

Whatôs New in
Omnis Studio 8.1

Omnis Software
August 2017

40-082017-04

The software this document describes is furnished under a license agreement. The software may be used or copied
only in accordance with the terms of the agreement. Names of persons, corporations, or products used in the tutorials
and examples of this manual are fictitious. No part of this publication may be reproduced, transmitted, stored in a
retrieval system or translated into any language in any form by any means without the written permission of Omnis
Software.

© Omnis Software, and its licensors 2017. All rights reserved.
Portions © Copyright Microsoft Corporation.
Regular expressions Copyright (c) 1986,1993,1995 University of Toronto.

© 1999-2017 The Apache Software Foundation. All rights reserved.
This product includes software developed by the Apache Software Foundation (http://www.apache.org/).
Specifically, this product uses Json-smart published under Apache License 2.0
(http://www.apache.org/licenses/LICENSE-2.0)

The iOS application wrapper uses UICKeyChainStore created by http://kishikawakatsumi.com and governed by the MIT
license.

Omnis® and Omnis Studio® are registered trademarks of Omnis Software.

Microsoft, MS, MS-DOS, Visual Basic, Windows, Windows Vista, Windows Mobile, Win32, Win32s are registered
trademarks, and Windows NT, Visual C++ are trademarks of Microsoft Corporation in the US and other countries.

Apple, the Apple logo, Mac OS, Macintosh, iPhone, and iPod touch are registered trademarks and iPad is a trademark
of Apple, Inc.

IBM, DB2, and INFORMIX are registered trademarks of International Business Machines Corporation.

ICU is Copyright © 1995-2003 International Business Machines Corporation and others.

UNIX is a registered trademark in the US and other countries exclusively licensed by X/Open Company Ltd.

J2SE is Copyright (c) 2003 Sun Microsystems Inc under a license agreement to be found at:
http://java.sun.com/j2se/1.4.2/docs/relnotes/license.html
Portions Copyright (c) 1996-2008, The PostgreSQL Global Development Group
Portions Copyright (c) 1994, The Regents of the University of California

Oracle, Java, and MySQL are registered trademarks of Oracle Corporation and/or its affiliates

SYBASE, Net-Library, Open Client, DB-Library and CT-Library are registered trademarks of Sybase Inc.

Acrobat is a registered trademark of Adobe Systems, Inc.

CodeWarrior is a trademark of Metrowerks, Inc.

This software is based in part on ChartDirector, copyright Advanced Software Engineering (www.advsofteng.com).

This software is based in part on the work of the Independent JPEG Group.
This software is based in part of the work of the FreeType Team.

Other products mentioned are trademarks or registered trademarks of their corporations.

http://kishikawakatsumi.com/

 Table of Contents

 3

Table of Contents
ABOUT THIS MANUAL .. 9

SOFTWARE SUPPORT AND COMPATIBILITY 10
Serial Numbers and Licensing 10
Library and Datafile Conversion 10
macOS Support and Version Check 10
Renaming OS X to macOS 11
Sync Server ... 11
Java 8 .. 11
Web Services ... 11
OpenSSL ... 12
Welcome and New Users ... 12
CPU type: sys(110) .. 12
External Components ... 12
Picture Formats .. 12
FileOps Functions .. 12
VCS Branching .. 12
Cmnd+. keypress on macOS 13
Mac Touch Bar ... 13

WHATôS NEW IN OMNIS STUDIO 8.1 14

EXPORTING LIBRARIES TO JSON 16
Exporting Libraries ... 16
Importing Libraries ... 17
Directory and JSON File Structure 18
Library Dependencies .. 19
External File classes & Tokenization 19

JSON COMPONENTS .. 20
JSON Control Editor ... 20
JSON Control Definition ... 22
JSON Control Object .. 23
JavaScript .. 30

JAVASCRIPT FORMS ... 31
Responsive Forms ... 31
Component Transitions .. 36
Client Caching .. 36
Remote Menu Icons ... 36
Subform Sets ... 37

HEADLESS OMNIS SERVER .. 37
Considerations ... 37
Installing the Headless Server (Linux) 38
Headless Server Admin Tool 39

CODE SIGNED OMNIS (MACOS) 41
Firstruninstall and Application Support folders.......... 41
Updating Components ... 41
Deployment .. 41
Patching a signed tree ... 42

WEB AND EMAIL COMMUNICATIONS................................ 43
OW3 Worker Objects ... 43
Base Worker Support ... 43
HTTP Worker ... 46
SMTP Worker .. 51
FTP Worker ... 55

Table of Contents

4

IMAP Worker.. 59
PUSH NOTIFICATIONS .. 64

Push Notifications Admin Tool 64
Client Command and Methods 65

PROPERTY MANAGER ... 65
Property Filter .. 65
Property Search ... 66

STUDIO BROWSER .. 67
Search Filter .. 67

JAVASCRIPT COMPONENTS ... 68
Edit Controls .. 68
Combo boxes and Data grids 68
File Control .. 68
Icons Folder Name ... 69
evAfter event queue ... 69
Navigation Bar ... 69
Error Text ... 70
Text Styles ... 70
Complex Grid ... 70
Paged Panes ... 70
Labels .. 70
Grid Section ... 70
Field List .. 70
Maps .. 70
Data Grids .. 71

WEB SERVICES ... 71
RESTful POSTs ... 71
Queueing RESTful requests & Licensing 71
RESTful remote task constructor.............................. 72
Remote Task instances .. 72
CORS configuration ... 72

METHOD EDITOR .. 72
Method Lines ... 72
Displaying Control Characters 72
Inherited Methods .. 72
Code Assistant ... 73
Renaming Methods .. 73

SQL WORKERS .. 74
Additional Notifications ... 74

WINDOW COMPONENTS .. 74
Multi-line Entry Fields ... 74
Disabling Plug-ins in oBrowser (macOS) 74
Headed Lists and Tree Lists 75

WINDOW PROGRAMMING ... 75
Window Transparency ... 75
Screen Size ... 75

LIST PROGRAMMING.. 76
Select Duplicates ... 76
$first() and $next() Methods 76

THEMES ... 76
Custom Themes and Exporting 76

REPORTS ... 77
Zoom In/Out ... 77
Paper Size ... 78

WEB COMMANDS .. 78
HTTPSetAuthentication .. 78

 Table of Contents

 5

HTTPMethod.. 78
HTTPOpen ... 79
FTPConnect ... 79
FTPConnect and TLS .. 80

SMTP WORKERS.. 80
Mailshots .. 80

FUNCTIONS .. 80
SHA functions .. 80
iso8601 functions ... 80
sys() ... 81
FileOps .. 81

COMPONENT STORE ... 81
Adding Controls to a Form 81

OMNIS CONFIGURATION .. 81
Template Configuration File 81
Configuration File Methods 82

VCS .. 82
VCS Branching .. 82
Showing Checked Out Classes 82
Checking Out Classes .. 82

WINDOW COMPONENTS .. 83
Combo Boxes .. 83

OJSON ... 83
Static Methods ... 83

XML .. 83
Using Schema Files for Validation 83

LOCALIZATION .. 84
String Table Editor ... 84

COMMANDS .. 84
Text: and Sta: Commands.. 84

WEB SERVER PLUGINS ... 84
VC++ Runtime Library .. 84

QUERY BUILDER ... 84

WHATôS NEW IN OMNIS STUDIO 8.0.3 85

SQLITE ENCRYPTION .. 86
DICTATION FOR EDIT FIELDS .. 87

Enabling Dictation .. 87
Using Dictation in Edit fields 87
Dictation Levels .. 87

APPLE EVENTS ... 88
Apple Events Object... 88
Apple Event Methods ... 88

MAP CONTROL ... 89
Custom Markers ... 89
Polygon Objects ... 91

PAGED PANES .. 92
Animated Transitions ... 92

WORKER OBJECTS ... 92
Push Notifications .. 92

POSTGRESQL .. 92
JSON column types ... 92

FUNCTIONS .. 93
Hardware ID ... 93
Icon Functions .. 93
sys(234) function .. 93

Table of Contents

6

NATIVE SWITCH .. 93
WINDOW CLASSES .. 93

Debugging code in oBrowser 93

WHATôS NEW IN OMNIS STUDIO 8.0.2 95

MOBILE APP DEPLOYMENT .. 97
Windows 10 Wrapper ... 97
Sync Server ... 97

JAVASCRIPT CLIENT .. 98
Custom Loading Indicator .. 98
Rich Text Editor Control ... 98
Component Icons ... 100
Server Date and Time Setting 100
Subform Sets ... 100
Subform Instance Parameters 100
Device Control ... 100
Component Borders ... 101
JavaScript & External Component Icons 101

WORKER OBJECTS ... 101
WEB SERVICES ... 101

Date and Date-time values 101
ISO8601 date functions .. 102
CORS .. 102

METHOD EDITOR .. 103
Method Templates ... 103
Creating Unrecognized Variables 104
List Variable Values ... 104
Sorting Variables .. 105
Adding Blank Method Lines 105

DATE AND NUMBER FORMATTING 105
FILEOPS ... 106

Errors ... 106
Pathnames ... 106
Large Files ... 106

TEXT ESCAPES FOR URIS ... 107
GENERATING UUIDS ... 107
DEPLOYMENT ... 107

Changing the Hide/Quit Omnis Option 107
CALL DLL ... 108

Call/Register DLL ... 108
JAVA OBJECTS ... 108

Java Options .. 108
WINDOW CLASSES .. 108

Debugging code in oBrowser 108

WHATôS NEW IN OMNIS STUDIO 8.0.1 109

AVPLAYER ... 109
Properties .. 109
Methods ... 110
Events .. 110

COLOR THEMES AND APPEARANCE 110

WHATôS NEW IN OMNIS STUDIO 8.0 111

64-BIT AND COCOA ON MACOS 113
Cocoa APIs .. 113
HD Graphics and Fonts .. 113

 Table of Contents

 7

External Components ... 113
64-bit DAMs ... 113
HFS and Path Separators 114
Shared Access to Libraries and Datafiles 114

APP BUILDER .. 115
Creating a New Library .. 115
Creating an app from your Database 115

DEVELOPER HUB .. 116
Hub .. 116
Applets and Samples ... 116
Faults ... 117
Options .. 117

CODE ASSISTANT .. 117
Short Cut Keys and Help .. 118
What Help does the Code Assistant Provide? 119
Method History ... 123
Command Blocks ... 123
Client-side Scripting ... 123
Method Notes... 123

COLOR THEMES AND APPEARANCE 124
Appearance Property ... 124
Appearance and Theme Files 125
Appearance Configuration File Contents 125
Changing and Testing Colors 129
Additional Notes ... 129
Window Frame Appearance on Windows 129

DRAG AND DROP DATA ... 130
Example Library ... 130
Dragging Data .. 131
Dropping Data .. 131
Events .. 131
Drag Values ... 134
Dragging and Dropping Files 135
Drag and Drop for Thick Client 136

HTML COMPONENTS FOR DESKTOP APPLICATIONS 137
Creating Omnis HTML Controls 138
Adding HTML controls to your window 144
Ports .. 145
Events .. 145
Browser Component .. 146
Configuration.. 149

HIGH DEFINITION DISPLAYS ... 150
Compatibility Issues ... 150
HD Icons and Graphics .. 150

AUTO UPDATES .. 154
SEGMENTED CONTROL .. 155

Properties .. 155
Events .. 156

LIST PAGER .. 156
Changing the Pagerôs Appearance 156

WORKER OBJECTS ... 156
Push Connections .. 156

MISCELLANEOUS ENHANCEMENTS 158
JSON Objects .. 158
Edge Float Constants ... 158
Web Services ... 158

Table of Contents

8

HTTP client workers ... 159
Screen Report Fields ... 159
Icon Sets .. 160
IMAP .. 160
Multi-line Fields .. 160
Rich Text Editor Control ... 160
External Class Editor .. 161
Subforms ... 161
Datafile Browser ... 161
Omnis Window Title ... 161

 Software Support and Compatibility

 9

About This Manual
This document describes the new features and enhancements in Omnis Studio 8.1,
8.0.3, 8.0.2, 8.0.1, and 8.0, including several new features in the JavaScript Client and
in the Studio IDE itself. A few minor enhancements or updates were added for the
Studio 8.1.1 release, but these were added into the Studio 8.1 information.

Please see the Readme.txt file for details of bug fixes and any last-minute notes for the
8.1.1 release. See the Install.txt file for information about installation.

If you are new to Omnis Studio
When you start Omnis Studio for the first time the Welcome window will be displayed,
which provides a short interactive tutorial, or walkthrough, that allows you to create a
simple app that you can open on your desktop or web browser. The Advanced option
lets you skip the tutorial and go straight to the Omnis Studio IDE.

After you close the Welcome window, you will see the Studio Browser which provides
access to all the main tools in Omnis Studio (if this is not showing press F2, or click on
the Compass icon marked óBrowserô on the main Omnis toolbar). The Hub should be
selected in the Studio Browser which provides information and videos to help you get
started in Omnis Studio, as well as information about recent reported faults in Omnis
Studio. You can look at some example Omnis applications under the Applets and
Samples options: you can open each example in your web browser or within the
Omnis IDE, and you can examine the Omnis code in the associated library under the
Libraries option in the Studio Browser.

Creating a new library
To create a new Omnis application (library) you can click on the Libraries option in the
Studio Browser, click on the New Library option and step through the process of
creating an Omnis application using the App Builder. This provides a number of
different options for starting your application, including from a sample database, your
own database, or by importing some data from a comma- or tab-separated file.

Where to get help
All the Omnis Studio manuals are available on the Omnis website, plus many technical
notes and videos, at: www.omnis.net, and there is a technical forum on the new Omnis
Developer portal: developer.omnis.net

About This Manual

10

Software Support and Compatibility
Serial Numbers and Licensing
If you are upgrading from any previous version of Omnis Studio, including 8.0.x, 6.1.x,
6.0.x or 5.x (and before), you will require a new serial number to run the Development
version of Omnis Studio 8.1. Contact your local sales office for further details about
new development and deployment licenses for Omnis Studio 8.1.

JavaScript Client App Server Licensing

Multiple connections to the JavaScript Client App Server from a single client browser
are now counted as only one use of a Server license. In versions prior to Studio 8.1,
multiple connections from a single client browser were being counted as separate
users and consuming server licenses.

From Studio 8.1, when the JavaScript Client now communicates with a web server, it
generates a UUID to identify itself, and saves it as a cookie which it sends as a
parameter whenever it connects to the server. The cookie expires after a year, and a
new UUID is generated. Cookies must be enabled on the web server and any clients
connecting to the server for this to work.

Web Services Serial Number

You no longer require a Web Services serial number to use the REST based web
services feature in the Professional Edition of Omnis Studio 8.1 or above. However, in
order to use the HTTPClientWorker object to create a Web Services client you still
need to install and configure Java (not required for the new OW3 CURL based worker
objects). If you are creating your own Web Services, from your Omnis code, your
server will still require a deployment Omnis App Server license when you are ready to
deploy your app.

Runtime Maintenance Agreements

With Omnis Studio 8.0.x or above we have introduced a new Runtime Maintenance
Agreement (RMA). For further details about these new agreements, please contact
your local sales office.

Library and Datafile Conversion
Omnis Studio 8.1 will convert existing version 8.0.x, 6.1.x, 6.0.x and 5.x libraries ï THE
CONVERSION PROCESS IS IRREVERSIBLE.

Omnis Studio 8.1 will convert version 5.x Omnis datafiles (note that non-Unicode
datafiles will be converted to Unicode), but 8.0.x, 6.1.x and 6.0.x datafiles will not be
converted in Omnis Studio 8.1.

IN ALL CASES, YOU SHOULD MAKE A SECURE BACKUP OF ALL LIBRARIES AND
OMNIS DATAFILES BEFORE OPENING THEM IN OMNIS STUDIO 8.1.

NOTE: The Omnis Datafiles browser is not displayed in the Studio Browser when you
first start Omnis Studio 8.1: to display the Omnis Datafiles browser, you need to enable
it under the new Options setting under the Hub option in the Studio Browser.

macOS Support and Version Check
Omnis Studio 8.1 64-bit is certified to run against a minimum of macOS version 10.11
(El Capitan) or higher. Omnis may continue to run on 10.9 and 10.10, but these are not
supported and any issues specific to these versions of the OS will not be addressed.

The Omnis Studio 64-bit application will check the version of macOS and will not run if
it is older than the minimum requirement to run Omnis Studio on macOS. In this case,
Omnis Studio will be marked with a disabled icon.

 Software Support and Compatibility

 11

Renaming OS X to macOS
With the release of macOS Sierra, Apple renamed ñOS Xò to ñmacOSò, therefore we
renamed all occurrences of ñOS Xò and ñOSXò to ñmacOSò in Omnis Studio (starting
with 8.0.3 and above). The changes in Omnis Studio are mainly in the notation, such
as property names and descriptions, theme colors for $appearance, and in the online
docs, as well as the Omnis Help. For example, all $osxé properties have been
renamed to $macosé, and some constants have been renamed, such as kMacOSX to
kmacOS.

This change should not affect the majority of your code since this is a straightforward
update in the string resources in Omnis Studio, but you should check your libraries for
any literal occurrences of ñOS Xò and similar usage and update those accordingly.

Sync Server
A new version of the Sync Server, version 2.3, which was released with Studio 8.0.3,
uses a RESTful interface to allow the Omnis Server to communicate with mobile
clients: note new wrappers are required for this version of Sync Server. See the Sync
Server section below for further details.

Java 8
To use Java in Omnis Studio 8.0.x or later for development and deployment (such as
Java Objects or the Web Services component, which uses Java) you now need to
install and reference Java Version 8, which is available from Oracle: you can
download the Java Developer Kit (JDK), for Windows or macOS, or Java Runtime
Environment (JRE), for Windows only, from the following location:

Ç http://www.oracle.com/technetwork/java/javase/downloads

Java Configuration

Having installed the latest JDK or JRE you need to configure the JVM, either using a
new entry in the Omnis configuration file (config.json), or by setting an environment
variable: OMNISJVM64 or OMNISJVM32, depending on whether you are running the
64-bit or 32-bit version of Omnis Studio. If you specifiy a value in config.json, it
overrides the value in the environment variable.

To setup the JVM in the config.json file, update the ñjvmò entry in the ñjavaò object in the
configuration file, for example, on Windows:
"java": {

 "jvm":"c: \ \ Program Files \ \ Java \ \ jre8 \ \ bin \ \ server \ \ jvm.dll",

 "resetClassCacheOnStartup": false

 }

Or on macOS:
"java": {

 "jvm":"/Library/Java/JavaVirtualMachin es/jdk1.8.0_45.jdk/

Contents/Home/jre/lib/server/libjvm.dylib",

 "resetClassCacheOnStartup": false

 }

You can set the JVM in the config.json file on a Linux server in a similar manner.

Web Services
Support for REST based Web Services was introduced in Omnis Studio 6.1, including
support for Swagger definitions to define an Omnis RESTful API for creating your own
web services from Omnis code. From Studio 8.0 onwards, Omnis supports Swagger
2.0 rather than 1.2 for RESTful web services. This only affects the Swagger files Omnis
generates, and there is now just one definition per service. There is a óSave to Fileô link
to save the Swagger file for a service to disk under the Web Service Server node in the
Studio Browser.

About This Manual

12

In addition, the defaultreslist.json file has been replaced with a file called default.json
(in the same location). The nickname property (in both the method editor and notation)
has been replaced with operationid, therefore $httpoperationid replaces $httpnickname.

Omnis uses the first non-empty description it can find for a remote task in the service
as the description of the service in the Swagger file.

OpenSSL
There are a number of Web commands that relied on OpenSSL in previous versions to
provide secure communications: these included FTPConnect, HTTPOpen,
TCPConnect, POP3Connect, and so on. We have removed the reliance on OpenSSL
which means you no longer have to install it to use secure connections in these
commands. Instead, the built-in security technology will be used, so on Windows
óSecure Channelô (Schannel) is used, on macOS óSecure Transportô is used, and on
Linux OpenSSL will continue to be used since it is the default security technology on
Linux. See the Omnis Help for details about these commands (FTPConnect, etc).

Welcome and New Users
When you first launch Studio 8.1 a Welcome window will open allowing you to create a
small ñHello Worldò type application containing a JavaScript remote form or a window
class. The Advanced otion will take you straight to the Omnis IDE, or if you donôt want
the Welcome window to appear again, you can uncheck the óShow at Startupô option.

The Applets and Samples that used to appear in the old Welcome screen have been
added to the Hub in the Studio Browser. The tutorial is available in Chapter 1 of the
Web Development manual on the Omnis website, including a ZIP file of the Tutorial
example libraries.

In addition, a new tool called the App Builder, that allows new users to create or
prototype applications quickly and easily, has been added to the óNew Libraryô option
under the Libraries option in the Studio Browser.

CPU type: sys(110)
The sys(110) function returns the CPU type of the computer running Omnis. This
function is no longer supported in Studio 8.0.x or higher, on the 64-bit versions of
Omnis Studio, on all platforms. Since there is such a variation of processor types,
across all types of computers and devices, this function is no longer a reliable indicator
of the computer type or platform Omnis is running on.

External Components
The external components Flic, MCIplay, NPAPI, Pcx, Stix and Wbmp are no longer
supported in this release and have been removed from the Xcomp directory for all
platforms.

Picture Formats
The WBMP and PCX picture formats are no longer supported in this release. This
affects the pictconvto/from functions and any other places where you set the picture
format.

FileOps Functions
The $readentirefile and $writeentirefile FileOps functions are no longer supported and
have been removed from the Functions tab in the Catalog.

VCS Branching
Access to branching in the VCS has been removed from the Studio Browser, although
VCS branching will continue to work in existing projects for backwards compatibility:
see the section on VCS for details.

 Software Support and Compatibility

 13

Cmnd+. keypress on macOS
There is a new setting in the Omnis Configuration file (config.json) in the macOS group
(added for Studio 8.1.1). When set to True (the default), the "allowStopInRuntime"
option will ensure that the Cmnd+. (Cmnd plus period) key press will stop execution
(e.g. break a loop) in a runtime on macOS.

Mac Touch Bar
The Mac Touch Bar API can be enabled/disabled via plist; it is disabled by default.
There is a new Boolean entry called "enableTouchBar" in the Info.plist inside the Mac
application package. To enable the touch bar set this to YES.

