push Notification Services in the Store Dashboard.

Push Notifications Admin Tool
In order to manage notifications, it is possible to create groups of devices, and send
notifications to particular groups, or individual devices. All functionality can be achieved
in your Omnis code (using new properties and methods), or using a new admin tool,
called Push Notifications, under the Tools>>Add Ons menu option on the Omnis
menubar. Note the tool is an Omnis library located in the Startup folder which must be
present for Push Notifications to work in your mobile apps, including your Omnis code,
and for the Omnis App Server configuration to be setup.

Client Command and Methods
There is a new client command enablepushnotifications to enable and disable push
notifications for mobile apps:
$clientcommand(“enablepushnotifications”, row(bEnable))

bEnable: A boolean - kTrue to enable push notifications, kFalse to disable.

Returns: (Boolean) Success. Only if executed in a client method.

In addition, there is a new method $pushnotifycommand which you can use to
configure Push Notifications.

For further information about setting up Push Notifications in your mobile apps, and
using the client command and methods, see the new Push Notifications document on
the wrapper download page, available here:

http://www.omnis.net/download/jswrapper.jsp

Property Manager
The Property Manager has some significant enhancements that will help new and
existing users, including a filter for displaying a “basic” subset or all properties, and a
search box for locating specific properties.

Property Filter
The Property Manager can now display all the properties for an object or a subset of
properties. There is a checkbox at the top of the Property Manager window labelled
Show All, which either shows all properties for the current/selected object (listed under
specific tabs), or a single filtered list of “basic” properties (tabs are hidden).

The value of the Show All filter is saved with the window setup, and its initial value is
set according to whether you chose “advanced user” or “new user” in the new

http://www.omnis.net/download/jswrapper.jsp

What’s New in Omnis Studio 8.1

84

Welcome dialog: advanced sets the “Show All” or unfiltered mode, while new user sets
the filter to basic view.

When the Show All option is unchecked, the property list shows a “basic” subset of
properties for the current object (selected library, class or form component), or for the
current context in the IDE, such as the Omnis preferences. For example, the following
image shows the properties for a remote form in “basic” mode:

If you use Find & Replace (on the Edit menu) to locate a property, and double-click on
the find and replace log to select the property in the Property Manager, the Property
Manager automatically switches to “Show All” mode if the property is not part of the
basic set.

Modifying the basic set of properties

The basic set of properties is defined in a file called basicproperties.json and stored in
the Studio folder under the main Omnis folder. You can modify this file if you want to
change the properties shown in the filtered state of the Property Manager. The file is in
JSON format, and contains an array of property names which must be lower case, and
include the :: prefix if the property name requires one (e.g. some external component
properties).

Omnis re-reads this file if it has changed when you uncheck the “all” checkbox in the
Property Manager: so checking and unchecking this box forces a re-read. If the file has
invalid syntax and cannot be parsed, Omnis writes an error to the trace log, and no
basic properties will be displayed.

Property Search
There is a new Search box at the top of the Property Manager window which allows
you to search for a property (note the search box is only visible when the “Show All”
check box in the Property Manager is checked). You can type a word or part of a word
into the search box and the property list will update itself as you type.

The search results are property names that contain the string you entered, and they
are shown in a single tab named ‘Search’. The search results are always sorted by
property name, irrespective of the sort list option on the context menu. You can click on
a property in the property list and update its value.

For example, entering ‘show’ into the property search for a remote form will provide a
subset of properties containing the word ‘show’.

 Studio Browser

 85

You can use the Backspace to clear a search string character by character, or you can
click on the X icon to clear the whole string. The shortcut Ctrl/Cmnd+Shift+D moves the
focus to the search box; you can press tab to return the focus to the property list. The
20 most recent searches are saved for re-use, which you can view by clicking on the
drop arrow in the search box.

Each keystroke in the Search box performs a search, so there is a delay before a
search is saved to the list: the delay defaults to 500ms, but you can change it in the
config.json file in the “ide” group: “savePropertySearchDelay”.

If you use Find & Replace (on the Edit menu) to locate a property, and double-click on
the find and replace log to select the property in the property manager, the property
manager clears the search before selecting the property.

For both the basic mode, and the all mode when search results are being displayed,
copy and paste properties are disabled on the context menu.

Studio Browser
Search Filter
The Studio Browser has a new Search box that allows you to filter the objects
displayed in the library or class list allowing you to find objects more easily. The new
Search filter is available for most of views in the Studio Browser, including Libraries,
Classes, SQL sessions, VCS projects, and various parts of the Hub including the
Sample apps and Faults.

To search for an item, navigate to the correct view in the Studio Browser, type the first
character of the item(s) you are looking for, and the list will instantly redraw, displaying
only those items that start with the character(s) you typed. For example, in the class list
for a library, you could type “j” to find all the classes starting with the letter j.

What’s New in Omnis Studio 8.1

86

In most cases the search string you enter is used to find items that start with those
characters, except that in the Fault list, under the Hub option, the search string is used
to find items that contain the search string. The Search box has a dropdown list that
stores the last few searches you typed, which you can select from with the pointer.

JavaScript Components
This section describes enhancements made to various JavaScript components, to
enhance your web and mobile apps built using remote forms and the JavaScript client.

Edit Controls
There are three new properties for JavaScript Edit controls that allow you to control
automatic correction, capitalization and completion of text entered by the end user into
an edit field. This functionality is built into the browser whereby text is ‘corrected’ or
updated automatically: note that not all browsers support all of these functions, so you
should check support in individual browsers on different platforms. The new properties
available for JavaScript Edit controls are $autocorrect, $autocapitalize, and
$autocomplete.

Auto Correction

If true, the $autocorrect property specifies that text entered into a JavaScript Edit
control is auto-corrected, as the end user types into the field. Currently this feature is
only implemented in Safari and iOS browsers (note some browsers, such as Chrome,
will highlight incorrectly spelled words, but not correct them automatically). This
property defaults to kTrue for backwards compatibility.

Auto Capitalization

The $autocapitalize property controls whether or not text typed into an edit field is
capitalized, as appropriate, automatically. Possible values include:

❑ kJSAutoCapitalizeSentences
Automatically capitalise the first character of new sentences (default and previous
behaviour)

❑ kJSAutoCapitalizeWords
Automatically capitalise the first character of each word

❑ kJSAutoCapitalizeNone
No automatic capitalization

 JavaScript Components

 87

Auto Completion

The $autocomplete property controls whether or not text is completed automatically. If
true, the browser will attempt to complete text based on content previously entered into
this type of field (e.g. name type fields will display a list of names based on the first
letter typed): the browser will display a list of suggested text for the end user to select
from. There may be many possible values for some types of field, which will be based
on values previously entered into any website for a field with the same 'autocomplete'
value, e.g. 'email'.

Combo boxes and Data grids
Combo boxes and Datagrids have the $autocorrect and $autocapitalize properties
(as described above for Edit controls). For combo boxes, this applies to the edit field
section of the control, while for data grids, this applies when editing cells.
Consequently, when end users enter text into these controls the text is auto corrected
and capitalized if these properties are enabled.

File Control
Multiple File downloads

In previous versions, the JavaScript File control allowed you to download a single file
by specifying a row variable containing information about the file to download. You can
now use a list, instead of a row, to provide a list of files to be downloaded.

The definition of this list is identical to the row, with the addition of a new 'Identifier'
column (the fourth column, of Character type) containing an identifier for each file.

In addition, when multiple downloads occur the UI is no longer blocked by the overlay.

evDownloadSent Event

The File control has a new event, evDownloadSent, which indicates if the download
was successful, and identifies the file that was downloaded. The event receives two
parameters:

❑ pSuccess
Whether or not the download was successsfully sent.

❑ pIdentifier
The value of the Identifier column (the fourth column from the download list, if
provided) in the download list/row which was assigned to $dataname to initiate the
download which has now been sent.

The evDownloadSent event will be triggered when the server has sent all of the data
for a file to the client. Note that Omnis sends the data in a single chunk, so the client
may still be processing the data at this point. However, at the point that the event is
fired, the server has sent all of the data, and the task variable containing the binary
data (or file path) can now be re-used.

Icons Folder Name
You can rename the ‘icons’ folder in Omnis by editing (adding) an entry in the Omnis
configuration file (config.json). This may be necessary when you deploy your web or
mobile app since Apache often redirects a URL with "/icons/" to the
/usr/share/apache2/icons folder, and you would then need to place all the icons for
your app in that folder.

There is a new configuration item, you can use in the server group of config.json:
"iconsFolder":"omnis_icons" which defaults to "icons" if omitted or the entry is empty.

You are recommended to use the same value for development and runtime, since the
folder name is stored in the HTML for each remote form class.

What’s New in Omnis Studio 8.1

88

evAfter event queue
When an event is being executed in the JavaScript client, such as a click on a button, a
transparent overlay is applied to the whole remote form, to prevent user interaction
anywhere else in the form and to maintain the Omnis event ordering. If the user clicks
on this overlay, the click will be prevented, although most events happen almost
instantaneously so in this case the overlay is not displayed. A change has been made
to make the effect of clicking on the overlay more intuitive to the user.

For evAfter events that show the overlay, Omnis now shows a feedback effect at the
point of the click when the overlay prevents the click, to make it clear to the user that
their click was not registered. The feedback effect is a No Entry icon, with “bubble”
animation, that appears and disappears directly after the user click.

Previously, if a control with an evAfter had the focus and you then clicked onto another
control, if the evAfter took too long to execute, the second control would not receive a
click event, as the click will have been captured by the overlay. In this case, the click
will now be queued and will fire once the overlay is removed.

Unfortunately, Firefox does not treat the active state of elements in the same way as
other browsers. As such, it was not possible to implement these changes for that
browser.

Navigation Bar
The Navigation Bar control has a new property, $pop, which will “pop” or remove the
specified number of items off the navigation stack: it is analogous to clicking on the left
or back button, since it allows you to step back in the navigation stack a specified
number of times.

The $pop property can only be assigned at runtime. If you try to pop more items off the
stack than exist, it will pop everything except the first item. If you assign to $pop, note
that the evUserChangedPage event of a linked paged pane will not be triggered.

In addition, you can now set the text or title for the left (back) button for a navbar. If
provided, the 6th col in the row assigned to $push allows you to specify the left button
text. This can be set to an empty string to default to the previous page's title.

Error Text
There is a new value for the $errortextpos property: kJSErrorTextPosHidden which
hides the error text, so just the control outline indicates that there is an error (default is
a red border). This might be useful where there is limited space to display the error text
in the remote form, but you still want to show the end user that there was an error; the
style of the error outline is set in the omnis.css style sheet as div.om-error-border.

Text Styles
There is a new font style value, kLineThrough, for adding strikethrough to any text.
This can be used anywhere there is a property with a font style value, e.g. $fontstyle, or
style(kEscStyle,kLineThrough). (This new font style can be applied to any text in
JavaScript remote forms, as well as window and report classes.)

Complex Grid
The Complex Grid now has evClick & evDoubleClick events. When clicking on the
background of a complex grid row, or a control within the grid which does not have a
click event enabled, the evClick or evDoubleClick will be fired. Both of these events
receive pLineNumber parameters indicating the line number which was clicked. If no
line was clicked (the end user has clicked on empty space), pLineNumber will be 0.

 JavaScript Components

 89

Paged Panes
If a border radius is set on the JavaScript Paged Pane component the rounded corners
are no longer drawn in design mode: they are only rendered when the app is run on the
client. The rounded corners are not drawn in design mode to allow the full use of the
available space within the page pane control while designing the form.

Labels
You can now double-click on a JavaScript form Label to edit its text and corresponding
$text property.

Grid Section
Every field or object in a Complex grid has the $gridsection property which tells you the
section the object is in (while $gridcolumn which tells you its column). The $gridsection
property is now shown in the Notation Inspector so you can inspect its value for an
object in a grid section at runtime.

Field List
You can now use the Space bar to select a control in the Field List for a remote form
(right-click the form background to open the Field List); the effect of pressing the Space
bar will check the box next to the control. Therefore, when the focus is in the Field List,
you could use the arrow keys to navigate up and down the list and use Space bar to
select a control as required. The Shift-Space keypress allows you to select (or
deselect) multiple, discontinuous controls in the list.

Maps
The following is not a new feature but was previously not documented. The JavaScript
Map component supports Google Geocoding which allows you to convert a street
address into a geographic coordinate like latitude and longitude, which you can use to
place a marker on a map, or center the map.

To use the Geocoding function you need to access the Geocoding API which itself
requires a separate API Key, in addition to the Maps API key, which you can obtain
from Google.

A Search button has been added to the JS Map example available in the Hub to show
how you can convert a street address to a latitude:longitude coordinate which can be
applied to the $latlong map property. Note the example app places the Geocoding API
key in the $userinfo property which is then sent to Google.

Data Grids
Data Grid columns have a new property $columnallownulldateinput to allow a null value
to be added to a row of data when the end user tabs out of the last line of the grid to
create a new line automatically.

If $columnallownulldateinput is true, and the datatype of the column is Date, cells in the
column will default to a value of null when added through the UI. Additionally, if this
property is enabled, the end user can change a date to be null by pressing Backspace
or Delete while the cell has focus.

If false (the default), the behaviour is unchanged from previous versions. Note is not
possible for the end user to input null values into the grid, via the popup date picker, for
example.

What’s New in Omnis Studio 8.1

90

Web Services
RESTful POSTs
The RESTful API in Omnis now supports the use of POSTs with the content type
"application/x-www-form-urlencoded”, such as the content type that would be
generated by a form on a web page.

Therefore, in addition to URL place-holder parameters, you can now populate
parameters using either the query string or application/x-www-form-urlencoded content.
You cannot use both the query string and application/x-www-form-urlencoded content.
Studio 8.0.2 and earlier just support the query string in addition to URL place-holder
parameters.

To use application/x-www-form-urlencoded, set the RESTful input type to application/x-
www-form-urlencoded. Omnis then expects application/x-www-form-urlencoded
content containing each of the non-optional non-place-holder parameters. The raw
application/x-www-form-urlencoded content is also supplied in the pContent parameter
of the RESTful method: application/x-www-form-urlencoded content can only be used
with HTTP methods that can send content to the server.

Queueing RESTful requests & Licensing
RESTful requests to the Omnis Server consume a web user license for the duration of
the request. In previous versions, if all licensed connections were in use when a new
RESTful request came into the server, the client received an error. In this version,
RESTful requests are now queued internally until they succeed. Note that requests will
never be re-queued in a single threaded server (a server where Start server has not
been called) since everything executes sequentially.

In addition, there is a new sys function, sys(234), which returns a row of information
containing statistics about RESTful requests to the Omnis server. The row has three
columns: column 1 is the count of successful calls; column 2 is count of calls resulting
in an error; and column 3 is the count of calls internally re-queued because there was
not a free user.

RESTful remote task constructor
A RESTful remote task $construct method now receives a row variable parameter with
two columns: url and method, where url is the partial url starting with the Omnis library
component, and method is the name of the HTTP method.

Remote Task instances
The $restful and $restfulapiname properties are now available in remote task
instances: previously they were only available in remote task classes.

CORS configuration
A template CORS configuration file (cors.json) has been placed in a new folder called
‘config’ in the ‘Studio’ folder, containing the required settings to configure CORS for use
with Web Services. You can make a copy of this file and place the copy in the Studio
folder, making any necessary changes. See the Extending Omnis manual for
information about setting up and using CORS with Web Services.

 Method Editor

 91

Method Editor
Method Lines
Method lines that are longer than 255 characters now fully display in the method editor,
right across the code editing area. In previous versions, long method lines were
truncated and ended with an ellipsis.

Displaying Control Characters
It is now possible to display control characters in data or content when inspecting a
variable in the Method Editor. The Field Value window and Values list window,
displayed when you Right-click on a variable, now have a menu that allows you to:

❑ Show characters normally

❑ Show all control characters (in this case no line breaking occurs on carriage return
for multiline entry fields)

❑ Show all control characters except carriage return (in this case carriage returns
break lines as usual)

The menu also allows you to increase and decrease the font size used for all content
except the binary data.

The control characters are displayed using the Unicode page 0x2400 which has visual
representations of control characters. In addition to characters 0-0x1f, 0x7f (del) is also
treated as a control character.

In addition, the Catalog status bar, Variable value tooltips and Variable context menus
always show control characters if present.

The Save Window Setup option for the Values list now saves grid column widths, and
the height of the value when using show full value. Save Window Setup for both the
Field value window and the Values list window saves the current font size and the
option controlling how or if control characters are visible.

Inherited Methods
Comments

The way comments from inherited methods are handled and displayed has changed. In
previous versions, when you overrode a method, the new method was prefixed with
comments from either the start of the overridden method, or from the overridden
external object method. In this version, the new method is no longer prefixed with these
comments, instead the comments are shown on the left-hand side of the ‘Notes’ tab in
the Variable pane in the Method Editor. Comments for both the immediately overridden
method, and for any other implementations further up the inheritance tree are shown.

The new comments field is only present for a method which overrides a superclass
method, or for an inherited method. The advantage of this new approach is that the
code is not cluttered with comments, and in addition the comments in the new field stay
up to date if you edit the comments in a superclass method.

There is a new entry in appearance.json: "overriddenmethodstyle" which is the text
style used to indicate an overridden method in the method editor tree. The default is to
show methods that override a superclass method in bold.

The method editor now only shows the inherit method option on the method tree
context menu when the method does actually override a superclass method.

The method tree context menu now shows the superclass methods… option for
methods that override a superclass method. In addition, double click on the method
node in the tree opens the superclass methods for both inherited methods (as in
previous versions) and overridden methods (new for this change).

What’s New in Omnis Studio 8.1

92

You can resize the new field using the mouse. Save window setup saves the width of
the new field, provided that the new field is visible when you save the setup.

Inherit or Override method Shortcut

The Inherit method or Override method options are now present in the method editor
Modify menu when it is appropriate to include the command. Both have the shortcut
Ctrl+Shift+I to inherit or override the current method.

Code Assistant
Custom Properties

The Code Assistant now recognises custom properties, i.e. properties of an instance or
an instance object, implemented using two methods, $propname and
$propname.$assign.

The Code Assistant combines these into a single property in the list of completions
rather than showing the two methods, and provided that the Code Assistant can
resolve the parent notation, it will also show $assign and $canassign as possible
completions for notation relative to a custom property.

Tabbing Behavior

The behavior of tabbing while using the Code Assistant has changed, although you will
need to enable the new behavior in the Omnis configuration file. There is a new item in
the ‘codeAssistant’ entry in config.json to control the behavior when tabbing out of the
variable name or calculation box in the method editor.

The new item ‘tabAlsoLeavesFieldAfterClosingAssistant’ is set to false, by default, but
if set to true (and ‘oldTabReturnBehaviour’ is false) then a tab will close the code
assistant and the cursor will move to the next field in the tabbing order.

Renaming Methods
When the focus is on a method name in the method editor tree, pressing Return or
Enter allows the selected method name to be edited (provided that it is editable). The
line scrolls to view if necessary. If more than one node is selected, nothing happens
and Return or Enter does not invoke method name editing. Once the method name has
been edited you can press Return or Enter to confirm the edit.

SQL Workers
Additional Notifications
The SQL Worker Objects now support an interim $progress method which can be
called whilst the worker is running. If implemented in the $callbackinst, the $progress
method is called with a row parameter containing a single column, as follows:

❑ $progress(row)
where row is a row parameter containing a single column called ‘Progress’ which is
calculated as a percentage of the total number of SQL queries that will be
executed.

Where a work-list/query and bindvar combination is supplied, the total number of
queries is calculated by adding the number of times each query will be executed. The
received parameter value is suitable for direct assignment to a progress bar
component, for example:
On evClick

 …

 Do iWorker.$callbackinst.$assign($cinst)

 Do iWorker.$init(lParams) Returns #F

 Do iWorker.$start() Returns #F

; This code appears in the window instance’s $progress method

Do $cwind.$objs.progress.$val.$assign(pRow.Progress)

 Window Components

 93

The ‘worker’ sample component supplied with the External Component SDK also
demonstrates this functionality.

Window Components
Multi-line Entry Fields
There is a new runtime-only property, $linecount, available for window class edit fields
only, that allows you to limit the number of lines of text/data that can be entered into the
field. For example, setting $linecount to 2 would only allow 2 lines of text to be entered
into the field.

The following example code for the $event method of a multi-line edit field shows how
you could prevent users from entering too much text:
; set up variable iMaxLines (Integer)

On evClipChangedData,evKey

 Process event and continue

 If $cobj.$linecount>iMaxLines

 Calculate $cobj.$contents as iPrevData

 Sound bell

 Quit event handler

 End If

 Calculate iPrevData as $cobj.$contents

Disabling Plug-ins in oBrowser (macOS)
The oBrowser window component has a new property, $disablepluginsmacos, to allow
you to disable all plug-ins when running on macOS. This is useful if you want the
embedded Safari browser to use the built-in plug-in and not any external plug-in, for
example, if you want to display a PDF using the built-in PDF viewer in Safari and not
the Adobe PDF viewer installed on the client’s computer.

Note this is not required for Windows since the Chromium Embedded Framework
(CEF) in the oBrowser component does not use external plugins installed on a
Windows based system.

Headed Lists and Tree Lists
Headed Lists and Tree Lists have a new property $showheaderlines. If true (the
default), header separator lines are drawn in the header.

Window Programming
Window Transparency
Window classes now have the $alpha property which sets the transparency of the
window and all its controls (an integer from 0 to 255, with 0 being completely
transparent and 255 opaque). In addition, the majority of the Window class
components have the $alpha property which means you can set the transparency of
individual window components.

Window instances have the methods $beginanimations() and $commitanimations()
which allow you to animate changes to certain properties of some window components
including the new $alpha property: other properties supported are $left, $top, $width
and $height. For example, you could “fade in” a control by animating a change to its
$alpha property, or you could move a component into view by animating a change to its
position via its $left and $top properties.

http://www.omnis.net/products/components/buildyourown.jsp

What’s New in Omnis Studio 8.1

94

❑ $beginanimations(iDuration)
after calling this, assignments to some properties are animated for iDuration
milliseconds by $commitanimations()

If you set the same property for an object more than once, the first property change is
animated, and then the last property change is animated when the first completes,
while property changes between the first and last are ignored. The
evAnimationsComplete event (for window instances) is generated after the last
property change has completed. This allows you to reverse the effect of an animation
(which is the equivalent to the autoreverse/repeat options available on iOS).

Screen Size
There is a new property of $toplevelhwnd, called $screen, that allows you to track the
location and dimensions of the screen, as the window changes position. This could be
useful if, for example, a window in Omnis is located on a second monitor and you want
to determine its width and height in order to resize or reposition the window.

The value of $left, $top, $width and $height of the screen can be obtained by creating
an item reference to this new property, e.g.
Set reference toplevelitemref to $cwind.$toplevelhwnd.$ref

Set reference screenref to toplevelitemref.$screen.$ref

This is only implemented for macOS and Windows. Other platforms (Linux) will return
(0,0,1,1) for (left, top, width, height).

macOS

The screen dimensions on macOS will take account of the menubar and position of the
dock and only return the visible screen area.

Windows

Under the Windows OS all Omnis windows are contained within the main Omnis
window. Therefore, on Windows the identifier for a window’s screen will be the screen
containing the main Omnis window.

If the main Omnis window is displayed across multiple screens then the identifier for
the screen is that screen which contains the largest area of the main Omnis window.
The screen properties will provide the area of the main Omnis window which intersects
the visible area of the screen.

List Programming
Select Duplicates
The $selectduplicates method has been added. Its parameters and behavior are
exactly the same as $removeduplicates, except the affected lines are selected rather
than deleted. The list selection state of non-duplicate lines is cleared.

Note that this can be used in client-executed remote form methods, as well as in server
methods.

$first() and $next() Methods
The list methods $first() and $next() now take an additional optional parameter, a
condition which must be met in order to match the first or next line:

❑ $first()
LIST.$first([bSelOnly=kFalse, bBackwards=kFalse, condition]) sets $line to first line
matching parameters; returns an item reference to the row. If bSelOnly, matches
selected lines only; if bBackwards, matches lines in reverse; if condition is present
lines must match it

❑ $next()
LIST.$next(rRow|iRowNumber [,bSelectedOnly=kFalse, bBackwards=kFalse,

 Themes

 95

condition]) sets $line to the next line after the line identified by the first argument. If
iRowNumber is zero, processing starts at $line. See $first for definitions of the other
parameters

For example, if name is a column in the list:

Set reference item to list.$first(kFalse,kTrue,mid($ref.name,2,1)=“M”)

Set reference item to list.$next(item,kFalse,kTrue,mid($ref.name,2,1)=“M”))

Note the new condition parameter can be used in client executed methods in the
JavaScript client.

Themes
Custom Themes and Exporting
The Options in the Hub in the Studio Browser are now split into three tabs: Browser,
Themes, and Faults.

Under the Themes option it is now possible to have multiple custom themes. There is a
list of the custom themes currently installed (located in the folder
/studio/themes/custom) underneath the themes droplist.

To create a custom theme, press the "Save Current Theme As" button. Once saved,
the name you give the theme will then appear in the list of custom themes.

If you are setting a custom theme, you will need to select it first in the list and then
press the "Apply Custom Theme" button, since you need to be able to select a custom
theme without applying the theme when exporting.

To export custom themes, select the required themes in the list and press the "Export
Themes" button. This allows you to select a folder to copy the themes into.

You can also import either a single theme or a folder of themes. Once imported they
are copied to the /studio/themes/custom folder and will appear in the list.

Reports
Zoom In/Out
The report class editor toolbar now has Zoom In and Zoom Out buttons which control
the DPI value used to convert report coordinates to and from pixels, and the DPI value
used to create fonts used in the editor. "Zoom in" increases the DPI value, “Zoom out”
decreases it. Note this is for design mode only, and you can zoom through a limited set
of DPIs:

❑ 72 – objects displayed at standard resolution for macOS

❑ 96 – objects displayed at standard resolution for Windows (with default system
scaling of 100%)

❑ 144 – objects displayed at 2x resolution for macOS

❑ 192 – objects displayed at 2x resolution for Windows

In addition, if Windows is using a different scaling value, the editor inserts the system
DPI into this list at the appropriate point.

These values correspond to the design coordinate system used in Omnis, so on HD
displays 96 DPI maps to 192 physical pixels.