Whatôs New in Omnis Studio 8.1

14

Whatôs New in Omnis Studio
8.1

The following major enhancements have been added to Omnis Studio 8.1, as well as
several other minor enhancements also listed in this document:

Ç Exporting Libraries to JSON
you can now export/import Omnis libraries in JSON format which means you can
manage and share your Omnis libraries in a third-party VCS repository, such as
GIT or SVN

Ç Responsive JavaScript Forms
JavaScript remote forms now allow you to set custom breakpoints for different
screen widths (replacing the existing fixed screen sizes), which means the
appropriate form layout and controls will be loaded for the current device; in
addition, form controls can transition smoothly when changing the remote form size
or orientation

Ç JSON Controls
you can now define your own remote form controls using JSON or wrap ready-
made JavaScript components from a third-party; this provides a new, or alternative
method to creating external JavaScript components using C++

Ç Headless Omnis Server
there is a new ñheadlessò version of the Omnis App Server, available on Linux only,
that allows you to deploy your JavaScript Client based web and mobile
applications; there is a new Admin tool to help you configure the headless server

Ç Code Signed Omnis on macOS
the Omnis Studio application package is now code signed on macOS, which
provides increased security for you and your end users; consequently, files that
may need modification (libraries) are copied to the Application Support folder when
Omnis is first run

Ç Web and Email Communications
there is a new external package, called OW3, that provides a Worker Object
containing various methods for performing ñlow-levelò Web- and Email-based
communications (HTTP, SMTP, FTP, and IMAP); the new package uses CURL,
does not need Java to be installed and configured, and supercedes the previous
external commands and web workers

Ç Push Notifications
Push Notifications are now supported in iOS, Android, and Windows 10 wrappers
(version 2.0+) which means you can send messages to clients using your mobile
apps; support for notifications is now built into the Wrapper SDKs, and there is a
new admin tool under the Tools menu to allow you to set up notifications on clients
and the Omnis Server

Ç Property Manager and Studio Browser
the Property Manager has some significant enhancements that will help new and
existing users, including a filter for showing a subset or all properties and a Search
box for locating specific properties: in addition, the Studio Browser has a Search
box to filter the current view to help you locate classes and other items

Ç JavaScript Components
there are some new properties in JavaScript Edit fields to auto correct, capiltalize,
and complete words as the end user types; the automatic correction feature is also
available for the editable part of Combo boxes and in Data grids; the JS File control
now allows a number of files to be downloaded specified in a list; there is a new

 Software Support and Compatibility

 15

property $showheaderlines for Headed Lists and Tree Lists; if true (the default),
header separator lines are drawn in the header

Ç Web Services
RESTful web services now support POSTs with the content type "application/x-
www-form-urlencodedò, such as the content type that would be generated by an
HTML form on a web page; plus RESTful requests are now queued by the Omnis
Server until they succeed

Ç Method Editor
method lines longer than 255 characters now fully display in the method editor;
control characters are now displayed in data or content when inspecting a variable
in the Method Editor; inherited methods are no longer prefixed with comments from
the inherited method; you can use the shortcut key Ctrl+Shift+I to inherit or override
the current method; the Code Assistant now recognises custom properties

Ç SQL Workers
now support an interim $progress method which can be called whilst the worker is
running to provide notifications

Ç Window Programming
window classes and the majority of window components now have the $alpha
property; multi-line fields now have the property $linecount to limit the number of
lines of text/data that can be entered into the field; $toplevelhwnd has a new
property $screen, that allows you to track the location and dimensions of the
screen, as the window changes position

Ç Lists
there is a new method $selectduplicates to select duplicate lines in the list; the
$first() and $next() list methods now take an additional optional condition parameter
which must be met in order to match the first or next line

Ç Themes
you can now have multiple custom themes, and you can export and import your
themes

Ç Reports
the report class editor toolbar now has Zoom In and Zoom Out buttons which
control the DPI value used for report coordinates and rendering fonts; and the A6
paper size has been added

Ç Web commands
there are two new commands for authentication and executing a HTTP method,
and a new parameter UseProxy in HTTPOpen; FTPConnect has a new optional
parameter to allow you to specify the Charset

Ç Functions
there are two new functions to generate 256-bit or 512-bit signatures; and the
iso8601 functions provide better handling for hundredths of a second and
milliseconds

Whatôs New in Omnis Studio 8.1

16

Exporting Libraries to JSON
Omnis Studio 8.1 allows you to export an Omnis library to a directory tree containing a
number of text files in JSON format representing your library, including all the classes,
controls and methods in your library. Additionally, Studio 8.1 will also allow you to
import an Omnis library from such a JSON tree.

Providing the ability to export and import Omnis libraries in JSON format will allow
developers to use a third-party version control system such as GIT or SVN to manage
Omnis applications or library source code. In particular, this will allow efficient and
secure application development in a team of Omnis developers, as well as the sharing
of Omnis libraries and third-party tools among members of the Omnis community.

Exporting Libraries
To export a library to JSON, you need to select the library under the main Libraries
option in the Studio Browser. After selecting the library the Export Lib to JSON option
will be visible in the library options, allowing you to export the library to JSON (after you
export a library, the Update and Rebuild options will also appear).

If you have multiple libraries open in the Studio Browser, the Export, Update and
Rebuild options will apply to the currently selected library. By default, different libraries
will be exported to different JSON trees, under the export folder, using the library name
as the default name for your JSON tree. As you use the Export, Update and Rebuild
options, Omnis will maintain an internal table of which library belongs to which JSON
export tree to allow you to work on multiple libraries or projects simultaneously.

Export Lib to JSON

The Export Lib to JSON option exports the currently selected library to a new JSON
tree. The location of the export folder defaults to óexportsô in the main Omnis tree, and
the export process automatically creates and names a sub-directory in the export folder
using the name of your library.

Update JSON tree

The Update JSON tree option exports the library to its associated JSON tree, which in
effect will update any classes or methods that have changed, or add any new classes
in your library. You Should Note that the update option deletes the existing JSON tree,
and replaces it with a completely new JSON tree built from the updated library.

The update process first checks for any conflicts and reports these if any are found. For
example, Omnis will report an error if a JSON file or folder is missing or has been

 Exporting Libraries to JSON

 17

renamed. You need to rectify these errors before you can update, or you can ignore the
conflicts in the error log window and proceed with the update.

Rebuild from JSON

The Rebuild from JSON option archives the current library open in the Studio Browser
to the óarchivesô folder and replaces it with a new library built from the associated JSON
tree.

Each time you use the Rebuild option, Omnis places a new copy of the current library
in the archives folder and appends a number to the name of the library. The last
version of the library in the archive folder is then used during the restore process as the
most recent archive.

Once the Rebuild option has been run, the Restore Library option appears.

Restore Library

The Restore Library option overwrites the current library in the Studio Browser with
the previously archived version.

Library and JSON mapping

The Studio Browser maintains a log of which library maps to which JSON folder, which
is essential when working with multiple libraires. A file called óexports.jsonô is created in
the óstudioô folder that contains the mapping for all your exported libraries, so for each
library there is a record of the name and path of the Omnis library file, the name and
path of its associated JSON folder, and the path of the archived library, if it exists; note
the name of the most recent archive library is used.

Importing Libraries
You can import a library into the Studio Browser from an existing JSON tree that was
previously exported from Omnis Studio using the Export Lib to JSON option. For
example, you could check out an Omnis JSON tree from a third-party VCS, such as
GIT or SVN, and import it into Omnis to start a new project.

Note you cannot open a library from a JSON tree using the standard Open Library
option in the Studio Browser (which can only open a .LBS file). You have to import a
JSON tree first to create the library before it can be opened in the Studio Browser.

New Library from JSON

To import a library from a JSON tree, you need to select the Libraries node in the
Studio Browser and click on the New Lib from JSON option.

The New Lib from JSON option imports a JSON tree that was previously exported
from Omnis and creates a new Omnis library file (.LBS). When you have created the
new library, its classes will appear in the Studio Browser.

Whatôs New in Omnis Studio 8.1

18

Directory and JSON File Structure
The following sections describe the JSON file & folder structure of a library exported
from Omnis Studio using the Export Lib to JSON option, which may help you
understand how the exported JSON could be managed. Note that all text files exported
from Omnis use UTF-8 encoding, including the .json and .omh files, and are formatted
suitable for viewing in a text editor.

An Omnis library is represented by a folder that contains the file called ólibrary.jsonô:
this folder has the same name as the library and is referred to as the ólibrary folderô.
library.json contains top-level information about the library, such as the library
preferences and version number.

Within the library folder, there is a tree of class directories that represents the folder
structure of the Omnis library. Each class in your library has its own directory, and if the
class itself is an Omnis folder class, it contains sub-directories for the Omnis classes
contained in that Omnis folder.

Each class directory has the same name as the class name (see the note on directory
and file naming below). Every class directory contains a JSON file named óclass.jsonô.
This contains top-level information about the class, including:

Ç Class type

Ç Class properties

Ç For classes that support methods: definitions of class and instance variables, and
for task and remote task classes, definitions of task variables.

File classes also have a file called óindexes.jsonô within the class directory, if the file
class defines any indexes.

If the class supports methods, the class directory also contains a JSON file named
ómethods.jsonô provided that there are some class methods. methods.json contains an
array of the class methods, where each entry contains various properties of the method
and definitions for parameters and local variables.

There is a file in the class directory for each method defined in methods.json, named
<method name>.omh (subject to the file naming rules below), that contains the method
code. The ó.omhô file extension is proprietory to Omnis, but the file format is text like the
other files.

If the class can contain objects, then there are two diff erent structures depending on
the class type:

Ç For file, query, schema and search classes, all objects and their properties etc. are
in a single file called óobjs.jsonô in the class directory. objs.json contains an array of
objects.

Ç For all other class types that can have objects, the class directory can have a
number of sub-directories:
 - objs
 - bobjs
 - inheritedobjs

The óobjsô directory contains a sub-directory for each object in the class, where the
directory name is the object name (subject to the directory naming rules below). Each
object sub-directory contains a file named óobject.jsonô that contains object properties
etc, and if the object has methods, there is an identical structure to that used for the
class methods: a methods.json file, and <method name>.omh files.

The óbobjsô directory is only present for window classes (JavaScript forms do not have
background objects). It contains a sub-directory for each background object in the
class, named using the object ident (subject to the directory naming rules below as
older libraries can unfortunately contain objects with duplicate idents). Each
background object sub-directory contains a file named object.json that contains object
properties, etc.

 Exporting Libraries to JSON

 19

The óinheritedobjsô directory is only present for classes that support inheritance. It
contains a sub-directory for each superclass object that either defines or overrides a
method in the subclass. Each sub-directory contains methods.json and <method
name>.omh files just like those used for class and object methods, representing the
methods defined or overridden for the object.

Binary Data

There are various properties which require a binary representation in the JSON library
representation. These are handled in two ways:

1. If Omnis recognises a PNG, e.g. in #ICONS or a report background picture, it
outputs a PNG file to the tree, and the JSON contains the name of the PNG file.

2. Otherwise, Omnis outputs the BASE 64 encoding of the binary data to the
JSON file.

Directory and File Naming

Where possible, directories and files are named using the Omnis name (class name,
object name, object ident, or method name). However, there are some considerations:

1. Although it is not recommended for naming objects in Omnis, class and object
names can contain characters that are not allowed in file system names, e.g.
path separators for all platforms, ?, *. To cater for this, the JSON library
representation escapes these characters as % followed by the 2 lower case hex
characters that represent the escaped character. As a consequence, Omnis
also escapes the % character.

2. Omnis libraries can contain classes where the names only diff er by their case.
In addition, they can contain objects with duplicate names. In these cases, the
JSON library representation prefixes the name with the string %_<n>_ where
<n> is an integer index (for objects this is the order value, and for classes this is
a value starting at 1 and incremented for each class with the same case-
insensitive name; note that Omnis always exports classes in ascending name
order, meaning that the prefix for each class in a set of classes with the same
case-insensitive name will be the same each time you export the classes,
unless you add or remove a class with the same case-insensitive name).

Library Dependencies
Libraries can depend on other libraries. In many cases, the presence of the external
library is not required for Omnis to successfully import or export the JSON library

representation. However, there are three cases that aff ect tokenization, and as a
consequence, mean the external library or libraries must be open when exporting or
importing a library:

1. Design task. If the design task is in an external library, the external library must
be open.

2. Superclass. If the superclass is in an external library, the external library must
be open.

3. External file classes. If the code or tokenized properties use a variable in a file
class in an external library, the external library must be open.

The export option detects the required external libraries in cases 1-3 above while it
generates the JSON library representation. It adds an error to the error list when it
encounters a reference to an external library that is not open, and returns kFalse. In
addition, if the export succeeds, it adds an array to library.json named ñincludesò: this is
an array of all required external libraries. The import library option will fail if any of the
included libraries are not open.

External File classes & Tokenization
By default, Omnis tokenizes variables in external file classes using the file name and a
field token. For development, you should use both file and field names (to avoid

Whatôs New in Omnis Studio 8.1

20

untokenization issues when the external library is not open), whereas for deployment it
might be more desirable for performance to use both file and field tokens.

In Studio 8.0, the only control over these tokenization options is via the browser context
menu Retokenizeé option. For Studio 8.1, there are some new root preferences that
you can use to control this:

Ç $tokenizeexternalfilenames: If true, Omnis uses tokens rather than text when
tokenizing external file names

Ç $tokenizeexternalfieldnames: If true, Omnis uses tokens rather than text when
tokenizing external field names

You can use these preferences when importing a library to control how the output
library tokenizes variables in external file classes. The values of these preferences are
stored in the ñdefaultsò entry in config.json.

JSON Components
You can now define your own remote form controls using JSON and JavaScript, and
use them on JavaScript Remote forms in your web and mobile applications. Using the
same technique, you can wrap ready-made JavaScript components available from any
third-party, opening up endless possibilities for new controls to use in your Omnis apps.

This new method of creating JavaScript components provides an alternative to creating
external components using C++ and our JavaScript SDK, which is the current method
used for creating JavaScript components. It also means you only need to understand
JSON and JavaScript, together with our JavaScript interfaces on the client, in order to
create and use the new JSON defined JavaScript controls, either in your own web or
mobile apps, or to provide to the wider Omnis community.

Having built a JSON defined component using the JSON Control Editor, the component
will appear in the Component Store in a new JSON Components group. You can drag
the component onto your JavaScript remote form and set its properties using the
Property Manager.

The design mode rendering of the JSON controls on a remote form is very basic, and
does not reflect the actual control as it might appear on a remote form at runtime,
although for some controls that do not require a visual interface this is not a problem. In
a later version, we may improve the appearance of the JSON controls in design mode.

JSON Control Editor
A JSON control is defined in a JSON file, called a JSON Control Definition (JCD) file,
which you can create or edit using any text or JSON editor ï if you are very familiar
with JSON you may like to create the JCD using an editor. Alternatively, you can create
the new JSON controls (create a JCD file) using a new tool available under the
Tools>>Add Ons menu, called the JSON Control Editor.

 JSON Components

 21

The JSON Control Editor contains a template control that has all the necessary
properties to create a basic JSON control. The editor allows you to set the properties
for the control under each tab. To create a component, you edit the properties, click on
Save, click on Build to build the control, and then click on Reload to load the
component into the Component Store. The New button removes any changes you have
made to the default template and allows you to start again. In order to setup the
properties and methods for your control you will need to refer to the later JSON
definitions later in this section.

Control Name

The name of the control must be unique, so you will need to change the Control Name
in the editor (or just accept the default name if you are testing the editor). The default
control name is prefixed with ónet.omnisô to show the preferred naming convention, but
you should change this to your own company name, e.g. com.mycompany.mycontrol1,
or use any appropriate naming convention. If you do use a dot in the control name,
Omnis converts it to underscore, since dots cause an issue with the Omnis notation.

Control Properties

The following tabs are available to set the properties of the control:

Ç Flags
allows you to set whether or not events are enabled, whether or not the control has
a transparent background, whether or not drag events are enabled, and so on

Ç Standard properties
an array of standard properties supported by the control, in addition to the basic
properties such as name

Ç Properties
an object defining the control-specific properties of the control; the name of each
member of the properties object is the name of the control property, without the
leading $, e.g. id, type, etc.

Ç Multivalue properties
allows you to set up a control to have multiple values for certain properties

Ç Constants
an object defining the constants for the control, e.g. value, desc, etc.

Ç Events
defines the events that the control generates (in addition to those specified by the

Whatôs New in Omnis Studio 8.1

22

flags member) and including the standard events such as evClick; the name
includes the ñevò prefix

Ç Methods
specifies the client-executed methods that the control provides; the method name
includes the ñ$ò prefix

Ç Html
specifies how the initial HTML sent to the client for the control is generated

The Save option places the JSON control file in html/controls folder. The Build option
places the JavaScript file for your control in the html/scripts folder in your development
tree. It also prompts you to include a reference to the JavaScript file for the control in
the jsctempl.htm file, which will ensure that the control is available for testing any
remote forms that contain the new control.

When you have built a JSON control you need to restart Omnis for it to load. After
restarting Omnis, the control will appear under the JSON Components tab in the
Component Store ready to use in your remote forms. When you deploy your app, you
need to place the JSON and JavaScript files in the corresponding folders in your Web
Server tree, and check that they are referenced in the html page containing your
remote form.

You could open the ócontrol.jsonô file created in the JSON Control Editor when you build
the control from the template: this file will show you the typical structure of the JSON
file required to define a new component.

Using Ready-made JS Components

When using ready-made JS components, that you have obtained from a third-party,
you need to add the .js file(s) to the html/scripts folder in the Omnis tree, and any other
CSS and image files required for the control need to be put in the appropriate folder(s).
You will also need to add any properties, methods, and events in your JS control to the
JSON definition file via the JSON Control Editor. There is a tech note on the Omnis
website that describes the process of using a ready-made JS component in Omnis:

Ç TNJC0009: Adding Ready-made JavaScript components to Omnis

You will also need to refer to the JavaScript Control Reference in the JS SDK docs
which you can find here:

http://sdkdocs.omnis.net/jssdk

JSON Control Definition
This section describes the different properties that can be defined in the JCD file for the
control and edited under the separate tabs in the JSON Control Editor (or when editing
separate members using a text editor).

There is a new folder in the Omnis tree, html/controls, which contains a sub-folder for
each JSON control you have defined. The names of these sub-folders are not critical,
but it makes sense to use the same name as the control name.

The JSON Control Editor will create html/controls folder when you build your first
control, otherwise if you are building your own controls you will need to create this
folder (note this is not to be confused with the óhtmlcontrolsô folder that contains
controls that can be loaded in the oBrowser object).

Each control folder must contain a file named control.json. In addition, it can contain
PNG files - these can have any name, but they need to comprise a subset of the
16x16, 16x16_2x, 48x48 and 48x48_2x PNG files used for the control icon in the
Component Store, and also used when rendering the control on the remote form
design window. The PNG files must have the extension .png.

There is a new external component named ójsControlsô in the jscomp folder, which
handles all JSON defined controls. It loads and validates the controls at startup. All

http://www.omnis.net/technotes/tnjc0009.jsp
http://sdkdocs.omnis.net/jssdk

 JSON Components

 23

controls which pass validation are loaded into the new JSON Components group in the
Component Store. If a control fails validation, jsControls opens the trace log, and adds
a message to indicate there is a problem with the control. The exact problem can be
found in a file called control_errors.txt in the controlôs folder.

Each control must have a unique name. This is defined in control.json (see below), and
you should use a convention similar to Java except that Omnis uses underscore rather
than a dot, e.g. net_omnis_control1 could be the name of a control (using dots causes
issues in the Omnis notation).

JSON Control Object
Every control has a JSON file called ócontrol.jsonô containing a JSON object defining
the control. The members of this object are defined in the following sections.

name

The name member is mandatory and it specifies the name of the control; it becomes
the external component control name. It is also used to create the JavaScript control
class name, as ctrl_<name>.

For example.
 "name": ñnet_omnis_control1"

In this case the JavaScript control class would be ctrl_net_omnis_control1.

flags

The flags member is mandatory. It is an object that allows certain features of the
control to be configured. Each member of flags is optional, and defaults to false if it is
omitted. Valid members are:

Ç beforeafterevents and beforeevents (are mutually exclusive)
indicate if the control supports either evAfter and evBefore, or just evBefore
respectively. If both are omitted, the control supports neither event (see also the
events member)

Ç backcolorandalpha
indicates if the control has backcolor and backalpha properties.

Ç noenabled
indicates if the control does not have the enabled property.

Ç transparentbackground
indicates that the control has a transparent background, and does not have
backcolor and backalpha properties. Must not be used with backcolorandalpha set
to true.

Ç hasdefaultborder
indicates if $effect for the control can have the value kJSborderDefault.

Ç hasdisplayformat
indicates if the control has date and number format properties.

Ç hasdragevents
indicates if the control has drag events (see also the events member).

For example:
 "flags": {

 "beforeafterevents": true,

 "backcolorandalpha": true,

 "noenabled": true,

 "hasdefaultborder": false,

 "hasdisplayformat": true,

 "hasdragevents": true

 },

Whatôs New in Omnis Studio 8.1

24

standardproperties

The standardproperties member is optional. It is an array of standard properties
supported by the control; inclusion in the standardproperties member means the
control will have the property. These are over and above the basic properties that apply
to all controls e.g. active, name, etc.

Valid members of the standardproperties array are: ñdataname", ñeffect", ñbordercolor",
ñborderradius", ñlinestyle", ñfont", "textcolor", "align", ñfontstyle", ñfontsize", ñhorzscroll",
ñvertscroll", "autoscroll", ñdragmodeò.

For example:
 "standardproperties": [

 "dataname",

 "effect",

 "bordercolor",

 "borderradiu s",

 "linestyle",

],

properties

The properties member is mandatory. It is an object defining the control-specific
properties of the control. Each member of the properties object is itself an object that
contains members that describe the property. The name of each member of the
properties object is the name of the control property, without the leading $. Valid
members of each property object are:

Ç id
The identifier of the property. A positive integer. This is mandatory, and it is a
critical field in that Omnis stores this value in the copy of the object saved in the
class, in order to identify the property. This means you must not change id values
after you start to use the control on a remote form. id must be unique for all
properties for the control. When jsControls loads the control, it will validate property
id uniqueness. It usually makes sense to start numbering your properties at 1.

Ç desc
The description of the property. A character string. This is mandatory, and is used
by the IDE, for example, as the property tooltip in the Property Manager.

Ç tab
An optional member. A character string that identifies the Property Manager tab to
be used for the property. Defaults to the Custom tab if omitted. Otherwise, it must
have one of the following values: custom, general, data, appearance, action, prefs,
text, pane, sections, java or column.

Ç type
A mandatory member. A character string that identifies the type of the property.
This can be one of the basic types (number, integer, character, boolean or list) or a
specific type (color, dataname, font, icon, pattern, fontstyle, linestyle, multiline, set,
or remotemenu).

Ç runtimeonly
An optional member. A boolean which is true to indicate that the property is a
runtime only property. Defaults to false if omitted.

Ç findandreplace
An optional member. A boolean which is true to indicate that the property is
searched by find and replace. Defaults to false if omitted.

Ç extconstant
An optional member. A boolean which is true to indicate that the property is
constrained to a range of constants defined by this control. This affects the property
manager popup. It can be used for both integer type properties, and set type

 JSON Components

 25

properties; in the latter case, the first member of the range must be a constant that
has the value zero, and represents the empty set.

Ç intconstant
An optional member. A boolean which is true to indicate that the property is
constrained to a range of constants defined by the Omnis core. This affects the
property manager popup. It can be used for both integer type properties, and set
type properties; in the latter case, the first member of the range must be a constant
that has the value zero, and represents the empty set. extconstant and intconstant
must not both be set to true.