You can use Ctrl+ and Ctrl- (Cmnd+/Cmnd- on macOs) to zoom in and zoom out
respectively. The current zoom level is saved with the window setup by the save
window setup context menu item.

Note that the section bars and the text in the left panel do not increase in height when
you zoom. Note also, that zoom does not affect the size of lines drawn in fields on the
report - only the text, and in some cases images will scale.

What’s New in Omnis Studio 8.1

96

The Modify Report field has a new runtime property, $dpi, that can be assigned to one
of the values above.

External Components

If you create external components for reports then you will need to make some
changes in order to draw text at the correct DPI. Typically, if the component just
displays its name or dataname using the standard interface, you won’t need to do
anything, as the text DPI will be handled by the Omnis core. Where components that
can be placed on reports draw custom text, there are some changes to make in the
component:

❑ There is a new callback ECOgetFontDpi(HWND) that returns the current DPI to use
to create fonts - this will return zero unless the component is on a report design
window, in which case it will return one of the above values.

❑ There is a new class GDIfontCreator, that you construct with the HDC for drawing,
and the return value from ECOgetFontDpi. This has a method createFont that you
then use to create the font rather than calling GDIcreateFont. When you have
finished with the font, call GDIdeleteObject as usual. You cannot cache the HFONT
generated by createFont in your component.

❑ If you require font or text metrics, use the HDC versions of GDIfontHeight,
GDIfontPart, GDItextWidth etc, with a font created using GDIfontCreator.

❑ In addition, for more advance use there are classes GDIhdcFontCacheHelper
which removes all fonts cached by the Omnis font cache for a particular HDC at the
end of the block and GDIoverrideHDCDPI which means that all fonts created for a
specific HDC are created at a specified DPI while GDIoverrideHDCDPI is in scope.
You need to use GDIoverrideHDCDPI if you are drawing styled text, as styled text
drawing may create new fonts. In addition, when drawing styled text, you need to
set mFontHdc in the GDIdrawTextStruct, in order for fonts to be created at the
correct DPI.

❑ You can also call GDIcreateDcFont with a DPI parameter to manage fonts yourself.

Paper Size
A6 has been added to the available page sizes. The constant kPaA6 is now available
for $paper, an Omnis ($root) preference to set the global page size.

Web Commands
There are two new commands in the Web commands external command set for
authentication and executing a HTTP method, and a new parameter, UseProxy, has
been added to HTTPOpen. In addition, the FTPConnect command has a new optional
parameter to allow you to specify the Charset for the file transfer.

Note these enhancements are in the Web commands located in the External
Commands group in the Method Editor, and are not related to the methods in the
existing Web Worker objects or new OW3 Worker objects.

HTTPSetAuthentication
HTTPSetAuthentication is a new client command that provides the parameters needed
to authenticate an HTTP request with the server; the command only supports HTTP
basic authentication, or no authentication. If you use basic authentication, you are
recommended to use a secure connection. Use this command to set up authentication
after calling HTTPOpen and before calling HTTPMethod. Note that if you do not want
to authenticate the request, a new socket created with HTTPOpen defaults to no
authentication, so you do not need to call HTTPSetAuthentication in this case.

 Web Commands

 97

Syntax

HTTPSetAuthentication (socket, type, username, password) Returns status

Socket is a long integer field containing the socket number of an open HTTP
connection.

Type is a long integer with value zero for no authentication, or 1 for basic
authentication.

Username is a character field containing the user name for basic authentication.

Password is a character field containing the password for basic authentication.

Status is an Omnis Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

HTTPMethod
HTTPMethod is a new client command that submits to a Web Server an HTTP request
to execute a specified HTTP method.

Syntax

HTTPMethod (socket, uri, method, requesthdrlist, requestcontent,
responsestatuscode, responsehdrrow, responsecontent) Returns status

The command requires an existing socket opened with HTTPOpen in order to submit
the request. Note that this allows you to sequentially submit more than one request
using the same socket connection subject to the rules of HTTP e.g. if the server returns
a connection close header in its response, no more requests can be sent on the
connection: at this point you need to use HTTPClose to free the socket resources and
open a new connection if you want to send more requests to the server. Re-using a
connection like this can be a significant performance improvement, especially when
using a secure connection, where the connection set-up time is relatively costly.

Socket is a long integer field containing the socket number of an open HTTP
connection.

URI is a Character field containing the URI to which the request is addressed. For
example, "/default.html", or "/cgi-bin/mycgiscript". Note that if you wish to send query
string parameters you must append them to the URI, using the standard ? syntax, e.g.
"/default.html?name=test&value=good". You should encode these parameter names
and values using CGIEncode.

Method is a Character field containing the HTTP method to be executed. Note that the
method is case-sensitive. Standard HTTP methods such as GET and POST need to be
specified in upper case.

RequestHdrList is an Omnis list with two character columns. The list contains the HTTP
headers to send to the server. HTTPMethod automatically adds a content-length
header if you do not specify it in this list, and RequestContent is supplied and not
empty.

For example:

Header name Value

User-Agent My Client

Content-type text/html

RequestContent is the content to send to the server with the request. It only makes
sense to send content with certain methods, e.g. POST. You can supply either
character data, which the command converts to UTF-8 before sending, or binary data.

ResponseStatusCode is an integer field into which Omnis returns the HTTP status
code of the HTTP request, e.g. 200 for success.

ResponseHdrRow is a row variable which Omnis populates with the headers received
in the response from the server. HTTPMethod clears the row and adds columns as

What’s New in Omnis Studio 8.1

98

necessary. The column name is the header name converted to lower case, with any -
characters removed. In addition, if there are headers with the same name,they are
combined into a single header with that name,with comma-separated values.

ResponseContent is a binary or character field into which the command stores the
content (if any) received in the response from the server. If this is a character field, the
command assumes the content is UTF-8 encoded, and converts from UTF-8 to
character before storing the response in the field.

Status is an Omnis Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

HTTPOpen
The HTTPOpen command has a new optional Boolean parameter UseProxy.

HTTPOpen (hostname[,service|port,secure {Default kFalse},verify {Default kTrue},
useproxy {Default kTrue}]) Returns socket

If UseProxy is kTrue (the default), and proxy server parameters have been set using
HTTPSetProxyServer, HTTPOpen connects to the proxy server, setting up a secure
tunnel if the proxy server does not have a secure URL, but the requested connection is
secure. If kFalse, HTTPOpen connects directly to the specified host and port.

FTPConnect
The FTPConnect web command has a new optional parameter called Charset which
specifies the character set used for exchanging pathnames with the FTP server, and
for exchanging file character data with the FTP server. Charset can either be
kUniTypeAuto, kUniTypeUTF8, kUniTypeNativeCharacters, kUniTypeAnsi...,
kUniTypeISO8859_..., or kUniTypeOEM.

The new parameter is added to the end of the existing parameters, therefore the full
syntax of the command is now:

❑ FTPConnect(ServerAddr,Username,Password[,Port,ErrorProtocolText,Secure
{Default zero insecure;1 secure;2 use AUTH TLS},Verify {Default kTrue},Charset
{Default kUniTypeAuto}])

If you specify kUniTypeAuto, after FTPConnect establishes a connection, it sends a
FEAT command to the server to determine if the server supports UTF8. If the server
supports UTF8, then the connection uses UTF8 as the charset, otherwise it uses
kUniTypeNativeCharacters.

FTPConnect and TLS
When FTPS is used with the FTP external commands (e.g. FTPConnect to initiate a
secure FTP connection), it now resumes the TLS session for data connections. In
addition, it automatically sends PBSZ and PROT commands to the server after
establishing a secure control connection.

SMTP Workers
Note the following enhancement refers to the existing SMTPClientWorker object in the
Web Worker Objects group, not the new OW3 Web Worker object (which also supports
mailshots).

Mailshots
The $init method for SMTP worker objects has a new optional parameter, bMailShot, to
enable a mail shot to be sent:

❑ OBJECTVAR.$init(zMessage, cServer [,iSecure=kOWEBsmtpSecureNotSecure,
iAuthType=kOWEBsmtpAuthTypeNone, cUser, cPassword, cOAUTH2, cRealm,
cNTLMDomain, lProps, bMailShot=kFalse])

 Functions

 99

If bMailShot is true (the default is false), the worker sends a separate copy of the
message to each recipient (so that each recipient cannot see the email address of the
other recipients). In this case, only 'to' recipients can be specified.

Functions
SHA functions
There are two new functions to generate almost-unique 256-bit or 512-bit signatures for
the supplied binary data.

❑ sha256()
sha256(binary) Returns the 32-byte binary SHA-256 hash of the supplied binary
data. Returns #NULL if binary is null or empty.

❑ sha512()
sha512(binary) Returns the 64-byte binary SHA-512 hash of the supplied binary
data. Returns #NULL if binary is null or empty.

iso8601 functions
iso8601toomnis() will now parse a date string in the form:
YYYY-MM-DDTHH:MM:SS.FFFZ
rounding FFF into the hundredths field appropriately. The representations in the date
string are:

YYYY-MM-DD Date: Year, month, day

T Date time delimeter

HH:MM:SS.FFF Time: Hours, minutes, seconds, fractions of a second

Z UTC offset: Z means zero UTC offset, or add +/- offset

For more information about ISO8601 look up: https://en.wikipedia.org/wiki/ISO_8601

omnistoiso8601() has a new Boolean parameter that indicates that hundredths are to
be output as milliseconds:

❑ omnistoiso8601(dOmnisDateTime,bNeedTime[,cErrText,bMillis=kFalse])
Converts dOmnisDateTime (in UTC) to ISO8601 date/date-time (depends on
bNeedTime) and returns it. Returns NULL and cErrText on error. Rounds down
hundredths if bMillis is false.

Note that bMillis only applies when bNeedTime is kTrue. If bMillis and bNeedTime are
both kTrue, then the function always outputs milliseconds.

sys()
A number of sys() functions have been added, and are summarized here:

❑ sys(231) returns zero in headless server.

❑ sys(233) returns empty in headless server; it returns the title of the main Omnis
application window in the full server.

❑ sys(234) returns a 3 column row of information containing statistics about RESTful
requests to the Omnis server.

❑ sys(236) returns true if VCS branching is enabled. If sys(236) returns false on a
branched project, the VCS will display the default branch data.

https://en.wikipedia.org/wiki/ISO_8601

What’s New in Omnis Studio 8.1

100

FileOps
The FileOps $readcharacter function now has an additional parameter to test if the file
is UTF-8 compliant:

FileOps.$readcharacter(iEnc,&cData[,&iOff=0,iMax=0,bChkUTF8=kFalse])

❑ bChkUTF8
If the data does not have a BOM when iEnc is kUniTypeAuto and you are reading
the entire file (so iOff and iMax are both zero), use UTF-8 as the detected encoding
if the data is consistent with UTF-8 encoding rules

Component Store
Adding Controls to a Form
You can now add a component to the current design window (remote form, window or
report) by first selecting the component in the Component Store and then pressing
Return (this is the same behaviour as double-clicking on a component in the
Component Store).

Omnis Configuration
Template Configuration File
Many of the preferences and settings in the Omnis IDE and Omnis App Server are
stored in a configuration file called ‘config.json’ which is located in the ‘Studio’ folder
under the main Omnis folder. The config.json file, created in the ‘Studio’ folder when
Omnis first runs, contains only a subset of settings needed initially for development, but
there are many more settings you can add to the file to enable or configure further
features in Omnis.

There is a new template ‘config.json’ file containing all possible sections and settings
located in a new ‘templates’ folder in the Studio folder: you can copy sections out of
this file and add them to your copy of the config.json file in the Studio folder. (Note
there is a copy of the CORS configuration file ‘cors.json’ in the new templates folder,
which you need to move into the ‘Studio’ folder to enable CORS: see the Web Services
section for more info.)

Configuration File Methods
There are some new methods in the Omnis Preferences that allow you get and set the
contents of the Omnis configuration file. These would allow you, for example, to create
your own config.json from code which could be used for deployment of your app.

❑ $getconfigjson()
Returns config.json as a row (empty if config.json could not be parsed)

❑ $setconfigjson(wConfigJson)
Sets config.json to the supplied row

These are methods of $root.$prefs, and they appear on the Methods tab of the
Property Manager when viewin the Omnis Preferences, but only when used with the
Notation Inspector.

You can use them to modify existing items, or add new items. For example:

 VCS

 101

Do $prefs.$getconfigjson() Returns cRow

If isnull(cRow.obrowser.$cols.$findname("newitem"))

Do cRow.obrowser.$cols.$add("newitem",kCharacter,kSimplechar,1000000)

End If

Calculate cRow.obrowser.newitem as "my test2"

If isnull(cRow.obrowser.$cols.$findname("newitem2"))

Do cRow.obrowser.$cols.$add("newitem2",kBoolean)

End If

Calculate cRow.obrowser.newitem2 as kTrue

If isnull(cRow.obrowser.$cols.$findname("newitem3"))

Do cRow.obrowser.$cols.$add("newitem3",kInteger,0)

End If

Calculate cRow.obrowser.newitem3 as 123

Do $prefs.$setconfigjson(cRow)

VCS
VCS Branching
Access to branching in the VCS has been removed from the Studio Browser but
support for branching is still available for backwards compatibility. To enable branching,
you can add the following member to config.json:
 "vcs": {

 "enableBranching": true

 }

In addition, sys(236) has been added and returns true if VCS branching is enabled. If
sys(236) returns false on a branched project, the VCS will display the default branch
data.

Showing Checked Out Classes
There is a new hyperlink option in the Libraries view of the Studio Browser “Show
Checked Out” to display only checked out classes in the current library. Once enabled
you can click the option again to show all classes.

Checking Out Classes
There is a new option on the Check Out tab in the VCS Options: when enabled, the
Ignore Checked Out Classes option ensures that the VCS will not copy out a
component if it is already checked out.

Window Components
Combo Boxes
Combo boxes in window class toolbars now support $keyevents, such as evKey.

What’s New in Omnis Studio 8.1

102

OJSON
Static Methods
The OJSON object has two new static methods: $listtoarrayarray and $arrayarraytolist,
to manipulate an array of arrays.

❑ $listtoarrayarray()
OJSON.$listtoarrayarray(lList[,iEncoding=kUniTypeUTF8,&cErrorText]) writes a list
with simple columns to an array of arrays; returns the JSON with specified
encoding (UTF8, UTF16BE/LE, UTF32BE/LE or Character). Returns NULL and
cErrorText for an error.

❑ $arrayarraytolist()
OJSON.$objectarraytolist(vData[,&cErrorText]) parses vData (binary (UTF8/16/32)
or character). vData must be a JSON array of arrays containing members with
simple types. Returns a list representing the JSON. Returns NULL and cErrorText
for an error.

These methods only work with simple types as array members. $arrayarraytolist
requires that each JSON array must have the same number of elements, and each
JSON array member at a particular index must be of the same data type.

XML
Using Schema Files for Validation
Some new properties have been added to the XML DOM Document object to allow you
to use an external schema file (XSD) for validation.

❑ $fullschemavalidation
If true, and $parservalidates is also true, and the parser will validate against a
schema, the parser performs additional checks against the schema.

You should set $fullschemavalidation to true unless performance is an issue.

The other new properties allow an external schema to be specified:

❑ $nonamespaceschemalocation
if specified, this property becomes the noNamespaceSchemaLocation attribute for
the document being parsed.

❑ $schemalocation
if specified, this property becomes the schemaLocation attribute for the document
being parsed.

The schemas specified in these properties need to be referenced by a pathname to the
schema file.

For example, to use an external schema, turn on $fullvalidation (without this, the
absence of the schema file is an unreported and ignored warning), and set
$schemalocation to:
"urn:books c:\dev\studio60orfc\oxml\test\books.xsd"

where the second component is the path to the schema file on your system.

If an XSD is in the same directory as the XML, you can use:
"urn:books books.xsd"

 Localization

 103

Localization
String Table Editor
The String Table Editor now saves to Tab Separated Value (.tsv) format by default, but
provides the option to save in the old .stb format. In addition, the dialog for opening a
string table initially defaults to .tsv.

Commands
Text: and Sta: Commands
The Text: and Sta: commands now enclose their parameters in curly braces {}. This
change was made in order to allow chroma coding and construct highlighting in the
Method Editor to work consistently, and for the new Library (JSON) export option to
work for these commands.

Web Server Plugins
VC++ Runtime Library
The dependency of the Omnis web server plugins on the VC++ runtime library,
available separately from Microsoft, has changed. The plugins omnisapi.dll, nph-
omniscgi.exe, and their Web Services (REST) variants are now statically linked to the
VC++ runtime redistributable library. As a result, weshared, apache mod_omnis and
omnisservlet are also statically linked to the library.

SQL Query Builder
Some enhancements have been added to the SQL Query Builder (added in Studio
8.1.1), which is available in the SQL Browser inside the Studio Browser.

A 'Create table class' option has been added to a new 'Other' toolbar menu option for
creating a table class from the current query; the option creates a $load method in the
table class contains the query from the Query Builder. The option also gives you the
option to create a window class and/or a remote form for viewing the data via the new
table class; the form contains code which calls the $load method in the table class.

An 'Export Data' option has been added to the 'Other' toolbar menu to allow you to
export the results data.

Plus the 'Create Statement on Clipboard' option has been added to the 'Other' menu
option; the Omnis code generated by this option is suitable for pasting into an Omnis
method.

What’s New in Omnis Studio 8.0.3

104

What’s New in Omnis Studio
8.0.3

The following enhancements have been added to Omnis Studio 8.0.3:

❑ SQLite Encryption
the SQLite DAM now supports native datafile encryption: when enabled, data is
encrypted and can only be read and decrypted using the encryption key

❑ Dictation
allows end users to enter text into Edit fields using the built-in dictation on macOS
Sierra; dictation must be enabled in the config.json file

❑ Apple Events
a new object class containing AppleScript to run various Apple Finder events, to
replace the Apple Events commands which have now been made obsolete

❑ Map Markers
extended support for Google Maps allows you to add a larger variety of map
markers (circles, arrows) and polygons to maps in JavaScript apps

❑ Page Panes
the JS Paged Pane control has a new property $animatetransitions, which allows
you to animate the transition when the current page is changed

❑ Worker Objects
additional support for notifications in the Worker Objects, for example, to allow you
to report progress on a long operation in your SQL transactions

❑ JSON column types in PostgreSQL DAM
you can select and insert JSON strings into PostgreSQL JSON and JSONB
columns

❑ Hardware ID
a new function to return the string ID of the hardware on which Omnis Studio is
currently running; this replaces sys(227) which has been removed

❑ Icon functions
There is an additional optional noscale parameter to the $getpict() and $getmask()
functions in the OmnisIcn Library function group

 SQLite Encryption

 105

SQLite Encryption
The SQLite DAM now supports native datafile encryption. When enabled, all data
written to the SQLite datafile is encrypted and can only be read and decrypted using
the SQLite DAM with the appropriate encryption key.

Encryption is enabled by setting the session object $encryptkey property before logging
on to the SQLite datafile. $encryptkey accepts a string of hexadecimal characters. The
string should be of even length and should be no longer than 32 characters. The key
value will be truncated if it does not meet either of these criteria. The accepted key
value is then used to seed an internal private key which is subsequently used by all
statement objects belonging to that session object.

To create a new encrypted datafile, the $opencreate property should also be set to
kTrue before logging on. For example:
Do sessObj.$opencreate.$assign(kTrue) ;; create a new datafile if it does

not exist

Do sessObj.$encryptkey.$assign(‘1a2b3c4d5e6f’) Returns #F

Do sessObj.$logon(‘/Users/user1/Desktop/sqlite.db’,’’,’’,’session1’) Returns

#F

Once encrypted, $logon() will fail unless the correct $encryptkey is supplied.
$encryptkey will be ignored (cleared) if the DAM detects a connection to a non-
encrypted datafile. Please note that you cannot change the $encryptkey property while
the DAM is logged on. Errors encountered during assignment of $encryptkey are
written to session.$nativeerrorcode and session.$nativeerrortext.

The DAM provides two session methods that facilitate encryption/decryption of existing
SQLite datafiles:

❑ $encrypt(filename)
opens a non-encrypted datafile and encrypts it using the $encryptkey. A backup
copy of the non-encrypted datafile is created at the file location named filename.bak

❑ $decrypt(filename)
opens a previously encrypted datafile and decrypts it using the $encryptkey. A
backup copy of the encrypted datafile is created at the file location
named filename.bak

$encrypt() and $decrypt() return kTrue on success but will fail, unless the DAM is
logged off, if the process cannot get exclusive read/write access to the specified
datafile or if filename.bak already exists and cannot be overwritten. Once encrypted,
connection via third-party tools should be avoided as this may result in undefined
behaviour and cause datafile corruption.

What’s New in Omnis Studio 8.0.3

106

Dictation for Edit Fields
You can now enter text into an edit field using the built-in Dictation feature on macOS,
which tries to convert audible speech into meaningful text. To allow dictation to occur
the focus must be in the edit field, which must itself be editable, i.e. not disabled, and
dictation must be enabled on the client computer. Dictation is available in Single- and
Multi-line edit fields, the edit part of Combo boxes, and edit fields in Complex grids in
remote forms (and window classes), that is, wherever text input is required.

Enabling Dictation
Support for Dictation is turned on in Omnis by default, but you can change it in the
config.json file (prior to Studio 8.1 it was off by default). There is a “useDictation" option
in a new “macOS" member in config.json, which is set to true to enable dictation; note
you have to quit Omnis to change the config.json file, and any change will be effective
when you restart Omnis.

"macOS": {

 "useDictation": true

 }

Using Dictation in Edit fields
To enter dictation mode, place the cursor in the edit field and select the Start Dictation
option from the Edit menu on macOS, or press the Function key twice (Fn + Fn). This
will open the dictation popup (usually at the insertion point, or in the center of the
screen) and put the computer in listening mode. Dictation can be stopped or cancelled
by clicking on Done in the popup, or using the Stop Dictation menu option.

Dictation Levels
There are two levels of dictation provided by macOS: Standard or Enhanced. These
can be enabled from System Preferences->Keyboard->Dictation, or on older systems
System Preferences->Dictation & Speech.

Standard dictation (the default) requires an internet connection and provides speech to
text translation using Apple’s servers. On older systems, the text is not translated until
the Done button is pressed on the popup. On newer systems text is translated and
placed into the field while the end user is speaking. Dictation will end automatically
when text is entered from the keyboard or the field loses the focus.

Enhanced dictation requires the enhanced dictation engine to be downloaded, which is
approximately 500MB for each language pack. This will then provide local machine
based translation. Features of enhanced dictation are live feedback and offline support.
With live feedback the text is rewritten while speaking. Enhanced dictation also
provides spoken dictation commands such as “Select All”, “Cut that”, “Move left”, and
so on. When enhanced dictation has been started it is possible to change the currently
focused edit field and move the popup to the new field and continue to dictate. It is also
possible to type and dictate at the same time.

 Apple Events

 107

Apple Events
All the Apple Event commands, including Send core event and Send Finder event,
have been made obsolete in this version; they do not work on macOS Sierra and are
therefore no longer supported in this release of Omnis Studio. The commands have
been moved from the Apple events… group and placed into the Obsolete commands
group in the Method Editor.

Apple Events Object
To replace the functionality of the old “Send Finder Event” commands, this release
includes a new Object class called oFinderEvent which contains a number of methods
which run AppleScript to execute the equivalent Apple Finder events, such as a Get
File Info event or a Duplicate Files event. The AppleScript is run using the Omnis
$runapplescript() method from inside each method in the object class.

To use the object class and these methods, click on the Class Wizard option in the
Studio Browser, then click on Object, select the oFinderEvent option, name the object
class (or keep the name oFinderEvent) and press Return: a copy of the object class
template is added to your library. Open the Method Editor for the class in which you
want to use the Finder events (such as a window, menu or toolbar class), and then
create an Object variable in the class, setting its subtype to the oFinderEvent object
you created.

Apple Event Methods
You can call the methods in your code, and run the AppleScript as required, using the
Omnis command Do YourObjectVar.$methodname() using the appropriate method
name, as below.

Some of the methods can take a file path as the first parameter, or if this is omitted or
empty a file selection dialog will open. The title of the dialog can be customized by
editing the cOpenFilesTitle class variable.

❑ $getfileinfo([cFilePath])
Sends a Get File Info event: equivalent Send finder event {Get File Info} command

❑ $duplicatefiles([cFilePath])
Sends a Duplicate Files event: equivalent Send finder event {Duplicate Files}
command

❑ $makealiasforfiles([cFilePath])
Sends a Make Alias For Files event: equivalent Send finder event
{Make Alias For Files} command

❑ $openfiles([cFilePath])
Sends a Open Files event: equivalent Send finder event {Open Files} command

❑ $printfiles([cFilePath])
Sends a Print Files event: equivalent Send finder event {Print Files} command

❑ $revealfiles([cFilePath])
Sends a Reveal Files event: equivalent Send finder event {Reveal Files} command

❑ $emptytrash()
Sends a Empty Trash event: equivalent Send finder event {Empty Trash} command

❑ $restart()
Sends a Restart Macintosh event: equivalent Send finder event {Restart Macintosh}
command

❑ $shutdown()
Sends a Shutdown Macintosh event: equivalent Send finder event
{Shutdown Macintosh} command

What’s New in Omnis Studio 8.0.3

108

❑ $sleep()
Sends a Sleep Macintosh event: equivalent Send finder event {Sleep Macintosh}
command

The object has three instance variables which you can use in your code to handle
errors:

❑ iErrCode
The error code generated by the last command. 0 for no error.

❑ iErrText
The error text generated by the last command.

❑ iScript
The AppleScript sent by the last command.

The following legacy commands are not supported in the latest version on macOS:
Send finder event {Show About}, Send finder event {Share Files}, Send finder event
{Show Clipboard}.

You can examine the Omnis code and AppleScript in each method inside the object
class. For example, various simple operations are handled in a generic method
$simpleop and the operation is passed in as a parameter:
; $simpleop method

; pOperation param receives ‘Empty’, ‘Restart’, ‘Shut down’, or ‘Sleep’ msg

Begin text block

Text: tell application "Finder" (Carriage return)

Text: [pOperation] (Carriage return)

Text: end tell (Carriage return)

End text block

Get text block iScript

Do $root.$runapplescript(iScript,iErrCode,iErrText)

Quit method iErrCode

Each of the new methods in the object class includes the equivalent old command as a
comment to help you map your code to the new methods.
; Send finder event {Empty Trash} ;; old command

Quit method $cinst.$simpleop("Empty") ;; new method

Map Control
Custom Markers
You can add your own icon to markers in the JavaScript Map control, by assigning an
icon URL in the fifth column of the map marker list for the control – if the fifth parameter
was omitted the default Google map marker icon is used: this feature was available in
previous versions. It is now possible to assign an alternative marker icon or symbol,
including map markers from the Google maps API, by adding a sixth column to the
marker list: in this case the fifth column should be omitted.

The definition for the markers list in the JavaScript Map control can now be:
Do iMapMarkers.$define(

iMarkerLatLong,iMarkerTitle,iMarkerTag,iMarkerHtml,iMarkerIcon,iMarkerCustom

)

where iMarkerCustom is a new string column (column 6) specifying a custom marker.
When a marker is defined in the marker list, and the iMarkerIcon (column 5) is empty,
iMarkerCustom can be included with the following attributes, separated with a ‘|’
character (you only need to specify the attributes required). An example custom string
would be:
"path:google.maps.SymbolPath.BACKWARD_CLOSED_ARROW | fillColor: red |

fillOpacity:0.8 | scale: 4 | strokeColor:black | strokeWeight: 1"

 Map Control

 109

Or to draw a five-pointed star marker:
"path:M 125,5 155,90 245,90 175,145 200,230 125,180 50,230 75,145 5,90 95,90 z

| fillColor: red | fillOpacity:0.8 | scale: 0.1|strokeColor:black |

strokeWeight: 1 | anchor:122,115"

Or to draw a circle marker:
"path:google.maps.SymbolPath.CIRCLE | fillColor: red | fillOpacity:0.8 |

scale: 4"

Where the custom marker parameters are defined as:

❑ path can either be a map symbol, or an SVG notation path, as defined below

❑ fillColor the color used to fill the marker object, an html css color name or value
e.g. #FF0000

❑ fillOpacity the opacity of the fill color, a value from 0 to 1, e.g. 0.5 is 50%
transparent fill

❑ scale a scaling factor for the object

❑ strokeColor the color used to outline the object, an html css color name or value
e.g. #FF0000

❑ strokeWeight the thickness of the stroke line

❑ anchor allows you to set the anchor position or offset the shape. By default,
shapes are aligned to the top left of the marker relative to its lat:long

Marker Symbol – prefixed
google.maps.SymbolPath.

Description

CIRCLE A circle.

BACKWARD_CLOSED_ARROW A backward-pointing arrow that is
closed on all sides.

FORWARD_CLOSED_ARROW A forward-pointing arrow that is closed
on all sides.

BACKWARD_OPEN_ARROW A backward-pointing arrow that is
open on one side.

FORWARD_OPEN_ARROW A forward-pointing arrow that is open
on one side.

For example:
Do iMapMarkers.$define(

iMarkerLatLong,iMarkerTitle,iMarkerTag,iMarkerHtml, ,iMarkerCustom)

Do iMapMarkers.$add(

"52.223460:1.492379","Omnis UK","Omnis

UK","","","path:google.maps.SymbolPath.BACKWARD_CLOSED_ARROW|fillColor:

red|fillOpacity:0.8| scale: 8|strokeColor:black|strokeWeight: 1")

; the JS Map app uses similar code to show the Omnis offices

The JS Map example app has been updated and includes some of the new markers
and polygons, and can viewed or downloaded via the Omnis website (www.omnis.net)
from the JavaScript Component Gallery. The following image shows the location of the
European Omnis offices using the “Backward-pointing Closed Arrow”.

What’s New in Omnis Studio 8.0.3

110

The map control now has a property $fitmaptomarkers that can be assigned value 1 at
runtime to force the map to zoom in or out to allow all the map markers to be shown.

Finding the Latitude:Longitude

To find the lat:long position of somewhere (to be used in the JS Map control in the
iMarkerLatLong parameter), you can Right-click somewhere on a Google map in a
standard browser (not the Omnis JS Map control), select the ‘What’s here’ option and
the latitude:longitude value of that position is shown on the popup. You need to replace
the comma with a colon to be used as a parameter in Omnis, e.g. 52.223460:1.492379.

Polygon Objects
In addition to icons and standard map markers, you can add polygon objects or
irregular shapes to maps in the JavaScript Map control. The new property $mappolys
specifes the data name of a list variable which contains the definition of each polygon
or shape as follows:
Do iPolyMarkers.$define(

iPolyLatLong,iPolyStroke,iPolyOpacity,iPolyWeight,iPolyFill,iPolyFillOpacity

,iPolyTag)

❑ iPolyLatLong the latitude:longitude values for each of the points of the polygon, so
a triangle would have 3 points: the lat:long settings are separated with the ‘|’
character, e.g. 25.774,-80.190|18.466,-66.118|32.321,-64.757|25.774,-80.190

❑ iPolyStroke the color used to outline the polygon, which is an html css color name
or value e.g. #FF0000

❑ iPolyOpacity the opacity of the stroke color, a value from 0 to 1, e.g. 0.5 is 50%
transparent

❑ iPolyWeight the thickness of the stroke line

❑ iPolyFill the fill color of the polygon object, an html css color name or value e.g.
#FF0000

❑ iPolyFillOpacity the opacity of the fill color, a value from 0 to 1, e.g. 0.5 is 50%
transparent

❑ iPolyTag the tag name or label for the polygon, which is sent to the
evPolygonClicked event method in pPoly

 Paged Panes

 111

For example, the following code draws the Bermuda Triangle on the map (see the JS
Map example app):
Do iPolyMarkers.$add(

"25.774,-80.190|18.466,-66.118|32.321,-64.757|25.774,-

80.190","#FF0000","0.8","3","#FF0000","0.35","Bermuda Triangle”)

There is a new event evPolygonClicked with the parameter pPoly, which is called when
a polygon on the map is clicked, and pPoly will be set to the polygon tag as defined in
the list.

Paged Panes
Animated Transitions
The JavaScript Paged Pane control has a new property $animatetransitions. If
enabled, the transition between pages will be animated when the current page is
changed. The property cannot be changed at runtime (the same as
$scrolltochangepage).

If used in conjunction with $scrolltochangepage, when the user stops scrolling, the
pane will smoothly animate into position, rather than jumping instantly.

The animation time is set to 500ms, which should be fine for most purposes, but if you
wish to change this, you can use JavaScript to change the Paged Pane control's (or its
prototype's) ANIMATION_TIME property.

Worker Objects
Push Notifications
The worker objects allow you to push additional notifications before calling $completed.
This enhancement means workers could periodically tell the application what is going
on during their execution, for example, the worker could report progress to say how
much of a large file transfer has completed.

PostgreSQL
JSON column types
You can select and insert JSON strings into PostgreSQL JSON and JSONB columns.

The client library will parse and validate text before insertion into JSON/JSONB
columns, and you can optionally use this feature to validate JSON strings before
insertion, for example:
Do cStat.$execdirect("select '{""col1"":1,""col2"":""600

meters"",""col3"":[[""one"",""two"",""three""]}'::json as myValue") Returns

#F

Do cStat.$fetchinto(lResult) ;; returns {"col1":1,"col2":"600

meters","col3":["one","two","three"]}

Do cStat.$execdirect('create table jsontest(col1 int, col2 jsonb)') Returns #F

Do cStat.$execdirect('insert into jsontest values(1,@[lResult])') Returns #F

You can also use the $addcustomtype() method to make $createnames() generate
JSON and/or JSONB column types, for example:
Do cSess.$addcustomtype(1000,'JSON') Returns #F

What’s New in Omnis Studio 8.0.3

112

Functions
Hardware ID
There is a new function in the Web commands external component
OWEB.$gethardwareid() that returns a string ID that identifies the hardware on which
Omnis Studio is currently running. This new function replaces sys(227) which has been
removed.

Icon Functions
A noscale parameter has been added to the $getpict() and $getmask() functions in the
OmnisIcn Library function group.

❑ OmnisIcn Library.$getpict(iconid,backgroundcolor[,noscale])

❑ OmnisIcn Library.$getmask(iconid[,noscale])

The default is kFalse, when the parameter is omitted, which will return an image scaled
to match the resolution of the current or main display. When noscale is passed as
kTrue, a standard resolution image is returned.

sys(234) function
The sys(234) function has been added, which returns a row of information containing
statistics about RESTful requests to the Omnis server. The row has three columns:
column 1 is the count of successful calls; column 2 is count of calls resulting in an
error; and column 3 is the count of calls internally re-queued because there was not a
free user.

Native Switch
The text displayed on the Native Switch JavaScript component is now controlled by two
new members in the built-in strings object jOmnisStrings in the JavaScript Client. You
can use the new members "switch_on" and "switch_off" to replace the default text with
your own text, for example, if you wish to provide different language equivalents to the
default text.

Information about how to change or localise these strings can be found in the Creating
Web & Mobile Apps manual, under "Localizing Built-in Strings".

If you wish to override the base text, you could use the following code in a separate
JavaScript file loaded in your form's html file after omjsclnt.js:
 jOmnisStrings.base.switch_on = "I";

 jOmnisStrings.base.switch_off = "0";

Window Classes
Debugging code in oBrowser
In order to debug code running in the oBrowser component under Windows, you have
to set various security settings to allow debug mode. In previous versions, these
settings had to be passed on the command line as you started Omnis. In this version,
you can set the security settings in the Omnis config.json file, and start Omnis normally
(and if you pass the parameters on the Omnis command line now, they are ignored).

You can add the following entry to the ‘obrowser’ section of config.json:
 "cefSwitches": [

 "allow-file-access-from-files",

 "disable-web-security"

]

 Window Classes

 113

The entry is an array of actual switch values to be passed to the Chromium Embedded
Framework.

What’s New in Omnis Studio 8.0.2

114

What’s New in Omnis Studio
8.0.2

The following enhancements were added to Omnis Studio 8.0.2:

❑ Mobile App Deployment
a new wrapper to create and deploy standalone mobile apps to run on Windows 10
based devices including desktop PCs, Surface® tablets, and Windows Phones®: in
addition, the Sync Server now uses a RESTful interface to allow the Omnis Server
to communicate with mobile clients

❑ Custom Loading Indicator
there is a new client command, showloadingoverlay, that allows you to add a
loading indicator over an individual control, or the entire page in the JavaScript
Client

❑ Rich Text Editor Control
has been enhanced and includes Code Blocks with syntax highlighting, Undo/Redo
shortcut keys, Sub/Superscript, In/Outdent, Block Quotes, Clear formatting, Image
uploads, Content tips

❑ Worker Objects
Worker Objects now support an alternative completion model whereby $completed
and $cancelled methods can optionally be sent directly to another instance

❑ Web Services
support for ISO8601 based date and date-time values has been added to REST-
based Web Services support; in addition, the CORS settings are now stored in a
separate config file CORS.json

❑ Method Templates
when adding the $sqldone method in the method editor Omnis now adds pre-
defined or boilerplate code automatically, which you can add to or amend as you
wish; there is a new class rfMethodTemplates in the Component Store containing
method templates

❑ Creating Unrecognized Variables
when Omnis encounters an unrecognized variable, a dialog pops up to allow you to
create the variable, including options for the scope, type, subtype, etc.

❑ List Variable Values
the Value option on the context menu for List variables in the Method Editor has
some enhancements, including showing the value of $line, and the line numbers of
up to the first 5 selected lines

❑ Adding Blank Method Lines
there is a new command and keyboard shortcut on the Modify menu in the Method
Editor that adds a set of blank lines to the end of the current method and sets the
current line to the first new blank line

❑ Sorting Variables
there is a Sort Names option on the View menu of the variables list window,
available by right-clicking on a variable when inspecting variables in the Method
Editor

❑ Date and Number Formatting Override
entries in the system tables for storing date formats (#DFORMS), input masks
(#MASKS), and so on, can now be overridden at runtime by creating and calling a
configuration file called tables.json

 Window Classes

 115

❑ Text Escapes for URIs
there are two new static functions, in the OWEB component, that escape text for
use in URIs: $makeuri() returns a properly formed URI, and $escapeuritext()
escapes a text URI

❑ Generating UUIDs
there is a new function, in the OWEB component, $makeuuid(), that allows you to
generate a new UUID

What’s New in Omnis Studio 8.0.2

116

Mobile App Deployment
Windows 10 Wrapper
There is a new wrapper for deploying standalone apps on Windows 10 devices,
including desktop PCs, Surface® tablets, and Windows Phones®. The Application
Wrappers provided with Omnis Studio 8, available for iOS and Android based mobile
devices, allow you to deploy your JavaScript Client based apps as standalone mobile
apps (rather than deployed to end users’ web browsers). The wrapper SDKs are
available to download from our website, together with complete documentation
describing how you can build and deploy standalone mobile apps.

The Windows 10 wrapper is a “Universal Windows Platform” (UWP) app, and so should
run on any Windows 10 based device. As with the iOS and Android wrappers, it allows
you to build a branded app based on Omnis JavaScript Client remote forms, with the
ability to access device functionality, local database and data synchronization features,
as well as the ability to run self-contained, without the need for an Omnis App Server.
This will allow you to turn your Omnis JavaScript Client application into a native look-
and-feel Windows 10 application, which can be distributed within an organisation, or via
the Microsoft Store.

Note: the wrappers are released separately to the main Omnis Studio SDK, so in this
case the Windows 10 wrapper SDK will follow shortly after the Studio 8.0.2 release,
and you will be able to download it from the Omnis website:
www.omnis.net/download/jswrapper.jsp

Sync Server
There is a new version of the Omnis Sync Server, version 2.3, which uses a RESTful
interface to communicate with mobile clients. Due to this change you now require a
Web Services serial number to use the Sync Server in the Development version of
Studio 8.0.2 (all Server versions of Omnis include Web Services support). Contact your
local sales office for further information.

$syncinit HostString

This change necessitates a small breaking change to libraries which synchronize with
the Sync Server, in that the format of the HostString passed to the $syncinit method
has changed:

For a direct connection to the built-in Omnis Server, the HostString should be:
http://<ipaddress>:<$serverport>

If you are connecting through a web server, you need to add the omnisrest… server
plugin to your web server, in the same way as the other server plugins described in
Tech Note: TNJS0003, and connect through that.

The HostString should then be of the form:
http://<web server address>/<Omnis rest plugin>/ws/<XXX>

Where <XXX> is either:

❑ <Omnis $serverport> (if Omnis is on the same machine as the web server)

❑ <Omnis server ipaddress>_<Omnis $serverport>

❑ <Server Pool>_<Omnis server ipaddress>_<Omnis $serverport>

For example:
http://mysite.com/cgibin/omnisrestisapi.dll/ws/192.168.1.14_7001

Wrapper Compatibility

Due to the addition of RESTful support in the Sync Server, new application wrapper
apps are required if you are using the new Sync Server. Version 1.5.0 of the wrappers

http://www.omnis.net/download/jswrapper.jsp
http://www.omnis.net/technotes/tnjs0003.jsp

 JavaScript Client

 117

and later are compatible with the new Sync Server, and these can be downloaded from
the Omnis website: www.omnis.net/download/jswrapper.jsp

JavaScript Client
Custom Loading Indicator
You can now add a loading indicator (animated image) over an individual control, or the
entire page in the JavaScript Client, using a new client command, showloadingoverlay.
The new loader provides feedback to the user, that a long running operation may be in
progress, and it will also prevent user input. It is useful if you are doing any
asynchronous operations, such as populating a long list using a SQL worker object.
Client commands, such as showloadingoverlay, are executed using the
$clientcommand method, as follows:
Do $cinst.$clientcommand("showloadingoverlay",rowvariable)

Where rowvariable is row(show, controlName, message, cssClass).

❑ show: A Boolean value kTrue to show the overlay, or kFalse to hide it.

❑ controlName: The $name of a control on the form to which the overlay should be
attached/removed from. Pass an empty string to target the entire page.

❑ message: (Optional) A string of text to display in the overlay.

❑ cssClass: (Optional) A CSS class to apply to the overlay. Allows you to customise
the appearance of the overlay using CSS (See below).

By default, the overlay will darken whatever is behind it, and display a spinner and
optional text string. If you wish to customize the appearance, you can do so with CSS.
Create a CSS class in your user.css file, and pass this class name as the cssClass
parameter.

The loading overlay comprises a toplevel div, which will be given your CSS class
name. This contains a div with the CSS class name of “container”, which contains a
div with the “indicator” class and a ‘p’ element with the “message” class. You will need
to use CSS to style all of these.

The omnisLoadingOverlay class in omnis.css may be useful as a basis.

Rich Text Editor Control
The Rich Text Editor is now based on Quill 1.0, which provides several new features
and enhancements, including the ability to display Code Blocks with syntax
highlighting, Undo/Redo shortcut keys, Sub/Superscript, In/Outdent, Block Quotes,
Image uploads, Content tips, and so on. The component in previous versions of Omnis
Studio was based on a previous release of Quill.

Dynamically Loaded Resources

The Rich Text Control now dynamically loads the necessary JavaScript & CSS files
when it is used. To this end, you will find that there are several new files in the Studio
tree:
html/scripts/

 quill.js

 quill-legacy.js

 highlight.pack.js

html/css/

 quill.snow.css

 quill-legacy.snow.css

 highlight-theme.css

When deploying to a web server, you must make sure to also copy these files over.

Quill 1.0 only supports IE 11 or above. When running on earlier IE versions, the control
will fall back to Quill 0.2 - this is what the ‘-legacy’ files above are used for.

http://www.omnis.net/download/jswrapper.jsp

What’s New in Omnis Studio 8.0.2

118

Code Blocks

The updated Rich Text Editor allows you to insert Code Blocks. These allow you to
insert syntax-highlighted code. The syntax highlighting is achieved using highlight.js
and by default includes highlight support for several popular languages.

If the language(s) you require is/are not supported out of the box, you can create a
‘Custom Package’ on the highlight.js download page, and replace the
highlight.pack.js in your tree/web server with the one you download.

Similarly, if you want to change the code block’s appearance, you can take any of the
theme css files from your highlight.js download, rename it highlight-theme.css and
replace the supplied file with your own.

Other Additions

• High-res Toolbar Icons

• You can Undo/Redo your recent changes to the editor using Ctrl/Cmd + Z to Undo
or Ctrl/Cmd + Y to Redo

• Subscript & Superscript

• Indent & Outdent

• Embed Videos

• Block Quotes

• Clear Formatting

• Images can now be uploaded from the client

• A content tip can be assigned

New Properties

$contenttip: Allows you to specify some text to be displayed in the editor when it has
no content.

$removedtoolbaritems: A bitmask of kJSRichText… values, allowing you to specify
toolbar items to hide in your Rich Text Editor instance.

New String Table IDs

The following additional string table IDs may be specified, to localize/customize the text
displayed in the Rich Text editor & its tooltips:

Tooltips for buttons

rt_decrease_indent rt_increase_indent rt_video

rt_blockquote rt_codeblock rt_clearformat

https://highlightjs.org/download

 JavaScript Client

 119

Text Displayed On Controls

rt_sansserif rt_serif rt_monospace

Component Icons
The ‘Studio’ icon set, added for Studio 8.0.1 and located in the ‘iconsets’ folder, has
been added to the search path for component icons. When a reference to an icon is
made in a component (e.g. in the $iconid property for a button), libraries now search
the ‘Studio’ icon set automatically, in addition to their own icon set specified in $iconset,
and other locations for icons. The complete search order for icons used in a developer
library is now:

1. The custom icon set for the library, under the ‘iconsets’ folder and specified in
$iconset

2. #ICONS for the library, if used

3. User icon datafiles (.df1 icon files other than Omnispic and Userpic), if used

4. The ‘Studio’ icon set, under the ‘iconsets’ folder

5. Omnispic.df1 and Userpic.df1 icon datafiles

The Select Icon dialog, opened by clicking on $iconid in the Property Manager when
selecting an icon for a component, now shows both the ‘Studio’ icon set and the icon
set in $iconset for your library, if specified.

Existing users should note that the /html/icons folder is still supported for the location of
icon sets, but going forward all new icon sets should be placed in the /iconsets folder
under the main Omnis folder.

Server Date and Time Setting
There is a new entry supported in the "server" section of Omnis configuration file
(config.json), "timeOffsetMinutes", to allow you to add an offset to the date-time setting
on the Omnis App Server. Omnis adds the value of this setting to the current system
date-time when generating the value for #D and #T. If the entry is not present, it
defaults to zero, maintaining the current behavior, i.e. no date-time offset is applied.

Subform Sets
Subform Set form parameters are now passed to $init as well as $construct. This
enables you to pass parameters to a form in a subform set when it is running in the
serverless client, since $construct is not executed in serverless client mode, but $init is
run.

Subform Instance Parameters
Omnis is now stricter on the format of the comma-separated list you pass to a subform,
but this provides more consistent handling of the parameters when they are passed
through to $init.

String values for parameters in $userinfo must now be enclosed in quotes (single or
double), and can now contain spaces and commas. Numeric values should now be
passed through as numeric values.

Device Control
The GPS and Vibrate actions in the Device control will now attempt to work outside the
wrappers, if the browser supports the necessary APIs. Even though most browsers do
support the APIs, you should not rely on them being available and you should test your
apps thoroughly to verify the behavior of these actions in your app.

What’s New in Omnis Studio 8.0.2

120

Component Borders
The borders of JavaScript components specified by the kCtrlBorderShadow... constant
now draw within the bounds of the control, for both Windows and macOS, and have the
same dimensions for both platforms. This may have a small, but significant effect
regarding the apparent spacing of the controls in remote forms.

JavaScript & External Component Icons
The JavaScript Components are implemented as external components in Omnis
Studio, and they are listed in the Component Store under the JavaScript Components
tab (press F3 while editing a remote form to show the components). In this version, the
JavaScript Components can be shown using Large Icons.

All external components now support high-definition icon images, which can be added
as separate PNG image files; in previous versions, 16x16 was the maximum size
allowed for external components and alpha images were not supported.

Worker Objects
Worker Objects now support an alternative completion model. The $completed and
$cancelled methods can optionally be sent directly to another instance. This means
you do not need to sub-class the worker object, in order to receive its results. We
would recommend that you use object references rather than objects for this technique.

In order to use this new functionality, there is a new property of worker object
instances, called $callbackinst. If you do not use this new property, behavior is
unchanged from Studio 8.0.1 and earlier.

For example, if iHttp is an HTTP worker (an instance variable in a window class), then
within the window instance you can execute:
iHttp.$callbackinst.$assign($cinst)

You need to implement $completed and $cancelled in the window class methods. The
parameters are as follows:

❑ $completed(row,object)
where row is a parameter of type Row, same definition as that passed to
$completed in the sub-classed object when not using $callbackinst.
object is a parameter of type Object reference (when the worker object is an object
reference) or Item reference (when the worker object is an object). object is the
worker object for which $completed is being called.

❑ $cancelled(object)
where object is the same as for $completed

Web Services
Date and Date-time values
Support for ‘date’ and ‘date-time’ values has been added to REST-based Web Services
support in Omnis. RESTful services typically use a subset of ISO8601 to exchange

 Web Services

 121

date and date-time values, which are supported in Swagger which is used to define
web services in Omnis. ISO8601 represents the date or date-time as a character string.
See http://swagger.io/specification/ and search for RFC3339 in the page - a link from there
takes you to http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14.

Swagger has two format specifiers for character string values: date and date-time. The
Swagger generator has been enhanced so that for fields (either in a schema or in the
HTTP method parameters) of type character, the description can contain a swagger tag
that specifies the format, e.g. the description for query string parameter startDate could
be “<swagger-date> This parameter is the start date for the requested work”. When
Omnis generates the swagger definition for the web service, it looks for these swagger
tags, and uses them to set the format for Swagger string types. This has the additional
benefit that you can use other supported Swagger string formats, e.g. password and
byte.

ISO8601 date functions
Dates and date-time values are still exchanged as character values. Your application
code therefore needs to parse and generate the ISO8601 date and date-time values.
To support this, there are two new functions to manipulate ISO8601 dates, or at least
the subset of ISO8601 needed to work with Swagger and the Omnis RESTful server:

❑ iso8601toomnis()
iso8601toomnis(cISO8601,bNeedTime,bHasTimeZone,cErrorText]) converts
ISO8601 date/date-time string to Omnis date-time and returns result (in UTC time if
cISO8601 contains time and time zone).
Returns #NULL and sets cErrorText if an error occurs

❑ omnistoiso8601()
omnistoiso8601(dOmnisDateTime,bNeedTime[,cErrorText]) converts
dOmnisDateTime (assumed to be in UTC) to an ISO8601 date or date-time string
(depending on bNeedTime) and returns the result.
Returns #NULL and sets cErrorText if an error occurs.

Hundredths are always rounded down to the nearest tenth.

Note that for a RESTful service, you should always use time zones for input date time
values, so you would always pass bHasTimeZone as kTrue to iso8601toomnis() if you
are passing bNeedTime as kTrue.

omnistoiso8601() always outputs the timezone using the “Z” UTC time indicator.

CORS
The configuration of CORS for RESTful-based web services is now stored in a
separate configuration file, cors.json in the Studio folder: if the cors.json file is not
present in the Studio folder, then there is no configuration setup for CORS. In previous
versions, the CORS configuration was stored in a “CORS” section in studio.json file
which is now redundant. Since it is a separate file, you can edit it while the Omnis
Server is running. (Note from Studio 8.1 onwards a template cors.json file is located in
the Studio/config folder, and you need to move this file into the Studio folder to enable
CORS.)

The cors.json file has the same syntax as the “CORS” member in old studio.json file.
The content of cors.json would be something like this:
{

 "originLists": {

 "list1": [

 "http://127.0.0.2",

 "http://127.0.0.2:8081",

 "http://localhost1:8081",

 "http://online.swagger.io"

]

http://swagger.io/specification/
http://xml2rfc.ietf.org/public/rfc/html/rfc3339.html#anchor14

What’s New in Omnis Studio 8.0.2

122

 },

 "APIS": {

 "*": {

 "origins": "list1",

 "headers": "*",

 "supportsCredentials": true,

 "maxAge": 0

 },

 "Swagger": {

 "origins": "list1",

 "headers": "*",

 "supportsCredentials": true,

 "maxAge": 0

 }

 }

}

As this is a separate file, it can be changed while the Omnis Server is open, but you
need to inform Omnis of the change. This can be done by clicking the “Reload CORS
Config” button on the Server Configuration dialog, which can be loaded from the Studio
Browser when the Web Service Server option is selected.