Ç constrangestart and constrangeend
These members must be present if either extconstant or intconstant is true. In the
case of intconstant, they are integer constant idents that specify the range of
constants - you can see the idents for core constants in the $constants group in the
notation inspector. In the case of extconstant, these are the names of constants
defined by this control; the members of the range are the constants starting with
constrangestart, and ending with constrangeend, in the order they occur in
control.json. Note that when used with a set, the constant values need to
correspond to the bit mask used to represent the set.

Ç min and max
These members are optional, and only apply when the type is integer. They specify
minimum and maximum values for the property.

Ç initial
This member is optional. It can be used to specify an initial value for the property.
For number types, it can be a floating point number. For character types, it is a
character string. For integer types, it is an integer. For boolean types it is a
boolean. The initial value is used, for example, when dragging a new copy of the
control out of the Component Store (provided that a copy of the control is not
already stored in the Component Store).

For example:
 "properties": {

 "headercolor": {

 "id": 1,

 "desc": "The header color of the control",

 "type": "color",

 "tab": ñappearanceò,

 "initial": 255

 },

 "headericon": {

 "id": 2,

 "desc": "The header icon o f the control",

 "popuptype": "icon",

 "tab": "appearance"

 },

 "rangeofexternalconstants": {

 "id": 3,

 "desc": "Range of external constants",

 "type": "integer",

 "extcons tant": true,

 "constrangestart": "kNetOmnisControl1Range1",

 "constrangeend": "kNetOmnisControl1Range3",

 }

 }

Whatôs New in Omnis Studio 8.1

26

multivalueproperties

The multivalueproperties member is optional. It allows you to set up a control to have
multiple values for certain properties. It is an object with members as follows:

Ç itemlistproperty
This is mandatory. When a control supports properties with multiple values, the
properties are stored in a list. Each row of the list contains the set of properties for a
particular tab or column. We call the tab or column (or something else) an item.
This property must have type list, and it is automatically hidden from the property
manager.

Ç itemcountproperty
This is mandatory. It is the name of an integer property defined by the properties
member, that can be set to specify the number of items in the item list. You can
specify a max value for this property in order to restrict the number of items,
otherwise it is restricted to no more than 256 items.

Ç currentitemproperty
This is mandatory. It is the name of an integer property defined by the properties
member, that identifies the current item displayed in the property manager, and to
which property changes apply to multi-value properties.

Ç moveitemproperty
This is mandatory. It is the name of an integer property defined by the properties
member, that can be used to move the current item to a new position in the item
list.

Ç properties
This is mandatory. It is an object that specifies the properties that have multiple
values, and where they are stored in the list. Each member must be the name of a
property in the main properties object; the value of each member is the list column
in the item list where the property value is stored. It is important not to change the
column number once you have started using the control.

For example:
 "multivalueproperties": {

 "currentitemproperty": "curitem",

 "itemlistproperty": "itemlist",

 "moveitemproperty": "move",

 "itemcountproperty": "itemco unt",

 "properties": {

 "mvprop1": 1,

 "mvprop2": 2

 }

 }

 }

constants

The constants member is mandatory. It is an object defining the constants for the
control. Each member of the constants object is itself an object that contains members
that describe the constant. The name of each member of the constants object is the
name of the constant. Valid members of each constant object are:

Ç value
The value of the constant. An integer. This is a mandatory member.

Ç desc
The description of the constant. A character string. This is mandatory, and is used
by the IDE for example as the tooltip in the catalog.

 JSON Components

 27

Ç group
The catalog group to which the constant belongs. This is optional. By default, all
constants defined for the control belong to the group ñRF:jsControls-<control
name>ò. You can use this member to replace the control name with something
else. All constants occurring after the constant with the group specified belong to
this group, until a new group is specified (if any).

For example:
 "constants": {

 "kNetOmnisControlHeaderColor": {

 "value": 123,

 "desc": "The description of this constant"

 },

 "kNetOmnisControl1Range1": {

 "value": 3,

 "desc": "Range constant 1ò,

 ñgroup": ñRanges"

 },

 "kNetOmnisControl1Range2": {

 "value": 5,

 "desc": "Range constant 2"

 }

 }

events

The events member is optional. It specifies the events that the control generates (in
addition to those specified by the flags member, i.e. before, after, and drag events).
Each member of the events object identifies an event. The name of each member is
the name of the event, including the ñevò prefix. Certain standard events can be
specified: evClick, evDoubleClick, evTabSelected, evCellChanges, evHeaderClick and
evHeadedListDisplayOrderChanged. Valid members of each event object are:

Ç id
Must not be specified for standard events. Otherwise, this is mandatory, and is the
positive integer id of the event. This id must match the event id you use in the
JavaScript implementation of the control, and must be unique within the context of
this control.

Ç desc
Must not be specified for standard events. Otherwise, this is mandatory, and is a
text string describing the event.

Ç parameters
The event parameters of the event. This is an array. Each array member is an
object with members as follows:
name
This member is mandatory. The parameter name. Do not include the p character
prefix - Omnis will add this. Note that if you use re-use an event parameter name,
then the remaining members of this object are ignored, and overridden by the
original definition of the parameter - the first control (or Omnis core) using a name
sets the type and description of that parameter.
type
This member is mandatory. The data type of the parameter. integer, character,
boolean or list.
desc
This member is mandatory. A text string describing the parameter.

For example:

Whatôs New in Omnis Studio 8.1

28

 "events": {

 "evNet OmnisControlOpened": {

 "id": 1,

 "desc": "The event sent when the control opens",

 "parameters": [

 {

 "name": "name",

 "type": "character",

 "desc" : "The name event parameter"

 },

 {

 "name": "name2",

 "type": "integer",

 "desc": "The second event parameter"

 }

]

 },

 "evCli ck": {

 "parameters": [

 {

 "name": "zname1",

 "type": "character",

 "desc": "The zname1 event parameter"

 },

 {

 "name": " zname2",

 "type": "integer",

 "desc": "The zname2 event parameter"

 },

 {

 "name": "horzcell",

 "type": "character",

 "desc": "the horz cell event parameter"

 }

]

 }

methods

The methods member is optional. It specifies the client-executed methods that the
control provides. Each member of the methods object identifies a method. The name of
each member is the name of the method, including the ñ$ò prefix. Valid members of
each method object are:

Ç id
This is mandatory, and is the positive integer id of the method. It must be unique
within the context of this control. It is used internally by the Omnis core.

Ç desc
This is mandatory, and is a text string describing the method.

Ç type
This is mandatory. The return type of the method. integer, boolean, character or list.

Ç parameters
This member is optional. It is an array describing the parameters of the method.
Each member of the array is an object with the following members:
name

 JSON Components

 29

This is mandatory. The name of the parameter. Omnis will insert a data type
character at the start of this name.
desc
This is mandatory. A text string describing the parameter.
type
This is mandatory. The data type of the parameter. integer, boolean, character or
list.
altered
Optional. A boolean, default false. If true, the parameter is marked as one that will
be altered.
optional
Optional. A boolean, default false. If true, the parameter is marked as optional.

For example:
 "methods": {

 "$mymethod1": {

 "id": 1,

 "desc": "This is my method",

 "type": "integer",

 "parameters": [

 {

 "name": "p1",

 "type": "character",

 "altered": true,

 "desc": "The parameter p1"

 },

 {

 "name": "p2",

 "type": "integer",

 "desc": "The parameter p2",

 "optional":true

 }

]

 }

 }

html

The html member is mandatory. It specifies how the initial HTML sent to the client for
the control is generated. It is an object with members as follows:

Ç template
Mandatory. A character string that is a template for the inner div of the control. For
example: <div %o %s data-props='%p' data-mvprops=ó%mô></div>:
jsControls replaces %o with the JavaScript client attributes for the client element,
which includes the id attribute of the client element: this element must be specified.
jsControls replaces %s with the style attribute for the div, based on the normal
Omnis processing and the properties the control supports.
jsControls replaces %p with the control properties that are not multi-value. %p is
replaced with a JSON string, representing an object, where each member of the
object is named by the property name, with value of the property value. The value
may have been mapped by Omnis to what the client will require, for certain property
types such as color and icon. The client JavaScript can use this string to create an
object containing its property settings.
jsControls replaces %m with the multi-value control properties. %m should be
omitted if the control does not use such properties. %m is replaced with a JSON

Whatôs New in Omnis Studio 8.1

30

string, similar to %p, except that it is an array of objects, with an array entry for
each multi-value item.

Ç extrastyles
Optional. A string of length up to 255 characters of extra style attributes to include
in the style attribute replacing %s in the template, e.g. ñmargin:2pxò.

Ç padding
Optional. An integer used to set padding (in pixels) in the style attribute replacing
%s.

Ç relativeposition
Optional. Boolean, default false. If true, the style attribute replacing %s includes
position relative rather than absolute.

Ç nowrap
Optional. Boolean, default false. If true, the style attribute replacing %s includes
white-space nowrap.

For example:
 "html": {

 "template": "<div %o %s data - props='%p' data - mvprops='%m'></div>",

 "extrastyles":"margin:1px;"

 }

The resulting inner div for the control looks like this:
<div style='position:absolute; top:0px; left:0px; height:106px; width:88px;

font - family:'Times New Roman ',Georgia,Serif; font - size:12pt;font -

weight:bold; font - style:italic;text - align:right;color:#00FFFF; overflow -

x:auto; overflow - y:auto;margin:1px;' data - backgroundcolor='#555555;

rgba(85,85,85,1.0000)' data - dragmode='1' data - effect='1' data - linestyle='1'

data - bordercolor='16711935' data -

props='{"headercolor":"#FF0000","headericon":"icons/datafile/omnispic/001663

n16.png? 46", "rangeofinternalconstants":14, "rangeofexternalconstants":5,

"headerpattern": 1, "headerfontstyle":4, "headerlinestyle":7,

"headermul tiline":"Lots of text entered like this \ rwith multiple \ rlines \ r",

"headerset": 13, "headerremotemenu":"NewRemoteMenu", "headerfont":"Courier

New,Monospace"}' data - mvprops='[{"mvprop1":1,"mvprop2":false,"mvprop3":""},

{"mvprop1": 2,"mvprop2":true, "mvprop3 ":"NewRemoteMenu"}, {"mvprop1":

2,"mvprop2":true,"mvprop3":"aaaa"}]'></div>

Note that it is important to use single quotes around the attributes in the template, since
JSON includes double quotes. jsControls escapes any single quotes in the JSON it
inserts into the place-holders as \u0027.

customtabname

The customtabname member is optional. If specified, it is the name of the custom
properties tab for the control shown in the Property Manager.

JavaScript
When you have created a JSON control and added it to your Omnis tree, you can add
the supporting JavaScript file to the remote form template in the HTML folder (the
JSON Control Editor will do this automatically). To do this you can add:
<script type="text/javascript"

src="scripts/ctl_ net_omnis_ mycontrol.js "></script>

to the scripts section of the jsctempl.htm file (in the html folder) so the control is always
included in the test HTML page for your remote form; it also needs to be included in the
HTML page serving your deployed web or mobile app.

 JavaScript Forms

 31

JavaScript Forms
Responsive Forms
Responsive design is a technique used to design form layouts that cater to different
devices or screen sizes, including mobile phones, tablets, and desktop screens. The
motivation for employing responsive design is to create a single form, with one set of
code methods, that adapts its layout automatically when it is displayed on a range of
different devices, or when the client browser is resized. For standard web pages,
responsive design is implemented using CSS media queries and breakpoints, and
Omnis takes a similar approach by allowing you to specify a number of layout
breakpoints in a single JavaScript remote form, where each breakpoint corresponds to
a different layout for the fields and other controls on your remote form.

Existing remote forms in converted libraries will continue to use the $screensize
property to specify the layout for different devices. All new remote forms created in the
Studio Browser via the New Class option or the Form wizards are set to the new
responsive layout type by default. There is a migration tool, available under the
Tools>>Add-Ons menu, that will allow you to migrate existing JavaScript remote forms
to the new responsive type. (Note the existing Sync Screen tool only applies to the old
$screensize based remote forms.)

Form Layout Type

JavaScript remote forms have a new property, $layouttype, which is a kLayoutType...
constant that specifies how the layout of the form is designed. This property is only
assignable when the remote form does not contain any controls (therefore, you cannot
switch an existing remote form in a converted library to the responsive type, if it
contains controls). The possible values for $layouttype are:

Ç kLayoutTypeResponsive
The remote form has a responsive layout with layout breakpoints, as specified in
the form toolbar and stored in the $layoutbreakpoints property as a comma-
separated list. A remote form can have a different layout for the fields and other
controls for each breakpoint value.

Ç kLayoutTypeScreen
This option corresponds to remote forms prior to Studio 8.1, and uses the old
$screensize property containing a number of fixed screen sizes. An existing remote
form in a library converted to Studio 8.1 will be set to this layout type (you can use
the migration tool to convert a form to responsive).

Ç kLayoutTypeSingle
The remote form has a single layout. This type could be used for applications
intended to be deployed on desktop web browsers only: you can use the $edgefloat
property for controls to resize or reposition them when the browser window is
resized. There is no $screensize property for this layout type and it does not allow
breakpoints to be set.

You can return the value of $layouttype in a remote form instance, but you cannot set it
in your code. A responsive remote form does not have the following properties, since
they are not relevant to responsive design: $resizemode, $screensize, $width, $height,
$horzscroll, or $vertscroll.

Whatôs New in Omnis Studio 8.1

32

Creating Responsive Remote Forms

You can create a new Responsive Remote form class in the Studio Browser using the
New Class>>Remote Form option, and in this case, the $layouttype property is set to
kLayoutTypeResponsive. The remote form wizards, available under the New Class
option in the Studio Browser, also create remote forms with the responsive layout type.
If you want to change the layout type, you must change it before you add any controls
since you cannot change the form layout type once it contains any controls.

A new responsive remote form contains a number of preset layout breakpoints: these
are set to 320, 768, and 1024 which correspond to the relative widths for phones,
tablets and desktop computers (the same screen widths available for remote forms in
previous versions that used $screensize). You can change these breakpoints to suit
the layouts you wish to support in your application (note the default breakpoint values
for new remote forms are set in $initiallayoutbreakpoints).

Each layout breakpoint must be a positive integer in the range 100 to 32000, with at
least 32 pixels between any breakpoints (therefore, you cannot create a breakpoint
with an existing value, or within 32 pixels of an existing breakpoint).

Clicking on a layout breakpoint in the toolbar makes it the current layout. You can
change, delete or add new layout breakpoints using the toolbar at the top of the remote
form design screen, as follows:

Ç To change the value of a layout breakpoint, you can drag the right edge of the
current breakpoint in the toolbar, or you can double-click on the number in the form
toolbar and enter a new value (or press Ctrl/Cmnd-E to edit the value).

Ç To delete a breakpoint, click on the Delete (X) button when the breakpoint is
selected, or press Ctrl/Cmnd-D when the breakpoint is selected (the delete button
is not shown when there are only two breakpoints, since this is the minimum
number of breakpoints for a responsive form and therefore one cannot be deleted).

Ç To add a new layout breakpoint, click on the ó+ô button in the top-left corner of the
form toolbar, or press Ctrl/Cmnd-L when the remote form is selected, and enter a
breakpoint value.

You can right-click on a breakpoint (which also makes it the current breakpoint) to open
a context menu which provides options to edit the breakpoint value and delete the
breakpoint (the delete option is enabled only if there are two or more breakpoints).

Deleting Breakpoints

When you delete a breakpoint, the positioning and individual properties you have set
for all of the fields and controls in the layout are lost, so use this option with caution.
You can restore a deleted layout breakpoint immediately after deleting it using the
Undo option. If undo is not available, you will lose the breakpoint and any custom
settings for the all the fields and controls in that layout; in this case, you would have to
recreate the layout again.

Layout Breakpoints

A responsive remote form must have two or more layout breakpoints. Layout
breakpoints are widths measured in CSS pixels, so they represent logical sizes rather
than physical sizes. The JavaScript client chooses the layout for one of the breakpoints

 JavaScript Forms

 33

defined in the form based on the logical width of the area in which the remote form is to
be displayed in the browser on the device.

Ç For a desktop browser, the width would be the width of the browser window
(which can be resized), although note that responsiveness also applies to remote
forms displayed in a subform control (in which case the width is the width of the
subform control).

Ç For a mobile device, the width is most likely to be the width of the device screen
itself, although again, a form on a mobile device can be loaded in a subform control
which may be narrower than the device screen.

The client chooses the most appropriate layout for the device, from all the layouts
available in the form. Specifically, the client uses the layout for the largest breakpoint
that is less than or equal to the display area width, or if no such breakpoint exists
(because all breakpoint widths are greater than the display area width), the layout for
the smallest breakpoint.

Once the client has chosen a breakpoint, the client will apply floating and component
properties to make use of the available extra width (if any), and if there is no extra
width, the client will automatically turn on horizontal scrolling if necessary.

Layout Breakpoint Properties

Remote forms have a new property called $layoutbreakpoints, which stores the layout
breakpoints for a remote form. This is a comma-separated list of breakpoint values,
which must have at least two entries, and these values are shown and edited in the
toolbar in the remote form design screen: you cannot set layout breakpoints for a form
in the Property Manager. You can return the value of $layouttype in a remote form
instance, but you cannot set it at runtime.

When you create a new responsive remote form, the layout breakpoints in the form
(and the value of $layoutbreakpoints) are initialised with the value of a new library
preference, $initiallayoutbreakpoints. If you wish to create new remote forms with
different layout breakpoints you can edit this preference: to do this, select the library in
the Studio Browser and set the property under the Prefs tab in the Property Manager.

A responsive remote form has a property, $currentlayoutbreakpoint which is the value
of the current layout breakpoint. In design mode, the current breakpoint is highlighted in
the form toolbar: it is not shown in the Property Manager. At runtime, the value of
$currentlayoutbreakpoint may change if the end user resizes their browser window, or
changes the orientation of a mobile device.

Each layout breakpoint in a remote form has a property $layoutminheight, which is the
minimum height of the responsive layout, and shown in design mode as a single
horizontal line. When the available client height is larger than this value, controls can
float to use the additional vertical space, depending on their $edgefloat properties. The
default setting of $layoutminheight is zero which means the minimum height of the form
is set to the bottom-most coordinate of all controls plus an additional two pixels for
padding. Other non-zero values must be in the range 100 to 32000 inclusive.

What breakpoints should I use?

In general, you need to create a breakpoint for the smallest device within each
category of device you wish to support (phones, tablets, desktops). Therefore, the
value of the first breakpoint would be the logical width of the smallest phone you wish
to support (bearing in mind logical dimensions are not the same as the pixel
dimensions, which depend on the density of the screen). For example, the logical
dimensions of the iPhone 6 & 7 are 375 x 667, and the Samsung Galaxy S5 & S6 are
360 x 640, so you could set the first layout breakpoint to 360, or perhaps 350 to allow a
safe margin and to accommodate form layouts for both phones.

Similarly, to set the layout breakpoint for tablets you should consider the minimum
width for the range of tablets you wish to support. The default breakpoints defined in a
new remote form (320, 768, and 1024) provide support for a wide range of devices,

Whatôs New in Omnis Studio 8.1

34

both in vertical and horizontal orientations, but you may need to adjust the default
breakpoints to suit your requirements.

Adding Controls

You can add JavaScipt controls to a responsive form from the Component Store and
set their properties, in exactly the same way as in previous versions. When you add a
control to a responsive remote form it is added to the current layout and all other layout
breakpoints: initially, a control will be in the same position in all layouts, but you can
switch to another layout and change its position and other properties for that layout. If
you delete a control from one layout it will be removed from all other layouts.

Synchronizing Layouts

You can copy the layout from another layout to the current layout by right-clicking on
the background of the remote form, selecting the óCopy Layout from Breakpointô option,
and choosing the breakpoint value (values other than the current breakpoint are
shown). This has the effect of synchronizing the layouts across the different
breakpoints, in a similar manner to the Sync Screen tool available for old $screensize
based forms.

Control Size and Layout Properties

The following layout properties are stored for each control for each layout breakpoint,
that is, they can be set to different values for each layout: $left, $top, $width, $height,
$align, $edgefloat, $dragborder, and $errortextpos, plus the new property
$visibleinbreakpoint, which allows you to hide a control for certain layouts. For
example, you could use this property to show a vertical tabbar for one layout and a
horizontal tabbar for another layout.

When setting the $align, $edgefloat, $dragborder, $errortextpos and
$visibleinbreakpoint properties in the Property Manager, you can assign the selected
value to the control on all layouts by checking the óSet for all layout breakpointsô option
in the property droplist.

Remote Form Inheritance

$layouttype cannot be overridden or changed in a subclass. $layoutbreakpoints cannot
be inherited: each class has its own set of layout breakpoints. $layoutminheight can be
overridden.

Responsive Form Methods

There are some new notation methods that can be used with a remote form class in
order to manipulate its layout breakpoints (note these cannot be used in remote form
instances):

Ç $addlayoutbreakpoint(iBreakpoint[,&cErrorText])
Adds a new layout breakpoint to the responsive remote form at position
iBreakpoint. Returns true for success, or false and cErrorText if an error occurs

Ç $movelayoutbreakpoint(iOldBreakpoint,iNewBreakpoint[,&cErrorText])
Moves breakpoint iOldBreakpoint for the responsive remote form to
iNewBreakpoint. Returns true for success, or false and cErrorText if an error occurs

Ç $deletelayoutbreakpoint(iBreakpoint[,&cErrorText])
Deletes the layout breakpoint at position iBreakpoint from the responsive remote
form. Returns true for success, or false and cErrorText if an error occurs

Responsive Form Events

A responsive remote form generates a new event, evLayoutChanged, when the
responsive layout breakpoint changes, that is, when a mobile device is rotated, or
when a browser window is resized: this event is also triggered when the form opens.
This has the event parameter pBreakpoint, which is the integer value of the new layout
breakpoint (e.g. 320, 768, or 1024).

 JavaScript Forms

 35

In addition, a responsive remote form still generates evScreenOrientationChanged on
mobile devices.

Remote Form Migration

There is a migration tool, available under the Tools>>Add-Ons menu, that allows you to
convert an existing JavaScript remote form to the responsive form type. The migration
tool creates new layout breakpoints corresponding to the old screen sizes available in
remote forms in previous versions, and tries to adjust the positioning and layout of
fields to fit those breakpoints. The migration tool creates a new responsive remote form
with breakpoints and modified screen layouts, based on an existing remote form, and
retains the old unmodified form in your library.

The migration tool will create breakpoints at 320, 768, and 1024 by default, and assign
them to the form layouts corresponding to the old screen sizes (the kSSZ... constants
set under $screensize): to create a breakpoint it must be set to True in the Migrate
column. The 480 breakpoint is available but is not enabled by default.

You can add a new breakpoint and assign that value to one of the old screen sizes; the
new Breakpoint value is added to the dropdown menu in the Breakpoint column. For
example, you may wish to create a breakpoint at 300 and assign it to the old phone
screen size (320x480) to ensure that all content is displayed on all types of phone.

The óSet $edgefloat kEFrightô option sets the $edgefloat property of certain controls to
kEFright to ensure that when the form is resized in the browser the right edge of those
controls is also resized or moved. In this case, only controls with no other controls to
their right, which are generally on the right-hand side of your form, are updated.
Specifically, the $edgefloat property of any buttons is set to kEFleftRight, rather than
kEFright, to ensure they float without resizing when the browser window is resized.

The óUpdate method lines with responsive class namesô option will replace all
references in your code to the old remote form name to the new name, so your code
continues to work.

When you have set up the appropriate options you can click the Make Responsive
button to create the new responsive form(s), which are placed in a new folder in your
library. You can modify them, or test them straight away using Ctrl/Cmnd-T.

Migration Log and detecting form width
When you have run the migration process, the tool creates a change log which will
contain any issues that may need your attention. This may include any places in your
code that use the old $screensize constants (kSSZjs...), which no longer apply to
responsive forms. In this case, you can use the event evLayoutChanged in the $event
method for the form to identify the current breakpoint, for example:

Whatôs New in Omnis Studio 8.1

36

On evLayoutChanged

 Calculate iCurrentBP as pBreakpoint

The evLayoutChanged event is called automatically when the form first loads as well
as when the form resizes. Using the above code you could use the value in iCurrentBP
to setup any further sizing or positioning of controls if required.

Component Transitions
JavaScript Remote forms have a new property, $animatelayouttransitions, which
specifies whether or not the controls on the form will animate to their new position and
size when the form layout or orientation changes on the client. If this property is set to
kTrue, all the controls on the form will animate on the transistion, e.g. when changing
from vertical to horizontal orientation. You can stop the animation for individual controls
by setting the $preventlayoutanimation property to true for the control. The new
transition properties apply to responsive remote forms and the existing $screensize
based forms.

The animation time is hard-coded to 500ms, but you can override this for individual
controls using JavaScript as follows:
Calculate lControl as $cinst.$objs.myButton1

JavaScript: lControl.animateLayoutTime = 1000; // Set layout transition

animation time to 1000ms for myButton1

Or, to set a new animation time for ALL controls on the form, execute the following in
the remote form's $init method:
JavaScript: ctrl_base.prototype.animateLayoutTime = 1000;

Client Caching
There is a new entry in the Omnis configuration file (config.json) that allows you to
control whether HTML pages are cached or not by the built-in HTTP server in Omnis
(which is used for testing forms in design mode). The ópreventclientcachingô item under
the óomnishttpserverô entry in the config.json file is set to true by default and prevents
web pages from caching. When set to true, this would mean that every time a page is
accessed, the page and any linked scripts (JS files, CSS files) are loaded or refreshed
and not cached: note this is for testing purposes only, and does not apply when you
deploy your app. If you want pages to be cached you can set this item to false.

The new entry in config.json has the following format:
 "omnishttpserver": {

 "preventclientcaching": true

 }

When hosting your files on a web server (as recommended for deployment), this
setting does not apply - your web server will have its own settings to control client
caching behavior of files it serves.

Remote Menu Icons
You can now add icons to menu lines in Remote menus. The icons must be 16x16 in
size and can be chosen when you create the remote menu class, along with the text for
the menu line. The icon in each menu line is specified by $iconid. Checked menu lines
use the checked state of the icon if the icon is multi-state.

Note that $objs.$add for a remote menu instance does not have a parameter to add an
icon id. You can only set this after adding the menu line, by assigning $iconid for the
new line (since the new menu line needs to reference the icon on the server, which
cannot be done while executing $add).

 Headless Omnis Server

 37

Subform Sets
There is a new subformset_add constant: kSFSflagPreventDrag. If added to the 'flags'
parameter of a subformset_add command when using $clientcommand, the user will
not be able to drag the windows of the SFS.

Headless Omnis Server
There is a new ñheadlessò version of the Omnis App Server on Linux that allows you to
run your JavaScript Client-based web and mobile applications in a headless
environment. The headless server is available for Linux only.

A so-called headless Omnis Server installed under Linux does not have a window-
based interface, but can be controlled remotely from the command line in a Terminal
window on the Linux machine, or you can configure the headless server using a new
Admin tool.

Considerations
Console Commands

There is a server config item in config.json óheadlessAcceptConsoleCommandsô, a
Boolean. When set to true (the default), the headless server provides a basic command
line interface when used in a terminal window.

Functions

The function isheadless() returns true when running in the headless server.

sys(231) returns zero in headless server.

sys(233) returns empty in headless server; it returns the title of the main Omnis
application window in the full server.

Java

You can start the JVM at startup by setting the óstartjvmô in the java section of
config.json to true: it cannot be started by any other mechanism on the headless
server.

Class Notation

If your Omnis code creates new classes using notation, there is a mechanism to
initialise new objects using template files, located in the ócomponenttemplatesô folder in
the óStudioô folder. The folders are: componenttemplates/window,
componenttemplates/remoteform, componenttemplates/report containing the template
files to create window, remote form, and report instances, respectively. Each template
file name is complibrary_compcontrol.json, with spaces converted to _ (underscore): it
is a copy of an object.json file where only the properties and multivalueproperties
members are used. complibrary and compcontrol are the component library and control
name.

Restrictions

There are various restrictions or differences from full Omnis Server, as follows:

Ç Printing images to PDF in the headless server is restricted to PNG images (or true-
color shared pictures) only.

Ç There is no port support.

Ç You should use the óstartô entry in the óserverô section of config.json to start the
multi-threaded server

Ç The Test if running in background command always sets flag to true in the
headless server.

Ç Several commands and notation methods generate an error if executed in the
headless server e.g. open window, $open for a window, etc.

Whatôs New in Omnis Studio 8.1

38

Ç Picture conversion functions are not supported: pictconvto, pictconvfrom,
pictconvtypes, pictformat, pictsize (a runtime error is generated).

Ç Standard messages generated by the server (OK messages and errors) are sent to
the server log file, or could be routed to the Terminal if appropriate

Installing the Headless Server (Linux)
Download the installer from: www.omnis.net/download/

This install assumes you are running as Root or using sudo.

Update your version of Linux using the commands below that correspond to your
distribution of linux:
Centos/redhat: sudo yum update

Suse: sudo zypper update

Ubuntu/debian: sudo apt - get update

Once updated, you will need to install the dependencies that Omnis requires to run,
which are as follows:

Ç Centos/redhat: cups, pango

Ç Suse/Debian: Runs out of box

Ç Ubuntu: cups, libpango1.0

Once these are installed you can start the installer:
./Omnis - Headless - App- Server - 8.1 - x64.run

Follow through the installer as you would a normal install of Omnis Studio making sure
your serial is correct or the install will fail.

For Centos 7 and redhat the service will not automatically start after a reboot, you will
need to manually add Omnis (or whatever you called your service) to the service
autostart list using the following lines:
Sudo /sbin/chkconfig -- add homnis

Sudo /sbin/chkconfig -- list homnis (This line is to show that you have added

homnis correctly)

Sudo /sbin/chkconfig homnis on

You can now configure the Headless server using the Admin tool, as below.

To summarize the steps for each platform:

CENTOS7 & REDHAT

Required commands for Omnis to run on Centos:
Sudo yum update

Sudo yum install cups

Sudo yum install pango

Sudo /sbin/chkconfig -- add ho mnis

Sudo /sbin/chkconfig -- list homnis

Sudo /sbin/chkconfig homnis on

SUSE

The Headless Server should work out of the box on SUSE, but we would recommend
an update just in case:
sudo zypper update

Ubuntu 16.04, 17.04 & DEBIAN 9
sudo apt - get update

sudo a pt - get install unzip

sudo apt - get install libpango1.0

sudo apt - get install cups

http://www.omnis.net/download/

 Headless Omnis Server

 39

Headless Server Admin Tool
There is an Admin tool that you can use to configure the Headless Omnis Server: the
Admin tool is implemented as a remote form and can be loaded in a web browser by
opening the web page called óosadmin.htmô which is located in the óhtmlô folder of the
Omnis Server tree. However, before you can open this page to configure your headless
server, you will need to set the ñdata-webserverurlò parameter in the HTML file to the
location of your headless server (URL, IP address or Service name, and Port number,
e.g. http://192.1.1.68:5000), and then move the file to a location that allows you to open
the file in a web browser and has network access to the headless server (the Headless
Omnis Server installer should prompt you to set these options, but you may also like to
change them manually).

The Headless Server Admin tool has a number of tabs that let you view or configure
the server Activity, Logs, Settings, and Users. When you first open the admin tool in
your browser, you are requested to login: use the default username: omnis, password:
0mn1s (first character is zero). After logging in, you can change the password for the
default user, or create other users.

Activity

The Activity tab lets you see all Open Libraries on the server. You can use the
Refresh button to refresh the list.

The Open button lets you open a library on the server; note the construct method will
be run if present. You can click on a library in the list and close it using the Close
Library button; note that closing a library will suspend all clients connected to that
library.

The Active Tasks tab shows all current, active task instances or client connections on
the server; you can select a task or connection and view its details. You can kill or
close a task instance or connection using the Kill Task button; note that killing a task or
connection will suspend the operation of the application for the connected client.

Logs

The Logs tab lets you view the logs for the Server:

Ç Server
provides a log of the headless server activity (the location of the logs can be set
under the main Settings tab)

Ç Monitor
provides a log of all the active client connecttions (task instances)

Whatôs New in Omnis Studio 8.1

40

Ç Service
provides a log of all the errors or messages generated by the server including any
messages in the trace log or information about any web service requests.

Under the Service tab, the Configure button lets you set up what messages are
recorded in the log, including the attribute "folder" of "logToFile" which is the name of
the path relative to the Omnis Server tree where the service logs are generated. These
settings are added to the config.json for the server, under the ñlogò member:
"log": {

 "logcomp": " logToFile",

 "datatolog": [

 "restrequestheaders",

 "restrequestcontent",

 "restresponseheaders",

 "restresponsecontent",

 "tracelog",

 "seqnlog",

 "soapfault",

 "soaprequesturi",

 "soaprequest",

 "soapresponse",

 "cors",

 "headless debug ",

 "headless error ",

 "headless message ",

 "systemevent"

],

 "overrideWebServicesLog": tr ue,

 "logToFile": {

 "stdout": true,

 "folder": "logs",

 "rollingcount": 10

 },

 "windowssystemdragdrop": true

 }

Settings

Under the Settings tab you can specify the location of the Server and Monitor logs,
plus the timer period and size of the logs. You can also set up the Server Port, number
of Server Stacks, and the Timeslice for the Headless server (and specified in the
config.json file), and you can restart the service from here.

The default service name of the Headless server is ñhomnisò which is specified in the
ñserverò member of the config.json file:
{

 "server": {

 é

 "service": "homnis"

Users

The Users tab lets you update users or create new ones. The default omnis user can
be changed here. When checked, the Re-start Option will allow a user to restart the
server.

 Code Signed Omnis (macOS)

 41

Code Signed Omnis (macOS)
The Omnis Studio application package on macOS is now code signed, which provides
increased security for you and your end users. A signed application can be trusted to
originate from the developer who signed it, and to not have been altered in any way by
any third-party, therefore guaranteeing the authenticity of an application. Signed
applications within macOS can automatically be granted permissions to perform
actions, such as accessing services from the network and running built-in software
such as AppleScript commands.

An application can only be signed if its code portion remains unchanged. For the
Omnis application, the code portion is located in the Omnis package, e.g.:
Omnis\ Studio \ 8.1 \ x64.app/Contents/MacOS/

Firstruninstall and Application Support folders
Any files that are updated by Omnis must be stored as user application data located in
the user's home directory, that is, in the Application Support folder:
~/Library/Application Support/ Omnis/

To do this, when Omnis starts up it will check for the existence of a folder called
ófirstruninstallô in the macOS folder in the Omnis package. Any items which are
contained in this folder are copied by default to a folder in Application Support with the
same name as the Omnis package, e.g.:
~/ Library/Application Support/Omnis/Omnis Studio 8.1 x64

The copy will not occur if the destination folder already exists, therefore avoiding any
files being overwritten.

This provides a mechanism to place all data folders and their contents into the
ófirstruninstallô folder, e.g. icons, studio, startup. Once copied into Application Support
they are only updated in that location and leave the original macOS folder unchanged
and its signature valid.

Updating Components
With the signed version of Omnis Studio, an external or JavaScript component can be
added or updated in the user data folder. This allows the signed code part of Omnis to
remain unaltered, so it maintains a valid code signature. For example, a standard
component can be placed in the following folder:
~/Library/Application Support / Omnis/ \ Omnis\ Studio \ 8.1 \ x64/xcomp

and a JavaScript component here:
~/Library/Application Support/ Omnis/ \ Omnis\ Studio \ 8.1 \ x64/jscomp/

If the required folder does not exist it can be created by the user.

The user data folder is always searched first, so if a component with the same name
exists in the code section of the Omnis tree the user version will be loaded in
preference.

Deployment
When deploying your own application, you can update the distributed files in the Omnis
package to include your own libraries and components and to edit the name of the
application. Those files placed in the firstruninstall folder will be treated as user data
and will be copied to the Application Support folder.

By default, user data for each installation of Omnis goes into a subfolder of Application
Support called ñOmnisò and the name of the Omnis package is used to provide the
folder for the individual installation.

So for example an installation here:
/Applications/Omnis Studio 8.1 Beta 3 x64.app

Whatôs New in Omnis Studio 8.1

42

Will have a default user data location of:
~/Library/Application Support/Omnis/Omnis Studio 8.1 Beta 3 x64

To customize the subfolder, edit resource 25599, and to customise the installation
folder, edit resource 25600. These resources are located in the Localizable.strings file
for the language used, e.g.
/Omnis Studio 8.1 x64.app/Contents/Resources/English.lproj/Localizabl e.strings

Both entries are empty for default behavior.
"CORE_RES_25599" = "";

"CORE_RES_25600" = "";

After you update the Omnis package files, the package will need to be re-signed with
your own signing identity. You cannot sign a file that has extended Finder information
attributes, so these need to be removed before signing. This can be done recursively
over the entire package by using the following command:
xattr - r - d com.apple.FinderInfo <package_path>

For example:
xattr - r - d com.apple.FinderInfo /A pplications/My \ Application.app

Signing you own application requires a code signing identity which can be generated
by adding a development or production certificate via the Certificate section of the
Apple developer member center. The machine where signing is to occur must have the
certificate and private key installed. To list all valid code signing identities available on
a machine, use the following command from the terminal:
security find - identity - p codesigning - v

Which will, for example, produce the following output with key and identity listed:
1) 44FFBA8B7DFFB1AFFF36FD0613D6E5FC61FF8DFF "Certificate"

(CSSMERR_TP_NOT_TRUSTED)

2) B3EF62FF18E0FFB83D3A8FF3672CF80EFF367FFF "Mac Developer: John Doe

(24FFEXFF39)"

 2 valid identities found

To sign the package use:
codesign - f -- deep -- verbose - s <identity> <package_path>

For example:
codesign - f -- deep -- verbose - s "Mac Developer: John Doe (24FFEXFF39)"

/Applications/My \ Application.app

If the command completes with no errors, a similar line to the following should appear
in the output:
:signed app bundle with Mach - O thin (x86_64) [com.myCompany.MyApplication]

The application is now signed and ready for deployment.

Do not subsequently alter the contents of the package as this will invalidate the
signature.

You can verify the signature using the following:
codesign -- display -- verbose=4 <package_path>

Which will list items such as the signing authority, signing time, etc.

Patching a signed tree
If you wish to distribute an updated Omnis application (the program file), and replace
the application in an existing signed Omnis tree, then this can be achieved by doing the
following:

¶ Replace the binary in the original signed tree with the new version.

¶ Re-sign the Omnis tree with the same signing identity which you used to sign the
original tree.

¶ Take the patched binary out of the tree for distribution.

 Web and Email Communications

 43

Components can be patched without re-signing into the xcomp and jscomp folders of
the user data location, e.g.:
~/Library/Application Support/ Omnis/ Omnis Stud io 8.1 x64

Always ensure the tree has a valid signature by running:
codesign -- display -- verbose=4

Web and Email Communications
There is a new external package, called OW3, that provides various Web Commands
that allow you to perform ñlow-levelò Web- and Email-based communications which you
can build into your applications. The new OW3 external package in this release
contains support for HTTP, SMTP, FTP, and IMAP clients (support for IMAP was
added in Studio 8.1.1 patch).

In previous versions of Omnis Studio, the same web and email commands were
implemented as external commands, and then as worker objects, available respectively
under the External Commands group in the Method Editor and the Web Worker
Objects group in the Object Selection dialog. These implementations will continue to
work for backwards compatibility, but the Web Worker Objects are no longer supported
in this version, and we therefore recommend you use the new OW3 web and email
commands.

By using the OW3 Worker Objects you can execute a long-running task on a
background thread, such as running a large mailshot, that reports back to the main
thread when the task is complete. In addition, the OW3 new worker objects use the
open source CURL library, and native secure connection implementations for Windows
and macOS, so they should have fewer deployment issues than the implementations
available in previous versions.

OW3 Worker Objects
The new web and email commands in OW3 are accessed via a new set of worker
objects available under the OW3 Worker Objects group in the Object Selection dialog
in the Method Editor (not the Web Worker Objects group which contains the existing
worker objects). To use the web and email commands, you need to create an Object
variable and set its subtype to one of the OW3 worker objects, either the
HTTPClientWorker, SMTPClientWorker, or FTPClientWorker object under the OW3
Worker Objects group. Having created the variable you can call the web or email
commands (methods) using OBJECTVAR.$methodname.

The new OW3 worker objects use the same programming model as the SQL DAM
workers, and the old OWEB workers, available in previous versions. All OW3 worker
objects share the same base functionality, plus they have additional functions specific
to their respective web or email protocol.

An example library for each Web or Email protocol has been added to the Samples
group under the Hub to demonstrate the use of the new OW3 Worker Objects; look for
HTTP, SMTP, FTP and IMAP in the list (these were added in Studio 8.1.1).

Base Worker Support
This section describes functionality common to all OW3 worker objects.

Properties

OW3 worker objects all have these properties:

Property Description

$state A kWorkerState... constant that indicates the current state of the
worker object.

$errorcode Error code associated with the last action (zero means no error).

Whatôs New in Omnis Studio 8.1

44

$errortext Error text associated with the last action (empty means no error).

$threadcount The number of active background threads for all instances of this
type of worker object. In this case, type means the type of the
subclass of the common base class e.g. HTTP.

$timeout The timeout (in seconds) for requests. Zero means requests do
not time out. The desired value must be set before calling $run or
$start. Defaults to 10.

$protocollog If non-zero, the worker adds a log of protocol activity as a column
named log to its wResults row. The desired value must be set
before calling $run or $start. Defaults to kOW3logNone.
Otherwise, a sum of kOW3log... constants.
The kOW3logé constants are described in the Constants section
below.

$callprogress If true, and the worker is invoked to execute asynchronously
using $start, the worker periodically generates a notification to
$progress as it executes.Must be set before calling $start.
The $progress method is described in the Methods section below.

$curloptions Use this property to set internal CURL options not otherwise
exposed by the worker. A two-column list, where column 1 is a
number (the CURL easy option number) and column 2 is a string.
The internal option must use either an integer or string value.
Normally, you would not use this property, but if you do use it,
you will need to consult the libcurl header files and documentation
to obtain easy option numbers and values. You should use this
option with care, as there is a chance you could cause Omnis to
crash by passing an incorrect option value.

Constants

Protocol Logging

OW3 worker objects can all use these constants to control protocol logging. Sum the
constants to select the desired logging.

Constant Description

kOW3logNone No protocol logging occurs. Obviously, this value needs to be
used on its own.

kOW3logBasic Basic protocol information such as headers is logged.

kOW3logData Application data sent or received is logged up to a maximum
of 16k for each direction. If the data is not consistent with
UTF-8 encoding, it is logged as a binary dump format rather
than character.

kOW3logSecureData Secure connection data is logged.

kOW3logHTML The content of the generated log is HTML rather than plain
text. This can be written to a file and displayed using
OBROWSER on Windows and macOS platforms.

Methods

OW3 worker objects all have the methods described in this section. There are normal
methods that you call, and callback methods that you override to receive a notification.

 Web and Email Communications

 45

Normal methods

$run

Run the worker on the main thread. Returns true if the worker executed successfully.
The callback $completed will be called with the results of the request.

$start

Run the worker on a background thread. Returns true if the worker was successfully
started. The callback $completed will be called with the results of the request, or
alternatively $cancelled will be called if the request is cancelled.

$cancel

Cancels execution of worker on a background thread. Will not return until the request
has been cancelled.

$getsecureoptions

$getsecureoptions([&bVerifyPeer,&bVerifyHost,&cCertFile,&cPrivKeyFile,
&cPrivKeyPassword])

Gets the options that affect how secure connections are established.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

bVerifyPeer If true, the worker verifies the server certificate. The default is
true, and this results in greater security.

bVerifyHost If true, the worker verifies that the server certificate is for the
server it is known as. The default is true, and this results in
greater security.

cCertFile For macOS, the pathname of the .p12 file containing the client
certificate and private key, or its keychain name.
For other platforms, the pathname of the client certificate .pem
file. Empty if a client certificate is not required.

cPrivKeyFile Ignored on macOS.
For other platforms, the pathname of the private key .pem file.
Empty if a client certificate is not required

cPrivKeyPassword The private key password. Empty if a client certificate is not
required

$setsecureoptions

$setsecureoptions([bVerifyPeer=kTrue,bVerifyHost=kTrue,cCertFile='',cPrivKeyFile='',c
PrivKeyPassword=''])

Sets the options that affect how secure connections are established (call
$setsecureoptions before calling $run or $start).

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

bVerifyPeer If true, the worker verifies the server certificate. The default is
true, and this results in greater security.

bVerifyHost If true, the worker verifies that the server certificate is for the
server it is known as. The default is true, and this results in
greater security.

Whatôs New in Omnis Studio 8.1

46

cCertFile For macOS, the pathname of the .p12 file containing the client
certificate and private key, or its keychain name. For other
platforms, the pathname of the client certificate .pem file. Empty
if a client certificate is not required.

cPrivKeyFile Ignored on macOS. For other platforms, the pathname of the
private key .pem file.Empty if a client certificate is not required

cPrivKeyPassword The private key password. Empty if a client certificate is not
required

Callback methods

$completed

When a worker is started using either $run or $start, it reports its completion by calling
$completed. Override the $completed method of the worker object to receive this
notification. It is called with a single row variable parameter. The columns of the row
are specific to each type of worker object, so we describe them in each specific worker
object section.

$cancelled

To receive a notification that a request has been cancelled using $cancel, override the
$cancelled method of the worker object. It is called with no parameters.

$progress

To receive progress notifications, override the $progress method of the worker object.
OW3 worker objects generate notifications to $progress as and when some data has
been transferred. Progress notifications will not be generated any more than once a
second. Each notification receives a row variable parameter. The row has 4 columns.

Column Description

downloadTotalBytesExpected The total number of bytes expected to be
downloaded from the server. This may always be
zero, for example when the server is using chunked
HTTP transfer encoding.

downloadBytesSoFar The number of bytes downloaded from the server so
far.

uploadTotalBytesExpected The total number of bytes expected to be uploaded
to the server.

uploadBytesSoFar The number of bytes uploaded so far.