Method Editor
Method Templates
When you add the $sqldone method to a remote form, Omnis adds pre-defined or
boilerplate code, as well as the required parameter variables, and sets the method to
execute on the client automatically. This saves you having to add the same code every
time you want to create the $sqldone method – you can then add to or amend the code
as you wish.

When you add $sqldone (which is the client-executed completion method for SQL
objects), Omnis will add a set of pre-defined lines of code and the required parameter
variables. In this case, the code added to $sqldone is:
;; parameter vars pRequestId (Var type), pList (List) created

;; local vars lErrorCode and lErrorText created

;; Check for an error:

 Do $cinst.$sqlobject.$getlasterrorcode() Returns lErrorCode

 If lErrorCode<>0 ;; sql error occurred, show message

 Do $cinst.$sqlobject.$getlasterrortext() Returns lErrorText

 Do $cinst.$showmessage(lErrorText,'SQL Error')

 Quit method

 End If

 Switch pRequestId

 ;; Add cases for the IDs returned by your requests here.

 End Switch

The added code first checks if there was an error, then creates a Switch statement to
handle the results based on the request in pRequestId. If you do not want to use this
code, just select the lines of code and delete them.

Note this is an extension of a feature in Studio 8.0, where some methods are marked
as client executed automatically when the method is added, and any parameters are
added to the method if required. The methods that Omnis inserts as client executed
automatically are: $candrop, $drag, $filereadcomplete, $init, $term, $getscrolltip,
$filtergrid, $sortgrid, $sfsorder, $sfscanclose, $pushed, and $sqldone.

 Method Editor

 123

Method Template Component Store class

There is a new remote form class in the Component Store library, called
rfMethodTemplates, which contains a method for each method template; at present
there is only one method template $sqldone. To view the Component Store library and
the method templates, right-click on the background of the Component Store, select
the ‘Show Component Library in Browser’ option, and open the rfMethodTemplates
class.

You can modify the methods in the rfMethodTemplates class, or add your own to
implement templates for any of the following client methods: $candrop, $drag,
$filereadcomplete, $init, $term, $getscrolltip, $filtergrid, $sortgrid, $sfsorder,
$sfscanclose, $pushed, and $sqldone. A template method must be added as a class
method.

Creating Unrecognized Variables
In previous versions, when Omnis encountered a variable that did not exist it popped
up a warning, but no further action was taken. However, in this version a dialog will pop
up automatically that allows you to create the unknown variable, including options for
the scope, data type, subtype, initial value and description. The dialog only opens if the
“invalid” text is a possible variable name within the current context.

The unrecognized variable dialog can open when entering code in the method editor,
and when assigning a property in the property manager. In the latter case, e.g. when
entering a variable name into $dataname, the initial type for the new variable is set to
the most likely data type for the control – therefore, a variable for a List box control
would be set to List data type. The dialog restricts the scope of the new variable to
what makes sense based on class type, and so on.

List Variable Values
The Value option on the context menu for List variables in the Method Editor has some
enhancements: this option is displayed when you right-click on a list variable name.

❑ The Value context menu option on a list variable previously showed “Value (Not
Empty)” when the list contained lines. The option now tells you the number of lines
in the list, the line number of the current line held in $line, and the line numbers of
up to the first 5 selected lines: e.g. Value (10 lines, $line=4, $selected=1,4,8)

❑ When you select Value, the text written to the Omnis trace log includes the line
number of the current line held in $line, and the line number(s) of all of the selected
lines, up to the log entry limit of 255 characters (with an ellipsis at the end if
necessary).

What’s New in Omnis Studio 8.0.2

124

❑ The field value dialog has a new option "Open Lists At Current Line" which defaults
to true (the state is saved with the window setup): when true, the grid opens so that
the current line is visible.

❑ In addition, the Goto line command, on the context menu for the line numbers, sets
the default line in the popup it opens to the current line.

Sorting Variables
There is a Sort Names command on the View menu of the variables list window
available in the Method Editor when inspecting variables (e.g. right-click on an instance
variable and choose ‘Instance variables…’). The sort order is always set to an
ascending sort, and is not case sensitive. This item is toggled on or off when selected
(the state is saved with the window setup).

Adding Blank Method Lines
There is a new command on the Modify menu in the Method Editor, and on the context
menu for method lines, that allows you to add a set of blank lines to the end of the
current method. When the focus is on a method line, the Append blank lines menu
option adds blank lines to the end of the current method and sets the current line to the
first added blank line: you can also use the shortcut Ctrl/Cmnd-B when the focus is on
the code editing area in the current method. This option behaves in the same way as
clicking on the dead space at the end of a method in the method editor (shown in gray),
but gives you the option to do this from the Modify menu, or from the keyboard using
the shortcut key. Note that when you click away from the method, any blank lines at the
end of the method are omitted automatically.

Date and Number Formatting
There are a number of system tables in Omnis that allow you to control how certain
types of data is formatted and displayed: these include #BFORMS (Boolean formats),
#DFORMS (date formats), #MASKS (input masks for entry fields), #NFORMS (number
formats) and #TFORMS (text formats), and so on, which are stored as system table
classes in a library (located in the ‘System tables’ folder in a library). You can now
override individual entries within these formatting tables at runtime, without modifying
the system tables in the library. This may be useful in multi-library deployments, where
all of the libraries need to share the same formatting tables, but you may want to
change individual settings in the formatting tables, such as the date format, according
to the language or location of individual end-users.

The definitions for these alternative formatting tables can be stored in a JSON file,
which should be named “tables.json” and placed in the Studio folder under the main
Omnis folder. You can then use a new method called $overridetables to load an entry
from the JSON file to override an entry in one of the default system tables in a library.

The override only applies while the library is open, therefore, if you close and re-open
the library, you need to call $overridetables again if you still want to override the default
system tables. Typically, you would do this in the $construct method in the Startup task
of your library. When you call $overridetables, all design windows must be closed since
they may contain controls that use the format definitions. You can close all design
windows in your code using the Close all designs command: you need to do this before
calling $overridetables to ensure all design windows are closed.

The tables.json file should contain a JSON object, and each member of the JSON
object defines the content of one or more of the formatting tables: tables which do not
have an entry for a member are not affected when that member is used. The following
format is used:

 FileOps

 125

{

 "en": {

 "#BFORMS": ["[GREEN]Y;[BLUE]Y","y","Y"],

 "#DFORMS": ["D/M/Y H~N", "D m Y H:N"],

 "#TFORMS": ["@@ @@ @@ @@ @U", "'('@@@@')' @@@@@@ 'EXT'@@@"],

 "#MASKS": [">>###-###-###", ">>##/##/####~M/D/y~"],

 "#NFORMS": ["0.00 E+00"]

 },

 "de": {

 "#BFORMS": ["[GREEN]Y;[YELLOW]Y"],

 "#DFORMS": ["D/M/Y H~N"]

 }

}

The $overridetables method has the following syntax:

❑ $clib.$overridetables(cJsonPath,cEntry[,&cErrorText])
Uses member cEntry in JSON table file cJsonPath to override the system tables
with entries stored in member cEntry. Returns Boolean true for success, false and
cErrorText for failure

For example, you could execute the following to load tables.json from the Studio folder:
Do $clib.$overridetables(

con(sys(115),"studio",pathsep(),"tables.json"),"en”,lErrorText) Returns

bStatus

Locale-style names have been used, such as “en”, to indentify the members for which
the tables are to be loaded, but the text could be anything to identify the set of tables to
be loaded so long as you use the same name in the $overridetables() method.

$overridetables replaces the contents of the system tables with the members of the
array, and sets any entries after the array members to empty. The corresponding
system table class becomes read-only: you can open its class editor, but you cannot
change it within the class editor.

Using the $clib.$prefs notation group for the table will change the table used at runtime,
but a change made using the notation will not be saved to disk.

FileOps
Errors
There is a new method in the FileOps object, $getlasterror that allows you to report any
errors from the last FileOps method that was executed:

❑ $getlasterror([&cErrorText])
Returns the error code from the last FileOps object method executed; also
optionally populates cErrorText with a description of the error. If no error occurred,
the method returns zero and the error text is empty.

Pathnames
FileOps now supports long pathnames with over 255 characters, e.g. in the
$getfilename method.

Large Files
The FileOps object now supports 64-bit integers for file sizes and for offsets, etc in
files.

What’s New in Omnis Studio 8.0.2

126

Text Escapes for URIs
There are two new static functions, available in the Web commands external
component (OWEB), that you can use to escape text for use in URIs:

❑ OWEB.$makeuri()
OWEB.$makeuri(cURIBase,lParameters) returns the URI formed by adding the
parameters in lParameters to cURIBase, escaping parameter names and values as
necessary. lParameters is a list: column 1 is the parameter name and column 2 the
parameter value.

❑ OWEB.$escapeuritext()
OWEB.$escapeuritext(cTextToEscape) returns the escaped form of
cTextToEscape. All characters except a-z, A-Z, 0-9, - (hyphen), . (period), _
(underscore), and ~ (tilde) are escaped as %hh. Unicode characters are the
escaped form of their UTF-8 representation.

Generating UUIDs
There is a new function in the Web commands external component (OWEB),
$makeuuid(), to allow you to generate a new UUID.

❑ OWEB.$makeuuid()
OWEB.$makeuuid([bIncludeMinusSeparators=kTrue]) returns a new UUID as a
string. bIncludeMinusSeparators affects the format of the returned string: if true, the
returned UUID string is 36 characters long and includes – (hyphen) separators (so
it has the standard 8-4-4-4-12 format); if false, the returned UUID string is 32
characters long and has no separators.

Deployment
Changing the Hide/Quit Omnis Option
You can now change the Hide Omnis and Quit Omnis options in the Omnis Studio
runtime on macOS by adding strings to the Studio String Table (studio.stb). For
example, if you have renamed the Omnis app package on macOS, to match your
product name, you may also like to change the Hide Omnis and Quit Omnis options in
the main application menu to reflect your product name. To do this:

• Open the Omnis Catalog (press F9) in Omnis Studio for macOS

• Select the String Tables tab and right-click on the ‘Built-in strings’ table (studio.stb)

• Enter the Strings “Hide Omnis” and “Quit Omnis” in the STRINGID column (without
the quotes) and enter the alternative strings for each option in the ‘en’ column.

You can find specific strings in Omnis Studio using the Find strings… option (right-click
on the string table name in the Catalog). You can drag a string from the Find window
into the STRINGID column to enter the exact string to replace, and avoiding any mis-
typing.

 Call DLL

 127

Existing users should note that the Translate button has been removed from the String
Table editor since automatic translation is no longer supported.

Call DLL
Call/Register DLL
Register and Call DLL external commands now support 64-bit type specifiers.

Java Objects
Java Options
In previous versions, the $javaoptions preference was limited to 255 chars. This has
been extended and the theoretical limit is now the maximum length of an Omnis
character variable.

Window Classes
Debugging code in oBrowser
You can now debug code running in the oBrowser component in the Omnis Trace log,
rather than in the Debug console in your browser. Console log messages sent from
oBrowser now go to the Omnis trace log by default. You can prevent this, and use the
normal JavaScript console in your browser, by setting the configuration item
"useOmnisTraceLogForConsole" in the "obrowser" section of the Omnis configuration
file config.json to false.

What’s New in Omnis Studio 8.0.1

128

What’s New in Omnis Studio
8.0.1

There were no substantive new features in Omnis Studio 8.0.1, other than new colors
added to themes and an AV Player window class component for macOS only. Please
see the Readme.txt file (available with the download) for any release notes and a list of
faults fixed in Omnis Studio 8.0.1.

AVPlayer
There is a new external component, called AVPlayer, which allows you to play videos
in your applications: note this component is only available for window classes and for
macOS only. The component is available under the External Components tab in the
Component Store when designing a window class on macOS. The component has the
following properties and methods.

Properties

Property Description

$allowfullscreen If kTrue, the full screen option is enabled, in this case
a button will be shown on the floating controls

$controlstyle The type of controller shown on the player, a
constant:
kAVControlsNone - no controls
kAVControlsInline - at the bottom of the controller
kAVControlsFloating - transparent and floating over
the movie (the default)
kAVControlsMinimal - a minimal play back controller
over the movie

$controltime The current play time of the player in seconds

$controlvolume The current volume of the player, 0 to 10

$videoresize The video resize mode during playback, a constant:
kAVVideoResizeAspect - video sized maintaining
aspect ratio
kAVVideoResizeAspectFill - video fills width or height
but maintains aspect
kAVVideoResizeFill - video fills the entire space

To adjust the volume of the player you could provide a slider control on your window
with the following method (the $min and $max values of the slider should be 0 and 10):
On evNewValue

 Do $cwind.$objs.player.$controlvolume.$assign(pNewValue)

If you want to jump to a specific place in the movie you can set the $controltime
property as follows:
 Do $cwind.$objs.player.$controltime.$assign(30.00) ;; 30 secs

 Do $cwind.$objs.player.$play()

 Color Themes and Appearance

 129

Methods

Method Description

$play() plays a movie

$pause() will pause the movie

$load(url or local
path)

will load the movie

You can load a local video file to play or one from the internet using the $load()
method.
Do $cwind.$objs.player.$load(

 “https://videos.domain.net/aboutme.mp4”) Returns load_ok

Events
The AVPlayer component reports a single event, evAVreadyToPlay which is sent when
a movie has loaded and is ready to play. You could add an $event() method to your
player control with the following method to enable a Play button, so when the movie
has loaded and is ready to play the end user can click the play button:
On evAVreadyToPlay

 Do $cwind.$objs.playbutton.$enabled.$assign(kTrue)

Color Themes and Appearance
Support for Themes to control colors and appearance of the IDE was added in Studio
8.0: the color settings and themes are stored in appearance.json, as well as
window.json for Windows specific settings. For Studio 8.0.1, more color settings have
been added for Scroll bars, Menus and Window Menu bars, the Active caption (for
Windows), and the Highlight color.

Details about these new color settings have been added to this doc in the relevant
section under the ‘Color Themes and Appearance’ section under Studio 8.0 new
features. The additions are also listed in the Release notes section of the Readme.

What’s New in Omnis Studio 8.0

130

What’s New in Omnis Studio
8.0

The Omnis Studio 8.0 release provides 64-bit and Cocoa support for Omnis Studio
running on macOS, the ability to use HTML components in window classes for Desktop
Apps, Drag and Drop capability for the JavaScript Client, a new Code Assistant
available in the method editor to help you write Omnis code, plus some enhancements
in the Studio Browser which will help new and existing developers. Omnis Studio 8.0
includes the following features and enhancements:

❑ 64-bit and Cocoa support for macOS
The 64-bit version of Omnis Studio is now available on macOS including the SDK,
App Server, and Runtime. Plus the Omnis core has been rebuilt using the Cocoa
framework with anticipated benefits for speed and performance in the Omnis Studio
IDE and for your macOS and iOS deployed apps

❑ App Builder
a new tool that appears when you select New Library in the Studio Browser to help
you create Omnis apps quickly and easily; the new tool provides a number of
templates and steps you through the process of creating or prototyping an Omnis
application, including logging onto your database, creating JavaScript forms, setting
the theme, and choosing navigation for your app

❑ Developer Hub
a new option in the Studio Browser that provides useful information for developers,
such as the status of the most recent reported and fixed faults, together with
information and tips for new Omnis developers; there is an Options setting in the
hub to configure the content of the Studio Browser and the color theme used in the
Studio IDE

❑ Code Assistant and Method Editor enhancements
The Code Assistant is a new tool that will help you write code in an Omnis method.
The code assistant will pop up automatically in the method editor when needed
displaying command syntax and possible arguments; you can also request help
using Ctrl-Space. In addition, the start and end of any block commands are
highlighted (includes If, While, For, Repeat, Switch, and Begin), plus Omnis now
stores a ‘history list’ of visited methods which you can navigate using a Back and
Forward button on the method editor toolbar, and you can add notes to a method
on the ‘notes’ tab next to the variable tabs

❑ Color Themes and Appearance
The colors and themes used in the Studio IDE can now be changed under the
Options setting in the Hub in the Studio Browser, or by changing the $appearance
Omnis preference in the Property Manager: the colors used in the Studio IDE are
stored in an ‘appearance.json’ file which you can use in your deployed apps, and
you can create your own themes

❑ Drag and Drop for JavaScript Client
provides the ability for end users to drag data between JavaScript controls in a
remote form, plus end users can drag files from their desktop and drop them onto a
JavaScript control within a remote form (desktop browsers only, drag and drop is
not supported in mobile browsers)

❑ HTML Components for Desktop Apps
you can enhance and enrich your desktop apps by adding HTML or JavaScript
based components to thick client windows – you can create these yourself or use
components available from third-parties. In addition, there is a new browser object

 Color Themes and Appearance

 131

to allow you to embed the HTML components or present web content on your
window classes

❑ High Definition Displays
With the introduction of Retina displays on Mac desktops and laptops, and 4k
displays widely becoming the standard for Windows based computers, support for
high definition displays has been introduced in Omnis Studio 8.0; the Studio IDE
will scale automatically if an HD monitor is detected (2x the default), and HD icons
are supported in the IDE and in your own Omnis libraries using Icon sets

❑ Auto Updates
You can now perform updates or any other changes to your Omnis application or
folder structure upon restarting Omnis by adding a script to the Omnis data folder

❑ Segmented Control
A new JavaScript control that displays a number of segments or buttons that you
can use for navigation or as a toolbar within your web and mobile apps; you can
assign an icon and text to each segment and you can detect which segment has
been clicked

❑ List Pager
A new property of List and Grid components to display list lines in separate pages
to improve the user experience when navigating lists or grids with a large number of
lines

❑ Worker Objects: Push Connections
Support for Push Connections has been added to Omnis Studio to allow more
control when data is returned to the client when using the Omnis worker objects,
such as the SQL Worker objects

What’s New in Omnis Studio 8.0

132

64-bit and Cocoa on macOS
In this release the Omnis core on macOS (previously named OS X) has been rebuilt
using the Cocoa framework, providing added speed and performance in the Omnis
Studio IDE and for your deployed applications on macOS desktops and iOS mobile
devices.

Cocoa is Apple’s native object-oriented API for the macOS operating system. The
latest version of macOS uses the Cocoa framework as the basis of its underlying
functionality as well as the user interface and overall experience. Applications built
using Cocoa have a consistent look-and-feel and perform well on the latest Apple
hardware including desktops and mobile devices. These improvements should be
evident in the Omnis IDE and carry over into your Omnis apps on macOS and iOS.

Cocoa APIs
The new 64-bit version of the Omnis Studio core is written in Objective C++, making
use of the latest Cocoa APIs and vector based drawing using Core Graphics. This
allows Omnis to take advantage of newer hardware and any performance
enhancements gained from the newer APIs.

The 32-bit version of Omnis Studio was a C++ Carbon application making use of
legacy QuickDraw APIs for graphics rendering. A lot of these APIs have deprecated
and are in danger of being removed in future releases of macOS, which is another
good reason for Omnis moving to the new architecture.

HD Graphics and Fonts
Support has been added for Apple Retina (High Definition) displays which make use of
high definition graphics and icons. The Omnis IDE has been re-engineered to support
high definition displays and your own Omnis applications will render in high definition
and will support custom HD icons. (See later in this manual regarding support for HD
displays on Windows and using HD icons in your apps.)

Legacy graphics formats, such as MAC PICT are no longer supported, as PNG is now
the standard shared graphics format used for icon set images.

Retina Cocoa also has improved and better looking fonts using Apple Core Text for
font rendering (these are vector and not bitmap fonts).

External Components
If you create Omnis external components for macOS, and you want to use them in
Omnis Studio 8.0 on macOS, you will need to convert them to use Objective C++ and
the Cocoa framework: note that macOS 10.9 will be a minimum requirement to run the
64-bit Cocoa version of Omnis. An updated external component SDK will be provided
with the final release that will support the majority of the existing SDK APIs.

64-bit DAMs
The DAMs provided with the 64-bit version of Omnis Studio 8.0 use 64-bit architecture.
This means that you will need to install separate 64-bit clientware where appropriate.
The 64-bit DAMs are not interoperable with 32-bit client libraries and vice-versa. For
single-tier and embedded DAMs, including DAMSQLITE, DAMOMSQL, DAMMYSQL,
DAMPGSQL and DAMAZON, all necessary changes have been made. The 64-bit
ODBC DAM requires the 64-bit ODBC Administrator library and should be used with
64-bit ODBC Drivers to ensure compatibility.

For further details on the Omnis DAMs and clientware configuration, please refer to the
Omnis website: www.omnis.net/dams

 64-bit and Cocoa on macOS

 133

HFS and Path Separators
The 64-bit version of Omnis Studio on macOS does not support the HFS file system,
instead it supports the POSIX file system. Therefore, you need to convert all HFS file
paths in your libraries, which are colon-delimited, to POSIX file paths which are
delimited with ‘/’ (forward slash). You can convert an HFS path to a POSIX path using
the FileOps function $converthfspathtoposixpath().

The sys(9) function can be used to insert the correct path separator on the current
platform. On the 64-bit version of Omnis Studio on macOS the function returns ‘/’
(forward slash) as the path separator.

Shared Access to Libraries and Datafiles
The 64-bit macOS version of Omnis Studio does not support shared access to libraries
and datafiles. Specifically, the Omnis Datafile Databridge must be used to share Omnis
datafiles on 64-bit macOS.

Consequently, there is a difference with regards to the $shared property for libraries
and datafiles. For libraries ($root.$libs.LIB) on 64-bit macOS, the $shared property
cannot be set to true as shared access is not supported: in effect, this property is
redundant on this platform.

For datafiles ($root.$datas.DATA) on 64-bit macOS, the $shared property cannot be
set to true for a datafile opened as writeable unless the Omnis Datafile Databridge is
being used.

What’s New in Omnis Studio 8.0

134

App Builder
The App Builder is a new tool that allows you to create an application from a number
of different options including a sample database, your own database, or by importing
some data, for example, from a spreadsheet. From the initial selection, the App Builder
lets you set up the tables (including primary keys), select the layout for your web and
mobile forms, then you can select the color themes, branding, and the navigation in
your app, and finally Omnis will build the application for you which you can test straight
away in a web browser.

Creating a New Library
The App Builder is available when you choose the New Library option in the Studio
Browser, and will allow new users to create apps quickly or evaluate Omnis Studio, and
it will allow existing users to prototype apps and web forms quickly based on an
existing database or from a template.

When you have created your application you can test it in your web browser. The
library you have created is loaded into the Studio Browser under the Libraries option.
You can examine the classes in the library and start to make modifications or add
further classes.

Creating an app from your Database
The App Builder lets you create a new app (library) based on an existing database. To
do this, click on Libraries in the Studio Browser, click on New Library, select the ‘Your
Database’ option and step through the process of building a library. For this option
you’ll need to be able to access and logon to your database: for most types of
database you’ll need the hostname, username and password, and for some other
database types you might need additional information.

 Developer Hub

 135

After logging on to your database and connecting, you then need to select the tables
you want to include in your app, select the type and layout for the web forms
(JavaScript remote forms), then you can select a color theme and add your company
logo, then choose the navigation scheme (either a list or menu), and finally you can test
the app in your web browser or open the library in the Studio IDE.

Developer Hub
The Developer Hub is a new section in the Studio Browser that provides useful
information for developers, such as the status of the most recent reported and fixed
faults, together with information, videos and tips for new Omnis developers. For new
users the Hub is the default option, but you can change this and the contents of the
Studio Browser under the Options setting.

Hub
The Hub option itself contains information and videos for new and existing developers,
including ‘How to’ videos about useful functions in Omnis Studio.

Applets and Samples
The Applets option provides a number of example Omnis applications that show the
full capabilities of Omnis Studio for building web and mobile applications. You can open
each of the examples in a web browser (when you select an example it is opened in
your browser automatically), and you can examine the code in the associated library
under the Libraries option in the Studio Browser.

The Samples option provides a number of sample Omnis libraries demonstrating
specific components or programming techniques in Omnis. Once you have opened the
sample library, you can examine its classes and underlying code under the Libraries
option in the Studio Browser.

You can use the Omnis libraries under the Applets and Samples option as templates
for your own libraries, or you can reuse individual classes or the Omnis code within the
libraries.

What’s New in Omnis Studio 8.0

136

Faults
The Faults option provides information about the latest Reported and Fixed faults in
Omnis Studio – this is real-time information so you can check the most recent faults. If
you have reported a fault in Omnis Studio you can check its status here.

Options
The Options setting allows you to configure the behavior, contents and appearance of
the Studio Browser.

Show These Tools

Under the ‘Show These Tools’ option you can specify which tools (nodes) are
displayed in the Studio Browser. By default, the SQL Browser and VCS are shown,
but the Omnis datafiles browser is not displayed. If you wish to open and browse
Omnis datafiles you will need to enable this option.

Default Browser Node

The ‘Default Browser Node’ option lets you specify whether the Hub or Libraries node
is displayed by default when Omnis starts up.

New Libraries

The ‘New Libraries’ option lets you enable or disable the App Builder which will be
opened when the ‘New Library’ option is selected in the Studio Browser: see elsewhere
in this manual for information about the App Builder. When the App Builder is disabled
the New Library option will prompt you to create a new blank library (as in previous
versions) with no data classes, SQL login setup, or remote forms.

Appearance

Appearance Theme

The Appearance option allows you to change the theme used in the Omnis Studio IDE.
Together with the Default theme which is loaded by default, there are a number of
other themes from which you can choose. See the “Color Themes and Appearance”
section later in this manual.

Window Frame Theme

(Windows only) The ‘Window Frame Theme’ option allows you to set the color theme
or style for the frame edge of windows and forms. The options are Default, Windows 7,
8, or 10.

Code Assistant
A number of enhancements have been added to the Method Editor to allow you to write
Omnis code faster and more efficiently, including the Code Assistant and the Method
History list which is described at the end of this section.

The Code Assistant is a new tool that will help you write lines of code in an Omnis
method, and therefore will allow you to create apps more easily in Omnis Studio. The
new code assistant will pop up automatically at the insertion point when you type a
command parameter or some notation in the method editor, or you can open it at the
appropriate place in the method editor using Ctrl-Space.