HTTP Worker
The HTTPClientWorker provides client HTTP support. For example, you can POST
data to a server, execute a RESTful request, or download a file from a server. The
following sections describe the HTTP worker properties, constants and methods.

Properties

The HTTPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$followredirects If true, the HTTP request will follow a server redirect in order to
complete the request. The desired value must be set before
calling $run or $start. Defaults to false

$proxyserver The URI of the proxy server to use for all requests from this
object e.g. http://www.myproxy.com:8080. Must be set before

 Web and Email Communications

 47

executing $run or $start. Defaults to empty (no proxy server).

$proxytunnel If true, and $proxyserver is not empty, requests are tunnelled
through the HTTP proxy

$proxyauthtype The type of HTTP authentication to use when connecting to
$proxyserver. A kOW3httpAuthType... constant.
kOW3httpAuthType constants are described in the Constants
section below.

$proxyauthusername The user name used to authenticate the user when connecting
to $proxyserver using $proxyauthtype.

$proxyauthpassword The password used to authenticate the user when connecting
to $proxyserver using $proxyauthtype.

$responsepath If not empty, the worker writes response content to the file with
this path rather then adding it to the wResults row. The file must
not already exist. The desired value must be set before calling
$run or $start. Defaults to empty

Constants

The HTTPClientWorker uses the following constants, specified in the iMethod
parameter in the $init method, in addition to the base worker constants described
earlier:

Constant Description

kOW3httpMethodDelete Sends a DELETE method

kOW3httpMethodGet Sends a GET method

kOW3httpMethodHead Sends a HEAD method

kOW3httpMethodOptions Sends a OPTIONS method

kOW3httpMethodPatch Sends a PATCH method

kOW3httpMethodPost Sends a POST method

kOW3httpMethodPut Sends a PUT method

kOW3httpMethodTrace Sends a TRACE method

kOW3httpAuthTypeNone Indicates that no HTTP authentication is required (in
this case a user name and password do not need to be
supplied)

kOW3httpAuthTypeBasic Indicates that basic HTTP authentication is required

kOW3httpAuthTypeDigest Indicates that digest HTTP authentication is required

kOW3httpMultiPartFormData Indicates that HTTP multipart/form-data content is to be
sent (this is described below)

Methods

HTTPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, iMethod, lHeaders, vContent [,iAuthType, cUserName, cPassword])

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

Whatôs New in Omnis Studio 8.1

48

The parameters are:

Parameter Description

cURI The URI of the resource, optionally including the URI scheme
(http or https) e.g. http://www.myserver.com/myresource. If you
omit the URI scheme e.g. www.myserver.com/myresource,the
URI scheme defaults to http. You can also include query string
parameters if desired e.g.
http://www.myserver.com/myresource?param1=test¶m2=test

iMethod A kOW3httpMethod... constant that identifies the HTTP method to
perform.

lHeaders A two-column list where each row is an HTTP header to add to
the HTTP request Column 1 is the HTTP header name e.g.
'content-type' and column 2 is the HTTP header value e.g.
óapplication/json'. If you do not supply the header ñaccept-
encodingò the worker automatically decompresses content
compressed using gzip or deflate; however, if you supply this
header, the worker does not perform automatic decompression.

vContent kOW3httpMultiPartFormData or a binary, character or row
variable containing content to send with the request.
kOW3httpMultiPartFormData means send the content built using
the $multiparté methods described below. The worker sends
binary data as it is. The worker converts character data to UTF-8
and sends the UTF-8. A row must have a single column
containing the path of the file containing the content to send. If
you do not specify a content-type header in lHeaders, the worker
will generate a suitable type if it recognises the file extension
when using a row, or when using a character value it will use
text/plain;charset=utf-8. Otherwise, it will use application/octet-
stream. In addition, the worker will automatically add a content-
length header, so there is no need to pass this in lHeaders.

iAuthType A kOW3httpAuthType... constant that specifies the type of
authentication required for this request. If you omit this and the
remaining parameters, authentication defaults to
kOW3httpAuthTypeNone.

cUserName The user name to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest.

cPassword The password to use with authentication types
kOW3httpAuthTypeBasic and kOW3httpAuthTypeDigest

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

Example

The following code could be used to prepare an HTTPClientworker object using $init,
and then $run can be used to execute the HTTP method. The method returns the
content of the web page stored in iURI, e.g. ww.omnis.net.
; $execute method

Do method checkHttpObject ;; sets up the HTTP object ref var

Do method setupLogging ;; sets up logging based on user choice

If len(iTempContent)

 Web and Email Communications

 49

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,iTempContent,iAuthList.iAuthType,iUser,

iPassword) Returns lOk

Else

 If iSendContentMode=1

 Do iHttp.$init(

iURI,iMethodList.iMethod,iH eaderList,row(iContentPath),iAuthList.iAuthType,i

User,iPassword) Returns lOk

 Else If iSendContentMode=2

 Do iHttp.$buildmultipart(iContentPath)

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,kOW3httpMultiPartFormData,iAuthList.iAu

t hType,iUser,iPassword) Returns lOk

 Else If iSendContentMode=0

 Do iHttp.$init(

iURI,iMethodList.iMethod,iHeaderList,iContent,iAuthList.iAuthType,iUser,iPas

sword) Returns lOk

 End If

End If

If not(lOk)

 OK message {Error [iHttp.$errorcode]: [iHttp.$errortext]}

 Quit method kFalse

End If

If pRun

 Do iHttp.$run() Returns lOk

Else

 Do iHttp.$start() Returns lOk

 If lOk

 Calculate $cinst.$objs.ScrollBox.$objs.cancel.$enabled as kTrue

 Calculate $cinst.$objs.ScrollBox.$o bjs.execute.$enabled as kFalse

 Calculate $cinst.$objs.ScrollBox.$objs.executethencancel.$enabled as

kFalse

 End If

End If

If not(lOk)

 OK message {Error [iHttp.$errorcode]: [iHttp.$errortext]}

 Quit method kFalse

End If

Quit method kTrue

$multipartclear

$multipartclear()

Frees any previously generated multipart/form-data content. Note that calling $run or
$start with kOW3httpMultiPartFormData results in the multipart/form-data content being
automatically freed after use.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

$multipartaddfield

$multipartaddfield(cName, cFieldData [,lPartHeaders])

Adds a field part to the multipart/form-data content stored in the worker object. To send
this content specify kOW3httpMultiPartFormData as the vContent parameter to $init().

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Whatôs New in Omnis Studio 8.1

50

Parameter Description

cName The name of the multipart/form-data field part.

cFieldData The value of the multipart/form-data field.

lPartHeaders A two-column list where each row is a header to add to the part.
Column 1 is the header name and column 2 is the header value.

$multipartaddfile

$multipartaddfile(cName, vFileData [,cFileName=ó', lPartHeaders])

Adds a file part to the multipart/form-data content stored in the worker object. A file part
indicates to the server that a file is being uploaded. To send this content specify
kOW3httpMultiPartFormData as the vContent parameter to $init().

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cName The name of the multipart/form-data file part.

vFileData A binary, character or row variable containing the file data for the
part. The worker sends binary data as it is. The worker converts
character data to UTF-8 and sends the UTF-8. A row must have a
single column containing the path of the file containing the
content to send. If you do not specify a content-type header in
lPartHeaders, the worker will generate a suitable type if it
recognises the file extension when using a row, or when using a
character value it will use text/plain;charset=utf-8. Otherwise, it
will use application/octet-stream.

cFileName The filename of the part. Must be specified if vFileData is binary
or character. If vFileData is a row (identifying a file) then this
overrides the default filename (the name of the file).

lPartHeaders A two-column list where each row is a header to add to the part.
Column 1 is the header name and column 2 is the header value.

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful.
Zero means success i.e. the HTTP request was issued and a
response received - you also need to check the httpStatusCode
to know if the HTTP request itself worked.

errorInfo A text string providing information about the error if any.

httpStatusCode A standard HTTP status code that indicates the result received
from the HTTP server.

httpStatusText The HTTP status text received from the HTTP server.

responseHeaders A row containing the headers received in the response from the
HTTP server.
The header values are stored in columns of the row.
The column name is the header name converted to lower case

 Web and Email Communications

 51

with any - characters removed, so for example the Content-
Length header would have the column name contentlength.
If the client receives multiple headers with the same name, it
combines them into a single header with a comma separated list
of the received header values. This is consistent with the HTTP
specification.

responseContent If you have not used $responsepath to write the received
content directly to a file, this is a binary column containing the
content received from the server.

log If you used $protocollog to generate a log, this column contains
the log data, either as character data, or UTF-8 HTML.
Otherwise, the log column is empty.

SMTP Worker
The SMTPClientWorker provides client SMTP support, allowing you to use the worker
to send emails, including bulk emails via a mailshot. The following sections describe
the SMTP worker properties, constants and methods.

Properties

The SMTPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request
fails. Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server
open when it completes its request. Defaults to false.
Note that even when this property is set to true, a
protocol error may cause the connection to close. Use
true if you are likely to send more emails using the same
server fairly soon.

$callmailshotprogress If true, and the worker is sending a mailshot
asynchronously via $start, the worker generates
notifications to $mailshotprogress as it executes.
$callmailshotprogress must be set before calling $start.
Defaults to false

Constants

The SMTPClientWorker uses the following constants in addition to the base worker
constants described earlier:

Constant Description

kOW3msgPriorityLowest The message has the lowest priority

kOW3msgPriorityLow The message has low priority

kOW3msgPriorityNormal The message has normal priority

kOW3msgPriorityHigh The message has high priority

kOW3msgPriorityHighest The message has the highest priority

Whatôs New in Omnis Studio 8.1

52

Methods

SMTPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, vFrom, lTo, lCc, lBcc, cSubject, cPriority, lHeaders,
vContent [,bMailshot=kFalse])

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (smtp or
smtps), e.g. smtp://test.com. If you omit the URI scheme e.g.
smtp.myserver.com the URI scheme defaults to smtp. If the server
uses a non-standard port, you can include it in the URI like this
example smtp://smtp.myserver.com:2525

cUser The user name to be used to log on to the SMTP server.

cPassword The password to be used to log on to the SMTP server

vFrom The email address of the message sender. Either a character value
e.g. user@test.com or a row with 2 columns where column 1 is the
email address e.g. user@test.com and column 2 is descriptive text for
the sender, typically their name

lTo A one or two column list where each row identifies a primary recipient
of the message. Column 1 contains the email address e.g.
user@test.com and column 2 if present contains descriptive text for the
recipient, typically their name

lCc Empty if there are no CC recipients, or a one or two column list where
each row identifies a carbon copied recipient of the message. Column 1
contains the email address e.g. user@test.com and column 2 if present
contains descriptive text for the recipient, typically their name

lBcc Empty if there are no BCC recipients, or a single column list where
each row contains the email address of a blind carbon copied recipient
of the message e.g. user@test.com. Unlike lTo and lCc, lBcc does not
allow more than 1 column, as blind carbon copied recipients are not
added to the message header and therefore the descriptive text is not
required.

cSubject The subject of the message

iPriority A kOW3msgPriority... constant that specifies the priority of the
message

lHeaders A two-column list where each row is an additional SMTP header to
send with the message. Column 1 is the header name e.g. 'X-
OriginalArrivalTime' and column 2 is the header value e.g. ô23:02'

vContent Message content. Either binary raw content (which the worker sends
exactly as it is), or a list to be sent as MIME. See the documentation for
the MailSplit command to see how a MIME list is structured; however,
note that the charset in the worker MIME list is a kUniType... constant
rather than a character string.

 Web and Email Communications

 53

bMailshot Allows a mailshot to be sent (default is kFalse). If true, the worker
sends a separate copy of the message to each recipient in the lTo list
(so that each recipient cannot see the addresses of the others); only
lTo is used, and lCc and lBcc must be empty.

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

Example

The $init method can be used to prepare the SMTPClientWorker object to be executed
using the $run or $start method. In this case, iSmtp is an object reference variable with
its subtype set to an object class, which has its $superclass set to the
SMTPClientWorker in the OW3 worker objects group.
; $start method

Do method setupLogging ;; set up logging

Calculate iSmtp.$timeout as iTimeout ;; set properties via window fields

Calculate iSmtp.$callprogress as iCallProgress

Calculate iSmtp.$keepconnectionopen as iKeepConnection Open

Calculate iSmtp.$requiresecureconnection as iRequireSecureConnection

Calculate iSmtp.$callmailshotprogress as iCallMailshotProgress

Do method $splitaddressentry (iFrom,lFromAddress,lFromDescription) Returns lOk

If not(lOk)

 OK message {From "[iFro m]" is invalid}

 Quit method kFalse

End If

Calculate lOk as $cinst.$makerecipientlist(lToList,iTo)

If not(lOk)

 OK message {From "[iTo]" is invalid}

 Quit method kFalse

End If

Calculate lOk as $cinst.$makerecipientlist(lCcList,iCc)

If not(lOk)

 OK message {From "[iCc]" is invalid}

 Quit method kFalse

End If

Calculate lOk as $cinst.$makerecipientlist(lBccList,iBcc)

If not(lOk)

 OK message {From "[iBcc]" is invalid}

 Quit method kFalse

End If

If iCallMailshotProgress

 Set reference lMailshotProgressItem to

$clib.$windows.wMailshotProgress.$openmodal("*",kWindowCenterRelative,$cinst

,lToList.$linecount,$cinst)

End If

Do iSmtp.$setMailshotProgressInst(lMailshotProgressItem)

If iNoMIME

 If len(lFromDescription)

 Do iSmtp.$init(

iServerURI,iUser,iPassword,row(lFromAddress,lFromDescription),lToList,lCcLis

t,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lBinConten

t,iMailshot) Returns lOk

 Else

 Do iSmtp.$init(

iServerURI,iUser,iPassword,lFromAddress,lToLi st,lCcList,lBccList,iSubject,iP

Whatôs New in Omnis Studio 8.1

54

riorityList.iPriorityValue,iExtraHeaderList,lBinContent,iMailshot) Returns

lOk

 End If

Else

 If len(lFromDescription)

 Do iSmtp.$init(

iServerURI,iUser,iPassword,row(lFromAddress,lFromDescription),lToList,lCcLis

t ,lBccList,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lMIMElist,

iMailshot) Returns lOk

 Else

 Do

iSmtp.$init(iServerURI,iUser,iPassword,lFromAddress,lToList,lCcList,lBccList

,iSubject,iPriorityList.iPriorityValue,iExtraHeaderList,lMIMEl ist,iMailshot)

Returns lOk

 End If

End If

If not(lOk)

 OK message {$init error [iSmtp.$errorcode]: [iSmtp.$errortext]}

 Quit method kFalse

End If

If pRun

 Do iSmtp.$run() Returns lOk

Else

 Do iSmtp.$start() Returns lOk

End If

If not(lOk)

 OK message {$run error [iSmtp.$errorcode]: [iSmtp.$errortext]}

 Quit method kFalse

Else If not(pRun)

 Calculate $cinst.$objs.scrollbox.$objs.cancel.$enabled as kTrue

 Calculate $cinst.$objs.scrollbox.$objs.start.$enabled as kFalse

 Calculate $cinst.$objs.scrollbox.$objs.startthencancel.$enabled as kFalse

End If

Quit method kTrue

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success i.e. the message was successfully sent.

errorInfo A text string providing information about the error if any.

failedRecipients If the request was a mailshot, then this column is a three-column
list, with a row for each recipient to which the message was not
successfully sent. The columns of this list are address (the email
address of the failed recipient), errorCode and errorInfo (the latter
two columns have the same meaning as the equivalent columns in
this row).

log If you used $protocollog to generate a log, this column contains the
log data, either as character data, or UTF-8 HTML. Otherwise, the
log column is empty.

 Web and Email Communications

 55

$mailshotprogress

If the request is a mailshot, and $callmailshotprogress is kTrue, the worker generates a
notification to $mailshotprogress each time it sends (or fails to send) the message to a
recipient. $mailshotprogress is passed a row variable parameter with the following
columns:

Column Description

address The email address of the recipient.

sent Boolean, true if the message was successfully sent to this recipient

FTP Worker
The FTPClientWorker provides client FTP support, allowing you to use the worker to
transfer files. The following sections describe the FTP worker properties, constants and
methods.

Properties

The FTPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request
fails. Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server
open when it completes its request. Defaults to false.
Note that even when this property is set to true, a
protocol error may cause the connection to close. Use
true if you are likely to use the same server quite soon.

$servercharset The character set used by the server to encode file
names in commands and file lists. Default
kUniTypeAuto (meaning UTF-8 if the server supports it
or kUniTypeNativeCharacters if not). Otherwise a
kUniType... constant for 8-bit character sets.

$responsepath If not empty, the worker writes response content to the
file with this path rather then adding it to the wResults
row. The file must not already exist. The desired value
must be set before calling $run or $start. Defaults to
empty

Constants

The FTPClientWorker uses the following constants in addition to the base worker
constants described earlier. These constants are all actions specified in the iAction
parameter used with the $init method to indicate the action to perform, so this section
should be read in conjunction with the section describing the $init method:

Constant Description

kOW3ftpActionPutFile Upload file data to file cServerPath on FTP server.
vParam is file data (binary, character or row).
Worker converts character to server character set.
Row must have one column (path of file containing

Whatôs New in Omnis Studio 8.1

56

data to upload).
Note that all file transfers use FTP binary mode.

kOW3ftpActionAppendFile Identical to kOW3ftpActionPutFile except the action
appends the file data to an existing file on the FTP
server, or creates a new file containing the supplied
data if the file does not exist on the FTP server.

kOW3ftpActionGetFile Download file cServerPath from FTP server.
Downloaded file data is either written to
$responsepath (if not empty) or returned in the
wResults row. vParam is not required.
Note that all file transfers use FTP binary mode.

kOW3ftpActionDelete Delete directory or file cServerPath from the FTP
server. vParam is Boolean true if cServerPath is a
directory, false if it is a file.

kOW3ftpActionCreateDirectory Create directory cServerPath on the FTP server.
vParam is not required.

kOW3ftpActionListDirectory List the contents of directory cServerPath on the
FTP server. vParam is Boolean true to list file
names only, or false to get a detailed list. A single
column list is returned to wResults.resultList.

kOW3ftpActionSetPermissions Set the permissions of file or directory cServerPath
on the FTP server. vParam is a character string
specifying the new permissions of the file or
directory.
Note that not all servers support the SITE CHMOD
command used by this action.

kOW3ftpActionExecute If cServerPath is not empty, CWD cServerPath.
Then execute FTP control connection commands in
vParam.
vParam is either a character string or a single
column list of commands. E.g. to rename a file, you
could use:
RNFR oldname.txt
RNTO newname.txt
as two lines in the command list.
wResults.resultList has a row for each command
response.

Methods

FTPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, iAction, cServerPath, vParam)

Called to prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (ftp or ftps)

 Web and Email Communications

 57

e.g.
ftp://ftp.myserver.com.
If you omit the URI scheme
e.g. ftp.myserver.com
the URI scheme defaults to ftp

cUser The user name to be used to log on to the FTP server.

cPassword The password to be used to log on to the FTP server

iAction A kOW3ftpActioné constant that specifies the action to perform.

cServerPath A pathname on the FTP server. Paths are relative to the current working
directory on the FTP server. The worker only changes directory if you
supply a non-empty cServerPath parameter to kOW3ftpActionExecute,
so unless you do this, paths are relative to the root.
After changing working directory, if you supply cServerPath prefixed with
// then the path is relative to the root, e.g.
/myfile or
myfile
is a path relative to the current working directory, whereas
//myfile
is a path relative to the root.

vParam A parameter specific to the action. See the constant descriptions for
details of vParam for each action.

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

Example

You could create an FTP client window with various fields for FTP host name,
username, password, timeout setting, server character set, and a list of FTP
commands or actions as they are defined in the $init() method. A button could initiate
the FTP command, executing the appropriate action depending on the one chosen by
the end user, using the following code:
; start() method

; iFtp is an Object reference variable with the FTPClientWorker as S ubtype

; iActionList (List) variable assigned to list of actions on the window

Do method setupLogging

Calculate iFtp.$timeout as iTimeout ;; fields on the FTP window

Calculate iFtp.$callprogress as iCallProgress

Calculate iFtp.$keepconnectionopen as iKe epConnectionOpen

Calculate iFtp.$requiresecureconnection as iRequireSecureConnection

Calculate iFtp.$servercharset as iServerCharsetList.C2

Calculate iFtp.$responsepath as iResponsePath

If iActionList.C2=kOW3ftpActionPutFile|iActionList.C2=kOW3ftpActionApp endFile

 If iSendContentMode=0

 ReadBinFile (iContentPath,iContent)

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iContent) Returns lOk

 Else

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServ erPath,row(iContentPath))

Returns lOk

 End If

Else If iActionList.C2=kOW3ftpActionSetPermissions

Whatôs New in Omnis Studio 8.1

58

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iPermissions) Returns

lOk

Else If iActionList.C2=kOW3ftpActionExecute

 Do iFtp.$ init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iCommandList) Returns

lOk

Else If iActionList.C2=kOW3ftpActionListDirectory

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iNamesOnly) Returns

lOk

Else If iActionList.C2= kOW3ftpActionDelete

 Do iFtp.$init(

iServerURI,iUser,iPassword,iActionList.C2,iServerPath,iPathIsDirectory)

Returns lOk

Else

 Do iFtp.$init(iServerURI,iUser,iPassword,iActionList.C2,iServerPath)

Returns lOk

End If

; then $run or $start is called

If not(lOk)

 OK message {$init error [iFtp.$errorcode]: [iFtp.$errortext]}

 Quit method kFalse

End If

If pRun

 Do iFtp.$run() Returns lOk

Else

 Do iFtp.$start() Returns lOk

End If

If not(lOk)

 OK message {$run error [iFtp.$errorcode]: [iFtp.$ errortext]}

 Quit method kFalse

Else If not(pRun)

 Calculate $cinst.$objs.scrollbox.$objs.cancel.$enabled as kTrue

 Calculate $cinst.$objs.scrollbox.$objs.start.$enabled as kFalse

 Calculate $cinst.$objs.scrollbox.$objs.startthencancel.$enabled as kFalse

End If

Quit method kTrue

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful.
Zero means success i.e. the message was successfully sent.

errorInfo A text string providing information about the error if any.

ftpResponseCode The FTP response code from the last FTP command executed
when performing the action. An integer.

fileData Used for kOW3ftpActionGetFile only. If you have not used
$responsepath to write the file data directly to a file, this is a
binary column containing the file data received from the server.

 Web and Email Communications

 59

resultList For kOW3ftpActionList:
A single character column list, containing the list entries received
from the server.
For kOW3ftpActionExecute:
A 2 column list, containing an entry for each command supplied in
vParam that was successfully executed. Command execution
stops as soon as a command fails; the status of the failed
command becomes the main error information in the row passed
to $completed.
Each row of the list contains the ftpResponseCode for the
command, and the response text that was received from the
server.

log If you used $protocollog to generate a log, this column contains
the log data, either as character data, or UTF-8 HTML.
Otherwise, the log column is empty.