The Code Assistant only opens when the caret is visible in the method editor, i.e. it can only

open when no text is selected in a line of code. Specifically, it will pop up when the caret is
positioned at the end of some text which is either at the end of the entry field content in
the method editor, or prior to some type of delimiter in the expression syntax, e.g. a
function separator character. The automatic popup is delayed by a timer which is
specified in a new Omnis preference called $codeassistanttimer (in Omnis.$prefs).

Further highlights of the new Code Assistant include:

 Code Assistant

 137

❑ In addition to Ctrl-Space, you can use various special keys to navigate the popped
list and request further help.

❑ It provides assistance entering notation relative to an item reference and functions.

❑ It displays method descriptions, method definitions and parameter descriptions.

❑ Assistance entering notation relative to a group method, as well as notation relative
to $ref in the parameters of a group method.

❑ Intelligent generation of the list of possible values to assign to a property.

❑ Property and method tooltips in the method list.

❑ Assistance for initial values and when using expand entry-box in the method editor.

❑ An improved expand entry-box interface.

❑ Replaces existing data when selecting an item in the Code Assistant popup.

❑ Assistance entering certain commands such as Do method.

❑ Parameter highlighting, including parameters for commands such as SMTPSend.

❑ Parenthesis and square bracket matching.

❑ Assistance entering methods with overloaded definitions.

Note to existing developers: The Code Assistant is a replacement for the Notation
Helper, present in previous versions of Omnis Studio, which has many advantages and
improvements over the previous notation helper. The new Code Assistant pops up
sooner than the old Notation Helper, so we hope you will find it quicker and easier to
use.

Short Cut Keys and Help
You can manually request the Code Assistant popup to open by typing Ctrl-Space –
this will work on Windows PCs and Mac keyboards. The Ctrl-Space shortcut key will
only work if some code assistance is available for the syntax item to the left of the
current insertion point. This short cut key is a de-facto standard used to request code
assistance in many other development tools so should be familiar to developers.

The Code Assistant supports the Page up, Page down, Home and End keys, to navigate the

popped up list. When you use these keys, or Up Arrow or Down Arrow, the Code Assistant

displays help information about the currently selected line in a help panel above the popped list,

for example, the following image shows the help text for $pathname which is a property of the

current library ($clib).

What’s New in Omnis Studio 8.0

138

Short Cut Key Summary

Key Action

Ctrl-Space Opens the Code Assistant

Page up, Page
down

Displays next or previous ‘page’ in the popup list
or Help pane

Home and End keys Moves to the beginning or end of the popup list

Up or Down Arrow Moves up or down the popup list

Return or Enter Select the current line in the popup list
Xx xx

What Help does the Code Assistant Provide?
In most cases the Code Assistant will popup automatically at the cursor if it can provide
help for the current item in your code or context, however the following sections detail
the behavior and function of the assistant with regards to different items or contexts in
which Omnis provides you with help.

Item References and Notation

In order to provide code assistance, Omnis needs to be able to look up a notation
string and map it to the table of methods and properties that apply to the current
addressed item. In order to do this for notation paths that start with an item reference,
Omnis needs a new piece of information that identifies the notation you intend to use
with the item reference – this item is called the item reference class and the method
editor allows you to select an item reference class as the subtype of an item reference.
The class works in the same way as the subtype of an object reference, meaning that
the item reference class is solely used to provide code assistance – no check is ever
made to see if the item reference is being used at runtime to address items that
correspond to its class.

Item reference classes use a similar hierarchical scheme to notation paths. Example
classes are $iwindows.window, and $iwindows.window.$objs. There are some special
classes that include * in their path. For example,
$iwindows.window.$objs.*

accumulates all possible properties and methods for the possible children of $objs
(there is a child for each object type), and is used when the Code Assistant cannot
isolate the class of the member of $objs to a single object type.

$iwindows.window.$objs.*.$objs accumulates all $add, $addafter and $addbefore
methods for all containers, and is used when the Code Assistant cannot determine the
type of a container.

Code assistance for notation works as follows:

❑ The Code Assistant takes the notation path (and the item reference class if
necessary and available) and looks up the matching item reference class.

❑ If it cannot determine a class, then the Code Assistant provides no assistance.

❑ If the Code Assistant can determine a class, then it pops up the methods and
properties that match the currently entered prefix.

 Code Assistant

 139

Functions

Code assistance is available for functions, and static methods implemented by external
components. The latter is provided by a two step process, where you first select the
component from a popup, such as FileOps.$, and you then select the static method
from an automatically popped up list of static methods.

Method Information

The Code Assistant displays method descriptions and parameter information in the
help panel when a method is selected in the popup. This information is available for all
types of method, including functions, external component methods, built-in Omnis
notation methods, and your own custom methods.

Group Methods

Methods such as $add and $findname for a notation group return an item reference to
a member of the group (assuming they work). The Code Assistant assumes that the
call will work, and provides assistance for notation entered after the group method, e.g.
if you enter $cinst.$objs.$add(kEntry,0,0,100,100), then as soon as you enter a dot (.)
after this expression, you get assistance for all objects that could be in the group
(Omnis does not parse the $add call and attempt to provide help for the specific object
type added).

$ref

When you use group methods such as $sendall or $makelist, you use $ref in the
parameters of the group method to refer to a member of the group. The Code Assistant
provides help for $ref, by using the relevant item reference class for the group member
(provided it can identify the item reference class of the group).

$assign

When you enter . (dot) after a property name, the Code Assistant provides $assign and
$canassign as possible options. If you select $assign, you will be prompted with a
popup that provides either all initial items you can enter, or the list of constants or
strings which make sense to assign to the property. The latter always applies when the
Code Assistant can determine the list of constants or strings which make sense.

In addition, when you are coding a Calculate statement, if you enter a path to a
property in the field name field in the method editor, then when you move to the

What’s New in Omnis Studio 8.0

140

calculation field, provided that the calculate field is empty, the Code Assistant will
popup the list of constants or strings which make sense to assign to the property.

For example, enter $cwind.$objs.test.$backcolor as the field name, and move to the
empty calculation field. The popup will contain a list of color constants.

If you wish to assign something else, start typing that, and assistance will revert to
normal. The only restriction here is that if you type k (when the values that make sense
are a list of constants), you will only see the constants that make sense, rather than all
constants.

Tooltips

The method editor displays a tooltip when you position the pointer over a property of a
method name in the listing of the method. This shows you the property description, or
the method interface and description. The tooltip for a constant also shows you the
constant description.

Initial Values

You can use the Code Assistant in initial value column of the variable pane of the
method editor.

Expanded Entry

The Code Assistant is available in the expanded entry box in the method editor – it
opens as an overlay over the method editor command palette. You can close it by
clicking on another window, pressing return (or pressing escape to discard changes).

Replacing Data

When you select some notation from the Code Assistant popup, it replaces the entire
word (if any) in which the caret is located.

Method Commands

The commands Do method, Do async method, Do code method, Load error handler,
Unload error handler, Set ‘About’ method, Set timer method, Start server, Install menu,
Install toolbar, Open window, and Set report name use a Code Assistant popup to
select their method or class.

 Code Assistant

 141

Parameter Highlighting

When you position the caret somewhere in the parameters of a function or method that
the Code Assistant recognizes, or in a method command that has parenthesized
parameters e.g. SMTPSend, Omnis displays a popup (in the opposite direction to the
Code Assistant popup) that displays the method parameters and the method
description. In addition, the parameter in which the caret is currently located is
highlighted in bold.

You can press Escape to temporarily dismiss this popup. If you want to disable it, you
can change an entry in the config.json configuration file, by setting the
“parameterHelpEnabled” boolean property in the “ide” group to false.

In addition, the configuration allows you to specify the maximum width of the parameter
help popup (it defaults to half the screen width) in “parameterHelpWidth”.

You can also specify functions or methods you wish to exclude from parameter help in
the “parameterHelpExclusions”. Possible examples of what you might want to exclude
are “con” and “$assign”.

Parenthesis Matching

When you position the caret immediately after an open or close parenthesis in an
expression, or immediately after an open or close square bracket, Omnis draws the
matching parentheses or brackets using a different color.

There are two properties which control this, in the method editor chroma coding
options: $bracketbackcolor and $brackettextcolor. To disable this, you can set both of
these options to kColorDefault.

Overloads

Certain methods are overloaded. In simple cases, the Code Assistant shows this by
using a vertical bar to separate different possibilities e.g.
$remove(rLine|iLineNumber|kListDeleteSelected|kListKeepSelected)

However, there are other cases where this is not possible, for example:
$createobject for a JavaObjs\System\java\lang\String object has 15 overloads

$add for an unknown window object could be adding a complex grid or paged pane or
scroll box, and the object being added may or may not be an external component.

In these cases, the description shown for the method shows all overloads, and the
parameter highlighting popup has arrow icons, indicating that you can use the up and
down arrow keys to select the overload you are using, thereby resulting in sensible
parameter highlighting. Omnis does not attempt to figure out the matching overload by
analysing the parameters.

What’s New in Omnis Studio 8.0

142

Method History
Omnis now stores a list of visited methods which allows you to quickly move back to a
recently visited method. The toolbar in the Method Editor contains a Back and
Forward button allowing you to traverse the history of visited methods. Note that
inherited methods and the object nodes in the method editor do not form part of the
history which can hold up to 256 items. You can also use F10/Shift-F10 to move back
and forward respectively. In addition, a long press on either of the buttons opens a
menu which shows the available history items in the direction of the button, up to a limit
of 20 menu items.

Omnis removes affected entries from the history when a library is closed, a class or
method is deleted, or when various other actions occur that would affect an entry in the
history list, such as when fields are renumbered.

Command Blocks
The start and end of any block commands are highlighted in the Method Editor. This
includes the commands If, While, For, Repeat, Switch, and Begin which highlight the
associated closing commands (e.g. else, until etc) when one of the statements that
makes up the construct formed by the commands is selected in the method editor. For
example, if a For statement is the current line, then the "End for" and "For" will both be
highlighted. Or if a Case statement is the selected line, then all cases in the same
switch, "Default", "Switch" and "End switch" will all be highlighted. The style or color of
the highlighting uses a pair of new chroma coding options, $currentblocktextcolor and
$currentblockstyle.

Client-side Scripting
When you add a new method to a remote form, and the method editor recognizes the
method name as a known method that should be client-executed, then the method
editor now marks it as client-executed, and also populates its parameters (if any). This
applies to new methods containing the following methods: $candrop, $drag,
$filereadcomplete, $init, $term, $getscrolltip, $filtergrid, $sortgrid, $sfsorder,
$sfscanclose, $pushed, and $sqldone.

In addition, from 8.0.2 onwards, Omnis adds boilerplate code to the $sqldone method:
see earlier in this manual for details.

Method Notes
You can now add notes to a method to allow you to document each method in a class.
The notes are stored in the $notes property for the method. The notes can be edited on
the notes tab in the method editor.

Existing users should note that the $notes property is the $httpnotes property renamed
to $notes, which is now available for all methods in a class.

 Color Themes and Appearance

 143

Color Themes and Appearance
It is now possible to change many of the color theme used in the Omnis Studio IDE,
and by using the appropriate configuration files, you can manage the color theme used
in your deployed apps. Note the following implementation is available on Windows and
the new 64-bit, Cocoa based version of Omnis Studio on macOS only, but not for
Linux.

The colors used throughout the Omnis Studio IDE are now stored as a set of properties
or theme which can be changed under the Options setting in the Hub in the Studio
Browser. There are a number of themes to choose from, including the ‘Default’ theme
which is intended to match the colors used on different platforms supported in Omnis
as closely as possible. You can change individual colors or settings within a theme,
and in this case, your modified theme will be saved as a ‘Custom’ theme alongside
those provided.

For Windows only, you can also change the theme used for the outside edge or frame
of windows used in the Studio IDE and your own windows, which can be set to match
the style of the window frame displayed on various Windows platforms.

Appearance Property
The current theme in the Omnis Studio IDE is stored in a new Omnis preference called
$appearance, which can be edited in the Property Manager. To edit this property, click
on ‘Omnis Studio’ in the Studio Browser, click on Prefs, then select the Appearance tab
in the Property Manager and click on the droplist next to the $appearance property.

Note that when editing $appearance in the Property Manager, the default colors may
not always draw correctly since the editor grid itself uses the configured colors, and
therefore if a color is set to the default setting, there is a check mark icon (an X) to the
left of the color.

What’s New in Omnis Studio 8.0

144

In addition, there is a new Omnis preference called $windowoptions that stores the
current Window Frame theme which you can also edit in the Property Manager: this is
described at the end of this section.

Appearance and Theme Files
The color and appearance settings used in the Omnis Studio IDE, and displayed in
$appearance in the Property Manager, are stored in a new configuration file called
‘appearance.json’, which is located in the Studio folder in the main Omnis folder. This
file contains the current color theme settings in $appearance which will either be the
default theme, or one of the other themes provided, or a custom theme.

The Default and other themes (Blue, Green, etc) are stored in a separate JSON file in
the ‘studio/themes’ folder. As you change the theme setting under the Options setting
in the Hub, the appropriate JSON theme file is written to the appearance.json file in the
Studio folder.

When Omnis loads, it will copy the appropriate theme file into /studio/appearance.json.
If you alter one of the theme colours using $appearance in the Property Manager,
Omnis will recognize that the default or one of the built-in themes has changed and
therefore will create a custom theme 'appthemecustom.json' in the themes folder. In
this case, when Omnis restarts, it will load the Custom theme and it will add it to the
droplist in the Options setting in the Hub.

When a theme has been changed, if you then try to switch to another theme using the
Hub, you will receive a Yes/No message asking you to confirm if you wish to overwrite
the custom changes.

Appearance Configuration File Contents
As well as choosing a theme in the Options setting in the Hub and chaging colors and
settings via $appearance in the Property Manager, you may like to edit the
configuration files – we recommend that you do not change the default theme file in the
studio/themes folder, but you can make a copy of it and edit that. The color number
values in the configuration files are 32 bit integers: if the value is less than zero, it is a
representation of a colour constant in the form 0x8nnnnnnn where nnnnnnn identifies
the constant, otherwise, the value is RGB - 8 hex digits: 00bbggrr e.g. 0x0000ff00 is full
green.

The following settings are available in the appearance.json file which correspond to the
settings under the $appearance property in the Property Manager.

Tab Panes

colortab, colortabhot, colortabselected, colortabdisabled, colortabborder
Colors used for tab panes with $tabstyle set to kDefaultPanes. If these are all set to
kColorDefault, then Omnis uses the system theme; otherwise, Omnis imitates the
system theme and draws its imitated tab pane using these colors.

 Color Themes and Appearance

 145

iconidtabpaneleftbutton, iconidtabpanerightbutton
The icon ids of the arrows drawn on tab pane scroll buttons.

Lists

colorlistlineselectedwin, colorlistlinehotselectedwin, colorlistlinehotwin,
colorlistlineunfocusedwin
These colors are used for Windows only. Used for the background of “lines” in different
states, e.g. lines in headed list boxes, tree nodes etc. If these are all set to
kColorDefault, then Omnis uses the system theme; otherwise, Omnis imitates the
system theme and uses these colors.

colorlistevenrowbackground
Color used to highlight even rows in lists, on macOS only; it has no effect on Windows.

Headed Lists

colorheader, colorheaderhot, colorheadpressed, colorheaderseparator
Used in the header of headed list boxes. If these are all set to kColorDefault, then
Omnis uses the system theme; otherwise, Omnis imitates the system theme and uses
these colors.

Buttons

colorpush, colorpushborder, colorpushhot, colorpushhotborder,
colorpushpressed, colorpushpressedborder, colorpushpressedtextmacos,
colorpushdefault, colorpushdefaultborder, colorpushdefaulttextmacos,
colorpushdisabled, colorpushdisabledborder
Used for system push buttons and various other controls that use the same theme. If
these are all set to kColorDefault then Omnis uses the system theme; otherwise,
Omnis imitates the system theme and uses these colors. The …macos properties are
used for text on the button in the relevant state, on macOS only.

colorpushdefaultflash
A Boolean which indicates if the default button is to flash (or pulse).

Radio buttons and Check boxes

checkradiobordermacos, checkradiounchecked, checkradiochecked,
checkradiouncheckedpressed, checkradiocheckedpressed, checkradiomark,
checkradiomarkhot, checkradiomarkdisabled
Used for system checkboxes and radio buttons. If these are all set to kColorDefault
Omnis uses the system theme; otherwise, Omnis imitates the system theme and uses
these colors. The checkradiobordermacos property is only used on macOS, for an
unchecked control: on Windows, the theme uses the mark color as the border color.

Tree Lists

colortreeiconcollapsed, colortreeiconexpanded, colortreeiconhot
Used for the standard arrows in tree controls. If these are all set to kColorDefault
Omnis uses the system theme; otherwise, Omnis imitates the system theme and uses
these colors.

Borders

colorctrleditborder, colorctrleditborderinsetmacos, colorctrllistborder,
colorgroupboxborder
Used for the borders of controls that use a relevant kBorderCtrl… value. If the color
value is kColorDefault, Omnis uses the system theme. Otherwise, Omnis imitates the
system theme and draws the border using the specified color.
colorctrleditborderinsetmacos is only used on macOS on retina displays - for edit
controls, the border is 2 single pixel rectangles, one inside the other and this color is for
the inset rectangle.

What’s New in Omnis Studio 8.0

146

Group Boxes

colorctrlgroupboxmacos

the background color of a group box on macOS, when the border of the group box is

kBorderCtrlGroupBox.

Reports

colorreportdesignposnsectiontext

the color of the text on a report design mode section, for a positioning section.

Page and Print Preview

colorpreviewpaper
the color of the paper in the page preview window. kColorDefault results in white;
otherwise Omnis uses the specified color.

colorpreviewfoundhighlight
the color of the window that briefly appears to indicate the location of text found when
searching a print preview. kColorDefault results in red; otherwise Omnis uses the
specified color.

colorpreviewfoundtextbackground
the color of the background on which found text is drawn, when searching a print
preview. kColorDefault results in yellow; otherwise Omnis uses the specified color.

colorpreviewfoundtext
the color in which found text is drawn, when searching a print preview. kColorDefault
results in red; otherwise Omnis uses the specified color.

Scrollbars

The colors used for scrollbars are now configurable in the Property Manager under the
$appearance preference (and stored in appearance.json). The configured colors apply
to all scrollbars except those on system dialogs and third party controls (e.g.
OBrowser). If all colors relevant to the platform are default, then the standard system
scrollbar is used.

colorscrollbar
The color used to fill the scrollbar.

colorscrollbararrowwin
Windows only. The color of a scrollbar arrow on an enabled scrollbar when the mouse
is not over the arrow button, and when the button is not being pressed.

colorscrollbardisabledarrowwin
Windows only. The color of a scrollbar arrow on a disabled scrollbar.

colorscrollbarhotarrowwin
Windows only. The color of a scrollbar arrow on an enabled scrollbar when the mouse
is over the arrow button, or when the button is being pressed and the mouse is not over
the button.

colorscrollbarhotbuttonwin
Windows only. The color of a scrollbar button on an enabled scrollbar when the mouse
is over the button, or when the button is being pressed and the mouse is not over the
button.

colorscrollbarhotthumb
The color of the scrollbar thumb when the mouse is over the scrollbar (macOS) or over
the thumb (Windows).

colorscrollbarthumb
The color of the scrollbar thumb when the mouse is not over the scrollbar.

colorscrollbartrackingarrowwin
Windows only. The color of a scrollbar arrow on an enabled scrollbar when the button
is being pressed and the mouse is over the button.

 Color Themes and Appearance

 147

colorscrollbartrackingbuttonwin
Windows only. The color of a scrollbar button on an enabled scrollbar when the button
is being pressed and the mouse is over the button.

colorscrollbartrackingthumbwin
Windows only. The color of the scrollbar thumb when the thumb is being dragged.

colorscrollbarwarmthumbwin
Windows only. The color of the scrollbar thumb when the mouse is over the scrollbar
but not the thumb.

Menus and Window Menu bars

Checked menu lines on the Windows platform draw the checked indicator based on
colorlistlineselectedwin unless colormenu is set to kColorDefault (in which case they
draw using the system default). The color of the checkmark (when colormenu is not set
to kColorDefault) is either colormenutext or colorgraytext (the latter for disabled menu
items).

The hierarchical menu indicator now draws using colormenutext.

The following colors apply to Window Menu bars.

colormenuwindowmenubarwin
The color of a window menu bar on the Windows platform. If set to kColorDefault, the
menu bar draws using the system theme.

colormenuwindowmenubartextwin
The color of text drawn on a window menu bar on on the Windows platform. If set to
kColorDefault, the menu bar draws using colormenutext.

colormenupenwin
The color of separator lines, and the vertical gutter line, drawn on the menu (rather
than the bar) on the Windows platform. If set to kColorDefault, the lines draw using
color3dlight.

Toolbars and Docking Area

colortoolbarobjecthighlightwin
Windows only. The color used to draw the rectangle that highlights toolbar items.
kColorDefault means Omnis will use the system theme. Otherwise Omnis imitates the
system theme using this color.

dockingareacolor and dockingareatextcolor
The color used to draw the background area of the main Omnis toolbar docking area,
and the text.

Client Methods

clientexeccolor, inheritedcolor, nosetpropertycolor, runtimepropertycolor,
setpropertycolor, toolobjselectcolor
These replace the notation in $prefs previously used to set these values. If set to
kColorDefault, Omnis uses the color to which the property defaulted.

Chroma Coding

bracketcolor, bracketbackcolor, commentcolor, ctrlkeywordcolor,
currentblockcolor, keywordcolor, stringcolor, variablecolor
These replace the chroma coding options for the method editor (the option to edit these
has been removed from the method editor modify menu). If set to kColorDefault, Omnis
uses the color to which the property defaulted.

commentstyle, ctrlkeywordstyle, currentblockstyle, keywordstyle, stringstyle,
variablestyle
These replace the chroma coding options for the method editor. These are integer
values representing a style (see the values of the style constants which can be ORed
together, e.g. kBold has the value 1).

What’s New in Omnis Studio 8.0

148

Highlight Color

colorthemered
A color used where Omnis needs to make something stand out. kColorDefault maps to
red.

This is used in the following places: #STYLES editor, and the Report class editor when
marking the highlighted section Watch panel in method editor, to make a changed
variable value Data grid ($userdefined true) to mark the current selected column.

In addition, the drag bitmap when dragging more than one line on macOS shows the
count using a circle drawn in highlight color, with text in highlight text color.

Property Manager

colorpropertymanager
The color of the property manager background. If left as kColorDefault, Omnis defaults
to 3dface on macOS, and the toolbar background color for Windows.

Changing and Testing Colors
For testing purposes, you can add two files to the Studio folder, which are copies of
appearance.json: they are ‘appearance_custom.json’ and ‘appearance_default.json’.
These files must have the same syntax as appearance.json. The default file should
contain all colors set to kColorDefault (the initial state of appearance.json). The custom
file can contain any color scheme you like. You can then use F11 to select the custom
scheme, and shift-F11 to select the default scheme, while running Omnis. This
behavior can be disabled by setting the config.json entry “allowSwitchAppearance” in
the “ide" object to false, or alternatively by not including these additional files.

Additional Notes
System dialogs and Menus

System dialogs (file dialogs etc) do not use the theme colors.

Menus on macOS do not use the theme colors. On Windows, the
colorlistlineselectedwin color is used to highlight menu lines.

JavaScript Client

The JavaScript client will use the system colors configured on the Omnis App Server
running your app. Therefore if you want to use a specific theme for your deployed web
and mobile apps, you need to copy your appearance.json file to the Omnis App Server.

macOS and Cocoa

The term system theme is a little loose for Cocoa. Omnis tries to match the system
theme, but unlike Windows, there are not always APIs in the OS to perform the drawing
(hence some system theme drawing on Cocoa is actually Omnis imitating the OS
theme).

Some of the theme background colors have been rationalized (this does not apply to
Carbon) as follows:

kBGThemeWindow, kBGThemeContainer and kBGThemeTabStrip now fill with
kColorWindow on both platforms. Previously these used kColor3DFace on Windows.

kBGThemeTabPane now fills with the selected tab background (using either the
system theme or colortabselected - the system theme applies with colortabselected is
kColorDefault).

Window Frame Appearance on Windows
In addition to the color management outlined above, you can change the appearance
of the frame edge of window classes (on Windows operating systems only), which
allows you to comply with the latest style for window frame edges on Windows 8, 8.1
and 10. For most purposes you can accept the default settings for the current Windows
platform, but you can change the frame theme if you want.

 Drag and Drop Data

 149

You can change window frame themes under the Options setting under the Hub
section of the Studio Browser (Windows only). You can select Default, Windows 7, 8,
or 10 which allows you to view how your application will appear on different Windows
platforms.

In addition, there is a new property in the Omnis preferences, $windowoptions, which
allows you to edit the appearance of window frames in libraries running on Windows –
note this preference is only editable on the Windows platform.

Window Frame Configuration files

There is a new file called ‘window.json’ in the Studio folder, which stores the values of
the $windowoptions preference. The window.json file configures the appearance of the
window frame, and also configures the operating systems for which the configured
appearance will be used, including the old appearance for Windows 7, and the new
configured appearance for later Windows operating systems. There are a number of
theme files in the ‘studio/themes’ folder which are copied to window.json as
appropriate.

Active Caption Colors

useborderactivecolorfordefaultactivecaption
specifies the color of the active caption in Windows (stored in window.json). This is an
integer with 3 possible values.

If it is zero, the behavior is as before (the active caption defaults to white if it is set
tokColorDefault).

It it is one, and the active caption color is kColorDefault, then the active caption color is
the same as the active border color.

If it is two (the default), then the default active caption color depends on the system
setting on the accent color settings panel: "show colour on start, taskbar, action centre
and title bar" - if the system setting is off, then this is equivalent to
useborderactivecolorfordefaultactivecaption equal to zero - if the system setting is on,
then this is equivalent to useborderactivecolorfordefaultactivecaption equal to one.

Note that this applies to both small and normal size captions, and only applies when
the relevant caption colour is kColorDefault.

Drag and Drop Data
Drag and drop for the JavaScript Client provides the ability for end users to drag data
from one JavaScript control in a remote form, and drop that data onto another
JavaScript control. In addition, end users can drag files from their desktop and drop
them onto a JavaScript control within a remote form displayed in their web browser.

IMPORTANT NOTE: Support for drag and drop in JavaScript remote forms is limited to
desktop browsers only, including Chrome, Edge, Firefox, IE 11, and Safari – drag and
drop is not supported in mobile browsers.