Example

Following on from the $init example above, you could create code in the $completed
method to handle the response from the FTP server returned in the pResults
parameter: the code writes the log to an HTML file and displays it in the oBrowser
object.
; $completed method

Calculate iResponse as pResults

Calculate iErrorCode as pResults.errorCode

Calculate iErrorText as pResults.errorInfo

If iUsingLogBrowser

 Do FileOps.$deletefile(iLogHTMLPath)

 WriteBinFile (iLogHTMLPath,iResponse.log)

 Calculate iLogBrowser.$urlorcontrolname as

con("file://",replaceall(iLogHTMLPath," ","%20"))

Else

 Calculate iLog as iResponse.log

End If

Calc ulate iFailedRecipients as iResponse.failedRecipients

Do $cinst.$redraw()

Calculate $cinst.$objs.tabpane.$currenttab as 3

IMAP Worker
The IMAPClientWorker provides client IMAP support, allowing you to use the worker to
manage emails stored on an IMAP server. The following sections describe the IMAP
worker properties, constants and methods. (IMAP was added in Studio 8.1.1.)

Properties

The IMAPClientWorker has the following properties in addition to the base worker
properties described earlier:

Property Description

$requiresecureconnection If true, and the URI is not a secure URI, the connection
starts as a non-secure connection which must be
upgraded to a secure connection (using the STARTTLS
command). If it cannot be upgraded then the request fails.
Defaults to false

$keepconnectionopen If true, the worker can leave the connection to the server

Whatôs New in Omnis Studio 8.1

60

open when it completes its request. Defaults to false.
Note that even when this property is set to true, a protocol
error may cause the connection to close. Use true if you
are likely to use the same server fairly soon.

$splitfetchedmessage If true, the worker splits the fetched message into headers
and a MIME list for any content. Defaults to true. If false,
the worker simply returns the raw fetched message data.

$defaultcharset Used when kOW3imapActionFetchMessage splits the
message, and no character set is specified for a MIME text
body part. The character set used to convert to character.
Default kUniTypeUTF8. A kUniType... constant (not
Character/Auto/Binary).

$removemessageid If true, the worker removes the Message-id header from
the message when performing the action
kOW3imapActionAppendMessage. Defaults to true.
Duplicating message ids may cause the IMAP server to
discard messages with duplicate ids, hence this property.

Constants

The IMAPClientWorker uses the following constants in addition to the base worker
constants described earlier. These constants are all actions used with the $init method
to indicate the action to perform, so this section should be read in conjunction with the
section describing the $init method:

Constant Description

kOW3imapActionListMailboxes List mailboxes in reference name cMailboxName.
vParam1 specifies the names to list. This
becomes the ñmailbox name with possible
wildcardsò parameter of the IMAP LIST or LSUB
command (see RFC 3501).
vParam2 (optional, default false) is Boolean true
to list subscribed mailboxes only.

kOW3imapActionListMessages Selects mailbox cMailboxName and lists the
messages it contains.
vParam1 is optional - if present, it is a single
column list of additional mail header names to
retrieve in addition to the standard mailbox list
information e.g. the list could have 2 rows,
ñSubjectò and ñX-Priorityò to retrieve the message
subject and priority for each message.

kOW3imapActionFetchMessage Selects mailbox cMailboxName and fetches the
message with UID vParam1.
vParam2 (optional, default false) is Boolean true
to fetch message headers only.

kOW3imapActionSetMessageFlags Selects mailbox cMailboxName and sets flags for
message with UID vParam1.
vParam2 is a row of flags with values kFalse,
kTrue or kUnknown (leave flag unchanged):
row(answered, deleted, draft, flagged, seen)

kOW3imapActionAppendMessage Selects mailbox cMailboxName and appends a
message to the mailbox.
You can either:

 Web and Email Communications

 61

Constant Description

Supply the entire message as binary data in
vParam1 or
Supply a 2 character column list in vParam1
(columns are header name and header value)
with binary raw content in vParam2
or
Supply a 2 character column list in vParam1
(columns are header name and header value)
with the content specified by a MIME list in
vParam2. See the documentation for the
MailSplit command to see how a MIME list is
structured; however note that the charset in the
worker MIME list is a kUniType... constant rather
than a character string.

kOW3imapActionExecute If cMailboxName is not empty select mailbox
cMailboxName.
Then execute IMAP commands in vParam1.
vParam1 is either a binary value or a single
column list of binary values. wResults.resultList
has a row for each command response.
Each binary value is an IMAP command to
execute, e.g. EXAMINE. You can generate
binary values using the correct character set
required by the IMAP protocol using the
$chartoutf7 method of the IMAPClientWorker.
The sequence of actions will stop as soon as an
error occurs.

Methods

IMAPClientWorker has the methods described in this section in addition to the base
worker methods described earlier.

Normal methods

$init

$init(cURI, cUser, cPassword, iAction, cMailboxName, vParam1, vParam2) Called to
prepare the object to execute a request, before calling $run or $start.

Returns Boolean true for success, or returns false and sets $errorcode and $errortext if
an error occurs.

The parameters are:

Parameter Description

cURI The URI of the server, optionally including the URI scheme (imap or
imaps), e.g. imap://ftp.myserver.com. If you omit the URI scheme, e.g.
imap.myserver.com, the URI scheme defaults to map

cUser The user name to be used to log on to the FTP server.

cPassword The password to be used to log on to the FTP server

iAction A kOW3imapActioné constant that specifies the action to perform.

cMailboxName The IMAP mailbox name (ignored for
kOWEimapActionListMailboxes). If you are using non-ASCII
characters in mailbox names, you may need to normalise the name
using the Omnis nfd() or nfc() function before passing it to $init().

Whatôs New in Omnis Studio 8.1

62

Parameter Description

vParam1 A parameter specific to the action. See the constant descriptions for
details of vParam1 for each action.

vParam2 A parameter specific to the action. See the constant descriptions for
details of vParam2 for each action.

NOTE: If you call $init when a request is already running on a background thread, the
object will cancel the running request, and wait for the request to abort before
continuing with $init.

$chartoutf7

$chartoutf7(cChar)

Returns a binary value (containing 7 bit characters) that is the IMAP UTF-7
representation of cChar (note that IMAP uses a special variant of UTF-7, and this
method generates that variant).

The parameters are:

Parameter Description

cChar A character string to be converted to IMAP UTF-7

$utf7tochar

$utf7tochar(xUtf7[,bAllowCRLF=kTrue])

Converts IMAP UTF-7 xUtf7 to character and returns the result. Optionally allows
CRLF sequences in the data and replaces them with CR in the result (note that IMAP
uses a special variant of UTF-7, and this method expects that variant in xUtf7).

The parameters are:

Parameter Description

xUtf7 A binary value containing IMAP UTF-7 to be converted to character.

bAllowCRLF If true, CRLF sequences are to be expected in the UTF-7 stream -
they are replaced with CR.

Callback methods

$completed

The standard $completed callback is passed a row variable parameter with the
following columns:

Column Description

errorCode An integer error code indicating if the request was successful. Zero
means success i.e. the message was successfully sent.

errorInfo A text string providing information about the error if any.

resultList This column receives a list, the content of which depends on the
action. The action-specific lists returned here are described below
(actions kOW3imapActionSetMessageFlags and
kOW3imapActionAppendMessage do not return any data in this
column).

log If you used $protocollog to generate a log, this column contains the
log data, either as character data, or UTF-8 HTML. Otherwise, the
log column is empty.

<action-specific> Column 5 is present for certain actions, and contains action-
specific data. The action-specific data is described below.

kOW3imapActionListMailboxes:

 Web and Email Communications

 63

Column Description

resultList The list of mailboxes that match the criteria pass to $init(). A 7
column list, with columns as follows (see RFC 3501 for more
details - the data in these columns is populated using the LIST or
LSUB response):
hasChildren: Boolean true if the mailbox has child mailboxes.
noInferiors: Boolean true if it is not possible for any child levels
of hierarchy to exist under this name; no child levels exist now
and none can be created in the future.
noSelect: Boolean true if it is not possible to use this name as a
selectable mailbox.
marked: Boolean true if the mailbox has been marked
"interesting" by the server; the mailbox probably contains
messages that have been added since the last time the mailbox
was selected.
unMarked: Boolean true if the mailbox does not contain any
additional messages since the last time the mailbox was selected.
separator: The mailbox hierarchy delimiter.
mailboxName: The name of the mailbox.

<action-specific> No action specific column.

kOW3imapActionListMessages:

Column Description

resultList The list of messages in the mailbox. This is a list with 9 standard
columns, followed by a column for each header specified in
vParam2 when calling $init() to prepare for this action. The
additional header columns are named by removing - characters
from the header name, and converting the result to lower case.

The 9 standard columns in the message list are:
UID: The unsigned integer UID of the message
size: The size of the message in bytes
internalDate: The internal date of the message.
answered: The Boolean answered flag for the message.
deleted: The Boolean deleted flag for the message.
draft: The Boolean draft flag for the message.
flagged: The Boolean flagged flag for the message.
recent: The Boolean recent flag for the message.
seen: The Boolean seen flag for the message.

<action-specific> No action specific column.

kOW3imapActionFetchMessage:

Column Description

resultList If $splitfetchedmessage is kFalse, this column is not populated.
Otherwise, this column is a 2 character column list of mail headers:

Column 1 is the header name.
Column 2 is the header value.

<action-specific> If the action fetches the message content as well as the headers,
this column receives the content. It is either:
rawData: A binary column that receives the un-split fetched
message data
or

Whatôs New in Omnis Studio 8.1

64

mimeList: A MIME list containing the content. See the
documentation for the MailSplit command to see how a MIME list is
structured; however note that the charset in the worker MIME list is
a kUniType... constant rather than a character string.

kOW3imapActionSetMessageFlags:

Column Description

resultList Not populated.

<action-specific> No action specific column.

kOW3imapActionAppendMessage:

Column Description

resultList Not populated.

<action-specific> If possible, the action extracts the UID of the appended message
from the IMAP server response. The UID is returned to this column
(named UID) and is non-zero if the UID could be extracted. (Note
that not all servers return the UID of an appended message).

kOW3imapActionExecute:

Column Description

resultList A single column list of binary values. Each row of the list contains
the sequence of responses returned from the server when
executing the corresponding command in the list (or single binary
value) passed to $init(). You would typically decode this using
$utf7tochar, using the option to expect CRLF and replace with CR.

<action-specific> No action specific column.

Push Notifications
Push Notifications are now supported in the Android, iOS, and Windows 10 JavaScript
Wrappers (version 2.0+) which means you can send messages to any clients that have
your mobile app installed (even if it is not running). In this respect, the ability to send
push notifications provides a powerful and interactive feature that proactively
encourages end users to open and use your mobile app.

A notification or message pushed to a client could include an important news item, a
message to users about a new entry into the database, or anything else you want your
end users to know about. You can include a payload of data to send with the
notification, which will be passed to your Remote Form, allowing you to react to the
user clicking on the notification.

Support for notifications is provided via the Cloud Messaging or Push Notification
Service on the respective platform, which must be enabled in your mobile app project
when it is built using the latest JavaScript Wrapper SDK. To setup notifications in your
app on Android and iOS, you will need to use Firebase from Google: on Windows 10
you need to setup the Push Notification Services in the Store Dashboard.

Push Notifications Admin Tool
In order to manage notifications, it is possible to create groups of devices, and send
notifications to particular groups, or individual devices. All functionality can be achieved
in your Omnis code (using new properties and methods), or using a new admin tool,
called Push Notifications, under the Tools>>Add Ons menu option on the Omnis
menubar. Note the tool is an Omnis library located in the Startup folder which must be

 Property Manager

 65

present for Push Notifications to work in your mobile apps, including your Omnis code,
and for the Omnis App Server configuration to be setup.

Client Command and Methods
There is a new client command enablepushnotifications to enable and disable push
notifications for mobile apps:
$clientcommand(ñenablepushnotifications ò, row(bEnable))

bEnable: A boolean - kTrue to enable push notifications, kFalse to disable.

Returns: (Boolean) Success. Only if executed in a client method.

In addition, there is a new method $pushnotifycommand which you can use to
configure Push Notifications.

For further information about setting up Push Notifications in your mobile apps, and
using the client command and methods, see the new Push Notifications document on
the wrapper download page, available here:

http://www.omnis.net/download/jswrapper.jsp

Property Manager
The Property Manager has some significant enhancements that will help new and
existing users, including a filter for displaying a ñbasicò subset or all properties, and a
search box for locating specific properties.

Property Filter
The Property Manager can now display all the properties for an object or a subset of
properties. There is a checkbox at the top of the Property Manager window labelled
Show All, which either shows all properties for the current/selected object (listed under
specific tabs), or a single filtered list of ñbasicò properties (tabs are hidden).

The value of the Show All filter is saved with the window setup, and its initial value is
set according to whether you chose ñadvanced userò or ñnew userò in the new
Welcome dialog: advanced sets the ñShow Allò or unfiltered mode, while new user sets
the filter to basic view.

When the Show All option is unchecked, the property list shows a ñbasicò subset of
properties for the current object (selected library, class or form component), or for the
current context in the IDE, such as the Omnis preferences. For example, the following
image shows the properties for a remote form in ñbasicò mode:

http://www.omnis.net/download/jswrapper.jsp

Whatôs New in Omnis Studio 8.1

66

If you use Find & Replace (on the Edit menu) to locate a property, and double-click on
the find and replace log to select the property in the Property Manager, the Property
Manager automatically switches to ñShow Allò mode if the property is not part of the
basic set.

Modifying the basic set of properties

The basic set of properties is defined in a file called basicproperties.json and stored in
the Studio folder under the main Omnis folder. You can modify this file if you want to
change the properties shown in the filtered state of the Property Manager. The file is in
JSON format, and contains an array of property names which must be lower case, and
include the :: prefix if the property name requires one (e.g. some external component
properties).

Omnis re-reads this file if it has changed when you uncheck the ñallò checkbox in the
Property Manager: so checking and unchecking this box forces a re-read. If the file has
invalid syntax and cannot be parsed, Omnis writes an error to the trace log, and no
basic properties will be displayed.

Property Search
There is a new Search box at the top of the Property Manager window which allows
you to search for a property (note the search box is only visible when the ñShow Allò
check box in the Property Manager is checked). You can type a word or part of a word
into the search box and the property list will update itself as you type.

The search results are property names that contain the string you entered, and they
are shown in a single tab named óSearchô. The search results are always sorted by
property name, irrespective of the sort list option on the context menu. You can click on
a property in the property list and update its value.

For example, entering óshowô into the property search for a remote form will provide a
subset of properties containing the word óshowô.

 Studio Browser

 67

You can use the Backspace to clear a search string character by character, or you can
click on the X icon to clear the whole string. The shortcut Ctrl/Cmnd+Shift+D moves the
focus to the search box; you can press tab to return the focus to the property list. The
20 most recent searches are saved for re-use, which you can view by clicking on the
drop arrow in the search box.

Each keystroke in the Search box performs a search, so there is a delay before a
search is saved to the list: the delay defaults to 500ms, but you can change it in the
config.json file in the ñideò group: ñsavePropertySearchDelayò.

If you use Find & Replace (on the Edit menu) to locate a property, and double-click on
the find and replace log to select the property in the property manager, the property
manager clears the search before selecting the property.

For both the basic mode, and the all mode when search results are being displayed,
copy and paste properties are disabled on the context menu.

Studio Browser
Search Filter
The Studio Browser has a new Search box that allows you to filter the objects
displayed in the library or class list allowing you to find objects more easily. The new
Search filter is available for most of views in the Studio Browser, including Libraries,
Classes, SQL sessions, VCS projects, and various parts of the Hub including the
Sample apps and Faults.

To search for an item, navigate to the correct view in the Studio Browser, type the first
character of the item(s) you are looking for, and the list will instantly redraw, displaying
only those items that start with the character(s) you typed. For example, in the class list
for a library, you could type ñjò to find all the classes starting with the letter j.

In most cases the search string you enter is used to find items that start with those
characters, except that in the Fault list, under the Hub option, the search string is used
to find items that contain the search string. The Search box has a dropdown list that
stores the last few searches you typed, which you can select from with the pointer.

Whatôs New in Omnis Studio 8.1

68

JavaScript Components
This section describes enhancements made to various JavaScript components, to
enhance your web and mobile apps built using remote forms and the JavaScript client.

Edit Controls
There are three new properties for JavaScript Edit controls that allow you to control
automatic correction, capitalization and completion of text entered by the end user into
an edit field. This functionality is built into the browser whereby text is ócorrectedô or
updated automatically: note that not all browsers support all of these functions, so you
should check support in individual browsers on different platforms. The new properties
available for JavaScript Edit controls are $autocorrect, $autocapitalize, and
$autocomplete.

Auto Correction

If true, the $autocorrect property specifies that text entered into a JavaScript Edit
control is auto-corrected, as the end user types into the field. Currently this feature is
only implemented in Safari and iOS browsers (note some browsers, such as Chrome,
will highlight incorrectly spelled words, but not correct them automatically). This
property defaults to kTrue for backwards compatibility.

Auto Capitlization

The $autocapitalize property controls whether or no text typed into an edit field is
capitalized, as appropriate, automatically. Possible values include:

Ç kJSAutoCapitalizeSentences
Automatically capitalise the first character of new sentences (default and previous
behaviour)

Ç kJSAutoCapitalizeWords
Automatically capitalise the first character of each word

Ç kJSAutoCapitalizeNone
No automatic capitalization

Auto Completion

The $autocomplete property controls whether or not text is completed automatically. If
true, the browser will attempt to complete text based on content previously entered into
this type of field (e.g. name type fields will display a list of names based on the first
letter typed): the browser will display a list of suggested text for the end user to select
from. There may be many possible values for some types of field, which will be based
on values previously entered into any website for a field with the same 'autocomplete'
value, e.g. 'email'.

Combo boxes and Data grids
Combo boxes and Datagrids have the $autocorrect and $autocapitalize properties
(as described above for Edit controls). For combo boxes, this applies to the edit field
section of the control, while for data grids, this applies when editing cells.
Consequently, when end users enter text into these controls the text is auto corrected
and capitalized if these properties are enabled.

File Control
Multiple File downloads

In previous versions, the JavaScript File control allowed you to download a single file
by specifying a row variable containing information about the file to download. You can
now use a list, instead of a row, to provide a list of files to be downloaded.

The definition of this list is identical to the row, with the addition of a new 'Identifier'
column (the fourth column, of Character type) containing an identifier for each file.

 JavaScript Components

 69

In addition, when multiple downloads occur the UI is no longer blocked by the overlay.

evDownloadSent Event

The File control has a new event, evDownloadSent, which indicates if the download
was successful, and identifies the file that was downloaded. The event receives two
parameters:

Ç pSuccess
Whether or not the download was successsfully sent.

Ç pIdentifier
The value of the Identifier column (the fourth column from the download list, if
provided) in the download list/row which was assigned to $dataname to initiate the
download which has now been sent.

The evDownloadSent event will be triggered when the server has sent all of the data
for a file to the client. Note that Omnis sends the data in a single chunk, so the client
may still be processing the data at this point. However, at the point that the event is
fired, the server has sent all of the data, and the task variable containing the binary
data (or file path) can now be re-used.

Icons Folder Name
You can rename the óiconsô folder in Omnis by editing (adding) an entry in the Omnis
configuration file (config.json). This may be necessary when you deploy your web or
mobile app since Apache often redirects a URL with "/icons/" to the
/usr/share/apache2/icons folder, and you would then need to place all the icons for
your app in that folder.

There is a new configuration item, you can use in the server group of config.json:
"iconsFolder":"omnis_icons" which defaults to "icons" if omitted or the entry is empty.

You are recommended to use the same value for development and runtime, since the
folder name is stored in the HTML for each remote form class.

evAfter event queue
When an event is being executed in the JavaScript client, such as a click on a button, a
transparent overlay is applied to the whole remote form, to prevent user interaction
anywhere else in the form and to maintain the Omnis event ordering. If the user clicks
on this overlay, the click will be prevented, although most events happen almost
instantaneously so in this case the overlay is not displayed. A change has been made
to make the effect of clicking on the overlay more intuitive to the user.

For evAfter events that show the overlay, Omnis now shows a feedback effect at the
point of the click when the overlay prevents the click, to make it clear to the user that
their click was not registered. The feedback effect is a No Entry icon, with ñbubbleò
animation, that appears and disappears directly after the user click.

Previously, if a control with an evAfter had the focus and you then clicked onto another
control, if the evAfter took too long to execute, the second control would not receive a
click event, as the click will have been captured by the overlay. In this case, the click
will now be queued and will fire once the overlay is removed.

Unfortunately, Firefox does not treat the active state of elements in the same way as
other browsers. As such, it was not possible to implement these changes for that
browser.

Navigation Bar
The Navigation Bar control has a new property, $pop, which will ñpopò or remove the
specified number of items off the navigation stack: it is analogous to clicking on the left
or back button, since it allows you to step back in the navigation stack a specified
number of times.

Whatôs New in Omnis Studio 8.1

70

The $pop property can only be assigned at runtime. If you try to pop more items off the
stack than exist, it will pop everything except the first item. If you assign to $pop, note
that the evUserChangedPage event of a linked paged pane will not be triggered.

In addition, you can now set the text or title for the left (back) button for a navbar. If
provided, the 6th col in the row assigned to $push allows you to specify the left button
text. This can be set to an empty string to default to the previous page's title.

Error Text
There is a new value for the $errortextpos property: kJSErrorTextPosHidden which
hides the error text, so just the control outline indicates that there is an error (default is
a red border). This might be useful where there is limited space to display the error text
in the remote form, but you still want to show the end user that there was an error; the
style of the error outline is set in the omnis.css style sheet as div.om-error-border.

Text Styles
There is a new font style value, kLineThrough, for adding strikethrough to any text.
This can be used anywhere there is a property with a font style value, e.g. $fontstyle, or
style(kEscStyle,kLineThrough). (This new font style can be applied to any text in
JavaScript remote forms, as well as window and report classes.)

Complex Grid
The Complex Grid now has evClick & evDoubleClick events. When clicking on the
background of a complex grid row, or a control within the grid which does not have a
click event enabled, the evClick or evDoubleClick will be fired. Both of these events
receive pLineNumber parameters indicating the line number which was clicked. If no
line was clicked (the end user has clicked on empty space), pLineNumber will be 0.

Paged Panes
If a border radius is set on the JavaScript Paged Pane component the rounded corners
are no longer drawn in design mode: they are only rendered when the app is run on the
client. The rounded corners are not drawn in design mode to allow the full use of the
available space within the page pane control while designing the form.

Labels
You can now double-click on a JavaScript form Label to edit its text and corresponding
$text property.

Grid Section
Every field or object in a Complex grid has the $gridsection property which tells you the
section the object is in (while $gridcolumn which tells you its column). The $gridsection
property is now shown in the Notation Inspector so you can inspect its value for an
object in a grid section at runtime.