To drag and drop some data, the end user can click and hold down the pointer over a
JavaScript control on a remote form, then drag the highlighted control onto another
control and release the pointer. To enable drag and drop, you have to set various
properties in the source and target JavaScript controls, and handle various events in
each control as the drag and drop events occur.

Existing users should note that the event constants and their parameters work in a very
similar manner to those for the drag and drop mechanism in the thick client, with the
addition of a new constant pDropId which identifies the area of a control over which the

drop is to occur (see under Events).

Example Library
There is an example library demonstrating how you can drag and drop images between
JavaScript controls, and the library allows image files to be dropped onto a control from

What’s New in Omnis Studio 8.0

150

the desktop. The example library is available in the JavaScript Component Gallery
which is on the Omnis website: www.omnis.net

Dragging Data
Dragging data is limited to certain data-bound JavaScript controls and is not possible
for all types of JavaScript controls. JavaScript client controls that support dragging data
will have the $dragmode property. This can be set to either kNoDragging or
kDragData.

Note that the $dragiconid property used in the thick client is not supported for drag and
drop in the JavaScript client, for a number of technical limitations in various browsers.
The dragged image is typically an image of the dragged element created by the
browser, using the content of the element when the drag starts – the client performs
various temporary adjustments to the element to make the dragged image correspond
to the dragged data as appropriate.

Dropping Data
A drop can occur on any JavaScript control, but remotes forms do not accept drops.
You can specify that a control can accept dropped data by setting its $dropmode
property. When a control can accept some data, the JavaScript client highlights the
destination control. For JavaScript client controls, $dropmode can be one of the
following constants:

❑ kAcceptControl
Data from a JavaScript client control can be dropped onto this control.

❑ kAcceptFiles
Files dragged from the system (desktop) can be dropped onto this control.

In addition, the list, tree and data grid controls have the $hiliteline property, indicating
that data can be dropped on a specific list line or tree node rather than the entire
control. This also means that rather than highlighting the entire control, the client
highlights the current destination line or node when a drop can occur.

Scrolling

When the end user is dragging data, they can scroll a destination control vertically by
placing and holding the pointer near the bottom or top of the control. This is useful with
long lists, grids or tree controls, when the $hiliteline property is enabled.

Events
In order to process a drag and drop procedure, you have to handle some events in the
$event method in the source and target controls. The drag and drop events must be
enabled as required in the $events property for a control.

evDrag

The client sends evDrag when the user attempts to start a drag. evDrag must be
executed in a client-executed $event method, and it has the following event
parameters:

Parameter Description

pDragType Always set to the value kDragData

pDragValue Described in the Drag Values section below.

If you use Quit event handler (discard event) during evDrag, you prevent the drag from
starting.

Since it is not always convenient to mark $event for a control as client-executed, the
client provides an alternative mechanism. You can implement a client-executed method
named $drag for the object, with two parameters (type Var): pDragType and
pDragValue. $drag returns true if the drag is allowed, false if not.

 Drag and Drop Data

 151

The client first attempts to call $drag. If $drag exists and returns true or false, then the
drag starts or is not allowed to start respectively. If $drag does not exist, or does not
return a value, Omnis sends evDrag if it is selected to execute in $events, and if $event
is client-executed.

The drag will only fail to start if $drag executed and returned false, or if evDrag was
sent and discarded by Quit event handler.

Data grids, lists and tree controls may select a line or node when the drag starts. This
will result in a click event being sent just before $drag is called or evDrag is sent. If the
click is sent to the server, it will execute in parallel with evDrag or $drag.

evDragFinished

The client sends evDragFinished when the user has finished a drag (released the
pointer). It has no event-specific parameters. evDragFinished can be server or client
executed.

evCanDrop

The client sends evCanDrop when the pointer is over a control that can accept a drop
of the current drag type (kDragData or kDragFiles). evCanDrop must be executed in a
client-executed $event method, and it has the following event parameters (note that
pDropId is new for Studio 8.0):

Parameter Description

pDragType kDragData if data is being dragged from a control, or

kDragFiles if a file or files are being dragged from the

system

pDragValue Described in the Drag Values section below. Note that if

pDragType is kDragFiles, this is empty during

evCanDrop, since information about the files being

dragged is not provided by the browser

pDragField If pDragType is kDragData, this contains the name of the

field from which data is being dragged.

If pDragType is kDragFiles, this is empty

pDropId (new for Studio 8.0) The identifier of the area of the

control over which the drop is to occur. Either a line

number or ident (when $hiliteline is true), or zero if the

control is not list-based (or $hiliteline is false).

If you use Quit event handler (discard event) during evCanDrop, you prevent a drop on
to the current control and pDropId combination.

Since it is not always convenient to mark $event as client-executed, the client provides
an alternative mechanism. You can implement a client-executed method named
$candrop for the object, with four parameters (type Var): pDragType, pDragValue,
pDragField and pDropId. $candrop returns true if the drop is allowed, false if not.
If pDragField=$cobj.$name

 Quit method kFalse

End If

The client first attempts to call $candrop. If $candrop exists and returns true or false,
then the drop is allowed or not allowed respectively. If $candrop does not exist, or does
not return a value, Omnis sends evCanDrop if it is selected to execute in $events, and
if $event is client-executed.

The drop will only be denied if $candrop executed and returned false, or if evCanDrop
was sent and discarded by Quit event handler.

What’s New in Omnis Studio 8.0

152

evWillDrop

The client sends evWillDrop when a drop occurs over a control and drop id
combination for which which a drop is allowed according to the can drop processing.
The client sends evWillDrop to the control being dragged - therefore, evWillDrop is not
sent when dragging files from the system. evWillDrop can be server or client executed.
It has the following event parameters:

Parameter Desciption

pDragType kDragData

pDragValue Described in the Drag Values section below.

pDropField The name of the control where the data is being dropped.

pDropId The identifier of the area of the control over which the

drop is occurring. Either a line number or ident (when

$hiliteline is true), or zero if the control is not list-based

(or $hiliteline is false).

Quit event handler with discard event has no effect on evWillDrop.

evDrop

The client sends evDrop when a drop occurs over a control and drop id combination for
which a drop is allowed according to the can drop processing. evDrop can be server or
client executed. It has the following event parameters:

Parameter Description

pDragType kDragData if data is being dragged from a control, or

kDragFiles if a file or files are being dragged from the

system

pDragValue Described in the Drag Values section below.

pDragField If pDragType is kDragData, this contains the name of the

field from which data is being dragged.

if pDragType is kDragFiles, this is empty

pDropId The identifier of the area of the control over which the

drop is occurring. Either a line number or ident (when

$hiliteline is true), or zero if the control is not list-based

(or $hiliteline is false).

Quit event handler with discard event has no effect on evDrop.

The following $event method is behind an image control and processes the dropped
data (this is available in the example library).

 Drag and Drop Data

 153

On evDrop

 If pDragType=kDragData

 If pDragField='LeftImage'

 Calculate iLeftImage as iRightImage

 ; pDragValue is base64, convert to binary for consistancy

 Calculate lBase64 as mid(pDragValue,pos(',',pDragValue)+1)

 Calculate iRightImage as binfrombase64(lBase64)

 End If

 Else

 Calculate lLine as 1

 ; pDragValue can contain many lines use first file only

 Calculate iRightImageIdent as pDragValue.[lLine].4

 Do $cinst.$clientcommand(

 'readfile',row(iRightImageIdent,'iReadFileBin',kTrue))

 ; readfile is a client command - see below

 End If

Drag Values
This section describes both the controls for which data can be dragged, and the drag
values generated for each drag.

Combo box

pDragValue is the selected text dragged from the current selection in the entry field
component of the combo box. To drag text, you must click and hold the pointer
somewhere in the selection before dragging.

Data grid

pDragValue is a list. For a single select data grid, the list has one line, containing the
list line being dragged. For a multiple select data grid, the list contains the selected
lines being dragged.

Entry

pDragValue is the selected text dragged from the current selection in the entry field. To
drag text, you must click and hold the pointer somewhere in the selection before
dragging.

List

pDragValue is a list containing the list line being dragged.

Picture

pDragValue is a character string containing the URL of the picture being dragged. If the
picture is populated using a variable and $mediatype, the URL is a data URL.

Rich text

pDragValue is the selected text dragged from the current selection in the entry field
component of the rich text control; note that this is the plain text without any formatting.
To drag text, you must click and hold the pointer somewhere in the selection before
dragging.

What’s New in Omnis Studio 8.0

154

Tree

The tree only supports dragging when it is in dynamic mode (i.e. when $datamode has
the value kKSTreeDynamicLoad). pDragValue is a row containing information about
the node being dragged. The row has 3 columns:

Column Description

ident The ident of the node

tag The tag of the node (a character string)

text The node text

If the $hiliteline property is kTrue for a tree control, and the dropmode indicates that the
tree is a potential drop target, the client will expand a node when the pointer enters it
while dragging.

Tab control

The tab control contains some special logic that allows you to switch tabs while
dragging, if this is the functionality you require. For can drop, it sets pDropId to the tab
number of the tab under the pointer (or it sets pDropId to the current tab number if the
pointer is over an area of the control which is not a tab). To switch tabs, implement a
client-executed $candrop method for the tab control which executes:
 Calculate $cobj.$currenttab as pDropId

 Quit method kFalse

Dragging and Dropping Files
In addition to dragging and dropping data from one control to another, end users can
drag files from their desktop and drop them onto a JavaScript control in a remote form
in their browser. There are two new client commands that allow you to process
dropped files, using the $clientcommand method.

closefile

The client records file idents (and their JavaScript File objects) in a table. Use closefile
to remove the table entry and release resources. You should really do this for every
ident passed in the drag value to evDrop, unless you use readfile which removes the
table entry after reading the file.

The row passed to the “closefile” $clientcommand has a single column, which is the
ident of the file to remove from the table. If you pass a row where the ident is zero, the
client removes all entries from the table.

readfile

The readfile client command allows you to read the contents of a file identified by its
ident. After attempting to read the file, the client removes the ident from the table, so a
call to closefile is not required.

The row passed to readfile has the following structure:
row(ident,instance variable name,base64)

The columns are as follows:

Column Description

ident The ident of the file

instance variable

name
The name of an instance variable in the form used to call

$clientcommand, that will receive the contents of the file.

Note that this is a character string containing the instance

variable name, not the instance variable itself

base64 A Boolean. If true, the file is read as base64; otherwise the

file is read as text

 Drag and Drop Data

 155

The JavaScript FileReader which the client uses to read the file operates
asynchronously, so a call to readfile starts the file reading process. When the file read
is complete, the client calls the client-executed method $filereadcomplete in the form
used to call $clientcommand. $filereadcomplete has two parameters:

Parameter Description

ident The ident of the file.

error text Empty if the file was read successfully, meaning that the

named instance variable has been populated with the file

contents (either as text or base64-encoded text).

If not empty, some text describing why the file read failed

Files dragged from system

For file dragging, pDragValue is only populated for evDrop. It is a list of the files
dragged from the system, with columns defined as follows:

Column Description

name The file name. Note this is just a name, not the path to the

file

type The MIME type of the file if this was determined by the

browser before passing it to the drop event

size The size of the file in bytes

ident An integer, unique in the context of the client, that

identifies this dropped file. You can use this with the new

client commands described in the later section about

processing files.

Drag and Drop for Thick Client
evCanDrop, evWillDrop and evDrop for the thick client have a new event parameter,
pDropId. This is significant when $hiliteline for the control is true, and contains the id of
the location in the control where the drop would occur or is occurring, e.g. the list line
for a list.

What’s New in Omnis Studio 8.0

156

HTML Components for Desktop
Applications

Omnis Studio 8.0 gives you the ability to add your own custom HTML components to
your window classes, which are used in the thick client, that is, for desktop based
applications. (Note this feature does not relate to the JavaScript components for
creating web and mobile apps – this feature refers to using HTML based controls on
window classes.)

By adding HTML controls to your window classes you can enhance the UI in your
desktop applications and accelerate your development projects – you can obtain many
different types of ready-made HTML based components from third-party sources, from
simple data controls, to date selectors, to full gantt charts, with the richness and
interactivity you would expect to see in web-based applications.

Omnis HTML controls can be thought of as thick client external components
implemented using HTML, JavaScript and CSS – in effect, you can use any browser
based technology to implement the new HTML controls. In order to add an HTML
based control to a window class there is a new browser object, OBrowser, which can,
in this case, be used to display a single HTML based control in a window class (the
OBrowser object can also act as a regular browser for displaying web pages, which is
discussed later in this section).

The Omnis HTML controls themselves are located in the ‘htmlcontrols’ folder in the
main Omnis Studio program folder. Each control has its own sub-folder in the
htmlcontrols folder, and the name of this folder is used as the name of the control, e.g.
the files for a control named List would be placed in a folder called List. The Omnis tree
contains some example HTML controls which you can use for testing, or as a basis for
creating your own custom controls. These examples, such as the Quill component
which provides a basic text editor, are not supported controls in their own right, so we
don't recommend using them as-is in your applications.

To add an HTML control to a window class, you need to add the OBrowser object to
the window, which is available in the External Components group in the Component
Store, and set its $urlorcontrolname property to the name of the control – this
property displays a droplist containing the names of all the available controls installed
into the htmlcontrols folder in your Omnis development tree, including any you have
added. Having added the control to your window you can set its properties in the same
as way as any other Omnis component. See the ‘Adding HTML controls to your
window’ topic later in this section.

NOTE: If the OBrowser object is not visible in the Component Store you can enable it
via the Studio Browser. To do this, select your library in the Studio Browser, click on
the External Components option, scroll the list of Component Libraries, select the
OBrowser Library option, set the Pre-Load Status to “Starting Omnis” and click on OK.

 HTML Components for Desktop Applications

 157

Creating Omnis HTML Controls
Each Omnis HTML control can be comprised of a number of files which are placed in a
folder in the ‘htmlcontrols’ folder in the Omnis program folder. The main file for each
control is an HTML file which is named <control name>.htm. For example, if you want
to create a control called “quill” you need to create an HTML file called ‘quill.htm’ which
is placed in a folder named ‘quill’ within the ‘htmlcontrols’ folder. The .htm file is the file
loaded into the browser control (set using $urlorcontrolname) when the control is used
on your window.

In addition, there may be a JSON file named <control name>.json in the control’s
folder which defines the htmlcontroloptions row. Plus, the control folder can contain
other resources needed as part of the control implementation, such as JavaScript files,
CSS files, image files, and so on. The control .htm file typically has links to these other
resources.

When you have added the correct files to the relevant folder the control will be ready to
use and add to the window classes in your application. To deploy your application, you
will need to add the same files and folder structure to the Omnis runtime tree.

Third-party HTML controls

As well as creating your own controls using HTML, JavaScript, and CSS, you can
obtain many ready-made controls from third-party sources, either on an open source or
paid-for basis. The HTML code for a control needs to be embedded into the Omnis
compatible HTML template which is required to load a control into the browser object in
Omnis.

<control name>.htm

The .htm file for a control defines a jOmnis object, its various callbacks, and the HTML
content for the control itself, embedded at the place marked “…control-specific
contents…” in the HTML code. The file has the following structure:

<html>

<head>

 <title></title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8">

 <script type="text/javascript" src="../omn_list_base.js"></script>

 <script type="text/javascript" src="../omnishtmlcontrol.js"></script>

 <script>

 jOmnis.callbackObject = {

 omnisOnLoad: function () {},

 omnisSetOptions: function(options){},

 omnisCssChanged:function(){},

 omnisSetData: function (value) {},

 omnisGetData: function () {},

 omnisGetCurrentLine: function(){},

 omnisGetSelection: function(){},

 omnisSetFocus: function () {},

 omnisTab: function() {},

 omnisGetDraggedData: function (event) {},

 omnisDropHilite: function (hiliteLine, destinationId) {},

 omnisDropUnhilite: function () {},

 omnisGetDropLine: function (mouseX, mouseY) {},

What’s New in Omnis Studio 8.0

158

 omnisDoScroll: function(scrollDirection, scrollAmount){},

 omnisOnWebSocketOpened: function() {},

 omnisOnWebSocketClosed:function() {}

 };

 </script>

</head>

<body style=“margin:0;" class=“omnishtml”>

 …control-specific contents…

</body>

</html>

Note that the omnishtml class could be applied to another element rather than the
body.

There are two JavaScript files used at the start of the page.

❑ omn_list_base.js
provides an object that allows you to manipulate an Omnis list represented in
JSON. You can read this file in order to see how to use it.

❑ omnishtmlcontrol.js
provides the interface between JavaScript and the OBrowser component. This file
is not minified, so you can read it to understand it.

<control name>.json

The JSON <control name>.json file defines the options and properties of your HTML
control. The control’s JSON document has the following structure:
{

 "data": "multi",

 "options": {

 "selectedcolor": 255,

 "margin": 0,

 "mainiconid": 1710,

 “title": “The title”,

 },

 "optionsDescriptions": {

 "selectedcolor": "Description for selectedcolor option",

 "margin": "Description for margin option",

 "mainiconid": "Description for main icon id",

 "title": "Description for title"

 }

}

The top-level object has members as follows:

Member Description

data This member indicates how data is exchanged between
OBrowser and the JavaScript running in the HTML
control. It can have three possible values:

all: This means that when OBrowser wants to get the
current value of the control from JavaScript, it will
retrieve all of the data. NOTE that all is the default data
handling mechanism if the control does not have a .json
file.

single: Applicable to controls for which $dataname is a
list. When OBrowser wants to get the current value of

 HTML Components for Desktop Applications

 159

Member Description

the control from JavaScript, it will retrieve just the current
line. This is useful for single select lists that do not
modify the data.

multi: Applicable to controls for which $dataname is a
list. When OBrowser wants to get the current value of
the control from JavaScript, it will retrieve the current
selection state and the current line. This is useful for
multiple select lists that do not modify the data.

single and multi provide optimized data handling for lists
that do not modify the data.

option Each member of options is an option that can be used to
modify the behaviour of the control. The options object
defines the members and their default values. Each
member must be a simple type (number, boolean or
string).

The initial value of $htmlcontroloptions for a new control
is the value of this object. If you edit the json file to
include new options, OBrowser should detect them and
update $htmlcontroloptions.

When OBrowser sends the options to JavaScript it sends
the current value of $htmlcontroloptions.

If the option name ends in “color” then the value stored
in the options object is an integer RGB value. When
OBrowser sends this to JavaScript it converts it to a CSS
color value.

If the option name ends in “iconid” then the value stored
in the options object is an integer icon id value. When
OBrowser sends this to JavaScript it converts it to a file
URL. When using an icon from an icon datafile or
#ICONS, the file URL uses the same PNG file as that
used for the JavaScript client. You will need to manually
delete the PNG in the html/icons folder if you edit the
icon, to allow Omnis to re-generate the file.

optionsDescriptions There should be a member in this object for each
member of options. The values are used as tooltips
when editing $htmlcontroloptions using the property
manager.

The Callback Object

omnishtmlcontrol.js creates an instance of an omnishtmlcontrol object called jOmnis.
Your page sets the callbackObject member of jOmnis, to allow the omnishtmlcontrol
object to communicate with your control implementation.

Your callback object can contain its own members, but do not use ‘omnis’ as the prefix
of a member name, since we use omnis to identify methods provided by the callback
object that may be called by omnishtmlcontrol.

Methods called using $callmethod are members of the callback object.

The following table describes the omnis-prefixed methods you need to provide in a
callback object. Each member is marked as mandatory or optional to indicate if you
must provide an implementation.

What’s New in Omnis Studio 8.0

160

Method Description

omnisOnLoad Mandatory. Called when the browser onLoad
event occurs. Use this to perform initialization.

omnisSetOptions Optional. Called to set the options for the control.
It has a single argument, which is a JavaScript
object containing the members defined in the
control .json file.

When first loading the control, omnisSetOptions
is called before CSS is applied and before set
data. Once the control is loaded,
omnisSetOptions can be called again if the
application assigns $htmlcontroloptions.

omnisCssChanged Optional. Called after the CSS in the omnishtml
class has been added to the page, or updated.
When first loading the control, omnisCssChanged
occurs after omnisSetOptions, but before set
data. Once the control is loaded,
omnisCssChanged can be called whenever a
property that contributes to the omnishtml class is
changed.

omnisSetData Mandatory. Called to set the data for the control.
One parameter, the data.

If the data is a row variable, then the parameter is
a JavaScript object with a member for each row
column; the data types of the members must be
simple types (character, boolean, integer,
number). If the data is a list, then the parameter
is an instance of omnis_list (see omn_list_base.js
for details).

Otherwise, the data is a value of a simple type.
Note that for character data, OBrowser converts
Omnis line endings (\r) to suitable line endings for
the HTML control (\n) before calling
omnisSetData.

omnisGetData Mandatory for controls which have a data mode
of “all”. Called to get the data from the control.
Returns the data for the control.

If the data is a row variable, returns a JavaScript
object. It must have the same definition as the
originally set row. If the data is a list, the return
value must be an instance of omnis_list.

Otherwise the return value must be a simple type.
Note that for character data, OBrowser converts
browser line endings (\n) to Omnis line endings
(\r) in the returned data.

omnisGetCurrentLine Mandatory for controls which have a data mode
of “single” or “multi”. Returns the current list line.

omnisGetSelection Mandatory for controls which have a data mode
of “multi”.

Called to get the list selection from the control.
Returns an array of integers, with a member for

 HTML Components for Desktop Applications

 161

Method Description

each list line. A member is zero if the line is not
selected, one if the line is selected. The array
entry for line 1 is at array index zero.

omnisSetFocus Optional. Called when the control receives the
focus. You may need to focus an element when
this method is called e.g. this.elem.focus().

omnisTab Optional. Passed a single parameter, the
JavaScript keydown event. Called when a tab
occurs. This gives the control the opportunity to
tell Omnis to tab out of the control.

omnishtmlcontrol provides default behaviour
based on HTML tabindexes - you can override
the default by providing omnisTab. To tell Omnis
to tab out of the control, omnisTab calls
jOmnis.tabOutOfControl with a single Boolean
argument which is true to perform a shift tab.

omnisGetDraggedData Optional. If your control supports drag data, you
provide this callback to let Omnis obtain the data
being dragged. The return value is the dragged
data, or null if nothing can be dragged.

You can either return text, or a list, or a row.

There are helper methods in jOmnis:
makeDraggedDataList and
makeDraggedDataRow to assist with the latter
two return types.

omnisDropHilite Optional. Called to highlight the control when it is
a possible drop destination during drag and drop.

Two parameters: hiliteLine, destinationId

hiliteLine is Boolean, true if the $hiliteline property
is set for the control.

destinationId is the drop destination id, typically a
line number returned by omnisGetDropLine if
highlighting lines is supported.

There is a helper method in jOmnis, that can be
used to highlight the entire control. For example:

jOmnis.appendDefaultHiliteDiv(document.body);

appendDefaultHiliteDiv returns the appended div,
so you can remove it from the DOM when
unhighlighting.

omnisDropUnhilite Optional. Called to remove drop highlighting from
the control. No parameters.

omnisGetDropLine Optional. Called when $hiliteline is true, to
determine the line over which the pointer is
positioned. The return value is the line number
(destination id).

It takes 2 arguments: mouseX, mouseY

These are the current pixel coordinates of the
pointer.

What’s New in Omnis Studio 8.0

162

Method Description

omnisDoScroll Optional. Called to scroll the control while the
pointer is over its edges during drag and drop of
data.

It takes 2 arguments: scrollDirection,
scrollAmount

scrollDirection is an eScrollDirections value (see
omnishtmlcontrol.js) that identifies the direction to
scroll.

scrollAmount is the maximum number of pixels by
which to scroll. Scroll by this amount, if scrolling
is desired.

omnisOnWebSocketOpened Optional, and not normally needed. Called when
the socket between OBrowser and the HTML
control opens.

omnisOnWebSocketClosed Optional, and not normally needed. Called when
the socket between OBrowser and the HTML
control closes.

Sending Events

jOmnis contains APIs that allow you to send events to $event:

API Description

sendClickEvent jOmnis.sendClickEvent(lineNumber)
Generates evClick with pLineNumber set to
lineNumber.

sendDoubleClickEvent jOmnis.sendDoubleClickEvent(lineNumber)
Generates evDoubleClick with pLineNumber set to
lineNumber.

sendControlEvent jOmnis.sendControlEvent(infoObject)
Generates evControlEvent with pInfo set to the row
corresponding to infoObject.

Debugging

You can edit config.json (see the later configuration section) to enable debugging of
your control.

On Windows, once you have set a remote debugging port, open Chrome and navigate
to http://127.0.0.1:nnnn where nnnn is the remote debugging port.

On macOS, right click on the control and select inspect element. Note that the web
inspector window that opens does not work that well with our window ordering.

Drag Object Support

Due to the way pointer events work with the control, when you enable drag object or
drag duplicate, Omnis displays a small bar at the top of the control to enable it to be
dragged. There is a property, $dragobjectbarcolor that you can use to set the color of
this bar.

Reloading HTML Controls

You can use the $reload() method with an Omnis HTML control to reset it to its initial
state. $reload() also automatically redraws the control, so its data will also be set.
Using $reload like this is useful when debugging your JavaScript.

 HTML Components for Desktop Applications

 163

Tooltips

The tooltip property for an Omnis HTML control is applied once when the control is
created, and it is not re-evaluated. If you want to change the tooltip after creation, you
must use $callmethod to provide an interface to change a title attribute in the HTML.

Adding HTML controls to your window
Having created or obtained an HTML control and placed it in the htmlcontrols folder,
you can use it in a window class in your library. There are also a number of example
controls for you to use as well, such a simple List and Quill, a basic text editing control.
Once the control is placed on your window it can be used and updated in the same way
as any other control.

Locate the OBrowser object in the External Components group in the Components
Store and add one to your window class (if the Browser object is not visible in the
Component Store you can enable it using the External Components option when your
library is selected in the Studio Browser). Open the Property Manager and set the
$urlorcontrolname property to the name of the control – the droplist for this property
contains the names of all the available controls installed into the htmlcontrols folder.

When you select a control its properties will be displayed in the Property Manager,
including the following properties.

$dataname

An Omnis HTML control can be data bound. The dataname can be a list, a row, or any
other simple non-binary type. This makes the control behave like any other data bound
control, with one small exception that improves performance. Omnis does not redraw
the control when it gets the focus. The only real consequence of this is that you need to
explicitly call $redraw in order to update the control.

$disabledefaultcontextmenu

The underlying browser has its own context menus e.g. a TEXTAREA with spell
checking enabled has clipboard menu items, as well as spelling suggestions etc. The
underlying browser menu is considered the default context menu, and you can disable
this using the $disabledefaultcontextmenu property.

$htmlcontroloptions

An Omnis HTML control may have a row of options that can be used to configure its
behavior. You can consider these to be custom properties. The property manager has
a droplist button for this property, which opens the editor for these options. Options with
names ending in color or iconid are edited using the color picker or select icon dialog
respectively. The fixed column at the left of the editor has tooltips that display
descriptions for the members of the options row.

If the control does not have any options, this property is read-only.

$applycss and $cssextra

You can optionally apply a CSS class named omnishtml to the Omnis HTML control
(note that the control needs to explicitly use omnishtml - if it does not, then apply CSS
will not have any affect). Set $applycss to kTrue if you want to use the omnishtml class.

The omnishtml class contains entries for various other properties of the browser object
(OBrowser): $backcolor, $backalpha, $textcolor, $align, $fontsize, $fontstyle, $font.
$font uses the JavaScript client font table entry corresponding to the window font.

In addition, OBrowser also concatenates the value of $cssextra to the end of the
omnishtml class e.g. you could set $cssextra to “text-decoration:line-through;text-
transform: uppercase;”.

What’s New in Omnis Studio 8.0

164

$dragmode

You can set $dragmode to kDragData to enable drag from the control. This only works
if the particular control has been designed to support drag data. Drag and drop uses
the standard Omnis drag and drop messages.

$hiliteline

List controls that accept dropped data can be configured to highlight individual lines
during drag and drop. You can set this property to true, to indicate that you want
highlight line behavior, but you will only get that behavior if the Omnis HTML control
currently being used supports it.

In addition, when evDrop occurs for a control with $hiliteline set to true, the pDropId
event parameter identifies the area of the control over which the drop is to occur, either a line

number or ident (when $hiliteline is true), or zero if the control is not list-based (or $hiliteline is

false).

$callmethod()

Omnis HTML controls can have methods. You can use the $callmethod() method to
call a method within a control or one of the standard callbacks.

❑ $callmethod(cName,vParam)
Calls method cName in the control object, passing parameter vParam; returns a
unique id for this call. The method runs asynchronously and sends the
evCallMethodDone event to the control on completion (see Events below)

; method gets the data from the example Quill control

Do $cinst.$objs.quill.$callmethod('omnisGetData') Returns iID

; event method for Quill control assigns the data returned to a var

On evCallMethodDone

 If pID=iID

 Calculate iData as pData

 ; Do something

 End If

Ports
The OBrowser component operates on the same port as the Omnis Server which is
either assigned dynamically or via the Omnis-server property. For debugging HTML
controls, OBrowser opens another port for WebSocket communications between
htmlcontrols and Omnis. This is $serverport + 1, or 6912 if $serverport not set. This
can be overridden by setting "obrowser > htmlControlPort" in config.json.

On Windows only (if "obrowser > canDebug" is true in config.json), OBrowser opens
another port to allow remote debugging of the web content. By default this is port 5989,
but can be overridden by setting "obrowser > remoteDebuggingPort" in config.json.

Events
Omnis HTML controls have some basic events, such as single and double click, but
they can have custom events.

evCallMethodDone

The evCallMethodDone event is triggered when a $callmethod() is completed: it has
three parameters in addition to pEventCode:

Parameter Description

pUniqueId The unique id that was returned by $callmethod().
This associates this event with the original call.

pReturn The return value of the control method. NULL if an
error occurred - see pErrorText for details.

pErrorText Text describing the error.

 HTML Components for Desktop Applications

 165

evClick and evDoubleClick

Omnis HTML controls can generate standard click and double click events, with the
pLineNumber event parameter.

evControlEvent

Omnis HTML controls can generate custom events. Each custom event sends
evControlEvent. This has one parameter in addition to pEventCode:

Parameter Description

pInfo A row containing information about the event. If the
control generates more than one type of control
event, a column in this row can identify the event
type

Browser Component
The Browser Component, called OBrowser, is an external component control for thick
client window classes that provides the ability to add custom HTML controls to window
classes (as described above), as well as embed web pages into your thick client
windows. Even though the OBrowser control is a fully featured web browser, it is really
only intended for targeted use with specific web pages, rather than use as a general
web browser (you should note that there is no sandbox support). You could use it in
your application, for example, to present the end user with information in a web-style
layout such as a Help system or FAQ, or you could embed a landing page that is
hosted on your website.

OBrowser is available for both Windows and macOS (Cocoa); there is no Linux
implementation. On Windows, it uses the Chromium Embedded Framework as the
underlying browser, whereas for Cocoa it uses the built-in Cocoa WebView. Both the
underlying browser implementations provide good support for HTML5 and CSS3.

To add a Browser control to your window class, locate the OBrowser object in the
External Components group in the Components Store and drag it onto your window (if
the Browser object is not visible in the Component Store you can enable it using the
External Components option when your library is selected in the Studio Browser.).

Setting web pages

To navigate to a page in the Browser Component, set the property $urlorcontrolname
to a full URL with a prefix either http://, https:// or file://, such as ‘http://www.omnis.net’.
Note that in design mode, OBrowser will navigate to the page (assuming there is a
network connection if required), but the page will not respond to clicks, keyboard input
etc.

Once a page is open in a runtime window, the user can interact with the page as would
be expected, although an attempt to open a popup window fill fail. The property
$urlorcontrolname does not change while the user navigates through pages. Instead,
the read-only property $currenturl contains the URL of the page currently open.

Two more read-only properties provide more state information:

❑ $cangoforward
If true, you can use $forward() to move to the next URL in the browser back-forward
list.

❑ $cangoback
If true, you can use $back() to move to the previous URL in the browser back-
forward list.

What’s New in Omnis Studio 8.0

166

Methods

OBrowser has the following methods related to using it as a web browser:

Method Description

$forward() $forward() navigates forwards to the next URL in the
browser back-forward list. Returns a Boolean, true for
success

$back() $back() navigates backwards to the previous URL in the
browser back-forward list. Returns a Boolean, true for
success

$reload() $reload() reloads the currently displayed URL. Note that
if you want to re-open the assigned $urlorcontrolname,
you need to re-assign the original value to
$urlorcontrolname.

$startdownload() $startdownload(iDownloadId,cDestPath) starts the file
download with id iDownloadId, storing the file at
cDestPath. You must execute either $canceldownload()
or$startdownload() in response to the
evBrowserStartDownload event. Typically you would
prompt for a file path, and then call $startdownload().

$canceldownload() $canceldownload(iDownloadId) cancels the file
download with the specified iDownloadId. You can call
this in response to evBrowserStartDownload, to cancel
the attempted download. You can also call this any time
between calling $startdownload() and receiving
evBrowserFinishedDownload.

$setdataurl() $setdataurl(vData,cMediaType[,cWidth,cHeight]) assigns
a data URL for the supplied data, with the specified
media type, to $urlorcontrolname.

vData can be either:

binary - the data represented by the URL

or another type - OBrowser converts the data to
character if necessary, and then UTF-8, to become the
data represented by the URL.

cMediaType is a MIME type specifying the type of the
data e.g. text/plain or image/png.

cWidth and cHeight are optional. They are only relevant
if vData is binary, and the data is an image. In this case,
the data URL represents an img of the specified
cMediaType, sized using the CSS sizes width and height
e.g.

$setdataurl(image, “image/png”, “100%”, “100%”)

Events

OBrowser generates various events, described in the following sections.

evBrowserLoadStateChange

Sent to the control when it starts or ends loading its content. This event has one event
parameter in addition to pEventCode:

Parameter Description

pLoading If true, the control is loading content.

 HTML Components for Desktop Applications

 167

evBrowserFrameLoadError

Sent to the control when an error occurs while it is loading a frame. This event has
three event parameters in addition to pEventCode:

Parameter Description

pUrl The URL being loaded

pFrame The browser frame. Empty means the main frame

pErrorText Text describing the error

evBrowserOpenUrl

As mentioned earlier, an attempt to open a popup window will fail. This event is sent to
the control when a navigation action by the user wants to open a URL in a new browser
window. This event has one event parameter in addition to pEventCode:

Parameter Description

pUrl The URL for which opening a popup will fail

evBrowserStartDownload

Sent to the control before starting a file download. Your code must respond by calling
one of two OBrowser methods described later: $startdownload() or $canceldownload().
This event has four event parameters in addition to pEventCode:

Parameter Description

pDownloadId An integer that identifies this download request

pSuggestedName The suggested name for the file

pMIMEType The MIME type of the file

pUrl The URL of the file to be downloaded

evBrowserDownloadProgress

Sent to the control periodically while a download is in progress. This event has three
event parameters in addition to pEventCode:

Parameter Description

pDownloadId An integer that identifies this download request

pTotalBytesExpected The total number of content bytes expected. -1 if
the total is unknown

pBytesReceived The number of content bytes received so far

evBrowserFinishedDownload

Sent to the control when a download has finished. This event has two event
parameters in addition to pEventCode:

Parameter Description

pDownloadId An integer that identifies this download request

pErrorText Either empty, meaning the download completed
successfully, or error text describing why the
download failed

What’s New in Omnis Studio 8.0

168

Configuration
The OBrowser object has a section in Omnis configuration file (config.json) named
“obrowser”. This has entries as follows:

Entry Description

clearCacheWhenLoaded Windows only. Boolean. True if the Chromium
Embedded Framework cache is cleared when
oBrowser is first loaded. The cache is in a sub-folder
of the Omnis data folder:

chromiumembedded\cache

clearLocalStorage
 WhenClearingCache

Windows only. Boolean. True if HTML5 local storage
is cleared while clearing the cache.

logSeverity Windows only. Integer. Chromium Embedded
Framework log level:

0: Default logging

1: Verbose logging

2: Info logging

3: Warning logging

4: Error logging

99: Logging disabled

When logging is enabled, the log is written a file in a
sub-folder of the Omnis data folder:

chromiumembedded\log\cef.log

remoteDebuggingPort Windows only. Integer. The TCP/IP port number on
which the debugger listens, set to 5989 by default.
Set this to zero to disable debugging.

candebug macOS only. Boolean. If true, context menus for the
control allow you to open the developer tools.

htmlcontrolsFolder Character string. By default, the HTML controls are
located in the htmlcontrols folder in the Omnis
program folder. You can override this by providing a
full pathname in this entry.

defaultHtmlcontrols
 FolderInDataFolder

macOS only. Boolean. Default is false. If you set this
to true, Omnis looks for the htmlcontrols folder in the
data folder rather than the program folder (provided
that the htmlcontrolsFolder member is absent or
empty). This allows you to add your own HTML
controls and the Omnis Runtime app to remain code
signed.

messageTimeout Integer. The timeout in tics (1/60th second units) for
synchronous communication between OBrowser
and the HTML control. Not all communication is
synchronous, but certain messages (e.g. get data)
need to be. This defaults to 60 (a second, which
should be more than enough). When you are
debugging your control you may want to make this
much larger, to give yourself time in the debugger.

 High Definition Displays

 169

High Definition Displays
With the introduction of Retina displays on Mac desktops and laptops, and 4k displays
widely becoming the standard for Windows based computers, support for high
definition displays has been introduced in Omnis Studio 8.0. This means that when you
run the Omnis Studio SDK on a high definition display the Omnis IDE will be displayed
in high definition, and likewise version 8.0 Runtimes will be capable of running your
desktop applications in high definition. This enhancement should benefit your
application development in general, when working in the Omnis IDE, and your end user
applications will see the improvements when run on the latest Mac computers or 4k
displays on Windows 8.1.

Omnis detects the resolution of the display it is running on and scales accordingly. On
macOS, the new Cocoa based Omnis scales automatically. The coordinates and
dimensions used in Omnis and your applications are now virtual 72dpi values. These
values are scaled automatically to retina display coordinates.

On Windows, Omnis now determines the physical DPI of the display, and then scales
by a factor of 2 if the physical DPI is 192 or greater. Therefore, coordinates and
dimensions become virtual 96dpi values. In addition, scaling performed as a result of
using the existing $designdpimode property always occurs using the virtual 96dpi if the
physical DPI of the display is 192 or greater. Note that Omnis does not support per-
screen DPI.

Compatibility Issues
If you for some reason you wish to maintain the scaling mechanism available in
previous versions, you can set a new configuration item in config.json, in a new
“windows” group, called “highDPIaware”. If set this to false, Omnis will not use the new
scaling mechanism, and will run at a virtual 96dpi, and will be scaled automatically by
Windows (as it does in 6.1.x and earlier).

It is very likely that small cosmetic changes will need to be made to some of the objects
in your libraries when they are scaled to 192dpi using the new mechanism. Font
heights and text widths do not always scale proportionately and therefore may need to
be adjusted accordingly. You should test your applications thoroughly on a high
definition display and make any necessary updates or adjustments to fonts, etc.

Tab strip

The tab strip has been modified to display correctly on HD displays.

❑ The tab strip now has square tabs with a single pixel border. The edge is now only
1 pixel wide.

❑ $overlap has been removed.

❑ The tab strip now has $extraspacing (default zero) to space the tabs if required.

❑ The tab strip now has $bordercolor, used as the edge color and tab border color.

❑ $ditherbackground has been removed.

HD Icons and Graphics
To support the increase in definition in the Omnis IDE, we have updated many of the
icons and graphics with higher resolution images. In order to support high definition
images in your own applications, e.g., pushbutton icons or graphics used in forms and
windows, you will need to add higher resolution versions of any icons and update any
other graphics. In general, your icon images need to be 2x the size of a standard icon
image for display on HD displays and Omnis will try to use the HD version if they exist.

What’s New in Omnis Studio 8.0

170

Icon Data files and Icon sets

The existing method of storing icons in #ICONS or an Icon data file and assigning the
numeric Icon ID ($iconid) to controls will continue to work, but this is only useful for
16x16 pixel icon images. If you run your application on an HD display and your library
uses an icon data file or #ICONS, Omnis will try to use a 32x32 icon (if it exists and the
icon page is marked as containing 32x32 icons), in place of the corresponding 16x16
icon. If a 32x32 image does not exist in your icon data file or #ICONS, the existing
16x16 image will be used which may have a very poor visual appearance on newer
screens and devices. In order to support high definition 16x16 icons you will need to
create a new version of each image at 32x32 pixels and import each one into the icon
data file or #ICONS into the 32x32 section on the same icon page using the same icon
IDs.

If you have used 32x32 or 48x48 pixel icons in your libraries, and you wish to display
them on HD displays, then you will need to adopt the use of Icon Sets (separate image
files in a folder) which support icon images up to 96x96 pixels (i.e. 2x the largest 48x48
icon size). This feature was introduced in Studio 6.0 and uses icon images that are
either 1.5x or 2x the size of standard resolution icon images. Icon sets are supported in
JavaScript Client remote form classes and on window classes in the thick client – you
cannot use Icon sets in the old ‘Web Client’ or ‘iOS Client’ plug-in (note these plug-ins
are not supported in Studio 6.1 or higher).

When Omnis references an Icon ID it will first search for the icon in an icon set, then it
will search #ICONS in the current library and then any other icon datafiles.

Creating and using HD Icon Images

You can create HD icons in any third-party image editing software and place the
images directly in the Omnis tree, in the folder named ‘iconsets’. The icon or image
files must be saved using the PNG file type and placed in a sub-folder of the ‘iconsets’
folder in the main Omnis product tree (note this is not the same icons folder in the root
of the Omnis tree which contains the built-in icon data files). Each sub-folder
represents what is called an Icon Set which is a named collection of icons. The name
of the sub-folder in the icons folder becomes the name of the icon set which will then
appear in the icon selection dialog (this name is specified in $iconset, a new library
preference, see below). Note that an icon set cannot be named ‘datafile’, ‘lib’, ‘studio’,
or ‘studioide’ since those names are already used in the icons folder.

Image File names

Each image file within an icon set must conform to the following naming convention:
<text>_<id>_<size><state>_<resolution>.png

❑ <text> is the name of image. This string is used in the icon picker dialog when you
set an object’s $iconid in the Property Manager.

❑ <id> is the positive integer id to be used as the icon id. It can be in the range 1 to
10000000.

❑ <size> is the CSS pixel size of the image, i.e. the resolution independent size of the
image, meaning that for all resolutions of the same image this has the same value.

The value of <size> has the form <width>x<height>, where the values 16x16, 32x32
and 48x48 are special values since they correspond to the standard icon sizes
supported by Omnis.

❑ <resolution> is the factor by which the pixel density is greater than a standard
monitor and is one of the following:
“_2x” for HD devices such as the Retina display
“_15x” for some devices e.g. certain Android phones that have a 1.5x pixel density.
an empty string is the default and is for standard resolution devices, equivalent to
_1x

Any files (or folder names) that do not conform to the naming conventions are ignored.
Example file names are:

 High Definition Displays

 171

pencil_1657_16x16.png Normal state 16x16 icon with ID 1657
for standard resolution devices

pencil_1657_16x16_2x.png Normal state 16x16 icon with ID 1657
for HD resolution devices

check_1658_32x32c_2x.png Checked state 32x32 icon with ID 1658
for HD resolution devices (see below)

Note that the image file names are case insensitive and they must be unique across all
platforms and file systems (that is the case of file names is ignored).

Check Boxes Icons

As a special case you can implement icons for different states in check boxes and
radio buttons.

❑ <state> is the checked, highlighted, or normal state of the icon for multi-state icons
and can be one of the following:
an empty string for the normal state of the icon
“c” is the checked state of the icon
“h” is the highlighted state of the icon
“x” is the checked highlighted state of the icon

Studio IDE icons

If you are unsure about the icons you need to create and the file naming, you can
examine the icons in the ‘iconsets/studioide’ folder – here you will see the different size
image files and their naming required for each icon used in the Studio IDE.

Image Scaling

You do not have to create an icon image for all resolutions, although it would be
advisable to do this for the best effect. Omnis will use an icon image closest to the
resolution being referenced, scaling as appropriate, and as with all image scaling it is
better to force Omnis to scale an image down rather than scale it up. In this case, you
may like to provide the highest possible resolution image for your icons and allow
Omnis to scale the images to display the lower resolutions, but the scaling may
produce unexpected results.

When the JavaScript Client connects, it sends its resolution to the Omnis App Server.
This allows the server to use the appropriate icon when setting iconid properties in
server methods.

Non-standard Size Images

You can create images with a size other than the standard sizes (16x16, 32x32, 48x48)
by creating the image at a non-standard size and including the image size in the file
name when the file is saved. For example, you can create an image 100x200 pixels
and name it something like “mygraphic_1688_100x200.png”. (Existing users should
note that this is the equivalent of an ‘Icon Page’ in the existing icon support.)

Setting the Icon set in your library

Libraries have a preference called $iconset ($libs.LIB.$prefs). This is the name of the
icon set to be used when resolving icon ids for the JavaScript client and the thick client
in the current library. When using this library, and when looking up an icon for the thick
client or JavaScript client, Omnis will search for icons within this icon set before
following the current icon search path for the library. In this case icons present in the
icon set will take precedence over those in #ICONS, omnispic.df1, etc.

What’s New in Omnis Studio 8.0

172

Setting the Icon ID for objects

When you set the $iconid of an object using the Property Manager, the icon set for the
current library will be shown in the Icon picker dialog ($iconset must be set for the
library for the icon set to appear) allowing you to select one of the icons in the set. You
can select the icon required and the Icon ID will be assigned to $iconid for the object.

Errors

Any errors created while setting the icon ID for objects are sent to a file called
iconsetlog.txt located in the html folder.

Assigning a URL for images

When you set the $iconid of a JavaScript client object you can also assign a URL. In
server methods, if the value being assigned is a character value that contains a “/”
character then Omnis treats it as a URL generated by the iconurl function (meaning
that it can contain alternative icon files for the different client resolutions, and also that
the server will pick the correct icon for the client resolution).

In client methods, if the value being assigned is not an Icon ID (a literal integer or
integer + icon size constant) then Omnis treats the value as a URL generated by the
iconurl function on the server, and the client picks the correct icon for its resolution.

You could generate the required URLs with the iconurl() function (see below) in the
$construct() method of your remote form, and store them in an instance variable list
which could then be used in client executed code to assign the correct image to each
object.

Image handling for tree lists

For the JavaScript Tree control, the iconid column is now an iconurl column, and the
$iconurlprefix property is now redundant although existing libraries that use
$iconurlprefix will continue to work. Instead, the iconurl column should be defined to be
of type character, and it should be populated using a server-only function,
iconurl(iconid), which returns a URL string containing the name of the image file or a
semi-colon separated list of file names if an icon exists in more than one resolution.
This enables the client to pick the correct icon for its resolution.

Deploying HD Icons

You need to copy your icon sets and images files to the Omnis App Server when you
want to deploy your web or mobile app. If the icons are not copied to the Server tree
they will appear to be missing from your app.

Standalone Client Apps

Note that for standalone apps the icons needed for your mobile app will be bundled in
the SCAF. If any icons change on the Omnis App Server they will be updated on the
client when the standalone application files are updated.

Studio IDE and Runtime Icons

Some of the icons used in the Omnis Studio IDE are located in the ‘studioide’ icon set
(other icons used in the IDE are embedded in the Studio Browser itself or are in
Omnispic). You may not use the icons in the studioide icon set in your own libraries
without the appropriate license: see the license text file in the studioide folder. The
studioide icon set is not included in the runtime version of Omnis Studio, and instead
replaced with a folder (icon set) called ‘studio’ containing various icons required for the
Print Preview window, Print Destination dialog, and so on. These can be included in
your product tree when you deploy your application.

Exporting Icons from an Icon Datafile

You may want to use some existing icons located in an Icon Datafile as separate files
and either add to or replace some of them with higher resolution versions. To enable
you to export existing icons there is a tool in the Tools>>Add Ons menu, called the ‘JS
Icon Export’ tool, which is available in the ‘Web Client Tools’ dialog (scroll to the bottom
of the list of Web Client tools). The ‘JS Icon Export’ tool will export all the icons in a

 Auto Updates

 173

selected Icon Datafile and place them in a folder in the ‘iconsets’ folder, applying the
correct image file names. The $iconid property of a control will now reference the
external image file and not the icon datafile image.

Auto Updates
You can now perform updates or any other changes to your Omnis application or folder
structure upon restarting Omnis by adding a script to the Omnis data folder. You can
use the Auto Update feature to update any file in the Omnis Studio tree, including the
Omnis executable or program file itself. Under Windows there is one exception – the
studiorg.exe file cannot be updated.

To enable the Auto Update feature, write a batch file under Windows called
update.bat, or on macOS or Linux create a bash script called update.sh, and add it to
the Omnis data folder, i.e. the folder containing the Studio, Startup, and Welcome
folders.

When Omnis starts up it will:

1. Execute the update script automcatically at startup before loading any external
components, externals or libraries.

2. If the call to run the script is successful, Omnis then deletes the update.bat/sh
file.

When running on Windows, Omnis incorporates a request to run this as part of the
existing UAC support implemented via studiorg.exe. In this case, you will get a UAC
prompt if the update script needs to run, or if the registry needs updating for some
reason, or if both updates and registry updates are required.

The Windows batch file or Unix script must have Execute permissions set in order to
run. You can do this in the Properties of the file or via the file system. To do this in your
code on macOS or Linux you can use the $setunixpermissions() fileops function:
If sys(6)= 'U' ;; Mac OS or Linux

 Do fileops.$setunixpermissions(

 scriptPathName,'-rwxr--r--') ;; set file to execute

End if

Example
The following example shows typical commands that could be used in a batch script;
the commands download two new xcomps from a server (xcomp1.dll and xcomp2.dll),
and store them in a folder specified by
con(sys(115),pathsep(),updates,pathsep(),xcomp):
copy /y <studio data folder path>\updates\xcomp\xcomp1.dll <studio program

folder path>\xcomp\xcomp1.dll

del <studio data folder path>\updates\xcomp\xcomp1.dll

copy /y <studio data folder path>\updates\xcomp\xcomp2.dll <studio program

folder path>\xcomp\xcomp2.dll

del <studio data folder path>\updates\xcomp\xcomp2.dll

When a path has a space or spaces in it, e.g. Program files, the path should be
enclosed in quotes:
“C:\Program Files\Omnis Software\OS8.1UPGRADETEST\xcomp\Dummy.dll”

What’s New in Omnis Studio 8.0

174

Segmented Control
The Segmented Control is a new JavaScript control that displays a number of
segments or buttons that you can use for navigation or as a toolbar within your web
and mobile apps. You can assign an icon and text to each segment and you can detect
which segment has been clicked.

The segmented control provides a series of ‘segments’ arranged horizontally and
equally sized to fill the available space, while each segment can contain text and/or an
icon. You can optionally show the selected segment in a highlighted state, which is
useful if you are using the segmented control as a navigation control.

You can use the segmented control as a toolbar, docking it to the top or bottom of its
container by setting its $edgefloat property to one of the kEFposn… values.

Properties
The Segmented Control has the following properties, together with the standard
properties for a JavaScript control.

Property Description

$currentsegment The number (1 - $segmentcount) of the current
segment (this specifies the segment affected by
segment specific properties).
This can also be changed in a design view by clicking
on another segment of the design component. The
current segment will be shown with a red outline while
the component is selected.

$segmentcount The number of segments (must be at least one).

$segmentenabled If true, the segment is enabled and generates a click
event when the user presses it.

$segmenticonid The icon displayed on the current segment. Set to 0
for no icon;

$segmenttext The text displayed on the current segment.

$displaystyle A kJSSegmentStyle… value. Controls the
appearance of the segments (whether text should be
above icon or vice-versa).

$showselectedsegment If true, the currently selected segment will be shown
in a highlighted state. See $selectedcolor &
$selectedtextcolor.
If false, the highlighted appearance will still be shown
while segments are being clicked, to give the user
feedback of the click.

$selectedsegment The number (0 - $segmentcount) of the currently
selected segment. If 0 no segment will be selected.

$selectedcolor The background color of the currently selected
segment, or of the segment currently being clicked.

$selectedtextcolor The text color of the currently selected segment, or of
the segment currently being clicked.

$bordercolor Controls the color of the segment divider lines, as well
as the control’s border.

 List Pager

 175

Property Description

$backcolor Controls the background color of the segments.