Field List
You can now use the Space bar to select a control in the Field List for a remote form
(right-click the form background to open the Field List); the effect of pressing the Space
bar will check the box next to the control. Therefore, when the focus is in the Field List,
you could use the arrow keys to navigate up and down the list and use Space bar to
select a control as required. The Shift-Space keypress allows you to select (or
deselect) multiple, discontinuous controls in the list.

Maps
The following is not a new feature but was previously not documented. The JavaScript
Map component supports Google Geocoding which allows you to convert a street

 Web Services

 71

address into a geographic coordinate like latitude and longitude, which you can use to
place a marker on a map, or center the map.

To use the Geocoding function you need to access the Geocoding API which itself
requires a separate API Key, in addition to the Maps API key, which you can obtain
from Google.

A Search button has been added to the JS Map example available in the Hub to show
how you can convert a street address to a latitude:longitude coordinate which can be
applied to the $latlong map property. Note the example app places the Geocoding API
key in the $userinfo property which is then sent to Google.

Data Grids
Data Grid columns have a new property $columnallownulldateinput to allow a null value
to be added to a row of data when the end user tabs out of the last line of the grid to
create a new line automatically.

If $columnallownulldateinput is true, and the datatype of the column is Date, cells in the
column will default to a value of null when added through the UI. Additionally, if this
property is enabled, the end user can change a date to be null by pressing Backspace
or Delete while the cell has focus.

If false (the default), the behaviour is unchanged from previous versions. Note is not
possible for the end user to input null values into the grid, via the popup date picker, for
example.

Web Services
RESTful POSTs
The RESTful API in Omnis now supports the use of POSTs with the content type
"application/x-www-form-urlencodedò, such as the content type that would be
generated by a form on a web page.

Therefore, in addition to URL place-holder parameters, you can now populate
parameters using either the query string or application/x-www-form-urlencoded content.
You cannot use both the query string and application/x-www-form-urlencoded content.
Studio 8.0.2 and earlier just support the query string in addition to URL place-holder
parameters.

To use application/x-www-form-urlencoded, set the RESTful input type to application/x-
www-form-urlencoded. Omnis then expects application/x-www-form-urlencoded
content containing each of the non-optional non-place-holder parameters. The raw
application/x-www-form-urlencoded content is also supplied in the pContent parameter
of the RESTful method: application/x-www-form-urlencoded content can only be used
with HTTP methods that can send content to the server.

Queueing RESTful requests & Licensing
RESTful requests to the Omnis Server consume a web user license for the duration of
the request. In previous versions, if all licensed connections were in use when a new
RESTful request came into the server, the client received an error. In this version,
RESTful requests are now queued internally until they succeed. Note that requests will
never be re-queued in a single threaded server (a server where Start server has not
been called) since everything executes sequentially.

In addition, there is a new sys function, sys(234), which returns a row of information
containing statistics about RESTful requests to the Omnis server. The row has three
columns: column 1 is the count of successful calls; column 2 is count of calls resulting
in an error; and column 3 is the count of calls internally re-queued because there was
not a free user.

Whatôs New in Omnis Studio 8.1

72

RESTful remote task constructor
A RESTful remote task $construct method now receives a row variable parameter with
two columns: url and method, where url is the partial url starting with the Omnis library
component, and method is the name of the HTTP method.

Remote Task instances
The $restful and $restfulapiname properties are now available in remote task
instances: previously they were only available in remote task classes.

CORS configuration
A template CORS configuration file (cors.json) has been placed in a new folder called
óconfigô in the óStudioô folder, containing the required settings to configure CORS for use
with Web Services. You can make a copy of this file and place the copy in the Studio
folder, making any necessary changes. See the Extending Omnis manual for
information about setting up and using CORS with Web Services.

Method Editor
Method Lines
Method lines that are longer than 255 characters now fully display in the method editor,
right across the code editing area. In previous versions, long method lines were
truncated and ended with an ellipsis.

Displaying Control Characters
It is now possible to display control characters in data or content when inspecting a
variable in the Method Editor. The Field Value window and Values list window,
displayed when you Right-click on a variable, now have a menu that allows you to:

Ç Show characters normally

Ç Show all control characters (in this case no line breaking occurs on carriage return
for multiline entry fields)

Ç Show all control characters except carriage return (in this case carriage returns
break lines as usual)

The menu also allows you to increase and decrease the font size used for all content
except the binary data.

The control characters are displayed using the Unicode page 0x2400 which has visual
representations of control characters. In addition to characters 0-0x1f, 0x7f (del) is also
treated as a control character.

In addition, the Catalog status bar, Variable value tooltips and Variable context menus
always show control characters if present.

The Save Window Setup option for the Values list now saves grid column widths, and
the height of the value when using show full value. Save Window Setup for both the
Field value window and the Values list window saves the current font size and the
option controlling how or if control characters are visible.

Inherited Methods
Comments

The way comments from inherited methods are handled and displayed has changed. In
previous versions, when you overrode a method, the new method was prefixed with
comments from either the start of the overridden method, or from the overridden
external object method. In this version, the new method is no longer prefixed with these
comments, instead the comments are shown on the left-hand side of the óNotesô tab in

 Method Editor

 73

the Variable pane in the Method Editor. Comments for both the immediately overridden
method, and for any other implementations further up the inheritance tree are shown.

The new comments field is only present for a method which overrides a superclass
method, or for an inherited method. The advantage of this new approach is that the
code is not cluttered with comments, and in addition the comments in the new field stay
up to date if you edit the comments in a superclass method.

There is a new entry in appearance.json: "overriddenmethodstyle" which is the text
style used to indicate an overridden method in the method editor tree. The default is to
show methods that override a superclass method in bold.

The method editor now only shows the inherit method option on the method tree
context menu when the method does actually override a superclass method.

The method tree context menu now shows the superclass methodsé option for
methods that override a superclass method. In addition, double click on the method
node in the tree opens the superclass methods for both inherited methods (as in
previous versions) and overridden methods (new for this change).

You can resize the new field using the mouse. Save window setup saves the width of
the new field, provided that the new field is visible when you save the setup.

Inherit or Override method Shortcut

The Inherit method or Override method options are now present in the method editor
Modify menu when it is appropriate to include the command. Both have the shortcut
Ctrl+Shift+I to inherit or override the current method.

Code Assistant
Custom Properties

The Code Assistant now recognises custom properties, i.e. properties of an instance or
an instance object, implemented using two methods, $propname and
$propname.$assign.

The Code Assistant combines these into a single property in the list of completions
rather than showing the two methods, and provided that the Code Assistant can
resolve the parent notation, it will also show $assign and $canassign as possible
completions for notation relative to a custom property.

Tabbing Behavior

The behavior of tabbing while using the Code Assistant has changed, although you will
need to enable the new behavior in the Omnis configuration file. There is a new item in
the ócodeAssistantô entry in config.json to control the behavior when tabbing out of the
variable name or calculation box in the method editor.

The new item ótabAlsoLeavesFieldAfterClosingAssistantô is set to false, by default, but
if set to true (and óoldTabReturnBehaviourô is false) then a tab will close the code
assistant and the cursor will move to the next field in the tabbing order.

Renaming Methods
When the focus is on a method name in the method editor tree, pressing Return or
Enter allows the selected method name to be edited (provided that it is editable). The
line scrolls to view if necessary. If more than one node is selected, nothing happens
and Return or Enter does not invoke method name editing. Once the method name has
been edited you can press Return or Enter to confirm the edit.

Whatôs New in Omnis Studio 8.1

74

SQL Workers
Additional Notifications
The SQL Worker Objects now support an interim $progress method which can be
called whilst the worker is running. If implemented in the $callbackinst, the $progress
method is called with a row parameter containing a single column, as follows:

Ç $progress(row)
where row is a row parameter containing a single column called óProgressô which is
calculated as a percentage of the total number of SQL queries that will be
executed.

Where a work-list/query and bindvar combination is supplied, the total number of
queries is calculated by adding the number of times each query will be executed. The
received parameter value is suitable for direct assignment to a progress bar
component, for example:
On evClick

 é

 Do iWorker.$callbackinst.$assign($cin st)

 Do iWorker.$init(lParams) Returns #F

 Do iWorker.$start() Returns #F

; This code appears in the window instanceôs $progress method

Do $cwind.$objs.progress.$val.$assign(pRow.Progress)

The óworkerô sample component supplied with the External Component SDK also
demonstrates this functionality.

Window Components
Multi-line Entry Fields
There is a new runtime-only property, $linecount, available for window class edit fields
only, that allows you to limit the number of lines of text/data that can be entered into the
field. For example, setting $linecount to 2 would only allow 2 lines of text to be entered
into the field.

The following example code for the $event method of a multi-line edit field shows how
you could prevent users from entering too much text:
; set up variable iMaxLines (Integer)

On evClipChangedData,evKey

 Process event and continue

 If $cobj.$linecount>iMaxLines

 Calculate $cobj.$contents as iPrevData

 Sound bell

 Quit event handler

 End If

 Calculate iPrevData as $cobj.$contents

Disabling Plug-ins in oBrowser (macOS)
The oBrowser window component has a new property, $disablepluginsmacos, to allow
you to disable all plug-ins when running on macOS. This is useful if you want the
embedded Safari browser to use the built-in plug-in and not any external plug-in, for
example, if you want to display a PDF using the built-in PDF viewer in Safari and not
the Adobe PDF viewer installed on the clientôs computer.

Note this is not required for Windows since the Chromium Embedded Framework
(CEF) in the oBrowser component does not use external plugins installed on a
Windows based system.

http://www.omnis.net/products/components/buildyourown.jsp

 Window Programming

 75

Headed Lists and Tree Lists
Headed Lists and Tree Lists have a new property $showheaderlines. If true (the
default), header separator lines are drawn in the header.

Window Programming
Window Transparency
Window classes now have the $alpha property which sets the transparency of the
window and all its controls (an integer from 0 to 255, with 0 being completely
transparent and 255 opaque). In addition, the majority of the Window class
components have the $alpha property which means you can set the transparency of
individual window components.

Window instances have the methods $beginanimations() and $commitanimations()
which allow you to animate changes to certain properties of some window components
including the new $alpha property: other properties supported are $left, $top, $width
and $height. For example, you could ñfade inò a control by animating a change to its
$alpha property, or you could move a component into view by animating a change to its
position via its $left and $top properties.

Ç $beginanimations(iDuration)
after calling this, assignments to some properties are animated for iDuration
milliseconds by $commitanimations()

If you set the same property for an object more than once, the first property change is
animated, and then the last property change is animated when the first completes,
while property changes between the first and last are ignored. The
evAnimationsComplete event (for window instances) is generated after the last
property change has completed. This allows you to reverse the effect of an animation
(which is the equivalent to the autoreverse/repeat options available on iOS).

Screen Size
There is a new property of $toplevelhwnd, called $screen, that allows you to track the
location and dimensions of the screen, as the window changes position. This could be
useful if, for example, a window in Omnis is located on a second monitor and you want
to determine its width and height in order to resize or reposition the window.

The value of $left, $top, $width and $height of the screen can be obtained by creating
an item reference to this new property, e.g.
Set refere nce toplevelitemref to $cwind.$toplevelhwnd.$ref

Set reference screenref to toplevelitemref.$screen.$ref

This is only implemented for macOS and Windows. Other platforms (Linux) will return
(0,0,1,1) for (left, top, width, height).

macOS

The screen dimensions on macOS will take account of the menubar and position of the
dock and only return the visible screen area.

Windows

Under the Windows OS all Omnis windows are contained within the main Omnis
window. Therefore, on Windows the identifier for a windowôs screen will be the screen
containing the main Omnis window.

If the main Omnis window is displayed across multiple screens then the identifier for
the screen is that screen which contains the largest area of the main Omnis window.
The screen properties will provide the area of the main Omnis window which intersects
the visible area of the screen.

Whatôs New in Omnis Studio 8.1

76

List Programming
Select Duplicates
The $selectduplicates method has been added. Its parameters and behavior are
exactly the same as $removeduplicates, except the affected lines are selected rather
than deleted. The list selection state of non-duplicate lines is cleared.

Note that this can be used in client-executed remote form methods, as well as in server
methods.

$first() and $next() Methods
The list methods $first() and $next() now take an additional optional parameter, a
condition which must be met in order to match the first or next line:

Ç $first()
LIST.$first([bSelOnly=kFalse, bBackwards=kFalse, condition]) sets $line to first line
matching parameters; returns an item reference to the row. If bSelOnly, matches
selected lines only; if bBackwards, matches lines in reverse; if condition is present
lines must match it

Ç $next()
LIST.$next(rRow|iRowNumber [,bSelectedOnly=kFalse, bBackwards=kFalse,
condition]) sets $line to the next line after the line identified by the first argument. If
iRowNumber is zero, processing starts at $line. See $first for definitions of the other
parameters

For example, if name is a column in the list:

Set reference item to list.$first(k False,kTrue,mid($ ref.name ,2,1)=ñMò)

Set reference item to list.$next(item,kFalse,kTrue,mid($ ref.name ,2,1)=ñMò))

Note the new condition parameter can be used in client executed methods in the
JavaScript client.

Themes
Custom Themes and Exporting
The Options in the Hub in the Studio Browser are now split into three tabs: Browser,
Themes, and Faults.

Under the Themes option it is now possible to have multiple custom themes. There is a
list of the custom themes currently installed (located in the folder
/studio/themes/custom) underneath the themes droplist.

To create a custom theme, press the "Save Current Theme As" button. Once saved,
the name you give the theme will then appear in the list of custom themes.

If you are setting a custom theme, you will need to select it first in the list and then
press the "Apply Custom Theme" button, since you need to be able to select a custom
theme without applying the theme when exporting.

To export custom themes, select the required themes in the list and press the "Export
Themes" button. This allows you to select a folder to copy the themes into.

You can also import either a single theme or a folder of themes. Once imported they
are copied to the /studio/themes/custom folder and will appear in the list.

 Reports

 77

Reports
Zoom In/Out
The report class editor toolbar now has Zoom In and Zoom Out buttons which control
the DPI value used to convert report coordinates to and from pixels, and the DPI value
used to create fonts used in the editor. "Zoom in" increases the DPI value, ñZoom outò
decreases it. Note this is for design mode only, and you can zoom through a limited set
of DPIs:

Ç 72 ï objects displayed at standard resolution for macOS

Ç 96 ï objects displayed at standard resolution for Windows (with default system
scaling of 100%)

Ç 144 ï objects displayed at 2x resolution for macOS

Ç 192 ï objects displayed at 2x resolution for Windows

In addition, if Windows is using a different scaling value, the editor inserts the system
DPI into this list at the appropriate point.

These values correspond to the design coordinate system used in Omnis, so on HD
displays 96 DPI maps to 192 physical pixels.

You can use Ctrl+ and Ctrl- (Cmnd+/Cmnd- on macOs) to zoom in and zoom out
respectively. The current zoom level is saved with the window setup by the save
window setup context menu item.

Note that the section bars and the text in the left panel do not increase in height when
you zoom. Note also, that zoom does not affect the size of lines drawn in fields on the
report - only the text, and in some cases images will scale.

The Modify Report field has a new runtime property, $dpi, that can be assigned to one
of the values above.

External Components

If you create external components for reports then you will need to make some
changes in order to draw text at the correct DPI. Typically, if the component just
displays its name or dataname using the standard interface, you wonôt need to do
anything, as the text DPI will be handled by the Omnis core. Where components that
can be placed on reports draw custom text, there are some changes to make in the
component:

Ç There is a new callback ECOgetFontDpi(HWND) that returns the current DPI to use
to create fonts - this will return zero unless the component is on a report design
window, in which case it will return one of the above values.

Ç There is a new class GDIfontCreator, that you construct with the HDC for drawing,
and the return value from ECOgetFontDpi. This has a method createFont that you
then use to create the font rather than calling GDIcreateFont. When you have
finished with the font, call GDIdeleteObject as usual. You cannot cache the HFONT
generated by createFont in your component.

Ç If you require font or text metrics, use the HDC versions of GDIfontHeight,
GDIfontPart, GDItextWidth etc, with a font created using GDIfontCreator.

Ç In addition, for more advance use there are classes GDIhdcFontCacheHelper
which removes all fonts cached by the Omnis font cache for a particular HDC at the
end of the block and GDIoverrideHDCDPI which means that all fonts created for a
specific HDC are created at a specified DPI while GDIoverrideHDCDPI is in scope.
You need to use GDIoverrideHDCDPI if you are drawing styled text, as styled text
drawing may create new fonts. In addition, when drawing styled text, you need to
set mFontHdc in the GDIdrawTextStruct, in order for fonts to be created at the
correct DPI.

Ç You can also call GDIcreateDcFont with a DPI parameter to manage fonts yourself.

Whatôs New in Omnis Studio 8.1

78

Paper Size
A6 has been added to the available page sizes. The constant kPaA6 is now available
for $paper, an Omnis ($root) preference to set the global page size.

Web Commands
There are two new commands in the Web commands external command set for
authentication and executing a HTTP method, and a new parameter, UseProxy, has
been added to HTTPOpen. In addition, the FTPConnect command has a new optional
parameter to allow you to specify the Charset for the file transfer.

Note these enhancements are in the Web commands located in the External
Commands group in the Method Editor, and are not related to the methods in the
existing Web Worker objects or new OW3 Worker objects.

HTTPSetAuthentication
HTTPSetAuthentication is a new client command that provides the parameters needed
to authenticate an HTTP request with the server; the command only supports HTTP
basic authentication, or no authentication. If you use basic authentication, you are
recommended to use a secure connection. Use this command to set up authentication
after calling HTTPOpen and before calling HTTPMethod. Note that if you do not want
to authenticate the request, a new socket created with HTTPOpen defaults to no
authentication, so you do not need to call HTTPSetAuthentication in this case.

Syntax

HTTPSetAuthentication (socket, type, username, password) Returns status

Socket is a long integer field containing the socket number of an open HTTP
connection.

Type is a long integer with value zero for no authentication, or 1 for basic
authentication.

Username is a character field containing the user name for basic authentication.

Password is a character field containing the password for basic authentication.

Status is an Omnis Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

HTTPMethod
HTTPMethod is a new client command that submits to a Web Server an HTTP request
to execute a specified HTTP method.

Syntax

HTTPMethod (socket, uri, method, requesthdrlist, requestcontent,
responsestatuscode, responsehdrrow, responsecontent) Returns status

The command requires an existing socket opened with HTTPOpen in order to submit
the request. Note that this allows you to sequentially submit more than one request
using the same socket connection subject to the rules of HTTP e.g. if the server returns
a connection close header in its response, no more requests can be sent on the
connection: at this point you need to use HTTPClose to free the socket resources and
open a new connection if you want to send more requests to the server. Re-using a
connection like this can be a significant performance improvement, especially when
using a secure connection, where the connection set-up time is relatively costly.

Socket is a long integer field containing the socket number of an open HTTP
connection.

URI is a Character field containing the URI to which the request is addressed. For
example, "/default.html", or "/cgi-bin/mycgiscript". Note that if you wish to send query
string parameters you must append them to the URI, using the standard ? syntax, e.g.

 Web Commands

 79

"/default.html?name=test&value=good". You should encode these parameter names
and values using CGIEncode.

Method is a Character field containing the HTTP method to be executed. Note that the
method is case-sensitive. Standard HTTP methods such as GET and POST need to be
specified in upper case.

RequestHdrList is an Omnis list with two character columns. The list contains the HTTP
headers to send to the server. HTTPMethod automatically adds a content-length
header if you do not specify it in this list, and RequestContent is supplied and not
empty.

For example:

Header name Value

User-Agent My Client

Content-type text/html

RequestContent is the content to send to the server with the request. It only makes
sense to send content with certain methods, e.g. POST. You can supply either
character data, which the command converts to UTF-8 before sending, or binary data.

ResponseStatusCode is an integer field into which Omnis returns the HTTP status
code of the HTTP request, e.g. 200 for success.

ResponseHdrRow is a row variable which Omnis populates with the headers received
in the response from the server. HTTPMethod clears the row and adds columns as
necessary. The column name is the header name converted to lower case, with any -
characters removed. In addition, if there are headers with the same name,they are
combined into a single header with that name,with comma-separated values.

ResponseContent is a binary or character field into which the command stores the
content (if any) received in the response from the server. If this is a character field, the
command assumes the content is UTF-8 encoded, and converts from UTF-8 to
character before storing the response in the field.

Status is an Omnis Long Integer field which receives the value zero for success, or an
error code < 0 for failure.

HTTPOpen
The HTTPOpen command has a new optional Boolean parameter UseProxy.

HTTPOpen (hostname[,service|port,secure {Default kFalse},verify {Default kTrue},
useproxy {Default kTrue}]) Returns socket

If UseProxy is kTrue (the default), and proxy server parameters have been set using
HTTPSetProxyServer, HTTPOpen connects to the proxy server, setting up a secure
tunnel if the proxy server does not have a secure URL, but the requested connection is
secure. If kFalse, HTTPOpen connects directly to the specified host and port.

FTPConnect
The FTPConnect web command has a new optional parameter called Charset which
specifies the character set used for exchanging pathnames with the FTP server, and
for exchanging file character data with the FTP server. Charset can either be
kUniTypeAuto, kUniTypeUTF8, kUniTypeNativeCharacters, kUniTypeAnsi...,
kUniTypeISO8859_..., or kUniTypeOEM.

The new parameter is added to the end of the existing parameters, therefore the full
syntax of the command is now:

Ç FTPConnect(ServerAddr,Username,Password[,Port,ErrorProtocolText,Secure
{Default zero insecure;1 secure;2 use AUTH TLS},Verify {Default kTrue},Charset
{Default kUniTypeAuto}])

Whatôs New in Omnis Studio 8.1

80

If you specify kUniTypeAuto, after FTPConnect establishes a connection, it sends a
FEAT command to the server to determine if the server supports UTF8. If the server
supports UTF8, then the connection uses UTF8 as the charset, otherwise it uses
kUniTypeNativeCharacters.

FTPConnect and TLS
When FTPS is used with the FTP external commands (e.g. FTPConnect to initiate a
secure FTP connection), it now resumes the TLS session for data connections. In
addition, it automatically sends PBSZ and PROT commands to the server after
establishing a secure control connection.

SMTP Workers
Note the following enhancement refers to the existing SMTPClientWorker object in the
Web Worker Objects group, not the new OW3 Web Worker object (which also supports
mailshots).

Mailshots
The $init method for SMTP worker objects has a new optional parameter, bMailShot, to
enable a mail shot to be sent:

Ç OBJECTVAR.$init(zMessage, cServer [,iSecure=kOWEBsmtpSecureNotSecure,
iAuthType=kOWEBsmtpAuthTypeNone, cUser, cPassword, cOAUTH2, cRealm,
cNTLMDomain, lProps, bMailShot=kFalse])

If bMailShot is true (the default is false), the worker sends a separate copy of the
message to each recipient (so that each recipient cannot see the email address of the
other recipients). In this case, only 'to' recipients can be specified.

Functions
SHA functions
There are two new functions to generate almost-unique 256-bit or 512-bit signatures for
the supplied binary data.

Ç sha256()
sha256(binary) Returns the 32-byte binary SHA-256 hash of the supplied binary
data. Returns #NULL if binary is null or empty.