Events
An evClick event is generated when one of the segments or buttons is clicked and the
pClickedSegment event parameter returns the number of the button clicked.

List Pager
There is a new property in some of the JavaScript List and Grid components, called
$pagesize, that allows you to display the lines in the list or grid as separate pages, to
improve the user experience when navigating lists or grids with a large number of lines.
When assigned an integer value, the $pagesize property forces the list or grid to be
sub-divided into a number of scrollable pages, and a set of page number buttons, as
well as forward and back buttons, are displayed under the list or grid box which allows
you to 'page through' the lines in the list or grid. The default value is zero which means
no list pager is displayed.

The $pagesize property has been added to the JavaScript List, Data Grid, Complex
Grid, and Native List (when not using grouped lists). The value assigned to $pagesize
specifies the number of list lines displayed in each page, and therefore the total
number of lines in the list, divided by the value of $pagesize determines the number of
pages in the list or grid field as well as the number of buttons displayed in the pager
panel.

Note that setting $pagesize does not reduce the amount of data sent to or fetched from
the server – the full list data is sent to the client, and the setting of $pagesize is only
used for displaying the list or grid with the pager element.

Changing the Pager’s Appearance
The appearance of the pager, such as the color of the buttons, numbers, and arrows,
cannot be controlled using standard component properties. However, if you wish to
customize the appearance of the pager, you can do so by overriding the associated
CSS classes. These classes are named ‘omnis.pager<-xxx>’ and are listed in the
omnis.css file. Do not edit the classes in omnis.css, rather you should override the
classes by adding your own version in the user.css file found in the html\css folder in
your Omnis development tree.

See the Creating Web & Mobile Apps manual for more information about using the
JavaScript List and Grid components.

Worker Objects
Push Connections
Support for Push Connections has been added to Omnis Studio to allow more control
when data is returned to the client when using the Omnis worker objects, such as the
SQL Worker objects. In this specific case, you could start off a long query using a SQL

What’s New in Omnis Studio 8.0

176

worker on the server, and then push the response to the client when the results are
ready, updating any instance variables in the remote form.

Support for push connections has been implemented via a Long Polling mechanism
called Pollymer, a general-purpose AJAX/long-polling library, since it provides a simple
HTTP based solution that is supported in all browsers.

Creating a push connection

Each JavaScript client remote task in Omnis can now have a single “push connection”,
established using the new client command called openpush. The syntax is:
 $cinst.$clientcommand(“openpush”,row())

The openpush client command can be executed in either a server or client executed
method, but you are advised to use it in a server method to gain greater control over
when the results are pushed. That way, you know exactly when you are using a push,
or whether or not you want to push data. There is a matching client command,
closepush, which you can use to close the push connection.

Utilizing REST

The push connection uses Omnis RESTful support to carry its requests, therefore, if
you are using a Web server to pass JavaScript client requests to the Omnis server, you
need both the standard Web server plugin, and the RESTful Web server plugin to be
installed with the Web server, i.e. you need to install both omnisapi.dll and
omnisrestisapi.dll.

The client scripts automatically generate a URL for push by converting the parameters
in the web page. For example, if your HTML page for the JavaScript client uses the
URL:
http://localhost:8080/omnisservlet

then the client scripts will convert this to:
http://localhost:8080/omnisrestservlet

for the push connection. You can see the URL used for push connections by using
browser debugging tools.

If you are not using standard names in your HTML page, there is a parameter in the
Omnis configuration file (config.json) that allows you to override the default push URL
generated by the scripts: this can only be used when using openpush in a server
method. To configure this set the member “overridePushURL” of the “server” entry to
the desired URL.

Remote Form Method

To support push connections there is a new method for remote form instances called
$pushdata(), which has the following syntax:

❑ $pushdata(wRow[~&cErrorText])
Used with $clientcommand openpush. The method pushes the row wRow to the
client which results in a call to the client-executed method $pushed in the remote
form instance on the client, passing wRow as the parameter. wRow must be JSON
compatible, so it can only contain simple types: character, boolean, integer,
number, date, list and row.

Omnis maintains a queue of pushed data for the remote task, which is independent of
calls to openpush. As soon as a push connection arrives from the client, Omnis sends
all queued pushed data that the client has not yet received as the response. The client
then processes the response, and issues a new push connection to the server, telling
the server it has received the data. This allows the server to remove the received data
items from its queue, and free their memory. Typically, at this point there will be no
more queued data. The connection stays open, and as soon as the server code calls
$pushdata, Omnis sends the data as the response to the client. This gives the
impression of a permanent pipe from the server back to the client, with

 Miscellaneous Enhancements

 177

acknowledgement of pushed data received by the client, so pushed data should not go
missing.

Typically, you would take data from the row returned by $pushdata and assign it to an
instance variable, or subset of variables, to update the remote form.

There is a tech note TNWS0005 to show how you would use a RESTful web service
with the openpush client command in the JavaScript Client.

Miscellaneous Enhancements
JSON Objects
Omnis now allows you to manipulate JSON arrays of objects, mapping them to and
from Omnis list variables. There are two new static functions in the OJSON external,
that work with a single level JSON array, where each array element is an object, and
each object has members which are only simple types (integer, number, boolean,
string). The functions are:

❑ OJSON.$objectarraytolist(vData[,&cErrorText])
Parses vData (binary (UTF8/16/32) or character). vData must be a JSON array of
objects containing members with simple types. Returns a list representing JSON.
Returns NULL and cErrorText for an error

❑ OJSON.$listtoobjectarray(lList[,iEncoding=kUniTypeUTF8,&cErrorText])
Writes a list with simple columns to an array of objects; returns JSON with specified
encoding (UTF8,UTF16BE/LE,UTF32BE/LE or Character). Returns NULL and
cErrorText for an error

When writing a list to an object array, OJSON validates the list, and returns an error if
the Omnis data type of a column value is not suitable.

When parsing an array of objects, OJSON validates the data as it parses it, to make
sure it is a single array of objects containing only simple types. In addition, OJSON
adds columns on the fly, and if a column already exists makes sure the data in the
JSON is of the same type as the already added column. This works best when all
entries in the array are objects with identical members.

Edge Float Constants
The constants that specify the behavior for floating edges, kEFruntimeLeftRightCenter,
kEFruntimeTopBottomCenter and kEFruntimeAllCenter, have been renamed to
kEFcenterLeftRight, kEFcenterTopBottom, kEFcenterAll respectively. They now also
function during design mode, and can also be assigned to objects on thick client
windows, including both foreground and background objects on thick client windows.

Web Services
The $sendhttpcontent() method can now be used to send character data (converted to
UTF-8 before sending) and list or row data (converted to JSON before sending). In
addition, the method has a new optional second argument, bChunk, which defaults to
kFalse (the current behaviour). When true, bChunk formats the data as a chunk
(removing the need to call the formatchunk() function). This improves performance a
little, and also allows you to handle web servers which automatically chunk the
response (e.g. Tomcat). A call to $sendhttpcontent with empty data and bChunk
passed as kTrue must be used to terminate the content.

Note that Swagger 2 is now supported for REST based web services: see the Software
Support and Compatibility section for more information.

http://www.omnis.net/technotes/tnws0005.jsp

What’s New in Omnis Studio 8.0

178

HTTP client workers
The HTTP client worker now supports client certificates. There are two new properties
of the HTTP client worker object:

❑ $keystorepath
The path of the Java key store file containing the client certificate to use for HTTP
connections. If this property is not empty, $shareconnections is ignored and treated
as false

❑ $keystorepassword
The password for the keystore file identified by $keystorepath

To use these properties, import the client certificate into the key store identified by
$keystorepath. Depending on the setup, you may also need to import the server
certificate into the omnisTrustStore file.

An example script (setup_client_auth.bat) showing how to set up tomcat to test this
locally, and an example tomcat configuration server.xml, is in the secure folder in the
main Omnis folder.

Screen Report Fields
Screen Report Fields have two new methods that allow you to zoom or search the
screen report. Once the screen report has been sent to the field you can use $zoom()
to scale the report from 25% to 200%, and the $searchreport() method allows you to
search for the specified text within the screen report content.

Zoom

The method $zoom(iZoom) zooms the screen report field, where iZoom can be positive
(indicating a percentage between 25 and 200% inclusive), or 0 meaning zoom to fit, or
negative (-1 to -7) where -iZoom indexes the 7 standard zoom factors from smallest to
largest.

Search

The method $searchreport(cText[,bIgnoreCase=kTrue,bNext=kTrue]) searches the
report for cText. Further calls with the same cText and bIgnoreCase search for the next
(bNext kTrue) or previous (bNext kFalse) match. Empty cText clears the search.

There is an event which works in conjunction with $searchreport (needed because the
search occurs in a background thread). The event enables you to manage next and
previous buttons, and status text. The next and previous buttons are assumed to start
in disabled state. The event evReportSearchStatus is sent to the report field when the
report search status changes: this has one event parameter pReportSearchStatus
which is a row with 4 columns, as follows:

next If true, search next can be enabled as there is
another search result later in the report

prev If true, search previous can be enabled as there is
another search result earlier in the report

count The count of search results

index The 1-based index of the current search result

 Miscellaneous Enhancements

 179

Icon Sets
Omnis now looks in up to three folders for icon sets, which are processed in the order
stated below. If the same icon set is included in another folder, after it has already been
found, it is ignored in subsequent folders and an error written to iconsetlog.txt. You
should therefore avoid having the same or similar icon sets in multiple folders to avoid
any confusion.

1. A folder named ‘iconsets’ in the program folder.

2. A folder named ‘iconsets’ in the data folder, if it is different to the program
folder.

3. The ‘html/icons’ folder, as in previous versions.

The file iconsetlog.txt is created in the Studio folder rather than the html folder.

When using a web server for deploying your application, the icon sets must still be in
the html/icons folder in the web server tree, even if they are in one of the other folders
in the studio tree.

IMAP
The IMAPListMessages external command has a new parameter that allows you to
request named RFC822 message headers to be included in the list of messages – the
headers are returned as a space-separated list of header names, e.g. "Subject From".
The command stores the headers in consecutive columns of the List, starting at column
10, in the order of the header names. These new additional columns need to be
defined as character.

Multi-line Fields
Thick client multi-line entry fields have a new property called $linehtextra which is the
number of extra pixels added to the height of each line of text displayed in the field. Its
value is restricted to 0-255, but in practice you would probably use a small value, just to
space out the text a little more than the default.

Rich Text Editor Control
The Rich Text Editor JavaScript Control can be used in a remote form to allow the
end user to edit and format text using HTML formatting styles including bold and italic,
as well as ordered and bulleted lists. For this version the control is now based on Quill,
which means it should perform well with modern browsers and mobile/touch devices.

The properties and behavior of the Rich Text Editor are more or less the same as the
control provided in previous versions with a few minor updates or additions. The
$dataname property is an instance variable that stores the editor’s content formatted as
HTML, while $plaintextname is a variable that receives a plain-text version of the
editor’s contents.

If you have used the Rich Text Editor control on any remote forms in your application,
you need to open and save those forms in design mode to convert the control to the
new version.

Assigning Text Properties

Note that assigning values to the component’s text properties will set the editor’s
default values for that property, as best it can.

❑ $font
maps directly to the editor’s font droplist, and will set the default value accordingly.

❑ $textcolor
will attempt to set the default text color to one of the colors in the toolbar’s color
palette. If there is not an exact match, it will add the color as another tile in the
palette.

What’s New in Omnis Studio 8.0

180

❑ $fontsize
will set the default font size to the closest match. Set to 13 for the ‘Normal’ font size
as default.

External Class Editor
$editor and $editordata are now properties of all class types except system tables – in
previous versions these properties were only available for object classes. The
properties allow you to specify your own editor and to access the data for an Omnis
class. The definitions of these properties are:

❑ $editor
The name of the add-in tool library used to edit the class

❑ $editordata
Editor data stored with the class. Typically used by the library identified by $editor

By default, these properties are not visible in the Property Manager, therefore to make
them visible, edit the show_properties item under “properties” in the config.json file:
 "properties": {

 "show_editor": true

 },

In addition, you should note that $editordata will only appear in the Property Manager
when used in conjunction with the Notation Inspector.

$editor overrides the default editor for a class. Omnis calls $exectool for the specified
add-in library, passing it a single parameter which is an item reference to the class.

Note that the specified editor is not used when using find and replace – instead, the
normal editor for the class opens.

There is a Tech Note TNID0007 on the Omnis website that shows how you can create
an alternative schema editor.

Subforms
End users can now open or close (expand or collapse) subform set panels using a
single click – in previous versions, a double-click was required to open or close
subforms. This is enabled by making the title bar on the subform behave like the
minimize button, and therefore the title accepts single clicks. The
kSFSflagMinButtonIsTitle flag has been added for the ‘subformset_add’ action. The
new flag only applies when kSFSflagAutoLayout is specified.

When in auto layout mode, not using single open and not using open minimized, you
can now indicate that a form is to be opened minimized modes by prefixing its class
name with the ~ (tilde) character. This means that when you open a number of
subforms in a subform set, you can specify which subforms will open minimized
(collapsed).

Datafile Browser
The Omnis Datafiles browser is not now displayed in the Studio Browser by default: to
display it you need to enable it under Options in the Developer Hub in the Studio
Browser.

Omnis Window Title
sys(233) now returns the title of the main Omnis application window.

	What’s New in Omnis Studio 8.1.7
	About This Manual
	Software Support and Compatibility
	Serial Numbers and Licensing
	JavaScript Client App Server Licensing
	Web Services Serial Number
	Runtime Maintenance Agreements

	Library and Datafile Conversion
	macOS Support and Version Check
	Renaming OS X to macOS
	Sync Server
	Java 8
	Java Configuration

	Web Services
	OpenSSL
	Welcome and New Users
	CPU type: sys(110)
	External Components
	Picture Formats
	FileOps Functions
	VCS Branching
	Mac Touch Bar
	Windows Path names
	PDF Font Mapping

	What’s New in Omnis Studio 8.1.7
	Localization
	Changing System menu items (macOS)

	JavaScript Components
	JavaScript Component Templates

	Omnis Programming
	Maximum Number of Methods

	What’s New in Omnis Studio 8.1.6
	OBrowser
	JavaScript Client Bridge
	HTML Controls & Dates
	oBrowser & localStorage on macOS

	JavaScript Components
	Control Classnames

	JavaScript Remote Forms
	evLayoutChanged & pBreakpoint

	Libraries
	Library Conversion

	Headless Server
	Running as a Service

	SQL Programming
	OmnisSQL & National Fields

	Deployment
	App Server Licensing

	What’s New in Omnis Studio 8.1.5
	SQL Programming
	$definelistorrow method
	$usescale

	Window Programming
	Edge Float Properties in Subclasses

	JavaScript Components
	Labels and Date variables

	Window Components
	Toolbar button text on macOS

	Functions
	sys(237)

	What’s New in Omnis Studio 8.1.4
	OW3 HTTP Workers
	WebSocket Server Support
	$init
	$run and $start
	$wssend
	Receiving Data
	$wsclose
	Server close
	$cancel
	Ping-pong
	Timeout

	Windows Classes
	Drag and Drop

	Themes
	Appearance Theme
	Selected Tab Text Color

	What’s New in Omnis Studio 8.1.3
	JavaScript Components
	Rich Text Editor
	Data Format
	Appending Data

	OW3 Worker Objects
	FTP Directory List

	Window Components
	HTML Controls

	What’s New in Omnis Studio 8.1.2
	JSON Components
	Read-only Properties

	Window Classes
	Diacritical Characters
	Popup Content
	macOS Keyboard Layout
	Diacritical input in the IDE

	What’s New in Omnis Studio 8.1.1
	OW3 Web Worker objects
	JSON Control Editor
	SQL Query Builder
	Cmnd+. keypress on macOS

	What’s New in Omnis Studio 8.1
	Exporting Libraries to JSON
	Exporting Libraries
	Export Lib to JSON
	Update JSON tree
	Rebuild from JSON
	Restore Library
	Library and JSON mapping

	Importing Libraries
	New Library from JSON

	Directory and JSON File Structure
	Binary Data
	Directory and File Naming

	Library Dependencies
	External File classes & Tokenization

	JSON Components
	JSON Control Editor
	Control Name
	Control Properties
	Using Ready-made JS Components

	JSON Control Definition
	JSON Control Object
	name
	flags
	standardproperties
	properties
	multivalueproperties
	constants
	events
	methods
	html
	customtabname

	JavaScript

	JavaScript Forms
	Responsive Forms
	Form Layout Type
	Creating Responsive Remote Forms
	Deleting Breakpoints

	Layout Breakpoints
	Layout Breakpoint Properties
	What breakpoints should I use?
	Adding Controls
	Synchronizing Layouts
	Control Size and Layout Properties
	Remote Form Inheritance
	Responsive Form Methods
	Responsive Form Events
	Remote Form Migration
	Migration Log and detecting form width

	Component Transitions
	Client Caching
	Remote Menu Icons
	Subform Sets

	Headless Omnis Server
	Considerations
	Console Commands
	Functions
	Java
	Class Notation
	Restrictions

	Installing the Headless Server (Linux)
	CENTOS7 & REDHAT
	SUSE
	Ubuntu 16.04, 17.04 & DEBIAN 9

	Headless Server Admin Tool
	Activity
	Logs
	Settings
	Users

	Code Signed Omnis (macOS)
	Firstruninstall and Application Support folders
	Updating Components
	Deployment
	Patching a signed tree

	Web and Email Communications
	OW3 Worker Objects
	Base Worker Support
	Properties
	Constants
	Protocol Logging

	Methods
	Normal methods
	$run
	$start
	$cancel
	$getsecureoptions
	$setsecureoptions
	Callback methods
	$completed
	$cancelled
	$progress

	HTTP Worker
	Properties
	Constants
	Methods
	Normal methods
	$init
	Example
	$multipartclear
	$multipartaddfield
	$multipartaddfile
	Callback methods
	$completed

	SMTP Worker
	Properties
	Constants
	Methods
	Normal methods
	$init
	Example
	Callback methods
	$completed
	$mailshotprogress

	FTP Worker
	Properties
	Constants
	Directory list for kOW3ftpActionListDirectory
	Methods
	Normal methods
	$init
	Example
	Callback methods
	$completed
	Example

	IMAP Worker
	Properties
	Constants
	Methods
	Normal methods
	$init
	$chartoutf7
	$utf7tochar
	Callback methods
	$completed

	Push Notifications
	Push Notifications Admin Tool
	Client Command and Methods

	Property Manager
	Property Filter
	Modifying the basic set of properties

	Property Search

	Studio Browser
	Search Filter

	JavaScript Components
	Edit Controls
	Auto Correction
	Auto Capitalization
	Auto Completion

	Combo boxes and Data grids
	File Control
	Multiple File downloads
	evDownloadSent Event

	Icons Folder Name
	evAfter event queue
	Navigation Bar
	Error Text
	Text Styles
	Complex Grid
	Paged Panes
	Labels
	Grid Section
	Field List
	Maps
	Data Grids

	Web Services
	RESTful POSTs
	Queueing RESTful requests & Licensing
	RESTful remote task constructor
	Remote Task instances
	CORS configuration

	Method Editor
	Method Lines
	Displaying Control Characters
	Inherited Methods
	Comments
	Inherit or Override method Shortcut

	Code Assistant
	Custom Properties
	Tabbing Behavior

	Renaming Methods

	SQL Workers
	Additional Notifications

	Window Components
	Multi-line Entry Fields
	Disabling Plug-ins in oBrowser (macOS)
	Headed Lists and Tree Lists

	Window Programming
	Window Transparency
	Screen Size
	macOS
	Windows

	List Programming
	Select Duplicates
	$first() and $next() Methods

	Themes
	Custom Themes and Exporting

	Reports
	Zoom In/Out
	External Components

	Paper Size

	Web Commands
	HTTPSetAuthentication
	Syntax

	HTTPMethod
	Syntax

	HTTPOpen
	FTPConnect
	FTPConnect and TLS

	SMTP Workers
	Mailshots

	Functions
	SHA functions
	iso8601 functions
	sys()
	FileOps

	Component Store
	Adding Controls to a Form

	Omnis Configuration
	Template Configuration File
	Configuration File Methods

	VCS
	VCS Branching
	Showing Checked Out Classes
	Checking Out Classes

	Window Components
	Combo Boxes

	OJSON
	Static Methods

	XML
	Using Schema Files for Validation

	Localization
	String Table Editor

	Commands
	Text: and Sta: Commands

	Web Server Plugins
	VC++ Runtime Library

	SQL Query Builder

	What’s New in Omnis Studio 8.0.3
	SQLite Encryption
	Dictation for Edit Fields
	Enabling Dictation
	Using Dictation in Edit fields
	Dictation Levels

	Apple Events
	Apple Events Object
	Apple Event Methods

	Map Control
	Custom Markers
	Finding the Latitude:Longitude

	Polygon Objects

	Paged Panes
	Animated Transitions

	Worker Objects
	Push Notifications

	PostgreSQL
	JSON column types

	Functions
	Hardware ID
	Icon Functions
	sys(234) function

	Native Switch
	Window Classes
	Debugging code in oBrowser

	What’s New in Omnis Studio 8.0.2
	Mobile App Deployment
	Windows 10 Wrapper
	Sync Server
	$syncinit HostString
	Wrapper Compatibility

	JavaScript Client
	Custom Loading Indicator
	Rich Text Editor Control
	Dynamically Loaded Resources
	Code Blocks
	Other Additions
	New Properties
	New String Table IDs
	Tooltips for buttons
	Text Displayed On Controls

	Component Icons
	Server Date and Time Setting
	Subform Sets
	Subform Instance Parameters
	Device Control
	Component Borders
	JavaScript & External Component Icons

	Worker Objects
	Web Services
	Date and Date-time values
	ISO8601 date functions
	CORS

	Method Editor
	Method Templates
	Method Template Component Store class

	Creating Unrecognized Variables
	List Variable Values
	Sorting Variables
	Adding Blank Method Lines

	Date and Number Formatting
	FileOps
	Errors
	Pathnames
	Large Files

	Text Escapes for URIs
	Generating UUIDs
	Deployment
	Changing the Hide/Quit Omnis Option

	Call DLL
	Call/Register DLL

	Java Objects
	Java Options

	Window Classes
	Debugging code in oBrowser

	What’s New in Omnis Studio 8.0.1
	AVPlayer
	Properties
	Methods
	Events

	Color Themes and Appearance

	What’s New in Omnis Studio 8.0
	64-bit and Cocoa on macOS
	Cocoa APIs
	HD Graphics and Fonts
	External Components
	64-bit DAMs
	HFS and Path Separators
	Shared Access to Libraries and Datafiles

	App Builder
	Creating a New Library
	Creating an app from your Database

	Developer Hub
	Hub
	Applets and Samples
	Faults
	Options
	Show These Tools
	Default Browser Node
	New Libraries
	Appearance
	Appearance Theme
	Window Frame Theme

	Code Assistant
	Short Cut Keys and Help
	Short Cut Key Summary

	What Help does the Code Assistant Provide?
	Item References and Notation
	Functions
	Method Information
	Group Methods
	$ref
	$assign
	Tooltips
	Initial Values
	Expanded Entry
	Replacing Data
	Method Commands
	Parameter Highlighting
	Parenthesis Matching
	Overloads

	Method History
	Command Blocks
	Client-side Scripting
	Method Notes

	Color Themes and Appearance
	Appearance Property
	Appearance and Theme Files
	Appearance Configuration File Contents
	Tab Panes
	Lists
	Headed Lists
	Buttons
	Radio buttons and Check boxes
	Tree Lists
	Borders
	Group Boxes
	Reports
	Page and Print Preview
	Scrollbars
	Menus and Window Menu bars
	Toolbars and Docking Area
	Client Methods
	Chroma Coding
	Highlight Color
	Property Manager

	Changing and Testing Colors
	Additional Notes
	System dialogs and Menus
	JavaScript Client
	macOS and Cocoa

	Window Frame Appearance on Windows
	Window Frame Configuration files
	Active Caption Colors

	Drag and Drop Data
	Example Library
	Dragging Data
	Dropping Data
	Scrolling

	Events
	evDrag
	evDragFinished
	evCanDrop
	evWillDrop
	evDrop

	Drag Values
	Combo box
	Data grid
	Entry
	List
	Picture
	Rich text
	Tree
	Tab control

	Dragging and Dropping Files
	closefile
	readfile
	Files dragged from system

	Drag and Drop for Thick Client

	HTML Components for Desktop Applications
	Creating Omnis HTML Controls
	Third-party HTML controls
	<control name>.htm
	<control name>.json
	The Callback Object
	Sending Events
	Debugging
	Drag Object Support
	Reloading HTML Controls
	Tooltips

	Adding HTML controls to your window
	$dataname
	$disabledefaultcontextmenu
	$htmlcontroloptions
	$applycss and $cssextra
	$dragmode
	$hiliteline
	$callmethod()

	Ports
	Events
	evCallMethodDone
	evClick and evDoubleClick
	evControlEvent

	Browser Component
	Setting web pages
	Methods
	Events
	evBrowserLoadStateChange
	evBrowserFrameLoadError
	evBrowserOpenUrl
	evBrowserStartDownload
	evBrowserDownloadProgress
	evBrowserFinishedDownload

	Configuration

	High Definition Displays
	Compatibility Issues
	Tab strip

	HD Icons and Graphics
	Icon Data files and Icon sets
	Creating and using HD Icon Images
	Image File names
	Check Boxes Icons
	Studio IDE icons
	Image Scaling
	Non-standard Size Images
	Setting the Icon set in your library
	Setting the Icon ID for objects
	Errors
	Assigning a URL for images
	Image handling for tree lists

	Deploying HD Icons
	Standalone Client Apps
	Studio IDE and Runtime Icons

	Exporting Icons from an Icon Datafile

	Auto Updates
	Segmented Control
	Properties
	Events

	List Pager
	Changing the Pager’s Appearance

	Worker Objects
	Push Connections
	Creating a push connection
	Utilizing REST
	Remote Form Method

	Miscellaneous Enhancements
	JSON Objects
	Edge Float Constants
	Web Services
	HTTP client workers
	Screen Report Fields
	Zoom
	Search

	Icon Sets
	IMAP
	Multi-line Fields
	Rich Text Editor Control
	Assigning Text Properties

	External Class Editor
	Subforms
	Datafile Browser
	Omnis Window Title