Ç sha512()
sha512(binary) Returns the 64-byte binary SHA-512 hash of the supplied binary
data. Returns #NULL if binary is null or empty.

iso8601 functions
iso8601toomnis() will now parse a date string in the form:
YYYY-MM-DDTHH:MM:SS.FFFZ
rounding FFF into the hundredths field appropriately. The representations in the date
string are:

YYYY-MM-DD Date: Year, month, day

T Date time delimeter

HH:MM:SS.FFF Time: Hours, minutes, seconds, fractions of a second

Z UTC offset: Z means zero UTC offset, or add +/- offset

For more information about ISO8601 look up: https://en.wikipedia.org/wiki/ISO_8601

https://en.wikipedia.org/wiki/ISO_8601

 Component Store

 81

omnistoiso8601() has a new Boolean parameter that indicates that hundredths are to
be output as milliseconds:

Ç omnistoiso8601(dOmnisDateTime,bNeedTime[,cErrText,bMillis=kFalse])
Converts dOmnisDateTime (in UTC) to ISO8601 date/date-time (depends on
bNeedTime) and returns it. Returns NULL and cErrText on error. Rounds down
hundredths if bMillis is false.

Note that bMillis only applies when bNeedTime is kTrue. If bMillis and bNeedTime are
both kTrue, then the function always outputs milliseconds.

sys()
A number of sys() functions have been added, and are summarized here:

Ç sys(231) returns zero in headless server.

Ç sys(233) returns empty in headless server; it returns the title of the main Omnis
application window in the full server.

Ç sys(234) returns a 3 column row of information containing statistics about RESTful
requests to the Omnis server.

Ç sys(236) returns true if VCS branching is enabled. If sys(236) returns false on a
branched project, the VCS will display the default branch data.

FileOps
The FileOps $readcharacter function now has an additional parameter to test if the file
is UTF-8 compliant:

FileOps.$readcharacter(iEnc,&cData[,&iOff=0,iMax=0,bChkUTF8=kFalse])

Ç bChkUTF8
If the data does not have a BOM when iEnc is kUniTypeAuto and you are reading
the entire file (so iOff and iMax are both zero), use UTF-8 as the detected encoding
if the data is consistent with UTF-8 encoding rules

Component Store
Adding Controls to a Form
You can now add a component to the current design window (remote form, window or
report) by first selecting the component in the Component Store and then pressing
Return (this is the same behaviour as double-clicking on a component in the
Component Store).

Omnis Configuration
Template Configuration File
Many of the preferences and settings in the Omnis IDE and Omnis App Server are
stored in a configuration file called óconfig.jsonô. The config.json file, created in the
Studio folder when Omnis first runs, contains only a subset of settings needed initially
for development, but there are many more settings you can add to the file to enable or
configure further features in Omnis.

There is a new template config.json file containing all possible sections and settings
located in a new óconfigô folder in the Studio folder: you can copy sections out of this file
and add them to your copy of the config.json file in the Studio folder. (Note there is a
copy of the CORS configuration file ócors.jsonô in the new config folder, which you need
to move into the Studio folder to enable CORS: see the Web Services section for more
info.)

Whatôs New in Omnis Studio 8.1

82

Configuration File Methods
There are some new methods in the Omnis Preferences that allow you get and set the
contents of the Omnis configuration file. These would allow you, for example, to create
your own config.json from code which could be used for deployment of your app.

Ç $getconfigjson()
Returns config.json as a row (empty if config.json could not be parsed)

Ç $setconfigjson(wConfigJson)
Sets config.json to the supplied row

These are methods of $root.$prefs, and they appear on the Methods tab of the
property manager, but only when used with the Notation Inspector.

You can use them to modify existing items, or add new items. For example:
Do $prefs. $getconfigjson() Returns cRow

If isnull(cRow.obrowser.$cols.$findname("newitem"))

Do cRow.obrowser.$cols.$add("newitem",kCharacter,kSimplechar,1000000)

End If

Calculate cRow.obrowser.newitem as "my test2"

If isnull(cRow.obrowser.$cols.$findname("newitem2 "))

Do cRow.obrowser.$cols.$add("newitem2",kBoolean)

End If

Calculate cRow.obrowser.newitem2 as kTrue

If isnull(cRow.obrowser.$cols.$findname("newitem3"))

Do cRow.obrowser.$cols.$add("newitem3",kInteger,0)

End If

Calculate cRow.obrowser.newitem3 as 123

Do $prefs.$setconfigjson(cRow)

VCS
VCS Branching
Access to branching in the VCS has been removed from the Studio Browser but
support for branching is still available for backwards compatibility. To enable branching,
you can add the following member to config.json:
 "vcs": {

 "enableBranching": true

 }

In addition, sys(236) has been added and returns true if VCS branching is enabled. If
sys(236) returns false on a branched project, the VCS will display the default branch
data.

Showing Checked Out Classes
There is a new hyperlink option in the Libraries view of the Studio Browser ñShow
Checked Outò to display only checked out classes in the current library. Once enabled
you can click the option again to show all classes.

Checking Out Classes
There is a new option on the Check Out tab in the VCS Options: when enabled, the
Ignore Checked Out Classes option ensures that the VCS will not copy out a
component if it is already checked out.

 Window Components

 83

Window Components
Combo Boxes
Combo boxes in window class toolbars now support $keyevents, such as evKey.

OJSON
Static Methods
The OJSON object has two new static methods: $listtoarrayarray and $arrayarraytolist,
to manipulate an array of arrays.

Ç $listtoarrayarray()
OJSON.$listtoarrayarray(lList[,iEncoding=kUniTypeUTF8,&cErrorText]) writes a list
with simple columns to an array of arrays; returns the JSON with specified
encoding (UTF8, UTF16BE/LE, UTF32BE/LE or Character). Returns NULL and
cErrorText for an error.

Ç $arrayarraytolist()
OJSON.$objectarraytolist(vData[,&cErrorText]) parses vData (binary (UTF8/16/32)
or character). vData must be a JSON array of arrays containing members with
simple types. Returns a list representing the JSON. Returns NULL and cErrorText
for an error.

These methods only work with simple types as array members. $arrayarraytolist
requires that each JSON array must have the same number of elements, and each
JSON array member at a particular index must be of the same data type.

XML
Using Schema Files for Validation
Some new properties have been added to the XML DOM Document object to allow you
to use an external schema file (XSD) for validation.

Ç $fullschemavalidation
If true, and $parservalidates is also true, and the parser will validate against a
schema, the parser performs additional checks against the schema.

You should set $fullschemavalidation to true unless performance is an issue.

The other new properties allow an external schema to be specified:

Ç $nonamespaceschemalocation
if specified, this property becomes the noNamespaceSchemaLocation attribute for
the document being parsed.

Ç $schemalocation
if specified, this property becomes the schemaLocation attribute for the document
being parsed.

The schemas specified in these properties need to be referenced by a pathname to the
schema file.

For example, to use an external schema, turn on $fullvalidation (without this, the
absence of the schema file is an unreported and ignored warning), and set
$schemalocation to:
"urn:books c: \ dev \ studio60orfc \ oxml \ test \ books.xsd"

where the second component is the path to the schema file on your system.

If an XSD is in the same directory as the XML, you can use:
"urn:books books.xsd"

Whatôs New in Omnis Studio 8.1

84

Localization
String Table Editor
The String Table Editor now saves to Tab Separated Value (.tsv) format by default, but
provides the option to save in the old .stb format. In addition, the dialog for opening a
string table initially defaults to .tsv.

Commands
Text: and Sta: Commands
The Text: and Sta: commands now enclose their parameters in curly braces {}. This
change was made in order to allow chroma coding and construct highlighting in the
Method Editor to work consistently, and for the new Library (JSON) export option to
work for these commands.

Web Server Plugins
VC++ Runtime Library
The dependency of the Omnis web server plugins on the VC++ runtime library,
available separately from Microsoft, has changed. The plugins omnisapi.dll, nph-
omniscgi.exe, and their Web Services (REST) variants are now statically linked to the
VC++ runtime redistributable library. As a result, weshared, apache mod_omnis and
omnisservlet are also statically linked to the library.

Query Builder
Some enhancements have been added to the SQL Query Builder (added in Studio
8.1.1), which is available in the SQL Browser inside the Studio Browser.

A 'Create table class' option has been added to a new 'Other' toolbar menu option for
creating a table class from the current query; the option also gives you the option to
create a window class and/or a remote form for viewing the data via the new table
class.

An 'Export Data' option has been added to the 'Other' toolbar menu to allow you to
export the results data.

Plus the 'Create Statement on Clipboard' option has been added to the 'Other' menu
option; the Omnis code generated by this option is suitable for pasting into an Omnis
method.

 Query Builder

 85

Whatôs New in Omnis Studio
8.0.3

The following enhancements have been added to Omnis Studio 8.0.3:

Ç SQLite Encryption
the SQLite DAM now supports native datafile encryption: when enabled, data is
encrypted and can only be read and decrypted using the encryption key

Ç Dictation
allows end users to enter text into Edit fields using the built-in dictation on macOS
Sierra; dictation must be enabled in the config.json file

Ç Apple Events
a new object class containing AppleScript to run various Apple Finder events, to
replace the Apple Events commands which have now been made obsolete

Ç Map Markers
extended support for Google Maps allows you to add a larger variety of map
markers (circles, arrows) and polygons to maps in JavaScript apps

Ç Page Panes
the JS Paged Pane control has a new property $animatetransitions, which allows
you to animate the transition when the current page is changed

Ç Worker Objects
additional support for notifications in the Worker Objects, for example, to allow you
to report progress on a long operation in your SQL transactions

Ç JSON column types in PostgreSQL DAM
you can select and insert JSON strings into PostgreSQL JSON and JSONB
columns

Ç Hardware ID
a new function to return the string ID of the hardware on which Omnis Studio is
currently running; this replaces sys(227) which has been removed

Ç Icon functions
There is an additional optional noscale parameter to the $getpict() and $getmask()
functions in the OmnisIcn Library function group

Whatôs New in Omnis Studio 8.0.3

86

SQLite Encryption
The SQLite DAM now supports native datafile encryption. When enabled, all data
written to the SQLite datafile is encrypted and can only be read and decrypted using
the SQLite DAM with the appropriate encryption key.

Encryption is enabled by setting the session object $encryptkey property before logging
on to the SQLite datafile. $encryptkey accepts a string of hexadecimal characters. The
string should be of even length and should be no longer than 32 characters. The key
value will be truncated if it does not meet either of these criteria. The accepted key
value is then used to seed an internal private key which is subsequently used by all
statement objects belonging to that session object.

To create a new encrypted datafile, the $opencreate property should also be set to
kTrue before logging on. For example:
Do sessObj.$opencreate.$assign(kTrue) ;; create a new datafile if it does

not exist

Do sessObj.$encryptkey.$assign(ó1a2b3c4d5e6fô) Returns #F

Do sessObj.$logon(ó/Users/user1/Desktop/sqlite.dbô,ôô,ôô,ôsession1ô) Returns

#F

Once encrypted, $logon() will fail unless the correct $encryptkey is supplied.
$encryptkey will be ignored (cleared) if the DAM detects a connection to a non-
encrypted datafile. Please note that you cannot change the $encryptkey property while
the DAM is logged on. Errors encountered during assignment of $encryptkey are
written to session.$nativeerrorcode and session.$nativeerrortext.

The DAM provides two session methods that facilitate encryption/decryption of existing
SQLite datafiles:

Ç $encrypt(filename)
opens a non-encrypted datafile and encrypts it using the $encryptkey. A backup
copy of the non-encrypted datafile is created at the file location named filename.bak

Ç $decrypt(filename)
opens a previously encrypted datafile and decrypts it using the $encryptkey. A
backup copy of the encrypted datafile is created at the file location
named filename.bak

$encrypt() and $decrypt() return kTrue on success but will fail, unless the DAM is
logged off, if the process cannot get exclusive read/write access to the specified
datafile or if filename.bak already exists and cannot be overwritten. Once encrypted,
connection via third-party tools should be avoided as this may result in undefined
behaviour and cause datafile corruption.

 Dictation for Edit Fields

 87

Dictation for Edit Fields
You can now enter text into an edit field using the built-in Dictation feature on macOS,
which tries to convert audible speech into meaningful text. To allow dictation to occur
the focus must be in the edit field, which must itself be editable, i.e. not disabled, and
dictation must be enabled on the client computer. Dictation is available in Single- and
Multi-line edit fields, the edit part of Combo boxes, and edit fields in Complex grids in
remote forms (and window classes), that is, wherever text input is required.

Enabling Dictation
Support for Dictation is turned on in Omnis by default, but you can change it in the
config.json file (prior to Studio 8.1 it was off by default). There is a ñuseDictation" option
in a new ñmacOS" member in config.json, which is set to true to enable dictation; note
you have to quit Omnis to change the config.json file, and any change will be effective
when you restart Omnis.

"macOS": {

 "useDictation": true

 }

Using Dictation in Edit fields
To enter dictation mode, place the cursor in the edit field and select the Start Dictation
option from the Edit menu on macOS, or press the Function key twice (Fn + Fn). This
will open the dictation popup (usually at the insertion point, or in the center of the
screen) and put the computer in listening mode. Dictation can be stopped or cancelled
by clicking on Done in the popup, or using the Stop Dictation menu option.

Dictation Levels
There are two levels of dictation provided by macOS: Standard or Enhanced. These
can be enabled from System Preferences->Keyboard->Dictation, or on older systems
System Preferences->Dictation & Speech.

Standard dictation (the default) requires an internet connection and provides speech to
text translation using Appleôs servers. On older systems, the text is not translated until
the Done button is pressed on the popup. On newer systems text is translated and
placed into the field while the end user is speaking. Dictation will end automatically
when text is entered from the keyboard or the field loses the focus.

Enhanced dictation requires the enhanced dictation engine to be downloaded, which is
approximately 500MB for each language pack. This will then provide local machine
based translation. Features of enhanced dictation are live feedback and offline support.
With live feedback the text is rewritten while speaking. Enhanced dictation also
provides spoken dictation commands such as ñSelect Allò, ñCut thatò, ñMove leftò, and
so on. When enhanced dictation has been started it is possible to change the currently
focused edit field and move the popup to the new field and continue to dictate. It is also
possible to type and dictate at the same time.

Whatôs New in Omnis Studio 8.0.3

88

Apple Events
All the Apple Event commands, including Send core event and Send Finder event,
have been made obsolete in this version; they do not work on macOS Sierra and are
therefore no longer supported in this release of Omnis Studio. The commands have
been moved from the Apple eventsé group and placed into the Obsolete commands
group in the Method Editor.

Apple Events Object
To replace the functionality of the old ñSend Finder Eventò commands, this release
includes a new Object class called oFinderEvent which contains a number of methods
which run AppleScript to execute the equivalent Apple Finder events, such as a Get
File Info event or a Duplicate Files event. The AppleScript is run using the Omnis
$runapplescript() method from inside each method in the object class.

To use the object class and these methods, click on the Class Wizard option in the
Studio Browser, then click on Object, select the oFinderEvent option, name the object
class (or keep the name oFinderEvent) and press Return: a copy of the object class
template is added to your library. Open the Method Editor for the class in which you
want to use the Finder events (such as a window, menu or toolbar class), and then
create an Object variable in the class, setting its subtype to the oFinderEvent object
you created.

Apple Event Methods
You can call the methods in your code, and run the AppleScript as required, using the
Omnis command Do YourObjectVar.$methodname() using the appropriate method
name, as below.

Some of the methods can take a file path as the first parameter, or if this is omitted or
empty a file selection dialog will open. The title of the dialog can be customized by
editing the cOpenFilesTitle class variable.

Ç $getfileinfo([cFilePath])
Sends a Get File Info event: equivalent Send finder event {Get File Info} command

Ç $duplicatefiles([cFilePath])
Sends a Duplicate Files event: equivalent Send finder event {Duplicate Files}
command

Ç $makealiasforfiles([cFilePath])
Sends a Make Alias For Files event: equivalent Send finder event
{Make Alias For Files} command

Ç $openfiles([cFilePath])
Sends a Open Files event: equivalent Send finder event {Open Files} command

Ç $printfiles([cFilePath])
Sends a Print Files event: equivalent Send finder event {Print Files} command

Ç $revealfiles([cFilePath])
Sends a Reveal Files event: equivalent Send finder event {Reveal Files} command

Ç $emptytrash()
Sends a Empty Trash event: equivalent Send finder event {Empty Trash} command

Ç $restart()
Sends a Restart Macintosh event: equivalent Send finder event {Restart Macintosh}
command

Ç $shutdown()
Sends a Shutdown Macintosh event: equivalent Send finder event
{Shutdown Macintosh} command

 Map Control

 89

Ç $sleep()
Sends a Sleep Macintosh event: equivalent Send finder event {Sleep Macintosh}
command

The object has three instance variables which you can use in your code to handle
errors:

Ç iErrCode
The error code generated by the last command. 0 for no error.

Ç iErrText
The error text generated by the last command.

Ç iScript
The AppleScript sent by the last command.

The following legacy commands are not supported in the latest version on macOS:
Send finder event {Show About}, Send finder event {Share Files}, Send finder event
{Show Clipboard}.

You can examine the Omnis code and AppleScript in each method inside the object
class. For example, various simple operations are handled in a generic method
$simpleop and the operation is passed in as a parameter:
; $simpleop method

; pOperation param receives óEmptyô, óRestartô, óShut downô, or óSleepô msg

Begin text block

Text: tell application "Finder" (Carriage return)

Text: [pOperation] (Carriage return)

Text: end tell (Carriage return)

End text block

Get text block iScript

Do $root.$runapplescript(iScript,iErrCode,iErrText)

Quit method iErrCode

Each of the new methods in the object class includes the equivalent old command as a
comment to help you map your code to the new methods.
; Send finder event {Empty Trash} ;; old command

Quit method $cinst.$simpleop("Empty") ;; new method

Map Control
Custom Markers
You can add your own icon to markers in the JavaScript Map control, by assigning an
icon URL in the fifth column of the map marker list for the control ï if the fifth parameter
was omitted the default Google map marker icon is used: this feature was available in
previous versions. It is now possible to assign an alternative marker icon or symbol,
including map markers from the Google maps API, by adding a sixth column to the
marker list: in this case the fifth column should be omitted.

The definition for the markers list in the JavaScript Map control can now be:
Do iMapMarkers.$define(

iMarkerLatLong,iMarkerTitle,iMarkerT ag,iMarkerHtml, iMarkerIcon , iMarkerCustom

)

where iMarkerCustom is a new string column (column 6) specifying a custom marker.
When a marker is defined in the marker list, and the iMarkerIcon (column 5) is empty,
iMarkerCustom can be included with the following attributes, separated with a ó|ô
character (you only need to specify the attributes required). An example custom string
would be:
" path:google.maps.SymbolPath.BACKWARD_CLOSED_ARROW | fillColor: red |

fillOpacity:0.8 | scale: 4 | strokeColor:black | str okeWeight: 1 "

Whatôs New in Omnis Studio 8.0.3

90

Or to draw a five-pointed star marker:
" path:M 125,5 155,90 245,90 175,145 200,230 125,180 50,230 75,145 5,90 95,90 z

| fillColor: red | fillOpacity:0.8 | scale: 0.1|strokeColor:black |

strokeWeight: 1 | anchor:122,115 "

Or to draw a circle marker:
" path:google.maps.SymbolPath.CIRCLE | fillColor: red | fillOpacity:0.8 |

scale: 4 "

Where the custom marker parameters are defined as:

Ç path can either be a map symbol, or an SVG notation path, as defined below

Ç fillColor the color used to fill the marker object, an html css color name or value
e.g. #FF0000

Ç fillOpacity the opacity of the fill color, a value from 0 to 1, e.g. 0.5 is 50%
transparent fill

Ç scale a scaling factor for the object

Ç strokeColor the color used to outline the object, an html css color name or value
e.g. #FF0000

Ç strokeWeight the thickness of the stroke line

Ç anchor allows you to set the anchor position or offset the shape. By default,
shapes are aligned to the top left of the marker relative to its lat:long

Marker Symbol ï prefixed
google.maps.SymbolPath.

Description

CIRCLE A circle.

BACKWARD_CLOSED_ARROW A backward-pointing arrow that is
closed on all sides.

FORWARD_CLOSED_ARROW A forward-pointing arrow that is closed
on all sides.

BACKWARD_OPEN_ARROW A backward-pointing arrow that is
open on one side.

FORWARD_OPEN_ARROW A forward-pointing arrow that is open
on one side.

For example:
Do iMapMarkers.$define(

iMarkerLatLong,iMarkerTitle,iMarkerTag,iMarkerHtml, , iMarkerCustom)

Do iMapMarkers.$add(

" 52.223460: 1.49 2379 "," Omnis UK"," Omnis

UK","","","path:google.maps.SymbolPath.BACKWARD_CLOSED_ARROW|fillColor:

red|fillOpacity:0.8| scale: 8|strokeColor:black|strokeWeight: 1 ")

; the JS Map app uses similar code to show the Omnis offices

The JS Map example app has been updated and includes some of the new markers
and polygons, and can viewed or downloaded via the Omnis website (www.omnis.net)
from the JavaScript Component Gallery. The following image shows the location of the
European Omnis offices using the ñBackward-pointing Closed Arrowò.

 Map Control

 91

The map control now has a property $fitmaptomarkers that can be assigned value 1 at
runtime to force the map to zoom in or out to allow all the map markers to be shown.

Finding the Latitude:Longitude

To find the lat:long position of somewhere (to be used in the JS Map control in the
iMarkerLatLong parameter), you can Right-click somewhere on a Google map in a
standard browser (not the Omnis JS Map control), select the óWhatôs hereô option and
the latitude:longitude value of that position is shown on the popup. You need to replace
the comma with a colon to be used as a parameter in Omnis, e.g. 52.223460:1.492379.

Polygon Objects
In addition to icons and standard map markers, you can add polygon objects or
irregular shapes to maps in the JavaScript Map control. The new property $mappolys
specifes the data name of a list variable which contains the definition of each polygon
or shape as follows:
Do iPolyMarkers.$define(

iPolyLatLong,iPolyStroke,iPolyOpacity,iPolyWeight,iPolyFill,iPolyF illOpacity

,iPolyTag)

Ç iPolyLatLong the latitude:longitude values for each of the points of the polygon, so
a triangle would have 3 points: the lat:long settings are separated with the ó|ô
character, e.g. 25.774,-80.190|18.466,-66.118|32.321,-64.757|25.774,-80.190

Ç iPolyStroke the color used to outline the polygon, which is an html css color name
or value e.g. #FF0000

Ç iPolyOpacity the opacity of the stroke color, a value from 0 to 1, e.g. 0.5 is 50%
transparent

Ç iPolyWeight the thickness of the stroke line

Ç iPolyFill the fill color of the polygon object, an html css color name or value e.g.
#FF0000

Ç iPolyFillOpacity the opacity of the fill color, a value from 0 to 1, e.g. 0.5 is 50%
transparent

Ç iPolyTag the tag name or label for the polygon, which is sent to the
evPolygonClicked event method in pPoly

